Appendix A

Derivation of the Discrete
Wavelet Transform

A.1 ANALYSIS ALGORITHM
The key to developing an efficient discrete-time implementation of the wave-
let decomposition lies in recognizing a useful recursion. Because

90(8), LB() € Vo C V1,

there exists a pair of sequences h{n] and g[n] such that we can express these
functions in terms of a basis for Vi, i.e.,

od(t) = Y hlleilt) (A.la)
!
Bt = S alllar(t) (A.1b)
!
where the coefficient h[n] and g[n] are given by the appropriate projections,

viz., (2.20). Equivalently, we may express (A.1) in the frequency domain as
d(w) = 27V H(w/2)®(w/2) (A.2a)
Y(w) = 272G (w/2) B(w/2). (A.2b)

In any case, multiplying both sides of (A.1) by 2mi2, replacing t with 2"t ~n,
and effecting a change of variables we get, more generally,

om(t) = YRl -2n]elt () (A.3a)
I

wrt) = S gll—2n) e () (A.3b)
1
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where, in turn, we may rewrite (2.20) as

B[l - 2n] = /_°° G (t) Gr(E) dt, (A.4a)
o= = [ ummertind. (A.db)

The discrete-time algorithm for the fine-to-coarse decomposition as-
sociated with the analysis follows readily. Specifically, substituting (A.3a)
into (2.13) and (A.3b) into (2.5b), we get, for each m, the filter-downsample
relations (2.21a) and (2.21b) defining the algorithm.

A.2 SYNTHESIS ALGORITHM

The coarse-to-fine refinement algorithm associated with the synthesis can be
derived in a complementary manner. Since

o7t (t) € {Vm ® On},
we can write

ot (1) Am{om ()} + D {7+ (1)}

S {hn—20 1" (8) + gln — 29" (1)} (A.5)

Il

where the last equality follows by recognizing the projectionsin the respective
expansions as (A.4). The upsample-filter-merge relation (2.21¢) then follows
immediately by substituting (A.5) into

aptt = [ st et de
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Appendix B

Proofs for Chapter 3

B.1 PROOF OF THEOREM 3.2

Let wy and w; be constants from Definition 3.1, and let A = wy/wp. We first
establish the following useful lemma.

Lemma B.1 When a 1/f process x(t) is passed through a filter with frequency
response

1 awp < l\.dl S awi
0 otherwise

Ba(w) = { (B.1)

forany a > 0, the output y,(t) is wide-sense stationary, has finite varignee, and has
an autocorrelation satisfying

R,.(7) = E[yalt) yalt — )] = a7 Ry, (aT) (B.2)

for all a > 0. Furthermore, for any distinct integers m and k, the processes iy {1}
and y,.(t) are jointly wide-sense stationary.

Proof:

First, from Definition 3.1 we have immediately that y(¢) is wide-sense
stationary. More generally, consider the case a > 0. Let b,(t) be the impulse
response of the filter with frequency response (B.1). To establish (B.2), it
suffices to note that y,(t) has correlation function

R, (t.8) = Elyalt) yals)]
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fjhfibﬂt—Cwas—ﬁ>RAaJndadg

— /_i /_Z bi(at — ) by(as — 3) Rale B) dodf
= a*#R, (at,as) (B.3)
where we have exploited the identities (3.2b) and
be(t) = abi(at).

