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7.0 Foreword

The Hilbert transformations are of widespread interest because they are applied in the theoretical descrip-
tion of many devices and systems and directly implemented in the form of Hilbert analog or digital filters
(transformers). Let us quote some important applications of Hilbert transformations:

1. The complex notation of harmonic signals in the form of Euler’s equation exp(jω t) = cos(ω t) +
jsin(ωt) has been used in electrical engineering since the 1890s and nowadays is commonly applied
in the theoretical description of various, not only electrical systems. This complex notation had
been introduced before Hilbert derived his transformations. However, sin(ωt) is the Hilbert
transform of cos(ωt), and the complex signal exp(jωt) is a precursor of a wide class of complex
signals called analytic signals.

2. The concept of the analytic signal11 of the form ψ (t) = u(t) + jν(t), where ν (t) is the Hilbert
transform of u(t), extends the complex notation to a wide class of signals for which the Fourier
transform exists. The notion of the analytic signal is widely used in the theory of signals, circuits,
and systems. A device called the Hilbert transformer (or filter), which produces at the output the
Hilbert transform of the input signal, finds many applications, especially in modern digital signal
processing.

3. The real and imaginary parts of the transmittance of a linear and causal two-port system form a
pair of Hilbert transforms. This property finds many applications.
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4. Recently 2-D and multidimensional Hilbert transformations have been applied to define 2-D and
multidimensional complex signals, opening the door for applications in multidimensional signal
processing.13

7.1 Basic Definitions

The Hilbert transformation of a one-dimensional real signal (function) u(t) is defined by the integral

(7.1.1)

and the inverse Hilbert transformation is

(7.1.2)

where P stands for principal value of the integral. For convenience, two conventions of the sequence of
variables in the denominator are given; both have been used in studies. The left-hand formulae will be
used in this chapter. The following terminology is applied: the algorithm; that is, the right-hand side of
Equations (7.1.1) or (7.1.2), is called “transformation,” and the specific result for a given function; that
is, the left-hand side of Equations (7.1.1) or (7.1.2), is called the “transform.” The above definitions of
Hilbert transformations are conveniently written in the convolution notations

(7.1.3)

(7.1.4)

The integrals in definition (7.1.1) are improper because the integrand goes to infinity for η = t. Therefore,
the integral is defined as the Cauchy Principal Value (sign P) of the form

(7.1.5)

Using numerical integration in the sense of the Cauchy Principal Value with uniform sampling of the
integrand, the origin η = 0 should be positioned exactly at the center of the sampling interval. The limit
ε ⇒ 0 is substituted by a given value of the sampling interval and the limit A ⇒ ∞ by a given value of
A. The accuracy of the numerical integration increases with smaller sampling intervals and larger values
of A.

The Hilbert transformation was originally derived by Hilbert in the frame of the theory of analytic
functions. The theory of Hilbert transformations is closely related to Fourier transformation of signals
of the form

(7.1.6)

υ
π

η

η
η

π

η

η
ηt P

u

t
d P

u

t
d( ) =

− ( )
−

=
( )
−−∞

∞

−∞

∞

∫ ∫
1 1

u t P
t

d P
t

d( ) =
( )
−

=
− ( )

−−∞

∞

−∞

∞

∫ ∫
1 1

π

υ η

η
η

π

υ η

η
η

υ
π

t u t
t

( ) = ( )∗ 1

u t t
t

( ) = ( )∗υ
π
1

υ
π

η

η
η

ε

ε

ε
t

u

t
d

A
A

A

( ) =
−

+
( )
−









⇒

⇒∞
−

−

∫ ∫lim
0

1

U u t e dt fj tω ω πω( ) = ( ) =
−∞

∞
−∫ ; 2
© 2000 by CRC Press LLC



                                     
The complex function U(ω ) is called the Fourier spectrum or Fourier image of the signal u(t) and the
variable f = ω /2π, the Fourier frequency. The inverse Fourier transformation is

(7.1.7)

The pair of transforms (7.1.6) and (7.1.7) may be denoted

(7.1.8)

called a Fourier pair. Similarly the Hilbert transformations (7.1.1) and (7.1.2) may be denoted

(7.1.9)

forming a Hilbert pair of functions. Contrary to other transformations, the Hilbert transformation does
not change the domain. For example, the function of a time variable t (or of any other variable x) is
transformed to a function of the same variable, while the Fourier transformation changes a function of
time into a function of frequency.

The Fourier transform (see also Chapter 2) of the kernel of the Hilbert transformation, that is, Θ(t)
= 1/(π t) (see Equations [7.1.3] and [7.1.4]) is

(7.1.10)

with the signum function (distribution) defined as follows:

(7.1.11)

The multiplication to convolution theorem of the Fourier analysis yields the following spectrum of the
Hilbert transform

(7.1.12)

that is, the spectrum of the signal u(t) should be multiplied by the operator –j sgn(ω ) This relation
enables the calculation of the Hilbert transform using the inverse Fourier transform of the spectrum
defined by Equation (7.1.12); that is, using the following algorithm:

(7.1.13)

where the symbols F and F–1 denote the Fourier and inverse Fourier transformations respectively. In
practice, the algorithms of DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform) can be
applied (see Section 7.20)
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7.2 Analytic Functions Aspect of Hilbert Transformations

The complex signal whose imaginary part is the Hilbert transform of its real part is called the analytic
signal. The simplest example is the harmonic complex signal given by Euler’s formula ψ(t) = exp(jωt)
= cos(ωt) + j sin(ωt). A more general form of the analytic signal was defined in 1946 by Gabor.11 The
term “analytic” is used in the meaning of a complex function Ψ(z) of a complex variable z = t + jτ ,
which is defined as follows:39

Consider a plane with rectangular coordinates (t, τ) (called C plane or C “space”) and take a domain
D in this plane. If we define a rule connecting to each point in D a complex number ψ, we defined a
complex function ψ(z), z ∈ D. This function may be regarded as a complex function of two real variables:

ψ (z) = ψ (t , τ ) = u(t , τ ) + jν (t , τ ) (7.2.1)

in the domain D ∈ R2 (R2 is Euclidean plane or “space”). The complete derivative of the function ψ(z)
has the form

(7.2.2)

where z*  = t – jτ  is the complex conjugate and the partial derivatives are

(7.2.3)

The function ψ (z) = u(t, τ ) + jν (t, τ ) is called the analytic function in the domain D if and only if
u(t, τ) and ν (t, τ ) are continuously differentiable. It can be shown that this requirement is satisfied, if
∂ψ /∂z*  = 0. This complex equation may be substituted by two real equations:

(7.2.4)

called the Cauchy-Riemann equations. These equations should be satisfied if the function ψ (z) is analytic
in the domain z ∈ D. For example, the complex function

(7.2.5)

is analytic because

(7.2.6)

and the differentiation

(7.2.7)

verifies the Cauchy-Riemann equations.
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It was shown by Cauchy that if z0 is a point inside a closed contour C ∈ D such that ψ (z0) is analytic
inside and on C , then (see also Appendix 1)

(7.2.8)

(7.2.9)

This is a contour integral in the (t, jτ) plane. Let us take the contour C in the form shown in Figure
7.2.1. It is a sum of Ct + Cε + CR, where Ct is a line parallel to the t axis shifted by ε , Cε is a half-circle
of radius ε and CR a half-circle of radius R. The analytic signal is defined as a complex function of the
real variable t given by the formula

ψ (t) = u(t , 0+) + jυ (t , 0+) (7.2.10)

obtained by inserting in the Equation (7.2.1) τ = 0+ , where the subscript + indicates that the path Ct

approaches the t axis from the upperside. The Equation (7.2.10) is the result of contour integration along
the path of Figure 7.2.1 using the limit ε → 0, R → ∞. We have

(7.2.11)

The symbol P denotes the Cauchy Principal Value; that is

FIGURE 7.2.1  The integration path defining the analytic signal (7.2.10).
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(7.2.12)

For analytic functions the integral along CR vanishes for R → ∞ and in the limit ε → 0 the integral along

the small half-circle Cε equals 0.5 ψ (t0 , 0+) since within the very small circle around t0 the function ψ (z)

= ψ (t0 , 0+) is a constant and the integral = π j. In consequence, the real and imaginary parts

of the analytic signal are given by the integrals (a Hilbert pair)

(7.2.13)

(7.2.14)

where the subscripts t0 and 0+ are deleted. The only difference between the above integrals and those
defined by Equations (7.1.1) and (7.1.2) consists in notation (deleting zeros in parentheses). Therefore,
the real and imaginary parts of the analytic signal

ψ (t ) = u(t ) + jν (t ) (7.2.15)

form a Hilbert pair of functions. For example, inserting τ = 0 in Equation (7.2.6) yields the Hilbert pair

(7.2.16)

The signal u(t) is called the Cauchy signal and ν (t) is its Hilbert transform.
A real signal u(t) may be written in terms of analytic signals

(7.2.17)

and its Hilbert transform is

(7.2.18)

where ψ *(t) = u(t) – jν (t) is the conjugate analytic signal. For this signal the Equation (7.2.11) takes
the form ψ(t) = u(t , 0–) – jv(t , 0–) and the path C is in the lower half of the z plane. Notice, that the
above formulae present a generalization of Euler’s formulae
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7.3 Spectral Description of the Hilbert Transformation: 
One-Sided Spectrum of the Analytic Signal

Any real signal u(t) may be decomposed into a sum

u(t) = ue(t) + uo(t) (7.3.1)

where the even term is defined as

(7.3.2)

and the odd term

(7.3.3)

The decomposition is relative, i.e., changes with the shift of the origin of the coordinate t ′ = t – to . In
general, the Fourier image of u(t) defined by Equation (7.1.6) is a complex function

