Linear Self-Similar Systems

7.1 INTRODUCTION

In preceding chapters we have explored several useful classes of statisti-
cally and deterministically self-similar signals that arise in engineering ap-
plications. This chapter represents a preliminary investigation into the rela-
tionships between self-similar signals and an underlying self-similar system
theory. In particular, we explore not only how we may interpret some of
our methods for synthesizing self-similar signals in the context of driven
self-similar systems, but also the role that the wavelet transform plays in
characterizing such systems. In the end, this leads to some interesting and
potentially important insights and perspectives into the results of the book,
and in the process suggests some promising future directions for work in
this area.

The self-similar systems we ultimately discuss in this chapter have the
property that they are linear and jointly time- and scale-invariant. In the first
half of the chapter we define this class of systems, develop several properties,
and show how both the Laplace and Mellin transforms can be used in their
analysis. In the latter half of the chapter we develop wavelet-based charac-
terizations of this class of systems to illustrate that the wavelet transform is
in some sense best matched to these systems—that such characterizations are
as natural and as useful for these systems as Fourier-based characterizations
are for linear time-invariant systems.

Overall, our treatment is rather informal in style, reflecting a conscious
effort to emphasize the conceptual themes over mathematical rigor and gener-
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ality. To facilitate this, our development focuses, for example, on input-output
descriptions of systems. Our development begins with a brief summary of
some results in the theory of linear time-invariant systems. For more exten-
sive treatments, see, e.g., Oppenheim and Willsky [1], Siebert [2], or Kailath
[1001.

Linear systems are typically defined as follows. Suppose y(t), ¥ (t), and
12(t) are the responses of a system S {-} to arbitrary inputs z(¢), z1(t), and
I(t), respectively. Then the system is linear when it satisfies, for any a and
b, the superposition principle

S{azi(t) + bxa(t)} = ayr(t) + bya(t). (7.1)
Linear systems are often conveniently described in terms of the integral

o) =Sz} = [ atrynterydr,
where (. 7) is the kernel of the linear system and represents the response of
the system at time ¢ to a unit impulse at time 7, i.e,,

K(t,T) 2 S{s(t—r)}.

7.2 LINEAR TIME-INVARIANT SYSTEMS

Animportant class of linear systems are those that are also time-invariant. A
system is time-invariant when it satisfies, for any constant 7,

S{z(t—1)}=ylt-1). (7.2)
Collectively the properties (7.1) and (7.2) characterize a linear time-invariant
(LTT) system.

A linear system is time-invariant if and only if its kernel (¢, 7} satisfies,

for any b,

Kk, T)=kK(t —b,7—b). (7.3)
For this class of systems, the kernel has the form

kt.T)=v(t—17)

where v(t) is the familiar impulse response of the system. Furthermore, the
corresponding input-output relation is, of course, described in terms of the
usual convolution integral,

y(t) = /_D:O {ryu(t —7)dr 2 z(t) x v(t).

The eigenfunctions of LTI systems are complex exponentials of the form ¢*,
from which we get that the Laplace transform

X{(s) = /co z{t)e "t dt

—_
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possesses the so-called convolution property; i.e., for signals x(f) and y{/)
with Laplace transforms X (s) and Y'(s), respectively, we have

z{t) x y{t) +— XN(s) Y (s).

7.3 LINEAR SCALE-INVARIANT SYSTEMS

In contrast to linear time-invariant systems, linear scale-invariant system the-
ory has been comparatively less explored, though it has received occasional
attention in the systems [101] and pattern recognition [102] literature, and in
the broader mathematics literature in connection with the Mellin transform
(103] [104] {105].

To explore these systems, suppose that y(t) is the response of a system
§ {-}toanarbitrary input z(t). Thenasystem S {-} is said to be scale-invariant
whenever, for any constant T > 0,

S{xlt/m)} = ylt/7). (7.4)
A system satisfying both (7.1) and (7.4) is referred to as a linear scale-invariant
(LSI) system.