However, since y;(t) is wide-sense stationary, the right side of (B3) is a
function only of ¢ — s. Hence, y,(t) is wide-sense stationary and (B.2) follows.
Furthermore, y,(t) has variance

R,,(0,0) = a™**R,,(0,0) < 00

where the inequality is a consequence of Definition 3.1. To establish our
final result, since By~ (w) and By:(w) occupy disjoint frequency intervals for
m # k, the spectra of yx~(t) and y,«(t) likewise occupy disjoint frequency
intervals. Thus, y,~(t) and y«(t) are uncorrelated, and, hence, jointly wide-
sense stationary as well.

|

Proceeding now to a proof of our main theorem, let us establish that y(¢)
is wide-sense stationary. Let M; and My be any pair of integers such that

MMy < wp < wy < MMy,

and consider preceding the filter (3.25) with a filter whose frequency response
is

- { 1 My < |w] € AMvw, (B.4)

Blw) = 0 otherwise
since this will not affect the output y(t).
Let §(t) be the output of the filter (B.4) when driven by z(t). Then since

~ My
B(w) = Z Bym(w)
m=Mg
where By~ (w) is as defined in (B.1) of Lemma B.1, we can decompose j(t)
according to

My
gt)= 3 () (B.5)
m=My

where yy~(t) is the response of the filter with frequency response By~ (w) to
z(t). Since, by Lemma B.1, all the terms comprising the summation (B.5) are
jointly wide-sense stationary, j(t) is wide-sense stationary. Then since y(t)
is obtained from 7(t) through the filter (3.25), the stationarity of y(t) is an
immediate consequence of the stationarity of §(t) {40].
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Let us now derive the form of the spectrum of y(¢), i.e., (3.26). We begin
by rewriting (B.2) of Lemma B.1in the frequency domain as

S, (aw) = a” S, (W) (B.6)

@

where S, (w) is the power spectrum associated with y,(t). For 1 < a < A, we

observe that S,, () and Sy, (w) have spectral overlap in the frequency range

awp < || < w1, and can therefore conclude that the two spectra must be
identical in this range. The reasoning is as follows. If we pass either y,(¢) or
y1(¢) through the bandpass filter with frequency response

, ol < w
B ={ g Gerwie
whose impulse response is b'(t), the outputs must identical, i.e.,
b(t) * yalt) = b(8) x n(t) = b'(8) * x(t).
Since y,(¢) and y:(t) are jointly wide-sense stationary, we then conclude

Sy (@)| BN (w)2 = Sy, (w)| B (w)f?

whence
Sy (w) = Sy, (W), awp < |w| < wi. (B.7)
Combining (B.7) with (B.6) we get
Sy (aw) = a”FHFDS, (W), awp < |w| < wi (B.8)

forany 1 < a < \. Differentiating (B.8) with respect to a and letting a — 1+,
we find that

W‘S,yx(w) = —(ZH + 1)Sy1(w)v W < w < W,

and note that all positive, even, regular solutions to this equation are of the

form
Spw)=a2/lwl’,  wo<|wl <@ (B.9)

for some 02 > 0and vy = 2H + 1. Using (B.9) with (B.6) we find, further, that

, o2lel A < Jul < Ay
Sy (W) = { 0 otherwise '

Via Lemma B.1, the y\~(t) are uncorrelated, so we deduce that 7(t) has spec-
trum

My 2 M Mo
o3/lwf" Mo < o] S AT
Sylw)= Y Sym(w)= { 0 otherwise '
m=Mp

Finally, since
S,(w) = | BW)*Sz(w)

our desired result (3.26) follows.
2
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B.2 PROOF OF THEOREM 3.3

To show that a fractional Brownian motion z(t), for 0 < H < 1, isal /f
process according to Definition 3.1, it suffices to consider the effect on z(t) of
any LTI filter with a regular finite-energy impulse response b(t) and frequency
response B(w) satisfying B(w) = 0. In particular, since z(t) has correlation
given by (3.16), the output of the filter

y(t) = /_O;b(t — 1) z(r)dr (B.10)
has autocorrelation
Ry(t,s) = Ely(t)y(s)]
= i Oo b(v)dv/Oo |t—s+u—vl2Hb(u)du
2 —00 —20

as first shown by Flandrin [44]. Since Ry(t, s) is a function only of t — s, the
process is stationary, and has spectrum

1
Sy(w) = |Bw)[*- oA

When we restrict our attention to the case in which B(w) is the ideal bandpass
filter (3.24), we see that y(t) is not only stationary, but has finite variance. This
establishes that any fractional Brownian motion z(t) satisfies the definition
of a 1/ f process.