U(ω ) = URe(ω ) + j UIm(ω ) (7.3.4)

where the real part is given by the cosine transform

(7.3.5)

and the imaginary part of the sine transform

(7.3.6)

The multiplication of the Fourier image by the operator –j sgn(ω ) changes the real part of the spectrum
to the imaginary one and vice versa (see Equation [7.1.12]). The spectrum of the Hilbert transform is

V(ω ) = VRe(ω ) + j VIm(ω ) (7.3.7)

where

VRe(ω ) = –j sgn(ω )[jUIm(ω )] = sgn(ω )UIm(ω ) (7.3.8)

and

VIm(ω ) = –sgn(ω )URe(ω ) (7.3.9)

Therefore, the Hilbert transformation changes any even term to an odd term and any odd term to an
even term. The Hilbert transforms of harmonic functions are

H [cos(ω t)] = sin(ω t) (7.3.10)
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H [sin(ω t)] = –cos(ω t) (7.3.11)

H [ejω t] = –j sgn(ω )e jω t = sgn(ω ) e j(ω t–0.5π ) (7.3.12)

Therefore, the Hilbert transformation changes any cosine term to a sine term and any sine term to a
reversed signed cosine term. Because sin(ωt) = cos(ωt – 0.5π) and –cos(ωt) = sin(ωt – 0.5π), the Hilbert
transformation in the time domain corresponds to a phase lag by –0.5π (or –90°) of all harmonic terms
of the Fourier image (spectrum). Using the complex notation of the Fourier transform, the multiplication
of the spectral function U(ω) by the operator – j sgn(ω) provides a 90° phase lag at all positive frequencies
and a 90° phase lead at all negative frequencies. A linear two-port network with a transfer function H(ω)
= –j sgn(ω) is called an ideal Hilbert transformer or filter. Such a filter cannot be exactly realized because
of constraints imposed by causality (details in Section 7.2.1).

The Fourier image of the analytic signal

ψ (t) = u(t) + jν (t) (7.3.13)

is one-sided. We have

(7.3.14)

Therefore,

(7.3.15)

where

(7.3.16)

The Fourier image of the analytic signal is doubled at positive frequencies and cancelled at negative
frequencies with respect to U(ω). For the conjugate signal ψ *(t) = u(t) – jν (t) the Fourier image is
doubled at negative frequencies and cancelled at positive frequencies.

Examples

1. Consider the analytic signal e jω 0t = cos(ω0t) + j sin(ω0t). We have

The spectra are shown in Figure 7.3.1.
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2. Consider the analytic signal ψ (t) = . We have

FIGURE 7.3.1  The spectra of cos(ω0t), sin(ω t0), and of the analytic signal e jω0 t .
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The signals and spectra are shown in Figure 7.3.2.

Derivation of Hilbert Transforms Using Hartley Transforms

(See also Chapter 4). Alternatively, the Hilbert transform may be derived using a special Fourier trans-
formation known as Hartley transformation; it is given by the integral

(7.3.17)

and the inverse Hartley transformation is

(7.3.18)

where cas(ω t) = cos(ω t) + sin(ω t). The Hartley spectral function was denoted by the index Ha because
in this chapter the index H denotes the Hilbert transform. Consider the Hartley pair

(7.3.19)

The Hartley spectral function of the Hilbert transform is

VHa(ω ) = sgn(ω )UHa(–ω ) (7.3.20)

FIGURE 7.3.2  The Cauchy pulse, its Hilbert transform, and the corresponding spectra and the spectrum of the
analytic signal ψ(t) = 1/(1 – jt).
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Therefore, the Hilbert transform is given by the inverse Hartley transformation

(7.3.21)

Example

Consider the one-sided square pulse Πa (t – a) (see Figure 7.3.3). The Hartley transform of this pulse is

The spectrum of the Hilbert transform given by Equation (7.3.20) is

The inverse Hartley transformation of this spectrum is

Notice that the integrals of products of opposite symmetry equal zero and the integration yields

(see Equation [7.4.7]).

FIGURE 7.3.3  One-sided square pulse.

υ ω ω ωt U t df( ) = ( ) −( ) ( )
−∞

∞

∫ sgn casHa

U t t dt a
a

a

a

a

a

Ha ω ω ω
ω

ω

ω

ω
( ) = ( ) + ( )[ ] =

( )
+

( )











∫0

2 2

2
2

2
cos sin

sin sin

V a
a

a

a

aHa sgnω ω
ω

ω

ω

ω
( ) = ( ) ( )

−
( )













2
2

2

2sin sin

−∞

∞

∫ ( ) ( )
−

( )













( ) + ( )[ ]2
2

2

2

a
a

a

a

a
t t dfsgn ω

ω

ω

ω

ω
ω ω

sin sin
cos sin

υ
π

t
t

t a
( ) =

−
1

2
ln
© 2000 by CRC Press LLC



7.4 Examples of Derivation of Hilbert Transforms

1. The harmonic signal u(t) = cos(ω t); ω = 2π f, where f is a constant. The Hilbert transform of
the periodic cosine signal using the defining integral (7.1.1) is:

(7.4.1)

The change of variable y = η – t , dy = dη yields

(7.4.2)

The integrals inside the brackets are

(7.4.3)

Therefore, ν(t) = sin(ω t). The same derivation for the function u(t) = sin(ω t) yields ν (t) =
–cosω (t).

2. The two-sided symmetric unipolar square pulse:

(7.4.4)

The Hilbert transform of this pulse is

(7.4.5)

The insertion of the limits of integration yields

(7.4.6)
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The square pulse and its Hilbert transform are shown in Figure 7.4.1. Notice that the support of
the square pulse is limited within the interval |t| ≤ a, while the support of the Hilbert transform
is infinite. This statement applies to all Hilbert transforms of functions of limited support. Of
course, the inverse Hilbert transformation of the logarithmic function (7.4.6) restores the square
pulse of limited support. The change of variable t ′ = t – a (time shift of the pulse) yields the
Hilbert transform of a one-sided square pulse.

(7.4.7)

3. The Hilbert transform of a constant function u(t) = u0 equals zero. This is easily seen from Eq.
(7.4.6) at the limit a ⇒ ∞. The mean value of a function is given by the integral

(7.4.8)

Therefore, the Hilbert transform of a function u(t) = u0 + u1(t) is

H [u 0 + u 1(t )] = H [u 1(t )] (7.4.9)

that is, in electrical terminology the Hilbert transformation cancels the DC term u0.
4. Consider the Gaussian pulse and its Fourier image

(7.4.10)

FIGURE 7.4.1  The square pulse Πa(t) and its Hilbert transform.
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Because for this signal the Hilbert transform defined by the integral (7.1.1) has no closed form,
it is convenient to derive the Hilbert transform using the inverse Fourier transformation of the
Fourier image (Equation [7.4.10]). This inverse transform has the form

(7.4.11)

Because the integrand is an odd function, this integral has the simplified form

(7.4.12)

This integral has no closed solution and may be represented by a power series defining a function
called Ei(t). However, in the days of proliferation of computers it is much simpler to find a
numerical solution of this integral. The Gaussian pulse and its Hilbert transform computed using
Equation (7.4.12) are shown in Figure 7.4.2.

7.5 Definition of the Hilbert Transformation by 
Using a Distribution

It is well known that the concept of the delta function, the unit step, and similar functions extend the
class of functions for which the Fourier transform exists. The formal Fourier integral theory restricts the
functions to those satisfying Dirichlet’s conditions, including the requirement of finite energy (finite
value of the integral of the square). The mathematicians eliminated this restriction by introducing the

FIGURE 7.4.2  The Gaussian pulse and its Hilbert transform.
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concept of a distribution, giving a rigorous foundation to the notions of the delta pulse, the signum
function, and so forth. The notion of a distribution is not unique, because there exist several definitions.
The most accepted theory of a distributions was formulated by Schwartz,35 who used the concept of a
functional. Another useful approach was formulated by Mikusinski23 who used sequences of approxi-
mating functions.

Equation (7.3.15) shows that the Fourier image of analytic signals is one-sided. A good example is the
one-sided spectrum given by the doubled unit step 2 1( f ) defined as a distribution in the Fourier
frequency domain. This distribution may be decomposed into the even and odd parts:

2 1( f ) = 1 + sgn( f ) (7.5.1)

where 1 is a constant distribution and sign( f ) is a signum distribution. The inverse Fourier transformation
of this unit step is given by the integral

(7.5.2)

or by the integral

(7.5.3)

which defines the complex delta distribution of the form

(7.5.4)

with P the Cauchy Principal Value. We observe, that the delta distribution and the kernel of the Hilbert
transformation are forming a Hilbert pair

(7.5.5)

where the Fourier images are

(7.5.6)

Therefore, the kernel of the Hilbert transformations (7.1.3) and (7.1.4) denoted by Θ(t) has been
redefined as a distribution in the form of the Hilbert transform of the delta pulse (distribution).

The analytic signal (7.2.15) may be defined in the form of a convolution of a given function (or
distribution) u(t) with the complex delta distribution; that is,

(7.5.7)

Indeed, the well-known alternative definition of the delta distribution is

u(t ) = u(t ) ∗ δ (t ) (7.5.8)
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This is a convolution equation. The application of the theorem about the Hilbert transform of a convo-
lution (see Table 7.7.3) yields the following two alternative forms of H[u(t)]:

(7.5.9)

The complex delta distribution may be defined alternatively using approximating functions. A convenient
choice is the Cauchy signal (see Equation [7.2.16]):

(7.5.10)

(see Figure 7.5.1). The division by π is needed to get the integral of the real part equal to 1. In terms of
this representation, the distribution Θ(t) = 1/π t equals zero for t = 0. The real and imaginary parts of
the complex delta distribution, as for any analytic signal, are orthogonal; that is, the integral of their
product equals zero

(7.5.11)

7.6 Hilbert Transforms of Periodic Signals

A real function (signal) up(t) is periodic if there is some interval T (the period) for which

up(t) = up(t + kT) (7.6.1)

for all t in (–∞, ∞), where k is an integer (–∞, ∞). The fundamental frequency is f = 1/T and the
fundamental angular frequency is ω = 2π f = 2π /T. The periodic function may be alternatively defined
using a periodic repetition of a so-called generating function uT(t). This repetition is represented by
the infinite series

(7.6.2)

where the generating function is

(7.6.3)

Using the well-known shifting property of the convolution of a given function with the delta pulse, the
periodic function (7.6.2) may be written in the form

(7.6.4)

that is, the generating function is convolved with the periodic sequence of delta pulses well known from
the sampling theory.
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Three different methods of derivation of the Hilbert transform of periodic functions are presented here:

1. A method using Fourier series.
2. Direct derivation in the form of infinite products.
3. The convolution with a cotangent periodic function.