It is straightforward to show that a necessary and sufficient condition
for the kernel (¢.7) of a linear system to correspond to a scale-invariant
system is that it satisfies

k(t.7) = axlat,at) (7.5)

forany a > 0.

An LSI system is generally characterized in terms of the lagged-impulse
response pair
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= S{i(t+1)}. (7.6b)
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Indeed, when an input z(t) can be decomposed, except at t = 0, as

[Lams(t-1) 5
= /(;ml’(f)é(;—l\) (”l/:r‘—/(;xl‘(—r)()‘(;-%l) "{ 77)

we can exploit the superposition principle (7.1) together with (7.4) to obtain
the following input-output relation

o= [Trme (5 T - [Tamne (5 7.8)
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For simplicity of exposition, we restrict our subsequent discussion to
the case of causal inputs
r{t) =0, t<0
and LSI systems whose outputs are causal

(i =S{z()}=0. <0

From the development, it will be apparent how to accommodate the more
general scenario of (7.8).

For the causal case, only one of the lagged impulse responses (7.6)
is required to characterize the system, and, in particular, the input-output
relation (7.8) simplifies to

o0 t\ dr
= —) —=zx(t 7.9
st = [Tamne () TR e 79)
where we let £(t) = £,.(t) to simplify our notation, and where we use the

symbol « to distinguish this convolutional relationship from the usual con-
volution * associated with LTI systems. Note that for these LSI systems the

kernel is
1 t
rit.T)=-¢ (—) .
7 T

This new convolution operation possesses many of the properties of the
usual convolution operation. For example, it is straightforward to show that
it is commutative for well-behaved operands, i.e.,

w gty =gt xan = [ 2 () &m

T

&

T

(7.10)

As a consequence, the cascade of two LSI systems with lagged-impulse re-
sponses & (t) and &(t), respectively, is typically equivalent to a single system
with lagged-impulse response & (t) x &(t). Furthermore, such systems may
be cascaded in either order without changing the overall system.

Likewise, it is straightforward to show that the new convolution oper-
ation is distributive for well-behaved operands, i.e.,

r(B)*{&(t) + &0} = x(t) x & (t) +2(t) * &(8). (7.11)

Hence, the parallel connection of two LSI systems with lagged-impulse re-
sponses &1(t) and &(¢), respectively, is equivalent to a single system with
lagged-impulse response & (¢) + &(t).

The eigenfunctions of linear scale-invariant systems are homogeneous
functions of degree s; specifically they are the complex power functions
defined by

() =12, (7.12)
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where s is a complex number. Indeed, from (7.9) and (7.10) the response of
an LSI system to (7.12) is readily obtained as

gty =Z(s)t°

with the associated complex eigenvalue given by

{1)

Z(s) = /Om fr) ol dr (7.13)

whenever this integral converges. Eq. (7.13) is referred to as the Mellin
transform! of the signal £(¢) [105] [106] [107].

The eigenfunction property of the complex power functions implies
that the Mellin transform constitutes an important tool in the analysis of
LSI systems. Indeed, it is particularly convenient to compute the response
of an LSI system to any input that is the superposition of eigenfunctions.
Fortunately, a broad class of signals z(t) can be expressed as a superposition
of eigenfunctions of LSI systems according to

1 ctjoo
(t) = —/ X(s)t° ds (7.14a)
27r] c—joo
fort > 0, where ) o
X(s):/ s(r) 7 dr (7.14b)
0

and c is in the region of convergence of X(s). Egs. (7.14) collectively con-
stitute the Mellin representation of a signal z(t); the Mellin inverse formula
(7.14a) is the synthesis relation, while the Mellin transform (7.14b) is the anal-
ysis formula. Interestingly, we may interpret the Mellin transformation as a
representation of z(t) by its “fractional” moments.

The Mellin inverse formula implies that a broad class of linear scale-
invariant systems are completely characterized by the Mellin transforms =(s)
of their respective lagged-impulse responses. Consequently, we can refer to
this quantity as the system function associated with the LSI system. As a
consequence of the eigenfunction property of the complex power functions,
the input-output relation for a linear scale-invariant system with system
function Z(s) can be expressed in the Mellin domain as

Y(s)=Z(s)X(s) (7.15)

whenever both terms on the right-hand side have a common region of con-
vergence. Hence, via the Mellin transform, we can map our convolution
operation (7.9) into a convenient multiplicative operation (7.15).