That the generalized derivative, fractional Gaussian noise z'(t), is alsoa
1/ f process follows almost immediately. Indeed, when z/(t) is processed by
the LTI filter with impulse response b(t) described above, the output is y'(t),
the derivative of (B.10). Since y(¢) is stationary, so is y'(t). Moreover, y'(t) has
spectrum
1

’ lwlZH’+1'

Sy(w) =Bl
where H' is as given by (3.20). Again, when B(w) is given by (3.24), y'(t) is

not only stationary, but has finite variance, which is our desired result.

B.3 PROOF OF THEOREM 3.4

- Without loss of generality, let us assume o? = 1. Next, we define

M
()= 2 Danvn(t) (B.11)
m=—M n
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as a resolution-limited approximation to z(t) in which information at resolu-
tions coarser than 2~ and finer than 2M js discarded, so

e(t) = lim ealt) =323 2 (t):

m n

Since for each m the wavelet coefficient sequence ;' is wide-sense stationary
with spectrum 27", the approximation z(t) is cyclostationary [40] with
period 2" has finite variance, and has the associated time-averaged spectrum

A
Sulwy= S 2R (B.12)

m=—M
The limiting time-averaged spectrum
Sew) = ‘lllin Snrlw)
gives the desired spectrum expression (3.36), and corresponds to the time-
averaged spectrum of z(t) as measured at the output of a bandpass filter for

each frequency w in the passband. The desired octave-spaced ripple relation
(3.38) for arbitrary integer k follows immediately from (3.36).

To establish (3.37), we begin by noting that, given w, we can choose maq
and wp such that w = 2wy and 1 < |wg| < 2. Hence, using (3.38) we see

S(w) =275z (wo)

from which it follows that

inf S(w)L<S(w)< sup Sz(wo) _2;
FACKY ‘UJP— z =~ P \wo ‘WI‘Y‘

1< wol<2 1< |wol<2

It suffices, therefore, to find upper and lower bounds for S (wo)on1 < |wof < 2.

Since ¢(t) is Rth-order regular, ¥(w) decays at least as fast as 1/wf as
w — oc. This, together with the fact that ¥ (w) is bounded according to (2.8a),
implies that

C
N <
WIS o
for some C > 1. Using this with (2.14a) in (3.36) leads to the upper bound
Sa{wg) < }: 2™ 4 Z M RMm g
m=0 m=1

To establish the lower bound it suffices to show S.(w) > O for every
1 < w < 2, which we establish by contradiction.

Suppose for some 1<wy <2,

Se(wo) = Zz-’mhp(z-%o)ﬁ =0
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Then since all the terms in the sum are non-negative, this would imply that
each term is zero, from which we could conclude

3 w2 w) P = 0.

However, this contradicts the wavelet basis identity (2.9). Hence, we must
have that S(w) > 0 for every 7 < wy < 27. The complete theorem follows.
| |

B4 PROOF OF THEOREM 3.5

We begin by defining the process z(t) as the result of filtering z(t) with the
ideal bandpass filter whose frequency response is given by

1 27K <jw] <2F
0 otherwise

Bg(w) = {

so that

I}gr;oxx(t) = z(t).