FIGURE 7.5.1  The approximation of the delta pulse δ (t) and its Hilbert transform Θ(t ) = 1/(π t ) by Cauchy pulses
and its Hilbert transforms (see Figure 7.3.2).
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First Method

The periodic function may be expanded into a Fourier series

(7.6.5)

The number of terms of this series may be finite or infinite. Because H[cos(nω t + Φ)] = sin(nω t + Φ),
the Hilbert transform of the periodic function up(t) is given by the Fourier series

(7.6.6)

Notice the cancellation of the constant term U0 (in electrical terminology the DC term). If the Fourier
series is given using the complex notation

(7.6.7)

where the complex coefficient Cn is given by the integral

(7.6.8)

then the Hilbert transform has the form (see Equation [7.3.12])

(7.6.9)

Again, the constant term is eliminated (sgn(0) = 0).

Example

Consider the Fourier series of the periodic square wave given by the formula up(t) = sgn[cos(ω t)]
(ω = 2π f – a constant):

(7.6.10)

The Hilbert transform has the form

(7.6.11)

Figures 7.6.1a/b show the signals represented by the Fourier series (7.6.10) and (7.6.11) truncated at the
5th harmonic and at a much higher harmonic term. We observe the Gibbs peaks for the cosine series.
Because in the limit, the energy of the Gibbs peaks equals zero (a zero function), the Gibbs peaks disappear
for the sine series.
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Second Method

The derivation of the Hilbert transform of a periodic signal directly in the time domain (or any other
domain) using the basis integral definition of the Hilbert transformation given by Equation (7.1.1) has
the form of the infinite sum of integrals over successive periods. Only one of these integrals includes the
pole of the kernel 1/(π t). For example, the Hilbert transform of the periodic square wave (see Figure
7.6.2a) has the form

(7.6.12)

where b = T/4. The result of this integration has the form

FIGURE 7.6.1a The waveforms given by the truncation of the Fourier series of a square wave at the 5th harmonic
number and of the corresponding Hilbert transform.
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(7.6.13)

where x = 4t/T and m = 1, 2, 3, … . The first terms of the infinite products are

(7.6.14)

FIGURE 7.6.1b Analogous waveforms by the truncation at a high harmonic number.
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The infinite products in the above formulas are convergent. Using the numerical evaluation of Equation
(7.6.14) we have to truncate the products having the same number of terms in the nominator and
denominator. For the odd square wave up(t) = sgn[sin(ω t)] (see Figure 7.6.2b), Equation [7.6.14] changes
to

(7.6.15)

Notice that the denominator has been truncated so that a half-term of (49 – y2) = (7 – y) (7 + y) is
deleted. This is needed to obtain a symmetrical truncation. Using a computer, the quotients in Equations
(7.6.14) or (7.6.15) should be calculated using one term of the nominator divided by one term of the
denominator. Otherwise there is a danger of entering in the overflow range of the computer (“number
too big”). Let us recall that the harmonic functions have a representation in the form of infinite series.

(7.6.16)

(7.6.17)

FIGURE 7.6.2  Illustration to the derivation of the Hilbert transform of a square wave.
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Third Method: Cotangent Hilbert Transformations

The cotangent form of the Hilbert transformation of periodic functions may be conveniently derived
starting with the convolution equation (7.6.4). The Hilbert transform of a convolution of two functions
equals the convolution of the Hilbert transform of one function (arbitrary choice) with the original of
the other function (see Table 7.7.3). The Hilbert transform of the delta sampling sequence is

(7.6.18)

This Hilbert pair is shown in Figure 7.6.3. The derivation is given at the end of this section. The insertion
of this Hilbert transform in the convolution Equation (7.6.4) yields the following form of the Hilbert
transform of periodic functions:

FIGURE 7.6.3  The periodic sequence of delta pulses and its Hilbert transform.
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(7.6.19)

where uT(t) is the generating function defined by Equation (7.6.3). Contrary to Fourier series, Equation
(7.6.19) has a closed integral form and for many generating functions a closed analytic solution. If the
analytic solution does not exist, a numerical evaluation of the convolution yields the desired Hilbert
transform.

Example

Consider again the square wave of sgn[cos(ωt)]. The generating function is

(7.6.20)

This generating function equals –1 in the intervals –T/2 to –T/4 and T/4 to T/2 and equals 1 in the
interval –T/4 to T/4. The insertion of the integration intervals (Cauchy Principal Value)

(7.6.21)

into the integral

(7.6.22)

yields the following form of the Hilbert transform of the square wave

(7.6.23)

Using trigonometric relations, we get the Hilbert pair

(7.6.24)

Similarly, it may be shown that

(7.6.25)

The Hilbert transform of the periodic delta sequence given by Equation (7.6.18) may be derived as
follows: We start with the Hilbert pair
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(7.6.26)

The support of the Hilbert transform 1/(π t) is infinite. Therefore, in the interval of one period, for
example, the interval from 0 to T, there is a summation of successive tails of functions Θn(t ) =
1/[π (t – nT)], i.e., the generating function of the Hilbert transform of the delta sampling sequence is

(7.6.27)

that is, the infinite sum converges to the cotangent function. The repetition of this generating function
yields the periodic Hilbert transform of the delta sampling sequence of the form

(7.6.28)

This sequence also may be written in the convolution form

(7.6.29)

The generating function ΘT (t) (Equation [7.6.27]) may be alternatively derived using Fourier transforms.
The well-known Fourier pair is

(7.6.30)

The multiplication of this Fourier image by the operator –j sgn( f ) yields the Fourier image of the
generating function ΘT(t):

(7.6.31)

The inverse Fourier transform of this spectrum yields:

(7.6.32)
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(7.6.33)

δ
π

t
t

( )⇐⇒
H 1

ΘT

n

t
t nT T

t T( ) =
−( )

= ( )
=−∞

∞

∑ 1 1

π
πcot

Θ Θp T

k k

t t kT
T T

t kT( ) = −( ) = −( )









=−∞

∞

=−∞

∞

∑ ∑1
cot

π

Θ p

k

t
T

t T t kT( ) = ( )∗ −( )
=−∞

∞

∑1
cot π δ

δ δ
k

F

k

t kT
T

f k T
=−∞

∞

=−∞

∞

∑ ∑−( )⇐⇒ −( )1

ΘT

F

n

t
T

j f f n T( )⇐⇒ − ( ) −( )
=−∞

∞

∑1
sgn δ

ΘT
j n t T

n

j n T

n n

t
j

T
e

j

T
e

T
nt T( ) = − = ( )−

=−∞

∞

=

∞

=

∞

∑ ∑ ∑2 2

1 1

2
2π π πsin

sin cotnx x
n

( ) = ( )
=

∞

∑
1

1

2
2

© 2000 by CRC Press LLC



yields Θ(t) given by the formula (7.6.27). Notice that the derivation of the periodic Hilbert transform
Θp(t) involves two summations. The first yields the generating function ΘT(t) and the second gives the
periodic repetition of this function.

7.7 Tables Listing Selected Hilbert Pairs and Properties of 
Hilbert Transformations

Table 7.7.1 presents the Hilbert transforms of some selected aperiodic signals and the two basic periodic
harmonic signals cos(ω t) and sin(ω t). The Hilbert transforms of selected other periodic signals are
listed in Table 7.7.2. The knowledge of the Hilbert transforms listed in these tables and the application
of various properties of the Hilbert transformation listed in Table 7.7.3 enables an easy derivation of a
large variety of Hilbert transforms. Applications of the properties listed in these tables are given in Sections
7.8 to 7.14, which also include selected derivations and applications of the properties of Hilbert
transformations.

7.8 Linearity, Iteration, Autoconvolution, and 
Energy Equality

The Hilbert transformation is linear and, if a complicated waveform can be decomposed into a sum of
simpler waveforms, then the summation of the Hilbert transforms of each term yields the desired
transform. For example, the waveform of Figure 7.8.1a may be a decomposed into a sum of two rectan-
gular pulses. Therefore, the Hilbert transform of this waveform is (see Table 7.7.1) 

(7.8.1)

Let us derive in a similar way the Hilbert transform of the “ramp” pulse shown in Figure 7.8.1b. We
decompose this pulse into a sum of one-sided square pulse and one-sided inverse triangle. The summation
of Equation (7.4.7) and No. 8 of Table 7.7.1 yields

FIGURE 7.7.1  A trapezoidal pulse (see Table 7.7.1, #9.)
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(7.8.2)

Iteration

Iteration of the Hilbert transformation two times yields the original signal with the reverse sign, and the
iteration four times restores the original signal u(t). In the Fourier frequency domain the n-time iteration

TABLE 7.7.1  Selected Useful Hilbert Pairs
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TABLE 7.7.1  Selected Useful Hilbert Pairs (Continued)
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TABLE 7.7.1  Selected Useful Hilbert Pairs (Continued)

TABLE 7.7.2  Selected Useful Hilbert Pairs of Periodic Signals
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TABLE 7.7.3  Properties of the Hilbert Transformation
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is translated to the n-time multiplication by the operator – j sgn(ω). We have (– j sgn(ω))2 = –1, (– j
sgn(ω))3 = j sgn(ω) and (– j sgn(ω))4 = 1. In analog or digital signal processing, the Hilbert transform
is produced approximately and with a delay. The n-time iteration is implemented using a series connection
of Hilbert filters (see Section 7.21) and the time delay increases n-times.