The Mellin transform, its inversion formula, properties, and numerous
transform pairs are well documented in the literature [105] [106] [107]. One

lActually, we have chosen a slight but inconsequential variant of the Mellin
transform—the usual Mellin transform has s replaced by —s in our definition.

Sec. 7.3 Linear Scale-Invariant Systems 135

basic Mellin transform pair is given by

1
7 u(t - 1) «— , Re(s) > —so (7.16)
S+ Sp

for arbitrary so.

From this pair we are able to show that the Mellin transform plays an
important role in the solution of a class of scale-differential equations that give
rise to linear scale-invariant systems. We begin by quantifying the notion of
a “derivative operator in scale.” A reasonable definition of the derivative in
scale of a signal z(t) is given by

I x{et) —z(t)
V() = ?—r»rl\ Ine ’
One can readily interpret this definition in the context of traditional deriva-
tives as

d d
_— = t—ux(t).
Tt =tg=®

Differentiation in scale corresponds to a multiplication by s in the Mellin
domain, which suggests that the Mellin transform can be used to efficiently
solve what can be described as a class of “dynamical systems in scale.”?
Consider the following Nth-order linear constant-coefficient scale-differential
equation

Viz(t)

N M
S aViyt) = b VEz(t),
k=0

k=0

where we denote the kth derivative in scale, obtained by iterative application
of the derivative operator, by V. Then, via the convolution property of the
Mellin transform, we obtain

where Z(s) is rational, i.e.,

M

H bksk
=0

=iy k
=(s)= N ’
H aksk
k=0
in the corresponding region of convergence. The usual partial fraction ex-

pansion approach, together with Mellin pairs of the form (7.16), can be used
to derive y(t) from its Mellin transform.

2In fact, this development raises some interesting questions regarding connections to
the more general literature that is evolving on multiscale systems [84] [108]. Exploring such
relationships, however, is beyond the scope of this chapter.
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[t is interesting to note that in the 1950s, such an approach was devel-
oped for the synthesis and analysis of time-varying networks governed by
scale-differential and Euler-Cauchy equations [101], although the relationship
to linear scale-invariant system theory was not recognized. Nevertheless, the
convolution relationship (7.9) does appear in this work.

Before we turn our attention to a more broadly defined class of LSI
systems, we remark that there is, in fact, a natural homomorphism between
linear scale-invariant and linear time-invariant (LTI) systems. This relation-
ship allows us to derive virtually all the results described in this section, in
addition to many others, by mapping corresponding properties from the the-
ory of LTI systems. Specifically, by replacing time ¢ with exponential time et
we find, for example, that LSI systems become LTI systems, complex power
functions become complex exponentials, the Mellin transform becomes the
bilateral Laplace transform, and linear constant-coefficient scale-differential
equations become familiar linear constant-coefficient differential equations.

We next consider a somewhat broader notion of LSI system that will be
useful in the sequel.

7.3.1 Generalized Linear Scale-Invariant Systems

Suppose y(t) is the response of a system S {-} to an arbitrary input 7(t). Then
we say the system S {-} is scale-invariant with parameter A whenever, for any
constant 7 > 0,

S {z(t/T)} = Ty(t/7). (7.17)
We denote systems that satisfy the superposition principle (7.1) and the gen-
eralized scale-invariance relation (7.17) as LSI(}) systems. Obviously, strict-
sense LSI systems correspond to the special case A = 0. It can be easily
established that a necessary and sufficient condition for a linear system to be
scale-invariant with parameter \ is that the kernel satisty, forany « >4,

K(t,T) = o~ Vk(at,ar). (7.18)

Such generalized linear scale-invariant systems are also completely
characterized in terms of their lagged-impulse response pair (7.6). And,
again when we are able to decompose our input according to (7.7) and re-
strict our attention to the case of causal signals, we can exploit (7.1) and (7.17)
to get the following input-output relation

= [ i (2) ;1”—\ (7.19)

Rewriting (7.19) as
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we observe that in principle any LSI()) system can be implemented as the
cascade of a system that multiplies the input by |t|*, followed by a strict-sense
LSI system with lagged-impulse response £(¢). However, in many cases, this
may not be a particularly convenient implementation, either conceptually or
practically.