Then by Theorem 3.2, r (t) is wide-sense stationary and has power spectrum

241,50 -K K
St = { T Tl <27

0 otherwise (B.13)

If we denote its corresponding autocorrelation by
Rk(r) = E[zx(H)zk(t = 7)]

and its wavelet coefficients by

the correlation between wavelet coefficients may be expressed as
’ 0 0 !
Elapiag ()] = [ [ o) Relt =) () dedr
= [ wrw - [Rev xR 0] de (B.14)

Applying Parseval’s theorem and exploiting (B.13), we may rewrite (B.14) in
the frequency domain as

m ' 2—(m+m')/2 —2-K 52 ,
E [l‘n (K).I’n, (K)] = T {/_2K lqulII(z_m“})‘I/*(z-mw)dw
2K 52 ,
* ok |w|7\1’(2 w) ¥ (2 w)d,u.)}. (B.15)
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Interchanging limits, we get

™ = lim #™(K)
K—=o0

and, in turn,
E[epag] = Jim B [z7(K)) ()] (B.16)

Substituting (B.15) into (B.16) yields (3.40). Since

; ;
E {I,Tx’n"] |> < varz] - varzly,

and since
0.20.22—7771
varz, = ———J
m
where -
J= / T (W) dw, (B.17)
0

it suffices to show that (B.17) converges. Because ¢(t) has R vanishing mo-
ments, there exist constants Cy and C7 such that

[¥(w)] < Colw]® (B.18a)
W(w)] < Cilw|™ (B.18b)

Using (B.18) in (B.17), we obtain, for0 < vy < 2Rand R > 1,
1 =]
_ 2 2R—~ 2 -2R—y
J—-/(;Couj dw-f—/l Ciw dw < oo

as required.

B.5 PROOF OF THEOREM 3.6
Let us define ,
A=2T"p—-2"™n

and )
Z(w) =w V2T (27" W)

for w > 0, so that (3.41) may be expressed, via (3.40), as

2

P = ﬂ";zRe I(A) (B.19)
where 0 »
1(A)=/0 S(w) e dw. (B.20)

Thus, to establish the desired result, it suffices to show that [{A) has the
appropriate decay.
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We first note that if v > 2R + 1, then we cannot even guarantee that
I(A) converges for any A. Indeed, since
Zw)~0 <w23_7> , w—0

we see that /(A) is not absolutely integrable. However, provided v < 2R,
I(A) is absolutely integrable, i.e.,

/OOOIE(Q)(dew < .

In this case, we have, by the Riemann-Lebesgue lemma [50}, that
I(A) = 0, A — oo.

When0 < v < 2R, we may integrate (B.20) by parts ¢} times, for some positive
integer @, to obtain

1 % .
—_ - =(Q) —jAw
(A) = (JA)Q]O =@ () 670 dyy
Q-1

-5 gl o] - o)
(B.21)
Due to the vanishing moments of the wavelet we have
E0w) ~ O (W), w0 (B.22)

while due to the regularity of the wavelet, ¥(w) decays at least as fast as 1/w®
as w — 00, whence

D)~ 0O (w,‘ZR-‘Y—Q) . w— oo, (B.23)

Hence, the limit terms in (B.21) for which —2R — v < ¢ < 2R — v all vanish.

Moreover, when we substitute ¢ = @, (B.22) and (B.23) imply that
Z@(w) is absolutely integrable, i.e.,

/0°° 2@ (w)] dw < o0, (B.24)

whenever —2R-v+1 < Q < 2R—v+1, whichimplies, again via the Riemann-
Lebesgue lemma, that the integral in (B.21) vanishes asymptotically, i.e.,

/OO
0
Hence, choosing @ = [2R —v]in (B.21) (s0 2R — v < Q < 2R — v + 1) allows
us to conclude

[§1)]

@ (w) e 8 dw — 0, A = oo. (B.25)

[~O(A PR A oo, (B.26)

Substituting (B.26) into (B.19) then yields the desired result.
|



Appendix C

The EM Parameter
Estimation Algorithm

In this appendix, we derive the EM algorithm for the estimation of the signal
and noise parameters © = {5, o2, 02} for the scenario described in Section 4.3.