Autoconvolution and Energy Equality

The energy of a real signal u(t) U(ω) is given by the integrals

(7.8.3)

The above equality of the energy defined in the time domain and Fourier frequency domain is called
Parseval’s theorem. The squared magnitude of the Fourier image of the Hilbert transform ν(t) = H[u(t)]

V(ω) = –j sgn(ω)U(ω) is

|V(ω )|2 = |–j sgn(ω ) U(ω )|2 = |U(ω )|2 (7.8.4)

TABLE 7.7.3  Properties of the Hilbert Transformation (Continued)

FIGURE 7.8.1a A pulse given by the summation of two square pulses Πa(t ) + Πb(t ).
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that is, the energy of the Hilbert transform is given by the integrals

(7.8.5)

Therefore, the energies Eu and Eν are equal. This property of a pair of Hilbert transforms may be used
to check the algorithms of numerical evaluation of Hilbert transforms. A large discrepancy ∆E = Eν – Eu

indicates a fault in the program. A small discrepancy may be used as a measure of the accuracy. Notice
that the Hilbert transformation cancels the mean value of the signal. Therefore, the energy (or the power)
of this term is rejected.

The signals forming a Hilbert pair are orthogonal; that is, the mutual energy defined by the integral

(7.8.6)

equals zero. The autoconvolution of the signal u(t) is defined by the integral

(7.8.7)

FIGURE 7.8.1b The “ramp” pulse and its decomposition in two pulses.
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The autoconvolution equality theorem for a Hilbert pair of signals has the form:

ρu–u(t ) = –ρν–ν(t ) (7.8.8)

that is, the autoconvolutions of u(t) and ν(t) have the same waveform and differ only by sign.

Proof

Let us apply the convolution to multiplication theorem of Fourier analysis to both sides of the equality
(7.8.8). We get the Fourier pairs

(7.8.9)

(7.8.10)

We have shown that the functions ρu–u(t) and –ρν–ν(t) have the same waveforms because they have equal
Fourier transforms.

Examples

1. It is really amazing to observe the result of calculation of the autoconvolutions of some Hilbert

pairs. Consider the Hilbert pair δ (t) . Because the autoconvolution of the delta pulse is

δ (t) = δ (t) ∗ δ (t) (see Section 7.5), the autoconvolution equality yields the surprising result

(7.8.11)

that is, the autoconvolution of the function (distribution) of infinite support yields the delta

pulse of a point support. Figure 7.8.2 shows the result of a numerical approximate calculation of
the autoconvolution (7.8.11).

FIGURE 7.8.2  The discrete delta pulse obtained by numerical computing of the autoconvolution –1/(π t) ∗ 1/(π t).

ρ ωu u
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2. Consider the square pulse and its Hilbert transform

(7.8.12)

The waveforms are shown in Figure 7.4.1. The autoconvolution of the square pulse is a tri(t)
(triangle) pulse of doubled support (Figure 7.8.3a). Again, the autoconvolution of the logarithmic
function of infinite support defined by Equation (7.8.12), which has infinite peaks at points |t | =
a, yields the triangle pulse of finite support. Indeed, we have

(7.8.13)

Figure 7.8.3b shows the result of a numerical evaluation of the above autoconvolution.

7.9 Differentiation of Hilbert Pairs

Consider a Hilbert pair u(t) ν(t). Differentiation of both sides gives a new Hilbert pair:

(7.9.1)

Therefore, differentiation is a useful tool for creating new Hilbert pairs. Obviously, the operation can be
repeated to get the next Hilbert pairs:

(7.9.2)

Because the signal ψ (t) = u(t) + jν(t) is an analytic function, in principle all of its derivatives exist.39

FIGURE 7.8.3a An example of the autoconvolution equality: (left) the square pulse and its autoconvolution; (right)
the Hilbert transform of the square pulse and its autoconvolution.
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Consider the convolution notation of the Hilbert transformations:

(7.9.3)

The derivative of a convolution has two options: the convolution of the derivative of the first term with
the second term, or the convolution of the first term with the derivative of the second term; i.e., the first
option has the form

(7.9.4)

and the second option is

(7.9.5)

FIGURE 7.8.3b The result of numerical computing of the autoconvolution of the Hilbert transform.
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Proof

The Hilbert integrals (7.1.1) and (7.1.2) are

(7.9.6)

The differentiation of these integrals with respect to t yields

(7.9.7)

These integrals have in the convolution notation the form (7.9.4). The change of variable y = η – t yields
the following form of the Hilbert integrals:

(7.9.8)

and the differentiation yields

(7.9.9)

These integrals have in the convolution notation the form (7.9.5).
Very illustrative is the same proof in terms of the frequency domain representation:

(7.9.10)

Time domain differentiation corresponds to the multiplication of the Fourier image by the differentiation
operator jω. Therefore,

(7.9.11)

However, the operator jω may be arbitrarily assigned to the first or second factor of the product in
parentheses. In the time domain, this arbitrary choice corresponds to the two options of the convolution.

Example 1

Consider the Hilbert pair

(7.9.12)

The derivatives are

(7.9.13)
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The derivative and, hence, the function d/dt (1/π t) are defined in the distribution sense (notation
FP 1/(π t2), where FP denotes “finite part of”).35 The energy of these signals is infinite.

Example 2

Consider the Hilbert pair

(7.9.14)

Let us differentiate n-times both sides of this equation. In this way we find an infinite series of Hilbert
transform pairs as shown in Table 7.9.1. The derivations are simpler by using the differentiation of the
analytic signal

(7.9.15)

and determining the real and imaginary parts of the derivatives in the form of Hilbert pairs.

The waveforms of the first four terms of the Hilbert pairs of Table 7.9.1 are shown in Figures 7.9.1a/b.
The energy was normalized to unity by division of the amplitudes by the SQR of energy. The Cauchy
pulse may serve as the function approximating the delta pulse (see Equation [7.5.10]). Therefore, the
derivatives of the Cauchy-Hilbert pair may serve as the approximating functions defining the derivatives
of the complex delta distribution. For example

(7.9.16)

(see Table 7.7.1, 42 to 46).

TABLE 7.9.1  Hilbert Transforms of the Derivatives of the Cauchy Signal u(t) = 1/(1 + t2)
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7.10 Differentiation and Multiplication by t : Hilbert Transforms 
of Hermite Polynomials and Functions

Consider the Gaussian Fourier pair:

(7.10.1)

FIGURE 7.9.1a The waveforms of the Cauchy pulse and of its derivatives.

FIGURE 7.9.1b The waveforms of the corresponding Hilbert transforms.

e et
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The successive differentiation of the Gaussian pulse exp(–t 2) generates the n-th order Hermite polyno-
mial (see Table 7.10.1). The Hermite polynomials are defined by the formula (see also Chapter 1)

(7.10.2a)

n = 0, 1, 2, …;       t ∈ ±∞

(roman H is used to denote the Hermite polynomial in distinction from the italic H for the Hilbert
transform). The Hermite polynomials are also defined by the recursion formula

Hn(t) = 2t Hn–1(t ) – 2 (n – 1) Hn–2(t );        n = 1, 2, … (7.10.2b)

The first terms of the Hermite polynomials weighted by the generating function exp(–t2) and their Hilbert
transforms are listed in Table 7.10.1. The Hilbert transform of the first term was calculated using the
frequency domain method represented by the Hilbert pair (see Table 7.7.1, the Hilbert transform of the
Gaussian pulse)

(7.10.3)

The next terms are obtained by calculating the successive time derivatives of both sides of this Hilbert
pair. For example, the second term is

(7.10.4)

The value of the energy of successive terms is listed in the last column of Table 7.10.1. The waveforms
are shown in Figure 7.10.1. Each Hilbert pair in Table 7.10.1 is a pair of orthogonal functions. However,
the weighted Hermite polynomials do not form a set of orthogonal functions; that is, the integral of the
product

TABLE 7.10.1  Weighted Hermite Polynomials and Their Hilbert Transforms
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FIGURE 7.10.1a The waveforms of Hermite polynomials.

FIGURE 7.10.1b The waveforms of the corresponding Hilbert transforms.
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(7.10.5)

differs from zero for n ≠ m. The Hermite polynomials can be orthogonalized by replacing the weighting
function exp(–t2) by exp(–2t2) because

(7.10.6)

Therefore, the functions denoted by small italic h(t)

(7.10.7)

are forming an orthonormal (energy is equal unity) set of functions called Hermite functions. Let us
derive the Hilbert transforms of the Hermite functions. Combining the Equations (7.10.2) and (7.10.6)
we get the following recurrency:

(7.10.8)

The Hilbert transforms H[hn(t)] may be derived using the multiplication by t theorem (see Table 7.7.3):

(7.10.9)

Proof

The formula (7.1.1) yields

(7.10.10)

The insertion of the new variable y = η – t gives

(7.10.11)

This is exactly the relation (7.10.9). The second term in this equation equals zero for odd functions u(t).
The first term in the recurrent formula (7.10.8) has the form of the product th(t) enabling the application
of Equation (7.10.9). Therefore, the Hilbert transforms of the Hermite functions hn(t) have the form:
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(7.10.12)

To derive the Hilbert transforms of Hermite functions, we have to derive by any method the first term
ν0(t) and then apply the above recurrency. Let us use the frequency domain method. The function h0(t)
and its Fourier image are

(7.10.13)

By using Equation (7.4.12) we obtain:

(7.10.14)

Introducing the abbreviated notation (ω = 2π f)

(7.10.15)

we get the form of Equation (7.10.13) used in Table 7.10.2. The next terms υ1, υ2, … in this table are
derived by using Equation (7.10.11). They are listed using two notations: the recurrent and nonrecurrent.
The waveforms of the first four terms of the Hermite functions hn(t) and their Hilbert transforms are
shown in Figures 7.10.2a/b.