7.4 LINEAR TIME- AND SCALE-INVARIANT SYSTEMS

We say that a system is linear time-and scale-invariant with parameter A, denoted
LTSI()), whenever it jointly satisfies the properties of superposition (7.1),
time-invariance (7.2), and generalized scale-invariance (7.17). In this case,
the time-invariance constraint (7.3) requires the kernel to be of the form
Kt T)=v(t—T)

for some impulse response v(-); and the scale-invariance constraint (7.18)
imposes, in turn, that this impulse response be a generalized homogeneous
function of degree A — 1, i.e.,

v(t) = a~*"Volat)
forall t and all a > 0. Following Gel’fand et al. [90], we can parameterize the
entire class of impulse responses for such systems. In particular, provided
A#£0.-1.-2. ..., we get that v(t) takes the form

u(t) = CaltP 1 u(t) + Gt u(—t). (7.20a)
For the special case A = —n forn=20,1,2, ...,
o(t) = Calt] D u(t) + Calt) ™ D u(—t) + Cs8™(t) (7.20b)
where 6™ () denotes the nth derivative of the unit impulse and u(t) the unit
step function. In both cases, the ', ... Cs are arbitrary constants.

There are many familiar LTSI()) systems. For example, the identity

system, for which

v(t) = (),
corresponds to A = 0, (3 = Cs = 0 and (s = 1. In fact, as is apparent from
the parameterizations (7.20), the identity system is the only stable LTSI(})
system. A second example is the integrator. This system has a regular
impulse response

v(t) = u(t)
and correspondsto A =1,Cy = 1,and (2 = 0. Asa final example, consider a
differentiator, which has for an impulse response the unit doublet

v(t) = d'(t).
This choice corresponds to A = —1, (3=C4=0,and C5 = L.
Linear time- and scale-invariant systems are natural candidates for

modeling and processing self-similar signals as we begin to show in the
next section.
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7.4.1 Self-Similar Signals and LTSI(\) Systems

In this section, we explore some relationships between self-similar signals
and systems. In particular, we show how LTSI()\) systems preserve the time-
invariance and scale-invariance of their inputs, and point out how these
properties have been exploited in some of the models for self-similar signals
described earlier in the book.

Our result in the deterministic case is as follows. Let v(¢) be the impulse
response of an LTSI()) system, so that v(t) is homogeneous of degree A — 1,

ie,foranya >0 ;
u(t) = a”* "V v(at),

and consider driving the system with a scale-invariant input signal z(¢) that
is homogeneous of degree H. Then it is straightforward to establish that the
output y(t) of the system

ylt) = /Oo {r)v{t—T1)dr
when well defined, is scale-invariant as well. In fact, it is homogeneous of
degree H + ), so that, for any a >0

y(t) = a"H N y(at). (7.21)

Two obvious special cases are immediately apparent. The first corre-
sponds to the case in which the system is the identity system (A = 0). Here the
output and input are identical, and (7.21) yields the appropriate result. The
second corresponds to the case in which the input is an impulse ( = —1).
Here, the output is v(t), and, again, (7.21) yields the correct result. This, of
course, suggests that at least one synthesis for a class of homogeneous signals
is in terms of an LTSI(}) system driven by an impulse.

Note that we can derive analogous results for deterministically time-
invariant inputs. However, in this case the results are somewhat degenerate.
In particular, except in trivial cases, for a time-invariant (i.e., constant) input,
the output of such a system is only well defined if the system is an identity
system since any other LTSI()\) system is unstable. Nevertheless, in this
unique case, the output is, obviously, time-invariant as well.