We begin by defining our observed (incomplete) data to be
r={r? m.n € R}
and our complete data to be (x, r) where
x= {27, m.n € R}.
Consequently, the EM algorithm for the problem is defined as [80]

E step: Compute .
U(©, et

M step:
max U@, el » et
where
U(©,0) =¥ [lnp,,x(r, x; ©)|r; (:3] .
For our case, U is obtained conveniently via
U(©.6) = £ [Inpes(tlx; ©) + In px(x; ©O)lr; O]
with

Pt ©) = ]

- {_(r;" - z:?)z}
mneR /2702, 207,

App. C The EM Parameter Estimation Algorithm 157

and
1 (xm)Z }
(x0) = X {— n .
m.lr—LIeR y2ra23—m P 2028
Then
U(©.0)=
L N(m) iSW(é)an 2+ ! 52 (©) +In27a?3™™
250 @ SCA=T R "
(C.1
where
1
SPO) = —— E {(w™Hr; ©
(©) N(mu&v‘(m) (w2l ©]
1
Si(@®) = —— E{(z™*rm;©
©) = Ny, 2 (@2 @]

are (quasi) conditional sample-variance estimates from the data based upon
the model parameters ©. Evaluating the expectations we get

S2(@) = An(®)+ B5(©)dh,
SE(@) = Am(©)+ BL(©)dr,
where
U“ZU_UZﬂ—m
Am(e) - 0121,+0'2ﬁ_m
(72 2
Bn(®) = (Tﬁ—m‘)

m 22
50 = (55 ).

o +g23m
which completes our derivation of the E step.

To derive the structure of the M step, we maximize U(©, 9) as given by
(C.1). This maximization is always well defined as U(©, ©) < L(®) for any
0,0.

The local extrema are obtained by differentiating U(©, ©) with respect
to each of the parameters of ©. Since (C.1) expresses U(O, ©) as the sum of
two terms, one of which depends only on ¢ and the other of which depends
only on 3 and 02, the maximization can be broken down into two independent
parts.
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Considering first our maximization over 02, we readily obtain the max-
imizing 62, as the sample-average

3 N(m)Su(©)

6_2 - meM

e Z N(m)

meM

Turning next to 4 and o2, we find that the maximizing parameters 3
and 47 satisfy

S Nm)SE@)™ = o* 3 Nim) (C.2a)
meM memM
S mN(m)SE(@)8™ = o> Y mN(m). (C.2b)
meM meM

Eliminating o2 we obtain that 3 is the solution of the polynomial equation

Y CuN(m)SE(©)8™ = 0. (C3)

meM

where C,, is as defined in (4.16). The eliminated variable 62 is trivially
obtained by back-substitution:

S N(m)SL(©)5™

-2 meM
y S Nim)

memM

Finally, to show that the maximizing parameters are the only solution to (C2)
it suffices to show that the solution to (C.3) is unique, which we establish via
the following lemma.

Lemma C.1 Any polynomial equation of the form
Y CnKnd™ =0 (C4H

meM
where C, is given by (4.16) and Km 2 0 has a unique positive real solution provided
M > 2 and not all K, are zero.

Proof: Let
3" mN(m)

_ meEM

=TS Nm)

meM

be a weighted average ofthem € M, som; < m, < my. Then, from (4.16),
form > m., Cm > 0, while for m < m., Cn < 0. Hence, Crp(m —m.) 2 0 with
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strict inequality for at least two values of m € M from our hypothesis. Now
let f(3) be the left-hand side of (C.4), and observe that

J(8) & f(3)87™
is increasing for 3 > 0, i.e.,

f"/(B) = Z Con(m — m*)l\[(m)&fnﬁm-—m.—l > 0.

mem
Then, since f(0) = —oo0 and f(oo) = 00, we see f(8) has a single real root on
3 > 0. Since f(3) shares the same roots on J > 0, we have the desired result.

This completes our derivation for the M step. The complete algorithm
follows directly.
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Appendix D

Proofs for Chapfter 5

D.1 PROOF OF THEOREM 5.2

To show that y(t) has finite energy, we exploit an equivalent synthesis for y(t)
as the output of a cascade of filters driven by x(t), the first of which is an ideal
bandpass filter whose passband includes w; < |w} < wy, and the second of
which is the filter given by (5.4).