7.11 Integration of Analytic Signals

Consider the analytic signal defined by Equation (7.2.15) as a complex function of a real variable t in
the form

ψ (t ) = u(t ) + j ν (t ) (7.11.1)

This function is integrable in the Riemann sense in the interval [α, β ] if and only if the functions u(t)
and ν(t) are integrable; that is,

(7.11.2)

Let us define

Φ(t ) = U(t) + jV(t) (7.11.3)

The functions U(t) and V(t) are forming a Hilbert pair only if Φ(z) is an analytic function of a complex
variable z = t + jτ. Therefore, let us give without a proof the following theorem:

If the function ψ(z) = u(t, τ) + j ν(t, τ) is analytic in a simply connected domain D, then the function

H h t t
n

n
t t u d

n
n

n
t

n n n n

n

( )[ ] = ( ) =
−( )













( )− ( )









− −( )
−( )













( )

−
−∞

∞

−

−

∫υ υ
π

τ τ

υ

2 1 1

1
2

0 5

1 1

0 5

2

!

!

!

!

.

.

h t t f
F

0
0 25 2 0 25 2

2 4 2( ) = −( )⇐⇒( ) − ( )





−π π π. .
exp exp

H h t t e t d ff
0 0

0 25

0

22 4
2 2( )[ ] = ( ) = ( ) ( )

∞
−∫υ π ωπ.

sin

b g t e t d ff= ( ) = ( )
∞

−∫π ωπ0 25

0

2 2 2. , sin

Φ t t dt u t dt j t dt
t t

t

t

( ) = ( ) = ( ) + ( )∫ ∫∫ ≤ ≤α αα β
αψ υ
© 2000 by CRC Press LLC



(7.11.4)

is also analytic, and the derivative Φ′(z) = ψ(z). The integral (7.11.4) is defined as a path integral in the
plane (t, τ), and in the domain D the integral depends on z and z0 but not on the particular path Γ
connecting them (Figure 7.11.1).39

TABLE 7.10.2  Hilbert Transforms of Orthonormal Hermite Functions (Energy = 1).

Φ z z dz
z

z

( ) = ( )∫
0

ψ
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If function (7.11.1) is continuous in the interval [α, β], then the function defined by the integral

(7.11.5)

is called the primary function, or antiderivative of ψ(t), and has in the interval [α, β ] a continuous
derivative Φ′(t) = ψ(t) and the relation holds

FIGURE 7.10.2a Waveforms of Hermite functions.

FIGURE 7.10.2b Waveforms of the corresponding Hermite transforms.

Φ t t dt t
t
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(7.11.6)

Example

The function e jt has in the interval (–∞, ∞) the primary function e j t /j + c , where c is any complex
constant. We have

If the analytic function has a representation in the form of a power series:

(7.11.7)

its integral must have a power series in the form:

(7.11.8)

This means that the power series representation can be integrated term-by-term.

FIGURE 7.11.1    Passes of integration in the complex plane (t, jτ).
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Integration in the time domain can be converted by using the Fourier transforms into integration in
the frequency domain. For instance, the function u(t ) can be integrated using the Fourier pairs

(7.11.9)

(7.11.10)

The term [δ( f )/2] U(ω ) is equal to (1/2) U(0) and the term 1/jω is the well-known integration operator.
The same algorithm may be used to integrate the Hilbert transform ν (t ).

Example

Consider the analytic function of the complex variable z = t + jτ

(7.11.11)

where α is a real constant (α > 0). We get

ψ (z ) = ψ (t, τ ) = u(t , τ ) + j ν (t , τ ) (7.11.12)

where

(7.11.13)

and

(7.11.14)

Let us integrate the function (7.11.11) in the interval [–a , t] where α > 0 is a real constant. Hence, we find

(7.11.15)

The insertion of the limits of integration and change of coordinates from rectangular to polar yields

(7.11.16)
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Because arg(α – jz) is only determined to within a constant multiple of 2π , the function (1/π ) Ln(α – jz)
is not single valued (Notation Ln instead of ln). The prevent any winding of the integration path around
z = –jα , let us make a cut extending from the point z = –jα to infinity. Then Φ(z) is analytic in the
remaining part of the z-plane and satisfies the Cauchy-Riemann equation (see also Appendix 1).

Example

Consider a signal represented by the product:

u(t) = sgn(t)Πa(t) (7.11.17)

where Πa(t) is defined by Eq. (7.4.4) and sgn(t) by Eq. (7.1.11). We have the Fourier pair

(7.11.18)

The above Fourier spectrum is easy to derive by decomposing u(t) into right-sided and reverse sign left-
sided square pulses and adding the spectra of these pulses. In a similar way we can derive the Hilbert
transform by adding the two Hilbert transforms defined by Equation (7.4.7). The resulting Hilbert pair is

(7.11.19)

Let us integrate the signal u(t ) by frequency domain integration. We get the spectrum of the primary
function using the operator 1/jω :

(7.11.20)

The primary function of u(t) is the inverse Fourier transform of Equation (7.11.20) and has the form
of a reverse signed triangle pulse.

(7.11.21)

The signal tri(t) is defined in Table 7.7.1 and its Hilbert transform is

(7.11.22)

7.12 Multiplication of Signals with Nonoverlapping Spectra

Consider a signal of the form of the product

u(t) = f (t ) g (t ) (7.12.1)

where f(t ) is a low-pass and g(t ) a high-pass signal. The Fourier spectra of these signals do not overlap;
that is, if
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(7.12.2)

(7.12.3)

then (ω = 2π f )

|F( f )| = 0      for | f | > W (7.12.4)

|G( f )| = 0      for | f | < W (7.12.5)

as shown in Figure 7.12.1. In terms of Fourier methods, the Hilbert transform of the product u(t ) =
f (t )g(t ) may be derived using the multiplication-convolution theorem of the form (see also Chapter 2)

(7.12.6)

The multiplication of the spectrum by –j sgn( f ) (see Equation (7.1.12)) yields the spectrum of the Hilbert
transform

(7.12.7)

However, the product f (t )H[g(t )] and its Fourier transform are

(7.12.8)

One can show4 that the right-hand sides of (7.12.7) and (7.12.8) are identical. Therefore, the left-hand
sides are identical too, and

H [ f (t ) g (t )] = f (t )H [g (t )] (7.12.9)

This equation presents Bedrosian’s theorem: Only the high-pass signal in the product of low-pass and
high-pass signals gets Hilbert transformed.4

Example

Consider a signal in the form of the amplitude-modulated harmonic function:

FIGURE 7.12.1    Nonoverlapping Fourier spectra of two signals.
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u(t) = A(t) cos(Ω t + Φ) ;      Ω = 2π F (7.12.10)

(7.12.11)

and the magnitude of CA ( f ) is low-pass limited:

|CA( f )| = 0 for f ≥ F (7.12.12)

By using Bedrosian’s theorem, we get

ν (t) = H [u(t)] = A(t) sin(Ω t + Φ) (7.12.13)

Therefore, the amplitude-modulated signal (7.12.10) is a real part of the analytic signal:

Ψ(t) = A(t) e j (Ω t +Φ) (7.12.14)

and has a geometrical representation in the form of a phasor of instantaneous amplitude A(t) and rotating
with a constant regular velocity Ω . Bedrosian’s theorem was extended by Nuttal and Bedrosian25 to include
“frequency-translated” analytic signals. The condition, which applies to vanishing spectra at negative
frequencies, can be applied more generally to signals whose Fourier spectra satisfy the condition

F(ω) = F[Ψ1(t)] = 0,    ω < –a

G(ω) = F[Ψ2(t)] = 0,    ω > a (7.12.15)

where a is an arbitrary positive constant. The extension of Bedrosian’s theorem for multidimensional
signals is given in Section 7.22.

7.13 Multiplication of Analytic Signals

The Hilbert transform of the analytic signal is given by the formula

H[ψ (t)] = H[u(t) + j H[u(t)]] = H[u(t)] – ju(t) = –jψ (t) (7.13.1)

where the formula H[H[u(t )]] = –u(t ) (iteration) (see Table 7.7.3) has been applied. The Hilbert
transform of the product of two analytic signals is given by the formula

H[ψ 1(t)ψ 2(t)] = ψ 1(t)H[ψ 2(t)] = ψ 2(t)H[ψ 1(t)] (7.13.2)

that is, the Hilbert transformation should be applied to one term of the product only (to the first or the
second).

Proof

The product of two analytic functions is an analytic function.39 Therefore, if

ψ (t) = ψ 1(t)ψ 2(t) (7.13.3)

where ψ1(t) and ψ2(t) are analytic signals, then using Equation (7.13.1), we get:

H[ψ (t)] = – jψ (t) = – jψ 1(t)ψ 2(t) (7.13.4)

A t C f
F

A( )⇐⇒ ( )
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However, the operator – j may be assigned either to ψ1(t ) or ψ2(t ). The application of Equation (7.13.2)
yields two options:

H[ψ (t)] = H[ψ 1(t)]ψ 2(t); H[ψ ] = ψ 1(t)H[ψ 2(t)] (7.13.5)

Let us apply Equations (7.13.1) and (7.13.5) to find the Hilbert transforms of the n-th power of the
analytic signal. We get

H[ψ 2(t)] = ψ (t)H[ψ (t)] = –jψ 2(t) (7.13.6)

H[ψ n(t)] = ψ n–1(t)H[ψ (t)] = – jψ n(t) (7.13.7)

Example

Let us find the Hilbert transform of

ψ 2(t) = (1 – j t)–2 (7.13.8)

The application of Equation (7.13.1) gives

H[ψ (t)] = – j(1 – j t)–1 (7.13.9)

and Equation (7.13.6) yields

H[ψ 2(t)] = (1 – j t)–1 [– j(1 – j t)–1] = – j(1 – j t)–2

Equation (7.13.1) has a generalized form given by the formula

H[ψ (at)] = – j sgn(a)ψ (at) (7.13.10)

where a is a real positive or negative constant. The negative sign of a may be interpreted as time reversal.
For example, the Hilbert transform of exp(jω t) is

H(e jω t) = – j sgn(ω ) e jω t

where ω may be positive or negative.