Consider, next, the case of an input that is either wide- or strict-sense
statistically scale-invariant as defined in Chapter 3. In this case, it is also
straightforward to show that the output, when well defined, is also statisti-
cally scale-invariant and satisfies

y(t) 2 o H+ N y(at)

with equality in the corresponding statistical sense.
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For wide- or strict-sense stationary (i.e., statistically time-invariant) in-
puts, the outputs, when well defined, are also stationary. This is, of course, a
well-known result from LTI system theory. Note, however, that, again from
stability considerations, the only nontrivial system for which the output is
well defined is the identity system. This implies, for instance, that, in general,
when driven with stationary white noise, the outputs of such systems are not
well defined.

Many of these issues surfaced in Chapter 3, where we considered the
modeling of 1/ f processes through a synthesis filter formulation. Specifically,
the system with impulse response (3.9) we first proposed as a synthesis
filter for 1/ f processes is precisely an example of an LTSI(A) system with
A = H +1/2. A similar filter with A = H — 1/2 appears in the conceptual
synthesis for fractional Brownian motion illustrated in Fig. 3.2. Furthermore,
the fractional integrator used in the Barnes-Allan synthesis for 1/ f processes,
which we described in Section 3.2, has properties similar to those of an LTSI(})
system. More generally, there would appear to be a number of potentially
important connections between the operators of fractional calculus {56] and
linear jointly time- and scale-invariant system theory. Finally, the ARMA
filter used in the lumped RC-line synthesis of 1/f-like behavior that we
discussed in Section 3.3.1 can be viewed as an approximation to an LTSI(})
system. Specifically, this filter is linear and time-invariant, but satisfies the
scale-invariance relation (7.17) only for dilation factors 7 of the form 7 = A™,

The impulse-response constitutes one important means for characteriz-
ing LTSI()) systems. However, from an implementational perspective, it is
not always the most convenient. In the next section, we develop a canonical
representation for a class of LTSI(\) systems in terms of wavelet bases. Aswe
will see, this characterization not only provides additional insight into such
systems, but ultimately leads to some important techniques for realizing and
approximating them. In fact, we will see that it is possible to interpret many
of the wavelet-based representations for self-similar signals we derived in
Chapters 3 and 5 in the context of these results.

7.5 WAVELET-BASED LTSI(\) SYSTEMS

Consider a system that computes the continuous-parameter wavelet trans-
form of the input z(t) via (2.1), multiplies the resulting field X? by some
regular field K* in time-scale space, then inverts the result according to the
synthesis formula (2.4), so that

y(t) = WKW {z(1)}}- (7.22)
It is straightforward to establish that such a linear system has a kernel
1 00 00
_ 7 (TINT -2
)= g [ [ O KL vt i duds 7.23)
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The structure of this kernel imposes certain constraints on the linear systemy
for example, such systems are symmetric, 1.e.,
w{t.7) = n(T.1). (7.24)
However, the structure of the kernel is sufficiently general that one can im-
plement LTI, LSI, or LTSI systems using this framework.
For instance, using the readily derived identity

S = b = Lt
valid for all b, the system is time-invariant [i.e., satisfies (7.2)] whenever the
multiplier field satisfies
R* =R,
for all b. In other words, (7.22) implements an LTI system whenever the field
K* is independent of v. In this case, K% can be expressed as
R¥ = k() (7.25)

for some regular function of scale k(+).
Likewise, using the identity
vE(at) = ol Pebla ) (7.26)
valid for all a # 0, the system is scale-invariant with parameter A [i.e., satisties
(7.17)] whenever the multiplier field satisfies

K =a K3 (7.27)

1 av

foralla > 0.
For the system to be jointly time- and scale-invariant with parameter \,
(7.25) and (7.27) require that

ki) = a " klap).

i.e., that k(:) be homogeneous of degree A. The imposition of regularity
on k(-) precludes it from containing impulses or derivatives of impulses.
Again using Gel'fand’s parameterization of the homogeneous functions, we
conclude that the system (7.22) is LTSI(A) whenever the multiplier field has
the form