Let b, () be the impulse response of a filter whose frequency response
is given by
1 2™r < jw| < 27*1y

0 otherwise (D.1)

Bn(w) = {
and let b(t) be the impulse response corresponding to (5.4). Furthermore,
choose finite integers My and My such that 2Mir < wy and wy < 247 *!7,
Then, using * to denote convolution,

My
y(t) = b(t)*[z bm(t)} * (t)

m=M
My

= b(t)x ) Enm(t) (D.2)

m=Mj

where
Em(t) = 2(t) * bu(t) = 27™H30(27t), (D.3)
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and where the last equality in (D.3) results from an application of the self-
similarity relation (5.2) and the identity

by (t) = 2Mbo(278).

Because x(t) is energy-dominated, o(t) has finite energy. Hence, (D.3) im-
plies that every Z,,(t) has finite energy. Exploiting this fact in (D.2) allows us
to conclude that y(t) must have finite energy as well.

To verify the spectrum relation (5.5), we express (D.2) in the Fourier
domain. Exploiting the fact that we may arbitrarily extend the limits in the
summation in (D.2), we get

oy — - | X(w) wp <|w| <wy
Viw) = Bw) m:z—oo Amlw) = { 0 otherwise
where X,,,(w) denotes the Fourier transform of Z,,(t), and where
Xw) 2 Y Xulw). (D.4)

The right-hand side of (D.4) is, of course, pointwise convergent because for
each w at most one term in the sum is non-zero. Finally, exploiting (D.3) in
(D.4) gives

X(w) = Y 27 HA X (27 ™),

which, as one can readily verify, satisfies (5.6).
|
D.2 PROOF OF THEOREM 5.3

To prove the “only if” statement, we suppose z{t) € EX and begin by ex-
pressing z(t) in terms of the ideal bandpass wavelet basis. In particular, we

let
z(t) =Y Em(t)

where

Em(t) = ™23 Gn]Pm(t)

and where [n], the generating sequence in this basis, has energy E < 0. The
new generating sequence g[n] can then be expressed as

gln] =Y gm[n] (D.5)

where
Qm[n] = Ym(t) |t=n
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and

Ym(t) = Tm(t) * w(—t).
For each m, since I, () is bandlimited, ym(t) and gm,[n] each have finite energy
and Fourier transforms Y;,(w) and Qm(w) respectively. Hence,

Qm(w) =Y Ynlw — 27k) (D.6)
k

where
Yoo (w) ___{ (23)_m/2\IJ*(w)Q(2—mw) 2 < Jw| < m+lp

0 otherwise

with Q(w) denoting the Fourier transform of g[n], and ¥*(w) the complex
conjugate of ¥(w).

In deriving bounds on the energy Erm in each sequence gy,[n] for a fixed
m, it is convenient to consider the cases m < —~1and m > 0 separately. When
m < —1, the sampling by which gnin] is obtained involves no aliasing. Since
on |w| < m we then have

Qm(w) = Ym(w),

we may deduce that ¢,,[n] has energy

2m+ly

Bn = Y laolrll = 22— L. @PR@ T d. (D7)

T mr

Because ¥(t) has R vanishing moments, there exists a 0 < ¢ < oo such that
()] < colwl” (D-8)
for all w. Exploiting this in (D.7) we obtain
E,, < C2?R-"mE (D.9)
for some 0 < Cy < 00.