7.14 Hilbert Transforms of Bessel Functions of the First Kind

The Bessel functions (see also Chapter 1) are the solution of the second order Bessel differential equation:

z2ψ ″(z) + zψ ′(z) + (z 2 – λ2)ψ (z) = 0 (7.14.1)

where ψ (z) is a complex function of a complex variable z = t + jτ and λ is a complex constant. If λ =
n, where n is an integer (0, 1, 2, …), and z = t , we get the solution in the form of Bessel functions of
the first kind of the order n denoted Jn(t ). They find numerous applications in signal and system theory.
For example, they are used to calculate the Fourier spectra of frequency modulated signals.

The substitution in Equation (7.14.1) of a solution in the form of a series Jn(t ) = gives

the power series representation

(7.14.2)

m
a t

m

m

=

∞

∑ 0

J t
k n k

t tn

k

k

n k( ) =
−( )
−( ) ( ) −∞ < <∞

=

∞
+∑

1
2

0

2

! !
;

© 2000 by CRC Press LLC



The computation of the Bessel functions by means of this power series is inconvenient. Due to the
truncation of the series at some value of k, we get divergence for large values of t. It is possible to apply
Equation (7.14.2) up to t < t1 and calculate the values for t > t1 using the asymptotic formula

(7.14.3)

The term r(t ) is a limited function for t ⇒ ∞. However, it is much easier to compute the Bessel functions
and its Hilbert transforms using integral forms, as described below.

Let us start with the periodic complex function exp(j t sin(ϕ ) and its Hilbert transform. We have a
Hilbert pair

(7.14.4)

The Fourier series expansion of the left-hand side is

(7.14.5)

The Bessel functions, i.e., the coefficients of this series, are given by the integral:

(7.14.6)

The odd-ordered Bessel functions are odd functions of the argument t, while the even-ordered are even
functions and

J–n (t) = (–1)n Jn (t) (7.14.7)

In fact, the integral of the imaginary part of Equation (7.14.6) equals zero, and due to the evenness
of the real part of the integrand, we have

(7.14.8)

This formula enables very efficient calculation of Bessel functions Jn(t) using numerical integration. The
number of integration steps may be halved using two separate integrals:

(7.14.9)

(7.14.10)

The real part of the Fourier series (7.14.5) is
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(7.14.11)

and the imaginary part is

(7.14.12)

Inserting ϕ = π /2 gives the well-known formulae:

cos (t) = J0(t) – 2 J2(t) + 2 J4(t) – L (7.14.13)

sin (t) = 2 J1(t) – 2 J3(t) + L (7.14.14)

The following recursion formula is very useful

(2n/t) Jn (t) = Jn–1(t) + Jn+1(t) (7.14.15)

The derivative of a Bessel function is also given by the recursion formula

(7.14.16)

For example

(7.14.17)

(we used Equation (7.14.7)).
The left-hand side of Equation (7.14.4) was expanded in the Fourier series (7.14.5). Similarly, due to

the linearity of the Hilbert transformation, the right-hand side may be expanded in the Fourier series

(7.14.18)

where = H[Jn(t)] are the Hilbert transforms of the Bessel functions. For these functions we have

the relation

(7.14.19)

because the Hilbert transforms of odd functions are even, and vice versa (compared with Equation

[7.14.7]). The functions , i.e., the coefficients of the Fourier series (7.14.18), are given by the integral

(7.14.20)
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Ĵ t
n( )

ˆ sin
J t H e dn

j t n( ) = 



−

−[ )∫
1

2π
ϕ

π

π
ϕ ϕ
© 2000 by CRC Press LLC



As in Equation (7.14.6), the integral of the imaginary part equals zero and due to the evenness of the
real part, we have

(7.14.21)

Notice that the integrand is even because it is multiplied by sgn(ϕ ) (see Equation [7.14.18]). As before,
using numerical integration, the Hilbert transforms of the Bessel functions can be easily computed. The
first five Bessel functions and their Hilbert transforms computed using Equations (7.14.18) and (7.14.21)
are shown in Figures 7.14.1a/b.

FIGURE 7.1.4.1a Waveforms of the first five Bessel functions Jn(t).

FIGURE 7.14.1b Waveforms of the corresponding Hilbert transforms.

ˆ sin sinJ t t n dn ( ) = −[ ]∫
1

0π
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Let us derive the Hilbert transforms of the Bessel functions Jn(t ) using Fourier transforms. The Fourier
transform of the function J0(t ) is

(7.14.22)

Proof

Let us find the inverse transform of this spectrum:

(7.14.23)

(See Equation [7.14.8].) The Fourier transforms of higher-order Bessel functions can be calculated using
the recursion formula (7.14.16) and frequency domain differentiation. We have

(7.14.24)

obtaining the following Fourier parts

(7.14.25)

(7.14.26)

(7.14.27)

Successive application of the recurrency gives the Fourier spectra of the Bessel functions Jn(t ) tabulated
in Table 7.14.1. We find that

(7.14.28)

where C0( f ) is defined by Equation (7.14.25) and Tn(t ) is a Tchebycheff polynomial defined by the
formula

Tn (t) = cos[n cos–1(t )] ;    n = 0, 1, 2, … (7.14.29)

A recursion formula can be applied

Tn+1(t) – 2 t Tn(t ) + Tn–1(t ) = 0;    n = 1, 2, … (7.14.30)
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Because we derived the analytical expressions for the Fourier images of the Bessel functions, the use of
inverse Fourier transformations enables the evaluation of either the Bessel function Jn(t) or its Hilbert

transform . For example

(7.14.31)

and the Hilbert transform is

(7.14.32)

Hence, we have an analytic signal

(7.14.33)

Equations (7.14.31) and (7.14.32) may be regarded as alternative definitions of the Bessel functions J0(t)

and . However, the computation by means of the integrals (7.14.8) and (7.14.9) (n = 0) gives much

better accuracy with a given number of integration steps.
The expressions for the Fourier images of Bessel functions and their Hilbert transforms derived using

these images are listed in Table 7.14.1. If needed, the Fourier spectra enable the derivation of the

TABLE 7.14.1 Fourier and Hilbert Transforms of Bessel Functions of the First Kind
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coefficients of the power series representation of Jn(t ) and . Starting with the power series for Jn(t )

given by Equation (7.14.2), let us derive the power series for . We start with the expression defining

the Taylor series

(7.14.34)

The derivatives (t = 0) can be obtained by differentiation of the integrand of the integrals listed

in Table 7.14.1. By inserting t = 0, we obtain

(7.14.35)

where (1), (2), … denote the order of the derivative. Continuing the differentiation using Equation
(7.14.34), we get the following power series:

(7.14.36)

In the same way one can derive the power series of higher order Hilbert transforms of the Bessel
functions.

7.15 Instantaneous Amplitude, Complex Phase, and Complex 
Frequency of Analytic Signals

Signal theory needs precise definitions of various quantities such as the instantaneous amplitude,
instantaneous phase, and instantaneous frequency if a given signal and many other quantities. Let us
recall that neither definition is true or false. If we define something, we simply propose to make an
agreement to use a specific name in the sense of the definition. When using this name, for instance,
“instantaneous frequency,” we should never forget what we have defined. The history of signal theory
contains examples of misunderstanding when various authors applied the same name — instantaneous
frequency — to different definitions and then tried to discuss which is true or false. Such a discussion
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in meaningless. Of course, one may discuss which definition has advantages or disadvantages from a
specific point of view or whether it is compatible with other definitions or existing knowledge. The
notions of the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the analytic
signal ψ (t) = u(t ) + jυ (t ) may be uniquely and conveniently defined introducing the notion of a phasor
rotating in the Cartesian (u , υ) plane, as shown in Figure 7.15.1. The change of coordinates from
rectangular (u , υ ) to polar (A , ϕ ) gives

u(t) = A(t) cos[ϕ (t)] (7.15.1)

υ (t) = A(t) sin[ϕ (t)] (7.15.2)

ψ (t) = A(t)e jϕ (t ) (7.15.3)

We define the instantaneous amplitude of the analytic signal equal to the length of the phasor (radius
vector) A):

(7.15.4)

and define the instantaneous phase of the analytic signal equal to the instantaneous angle

FIGURE 7.15.1  A phasor in the Cartesian (u , ν ) plane representing the analytic signal ψ (t ) = u(t ) + jν (t) =
A(t)e jϕ (t) .