K = k() = Crlul ulp) + Calpl u(=p) (7.28)
for some constants C'y and (. Note that even if these constants are chosen so
that k(-) is asymmetric, the impulse response v(t) of the resulting system is
even, i.e., .
et = v(=t). (7.29)
This is a consequence of the symmetry constraint (7.24). In fact, since we can
rewrite (7.23) using (7.26) as

1 00 X ) ‘ A
R{t.T) = Z’—/- dv /ﬂ v () Th(p) + (=] vi(r) T dpe
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we see that the kernel of the system is really only a function of the even part
of the function &(-). Hence, without loss of generality we may set (5 =0in
(7.28) and choose

KE=kp) = Cplulp) (7.30)

where (" is an arbitrary constant.

Finally, combining (7.29) with (7.20), we can conclude that whenever
(7.22) implements an LTSI()) system, i.e., whenever k(-) is chosen according
to (7.30), the impulse response corresponding to the system of (7.22) must
take the form

ol = Gt
for\#£0.-2. -4, ..., o0r the form
vty = Ce Y 4 O

for \ = —n forn = 0.2.4. ... In both cases, (', and C; are parameters
determined by the constant (' in (7.30). Note in particular that, at least for
the case \ = 0, we must have

¢, = C
. = 0.

This follows from the fact that, since Kt = (', the overall system (7.22) is just
a scaled identity system. Fig. 7.1 summarizes the resulting wavelet-based
realization of a linear jointly time- and scale-invariant system with parameter
\. Note that this is analogous to implementing an LTI system by computing
the Fourier transform of the input, multiplying by some frequency response,
and applying the inverse Fourier transform to the result. As is the case for
Fourier-based implementations of LTI systems, not all LTSI(\) systems may
be realized using the wavelet-based implementation of Fig. 7.1. For example,
the symmetry constraint (7.29) precludes us from being able to implement
either the differentiator or integrator system examples discussed in Section7.4
since these systems have impulse responses that are not even.

As a final remark, it is important to emphasize that the actual choice of
wavelet basis plays no significant role in the representation of LTSI(}) systems
discussed in this section. However, while the choice of basis does not enter
into the theoretical development, it is reasonable to expect it to be a factor
in anv practical implementation. In the next section, we consider a strategy
for approximating LTSI(}) systems that exploits orthonormal wavelet bases.
As we will see, these quasi-LTSI(}\) systems are particularly convenient to
implement and can be made computationally efficient.

7.5.1 Dyadic Approximations to LTSI()\) Systems

A practical approximation to a linear time-scale invariant system can be con-
structed via orthonormal wavelet bases of the type described in Section 2.3.
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x(t)

Figure 7.1. Wavelet-based implementation of an LTSI(\) system.

Because signal reconstructions in terms of such bases require only a countable
collection of samples of the wavelet coefficient field, the system turns out to
be fundamentally more practical from an implementational perspective. In
addition, using an implementation based on the DWT, the system can be
made computationally highly efficient as well. In fact, in some sense, using
the discrete wavelet transform to implement an LTSI()) system is analogous
to implementing an LTI system using the discrete Fourier transform (DFT).

Consider a system which computes the orthonormal wavelet decompo-
sition of the input r(t) according to the analysis formula (2.5b), i.e.,

o= /w (1) W (t) dt.

then scales the resulting collection of wavelet coefficients by a factor A7,

m o__ J.m.m
Yn —A'n‘l‘n

then resynthesizes a signal from these modified coefficients to generate an
output according to the synthesis formula (2.5a), i.e.,

MOEDI AU
It is a straightforward exercise to show that the overall system, described via
y(t) = Wit (ke Wa{z(t)}} (731)
corresponds to a symmetric linear system with kernel

Rit.r) = 3 5 Ul (DK (T).