Consider, next, the case corresponding to m 2> 0. Since w(t) has R
vanishing moments, there also exists a 0 < ¢ < oo such that

W (w)| < elw|™® (D.10)
for all w. Hence, on 27 < |w| € om+lg,
Vl(w)] € € n~ B2 OFHRM2 Q27 0). (D.11)
From (D.6), we obtain
2m-1
|Qmiw)] < e n B2 1282 Q2 ™w + 27k27™)] (D.12)
k=0

by exploiting, in order, the triangle inequality, the bound (D.11), the fact
that only 2™ terms in the summation in (D.6) are non-zero since yYm(t) is

Sec. D.2 Proof of Theorem 5.3 163

bandlimited, and the fact that Q(w) is 27-periodic. In turn, we may use, in
order, (D.12), the Schwarz inequality, and again the periodicity of Q(w) to
conclude that

B B 2m—1 1 T . 2
& p2R - 142R)m {Z /2_/ 10(2-mw + 27k2-™)[2 dw
k=0 ¥ T J-m

< CTUTHeRImE (D.13)

Em

IN

for some 0 < ('} < o0.

Using (D.5), the triangle inequality, and the Schwarz inequality, we
obtain the following bound on the energy in ¢[n]

Be Y ldnlf < T \/E]Z

which from (D.13) and (D.9) is finite provided 0 < v < 2R and R > 1.

Let us now show the converse. Suppose g[n] has energy E < oo, and
express r(t) as

z(t) =Y zml(t)

where

() = 5723 qln] W (2).

If we let
Gm(t) = bo(t) * Tm(t)

where bo(t) is the impulse response of the ideal bandpass filter in Defini-
tion 5.1, it suffices to show that

§(t) = Gm(t) (D.14)

has finite energy.
For each m, we begin by bounding the energy in gm(t), which is finite
because zn(t) has finite energy. Since jr,(t) has Fourier transform

o 28R ¥(2Tw) T < w| <27
V(W) = { 0 otherwise

where Q(w) is the discrete-time Fourier transform of q[n], we get
2-m+lg

. 2
B = /2 Q)P ¥ (27™w)? dov.

™ —mn

Again, it is convenient to consider the cases corresponding to m < —1 and
m > 0 separately. For m < —1, most of the energy in zn,(t) is at frequencies
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below the passband of the bandpass filter. Hence, using the bound (D.10)
and exploiting the periodicity of Q(w) we obtain
B, < Cp2RR-1-mmp, (D.15)
forsome 0 < (' < 00. Form > 0, most of the energy in z,,(t) is at frequencies
higher than the passband of the bandpass filter. Hence, using the bound (D.8)
we obtain
E, < (2 0+2Rsmp (D.16)
for some 0 < C < oco.
Finally, using (D.14), the triangle inequality, and the Schwarz inequality,
we obtain the following bound on the energy in j(t)

2
B= [ lafd < [Z \/Em}
which, from (D.16) and (D.15) is finite provided 0 < v <2R —1 since R > 1.
|

D.3 PROOF OF THEOREM 5.5

Following an approach analogous to the proof of Theorem 5.2, let bn(t) be
the impulse response of a filter whose frequency response is given by (D.1),
and let b(t) be the impulse response corresponding to (5.4). By choosing
finite integers My and My such that 2Mc 7 < wy, and wy < 2Mv+ln, we can
again express y(t) in the form of eq. (D.2). Because z(t) is power-dominated,
Fo(t) has finite power. Hence, (D.3) implies that every Znm(t) has finite power.
Exploiting this fact in (D.2) allows us to conclude that y(t) must have finite
power as well.

To verify the spectrum relation (5.23), we use (D.2) together with the
fact that the Z,,(t) are uncorrelated for different m to obtain

5 = 1BE 3 Sl ={ g S

m=-00

where S;_(w) denotes the power spectrum of T,,(t), and where

S 2 3 Se(w). (D17)

Again we have exploited the fact that the upper and lower limits on the
summation in (D.2) may be extended to oo and —oo, respectively. The right-
hand side of (D.17) is, again, pointwise convergent because for each w at most
one term in the sum is non-zero. Finally, exploiting (D.3) in (D.17) gives

Sy(w) = 3027 S5,(27™w)

which, as one can readily verify, satisfies (5.24).
|
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D.4 PROOF OF THEOREM 5.6

We first establish some notation. Let us denote the cross-correlation between
two finite-power signals f(t) and g(t) by

m = [ dt
R;(r) = lim 2—T/~Tf(t)g(t—r) .