A t u t t( ) = ( ) + ( )2 2υ
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(7.15.5)

The notation with capital T indicates the multibranch character of the Tan–1 function, as shown in Figure
7.15.2. As times elapses, the phasor rotates in the (u, υ ) plane and its instantaneous angular speed defines
the instantaneous angular frequency of the analytic signal given by the time derivative

(7.15.6)

or

(7.15.7)

Notice the anticlock direction of rotation for positive angular frequencies. The instantaneous frequency
is defined by the formula

(7.15.8)

Summarizing, using the notion of the analytic signal, we defined the instantaneous amplitude, phase,
and frequency. A number of different definitions of the notion of instantaneous amplitude, phase, and

FIGURE 7.15.2 The multibranch function ϕ (t ) = tan–1[υ (t) /u(t )]. As time elapses (arrows) they are jumps from
one branch to a next branch.
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frequency have developed over the years. There are many pairs of functions A(t) and ϕ (t), which inserted
into Equation (7.15.1) reconstruct a given signal u(t), for example, functions defining a phasor in the

phase plane . But only the analytic signal has the unique feature of having a one-sided Fourier

spectrum. Let us recall that a real signal and its Hilbert transform are given in terms of analytic signals
by Equations (7.2.17) and (7.2.18) (see Section 7.2). Figure 7.15.3 shows the geometrical representation
of these formulae in the form of two phasors of a length 0.5 A(t) and opposite direction of rotation,
positive for ψ (t) and negative for ψ ∗(t). Equation (7.15.5) defines the instantaneous frequency of a
signal regardless of the bandwidth. It is sometimes believed that the notion of instantaneous frequency
has a physical meaning only for narrow-band signals (high-frequency (HF) modulated signals). However,
using adders, multipliers, dividers, Hilbert filters, and differentiators, it is possible to implement a
frequency demodulator used for wide-band signals, for example, speech signals, the algorithm defined
by Equation (7.15.7). Modern VLSI enables efficient implementation of such frequency demodulators at
reasonable cost.

Instantaneous Complex Phase and Complex Frequency

Signal and systems theory widely uses the Laplace transformation of a real signal u(t) of the form

(7.15.9)

where

s = α + jω ;     ω = 2π f

is a time-independent complex frequency (α and ω are real). The exponential kernel e–st has the form of
a harmonic wave with an exponentially decaying amplitude; that is, its instantaneous amplitude is

A(t ) = e –α t (7.15.10)

The notion of the complex frequency has been generalized by this author in 1964 defining a complex
instantaneous variable frequency using the notion of the analytic signal.12 It is convenient to define the

FIGURE 7.15.3 A pair of conjugate phasors representing the Equations (7.2.17) and (7.2.18).
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instantaneous complex frequency as the time derivative of a complex phase. The instantaneous complex
phase of the analytic signal ψ (t ) is defined by the formula

Φc (t ) = Ln[ψ (t)] (7.15.11)

Capital L denotes the multibranch character of the logarithmic function of the complex function ψ(t).
The insertion of the polar form of the analytic signal (see Equation [7.15.3]) yields:

Φc (t ) = Ln[A(t )] + jϕ (t ) (7.15.12)

The instantaneous complex frequency is defined by the derivative

(7.15.13)

or

s(t) = α (t) + jω (t) (7.15.14)

where

(7.15.15)

is the instantaneous radial frequency (a measure of the radial velocity representing the speed of changes
of the radius or amplitude of the phasor), and

(7.15.16)

is the instantaneous angular frequency. Equation (7.15.15) has the form of a first-order differential
equation. The solution of this equation yields the following form of the instantaneous amplitude

(7.15.17)

A0 is the value of the amplitude at the moment t = 0. Let us introduce the notation

(7.15.18)

Using this notation the complex phase can be written as

Φc (t ) = ln A0 + β (t ) + jϕ (t ) (7.15.19)

or

(7.15.20)
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Φ0 is the integration constant or the angular position of the phasor at t = 0. The introduction of the

concept of a complex constant ψ0 = gives the following form of the analytic signal

(7.15.21)

Examples

1. Consider the analytic signal given by Equation (7.5.10):

(7.15.22)

The polar form of this signal is

(7.15.23)

Therefore, the instantaneous complex phase is

(7.15.24)

and the instantaneous complex frequency is

(7.15.25)

Because in the limit α ⇒ 0 the signal (7.15.22) approximates the complex delta distribution (see
Equation [7.5.4]), the instantaneous complex phase of this distribution is

(7.15.26)

and the complex frequency is

(7.15.27)
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2. Consider the analytic signal

(7.15.28)

where u(t) is the well-known interpolating function of the sampling theory. Equations (7.15.4)
and (7.15.5) yield, using trigonometric relations, the polar form of this signal:

(7.15.29)

Therefore, the instantaneous complex phase is

(7.15.30)

and the instantaneous complex frequency

(7.15.31)

In conclusion, the interpolating function may be regarded as a signal of a variable amplitude and
a constant angular frequency ω = a/2.

3. The classic complex notation of a frequency or phase modulated signal (Carson and Fry, 1937)
has the form41 

(7.15.32)

where ϕ (t) represents the angle modulation. The whole argument of the exponential function
Φ(t) = Ω0t + Φ0 + ϕ(t) defines the instantaneous phase and its derivative, the instantaneous
frequency

(7.15.33)

The signal (7.15.32) is represented by a phasor in the plane (cos[(Φ(t)], sin[Φ(t)]), as shown in
Figure 7.15.4. These definitions of the instantaneous phase and frequency differ from the definition
using the analytic signal that is represented by a phasor in the (cos[Φ(t)], H(cos[Φ(t)]) plane,
because sin[Φ(t)] is not the Hilbert transform of cos[Φ(t)] and the signal (7.15.32) is not an
analytic function. However, it may be nearly analytic if the carrier frequency is large. If the spectra
of the functions cos[ϕ(t)] and sin[ϕ(t)] have a limited low-pass support of a highest frequency
|W | < |F0| , then Bedrosian’s theorem (see Section 7.12) may be applied and 
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(7.15.34)

In the case of harmonic modulation with ϕ(t) = β  sin(ωt), where β is the modulation index, the
spectra of the functions cos[ϕ(t)] and sin[ϕ(t)] are given by the Fourier series

(7.15.35)

(7.15.36)

and this is not a pair of Hilbert transforms (see Section 7.6). Although the number of terms of the
series is infinite, the number of significant terms is limited and for a good approximation Bedro-
sian’s theorem may be applied for large values of F0. Further comments are given in Reference 25.

FIGURE 7.15.4  A phasor representing a frequency (or phase) modulated signal.
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7.16 Hilbert Transforms in Modulation Theory

This section is devoted to the theory of analog modulation of a harmonic carrier uc(t) = A0 cos(2π F0t
+ Φ0) with emphasis on the role of Hilbert transformation, analytic signals, and complex frequencies.
The theory of amplitude and angle modulation is mentioned briefly in favor of a more detailed description
of the theory of single side-band modulations. The last are conveniently defined using Hilbert transforms.
Many modulators are implemented using Hilbert filters, mostly digital filters, because nowadays modu-
lated signals can be conveniently generated digitally and converted into analog signals.

Concept of the Modulation Function of a Harmonic Carrier

The complex notation of signals is widely used in modern modulation theory. The harmonic carrier is
written in the form of the analytic signal

(7.16.1)

Analog modulation is the operation of continuous change of one or more of the three parameters of the
carrier: the amplitude A0 , the frequency F0 , or the phase Φ0 , resulting in amplitude, frequency, or phase
modulation. The complex modulated signal has a convenient representation in the form of a product3 

(7.16.2)

The function γ(t) is called the modulation function. It is a function of the modulating signal (the
message) x(t), that is, γ (t) = γ [x(t)]. Any kind of modulation, for example, amplitude, frequency, or
phase modulation, is represented by a specific real or complex modulation function. We shall investigate
models of modulating signals for which the Fourier transform exists and is given by the Fourier pair

(7.16.3)

The frequency band containing the terms of the spectrum X(ω) is called the baseband. In general, the
modulation function is a nonlinear function of the variable x , and the spectrum of the modulation
function differs from X(ω) and is represented by the Fourier pair:

(7.16.4)

The nonlinear transformations of the spectrum may have a complicated analytic representation. Usually
only approximate determination of the spectrum is possible. The approximations are easier to perform
if the energy of the modulating signal is nonuniformly distributed and concentrated in the low-frequency
part of the baseband, for example, the energy of voice, music, or TV signals. Usually it is possible to find
the terms of Γ(ω) for harmonic modulating signals. In special cases, if the modulation function is
proportional to the message; that is, γ(t) = mx(t) (m is a constant), we have

Γ( f ) = mX ( f ) (7.16.5)

The initial phase of the carrier Φ0 is of importance only if we deal with two or more modulated carriers
of the same frequency, for example, by summation or multiplication of modulated signals. It is convenient
to write the modulated signal in the form
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(7.16.6)

and define a modified modulation function in the form of the product

(7.16.7)

The new Fourier spectrum is

(7.16.8)

We observe that the spectra (7.16.4) and (7.16.8) have the same magnitude and differ only by the phase
relations. Notice that the spectrum Γ1(ω) is defined at zero carrier frequency and the spectrum of the
modulated signal is obtained by shifting this spectrum from zero to carrier frequency by the Fourier shift
operator e jΩ0t. This approach enables us to study the spectra of modulated signals at zero carrier
frequency.
Examples of modulation functions:

The modulation function for a linear full-carrier AM has the form

γ (t) = 1 + mx (t);    |mx (t)| < 1 (7.16.9)

The number 1 represents the carrier term. Therefore, the modulation function for balanced modulation
(suppressed carrier) has the simple form

γ (t) = mx (t) (7.16.10)

Therefore, the spectra of the message and of the modulation function are to within the scale factor m,
the same. The message may be written in the form (see Equation [7.2.17])

(7.16.11)

This formula shows that the upper sideband of the AM signal is represented by the analytic signal ψx(t)

of a one-sided spectrum at positive frequencies and the lower sideband by the conjugate analytic signal

of a one-sided spectrum at negative frequencies. The sidebands have the geometric form of two

conjugate phasors (see Figure 7.15.3). The instantaneous amplitude of the phasors is

(7.16.12)

( = H[x(t)]) and the instantaneous angular frequency is

(7.16.13)
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Therefore, a single sideband represents a signal with simultaneous amplitude and phase modulation. The

multiplication of ψx(t) or with the complex carrier (Fourier shift operator) e jΩ0 t yields the high-

frequency analytic signals. The upper sideband (Φ0 = 0) is (with mA0 = 2)

(7.16.14)

with the modulation function ψx(t), and the lower sideband is

(7.16.15)

with the conjugate modulation function  The above signals represent the complex form of single
side-band (SSB) AM. The real notation of these signals is

(7.16.16)

with the minus sign for the upper sideband and plus sign for the lower one. The products x(t) cos(Ω0t)

and in(Ω0t) represent double side-band (DSB) compressed carrier AM signals. Therefore, an SSB

modulator may be implemented, as shown in Figure 7.16.1.