A close inspection reveals that, as a consequence of the nature of the
discretization inherent in the system, one cannot choose the multiplier co-
efficients k™ such that the resulting system is time-invariant. Likewise, one
cannot choose the coefficients so that the overall system is scale-invariant for
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X, yr 1
s — Wy ‘ﬁ\ﬁ & W' M)
c2

Figure 7.2. A dyadic approximation of an LTSI()) system as implemented via
an orthonormal wavelet basis.

any degree \. However, we can show that if the k7 are chosen in a manner
consistent with the discussion of the previous section, viz.,

mo_ 1 Al _ —am
R =Cp P c2—m, (7.32)
then the system defined via (7.31) obeys some associated notions of time- and
scale-invariance.
We begin by noting that this system, which is depicted in Fig. 7.2, has a
kernel satisfving, for any m,
Rt 7y = 27 ATImR(2ME 2™ ), (7.33)
where we have used the identity
LT(2t) = 27
valid for any integer i. However, since (7.33) can be restated in terms of the
generalized scale invariance condition (7.18) as
7t 1) = a” W Vi(at.ar), a=2"
we see that the system obeys a weaker, dyadic scale invariance condition. In
particular, the system satisfies (7.17) only for dilation factors 7 of the form
T=2"
for integers m.

Likewise, the system obeys a somewhat weaker time-invariance prop-
ertv. Consider a class of input signals z(t) to the system that have no detail
at scales coarser than 2¥ for some integer A, so that

=0, m < M.

n
In this case, the multiplier coefficients k7t for m < M for the system are
irrelevant and we may arbitrarily assume them to be zero. For this class of
inputs, the effective kernel is

Fet(t, T) = Y 3 eHOC2TYR (7).

m>M n
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Using the identity
Pt = 21— M) = Yy pm-n(t)

valid for m > M and | an integer, we see that this kernel satisfies
Rt r) = Rt — 1278 7 —127M) (7.34)
for all integers (. Since (7.34) can be re-expressed as
Rlt,T) = R(t— b7 = b), h=27M

we see that for this class of input signals the system is periodical ly time-varying,
i.e., satisfies (7.2) for any shift factor 7 of the form

r=102"M, {= ... .-101.2 ...

Note that in contrast to the wavelet-based systems discussed in the
previous section, in this case the actual choice of wavelet affects the char-
acteristics of the overall system. Indeed, with respect to scaling behavior,
the choice of wavelet affects how the system behaves under nondyadic scale
changes at the input. Furthermore, the choice of wavelet affects the class
of inputs for which our time-invariance relation is applicable, as well as the
behavior of the system under input translations that are not multiples of 2.

7.6 SUMMARY

In this chapter, we undertook a preliminary investigation into the system the-
oretic foundations of the concepts developed in this book. This was aimed
toward developing some unifying perspectives on the results we have ob-
tained. After defining scale-invariant systems, we explored the relationships
between such systems, self-similar signals, and the wavelet transform. Our
results provide additional eviderce that wavelet-based synthesis, analysis,
and processing of self-similar si_nals are rather natural. Indeed, the 1/f
synthesis and whitening filters described in Section 4.2—which play an im-
portant role in detection and estimation problems involving 1// processes—
are specific examples of linear systems that are effectively jointly time- and
scale-invariant. Interpreting the transmitter and receiver structures for frac-
tal modulation discussed in Chapter 6 in terms of such systems also has
the potential to lead to some potentially useful additional insights into both
homogeneous signals and fractal modulation.

More generally, a system theory perspective provides some novel in-
sights into the relationships between Laplace, Fourier, Mellin and wavelet
transformations, both as signal analysis tools and as representations for char-
acterizing linear systems. In particular, our results suggest that while Laplace
transforms are naturally suited to the analysis of linear time-invariant sys-
tems, and while Mellin transforms are naturally suited to the analysis of scale-
invariant systems, it is the wavelet transform that plays the corresponding
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role for linear systems that are jointly time- and scale-invariant. Moreover, we
showed that wavelet representations lead to some very efficient and practical
computational structures for characterizing and implementing such systems.
Ultimately, the ideas developed in this chapter may well lead to a basis for
a unified development of fractal signal and system theory. As such, this

represents one of several interesting and potentially rich open directions for
further research.