T—>

[ts Fourier transform is the corresponding cross-spectrum Sy g(w). Similarly

. 1 & !
Ra‘b[k] = Ll}—{ralo m n;L a[n] b[Tl - k]

will denote the cross-correlation between two finite-power sequences a[n]
and b[n].
We begin by expressing z(t) as

where

Zm(t) = BT qlnlYr ().

Then the deterministic power spectrum of z(t) is given by

So(@) =% Sem (W)- (D.18)

m m'
We will proceed to evaluate these various terms. Because of the dilational
relationships among the zm(t), viZ.,
Tm(t) = om/2 3=/ 25,(2™),
it will suffice to consider a single term of the form Szyz.. (t), for somem > 0.

Hence, let
um(t) = 872 g[n]é(t - 27"n)

and note that

w(t) =Y qnlo(t — 2"™n)

n

where §[n] is an upsampled version of g[n}, i.e.,

B g2=™n) n=2" [=...,-1,0,1,2,...
i) = { 0 otherwise

Hence,
Ruypon(T) = Z R qlk)o(t - 27™k)
k
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where
1
Rs.lk] = lim q[27™n] gln — k]
9.9 Looo 2L +1 Ini<Ln=2mt
1
= lim —— > ql]q2™ —k].
L0 2L+ 1 f<2=mL,

Since q[n] is correlation-ergodic, we may replace this correlation with its
expected value:

o ciom vy 11— ) Ok} m=0
Riqlk] = Lh_{{}o 2L +1 |[|§2—mLO[(2 Dl - k] = { 0  otherwise °
Hence,
1 m=0
Supom (@) = { 0 otherwise

where, without loss of generality, we have set 0> = 1. Then, using
Sapm (@) = (28)"™2 W (w) T (27"w) Sy ()

we get that
[w)P m=0

Sapan(w) = { 0 otherwise (D.19)

Finally, we note that

Sty W) =57, 2 (W)

and that
Semirny () = 3™ Saga,_ (27 w).
Using these identities together with (D.19) in (D.18) yields

Se(w) = Y BT ¥(2 W)l

as desired.
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multiresolution signal analysis, 16
characterization, 17
detail signal, 20
perfectly bandlimited, 19

N
nearly-1/ f process
spectrum, 47
wavelet-based synthesis, 47
nearly-1/ f processes, 30, 43

P
Poisson formula, 12

R
regularity, 12

Index

S
scale-differential equations, 135
scaling function, 18
ideal lowpass, 19
self-similar basis, 96, 99
example, 101
self-similar system, 130
shot noise, 60
spectral efficiency, 114
stable distributions, 35
statistical self-similarity, 31

T
thermal noise, 60
time-frequency analysis, 14

U
ultraviolet catastrophe, 35

W
wavelet
basic, 11
basic (or “mother”), 20
Battle-Lemarie, 27
Daubechies, 27
father, 18
frame, 10
Haar, 26
ideal bandpass, 11, 13, 15, 20,
26,28
mother, 11
scaling function, 18
wavelet bases, 9
Battle-Lemarie, 27
construction of, 25
dyadic, 11
example lacking multiresolution
analysis, 12
examples, 26
filter bank interpretation, 13
multiresolution analysis inter-
pretation, 16
nondyadic, 27
orthonormali, 11

Index

synthesis/analysis equations, 11

useful identity, 15

vanishing moments, 26-27

wavelet, 11
wavelet-based modeling

Dow Jjones Industrial Average,

54

heartbeat interarrival data, 55
white Gaussian noise, 31, 35
Wiener process, 31, 35, 38
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