The angle modulation is represented by the exponential modulation function of the form

γ (t) = e jϕ [x (t )] (7.16.17)

Therefore, the complex signal representation of the angle modulation has the form

(7.16.18)

where ϕ is a function of the modulating signal x(t). In general, this complex signal may be only
approximately analytic (see Section 7.15, example 3). In the case of a linear phase modulation, the
modulation function has the form

FIGURE 7.16.1 Block diagram of a SSB modulator (phase method) implementing Equation (7.16.16).
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γ(t) = e j m x (t ) (7.16.19)

and for the linear frequency modulation

(7.16.20)

The Fourier spectrum of the modulation function is given by the integral

(7.16.21)

If for a specific function ϕ[x(t)] the closed form of this integral does not exist, a numerical integration
may be applied. In the simplest case of linear phase modulation with a harmonic modulating signal the
modulation function (7.16.19) has the form

(7.16.22)

where β is the modulation index (in radians). The Fourier series expansion of this complex periodic
function has the form:

(7.16.23)

Using Euler’s formulae (see Equations [7.2.19] and [7.2.20]), this modulation function becomes

(7.16.24)

Because the exponentials in the time domain are represented by delta functions in the frequency domain

, the spectrum of the modulation function (zero carrier frequency) has the form

shown in Figure 7.16.2 (β = 4).

Generalized Single Side-Band Modulations

The SSB AM signal defined by Equations (7.16.14) and (7.16.15) is an example of many other possible
single side-band modulations. Any kind of modulation of a harmonic carrier is called single side-band
modulation if the modulation function is an analytic signal of a one-sided spectrum at positive frequencies
for the upper sideband and at negative frequencies for the lower sideband. Therefore, the modulation
function should have the form

(7.16.25)
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where . Let us use here the notion of the instantaneous complex phase defined by

Equation (7.15.11) of the form

φc (t ) = ln A(t ) + jφ (t ) (7.16.26)

The modulation function (7.16.25) can be written in the form

(7.16.27)

that is, the instantaneous amplitude is written in the exponential form

A(t) = eln[A(t)] (7.16.28)

We now put the question: under what conditions are γ(t) and simultaneously φc(t) analytic? That is,
when is not only the relation (7.16.25), but also the relation

(7.16.29)

satisfied? The answer comes from the dual (time domain) version of the Paley-Wiener criterion28

(7.16.30)

which should be satisfied. Let us remember that A(t) is defined as a nonnegative function of time. The
Paley-Wiener criterion is equivalent to a requirement that A(t) should not approach zero faster than any
exponential function. This is a property of each signal with finite bandwidth that is of any practical signal.

FIGURE 7.16.2 The spectrum of a phase modulated signal translated to zero carrier frequency, i.e., of the modu-
lation function. Phase deviation β = 4 radians.
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CSSB: Compatible Single Side-Band Modulation

The CSSB signal has the same instantaneous amplitude as the conventional DSB full-carrier AM signal,
that is, of the form

A(t) = Ao(1 + mx(t));    mx(t) < 1 (7.16.31)

and can be demodulated by a conventional linear diode demodulator (but not by a synchronous detector).
The one-sided spectrum of the CSSB signal is achieved by a simultaneous specific phase modulation.
The analytic modulation function should satisfy the requirement (7.16.29) and has the form

(7.16.32)

Figure 7.16.3 shows a block diagram of a modulator producing a high-frequency CSSB signal imple-
mented by the use of Equation (7.16.32). This modulation function guarantees the exact cancellation of
the undesired sideband. Using digital implementation, the level of the undesired sideband depends only
on design. The bandwidth of the nonlinear logarithmic device, the Hilbert filter and phase modulator,
should be several times wider than the bandwidth of the input signal. In practice it should be three to
four times larger than the baseband. The instantaneous amplitude A(t) should never fall to zero because
the logarithm of zero equals minus infinity. Tradeoff is needed between the smallest value of A and the
phase deviation.

Spectrum of the CSSB Signal

It may be a surprise that the bandwidth of the one-sided spectrum of the CSSB signal is limited. If the
spectrum of the modulating signal exists in the interval –W < f < W, then the spectrum of the modulation
function exists in the interval 0 < f < 2W. Seemingly, the bandwidths of the CSSB and DSB AM signals

FIGURE 7.16.3 Diagram of the modulator producing the Compatible Single Side-Band AM signal.
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are equal. However, the spectra of many messages such as speech or video signals are nonuniform, with
significant terms concentrated at the lower part of the baseband. This enables us to transmit the CSSB
signal in a smaller band; for example, from F0 to F0 + W instead to F0 + 2W , at the cost of some distortions
enforced by the truncation of insignificant terms of the spectrum. Let us investigate the spectra and
distortions using the model of a wide-band modulating signal given in the form of the Fourier series.

(7.16.33)

For C2k+1 = 1/(2k + 1) this modulating signal is a truncated Fourier series of a square wave. Its bandwidth
equals W = (2N + 1) f0. The insertion of this signal in Equation (7.16.31) yields a periodic modulation
function given by the Fourier series

(7.16.34)

The truncation of this series at the term 4N + 2 is not arbitrary because it will be shown that terms for
k > 4N + 2 vanish. Therefore, the bandwidth of γ (t) equals exactly 2W. To give the evidence, let us insert
x(t) given by Equation (7.16.33) in Equation (7.16.32). The square of the instantaneous amplitude of
so-defined modulation function is

(7.16.35)

The highest term of this Fourier series has the harmonic number 4N + 2. Analogously, the square of the
instantaneous amplitude of the modulation function (7.16.34) is

(7.16.36)

However, the functions (7.16.34) and (7.16.35) should be equal. Therefore, they should have the same
coefficients of the Fourier series. The comparison of these coefficients yields a set of 4N + 3 equations.
The solution of these equations yields the coefficients A0, A1, A2, …, A2N+2 as functions of the modulation
index m and the amplitudes C2k+1 of the modulating signal (7.16.31).

Example

1. For the harmonic modulating signal x(t) = cos(ω0t), N = 0 , C1 = 1 and C2k+1 = 0 for k > 0. The
comparison of the squares of the instantaneous amplitudes yields three equations

(7.16.37)

A 0A 1 + A 1A 2 = mC 1 (7.16.38)

A 0A 2 = (mC 1)2/4 (7.16.39)
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The solution of these equations yields (C1 = 1): The amplitude of the zero frequency carrier

(7.16.40)

The amplitude of the first sideband

A1 = m (7.16.41)

and the amplitude of the second sideband

(7.16.42)

Figure 7.16.4 shows an example of the spectrum of the CSSB signal and Figure 7.16.5, the
dependence of the amplitudes on m.

2. For the modulating signal x(t) = C1 cos(ω0t) – C3 cos(3ω0t), N = 1, and C2k+1 = 0 for k > 1. We
get seven equations of the form

(7.16.43)

(7.16.44)

FIGURE 7.16.4 Example of a spectrum of the CSSB AM signal with a cosine envelope.
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(7.16.45)

(7.16.46)

The solutions of these equations yield the seven terms of the CSSB signal. In practice it is simpler
to find these terms applying any numerical method of determination of the coefficients of the
Fourier series expansion of the modulation function (7.16.32). However, the above set of equations
gives the evidence that the spectrum has a finite number of terms (example in Figure 7.16.6). The
above equations may be used to control the accuracy of numerical calculations. Notice that
Equations (7.16.37) and (7.16.43) have the form of power equality equations.

Let us quote three other modulation functions generating CSSB AM signals. The analytic
modulation function of the form

(7.16.47)

uses the square root of the instantaneous amplitude of an AM signal. Its spectrum is exactly one-
sided. A squaring demodulator should be applied at the receiver. The phase deviation equals one-
half of the phase deviation of the function (7.16.32). Some years ago Kahn implemented a CSSB
modulator using the modulation function17 

(7.16.48)

Similarly Villard (1948) implemented a modulator using another modulation function40 

FIGURE 7.16.5 The dependence of the three terms of the spectrum on the modulation index m.
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(7.16.49)

The last two modulation functions are not exactly analytic and their spectra are only approximately
one-sided.

CSSB Modulation for Angle Detectors

The modulation function of a single side-band modulation compatible with a linear phase detector has
the form

(7.16.50)

and the modulation function of a single side-band modulation compatible with a linear frequency
demodulator has the form

(7.16.51)

where β and m f are modulation indexes of phase or frequency modulation (in radians). The above
modulation functions are analytic. Therefore, their spectra are exactly one-sided due to the simultaneous
amplitude and angle modulation. Notice the exponential amplitude modulation function. For large
modulation indexes the required dynamic range of the amplitude modulator is extremely large. An
example is the modulating signal x(t) = sin(ω0t). Here, the instantaneous amplitude has the form A(t)
= exp[β cos(ω0t)] and is shown in Figure 7.16.7. Figure 7.16.8 shows the amplitudes of the one-sided
spectrum in dependence of β.

FIGURE 7.16.6 The spectrum of the CSSB AM signal with an envelope given by the Fourier series of a square
wave truncated at the fifteenth harmonic number.
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7.17 Hilbert Transforms in the Theory of Linear Systems: 
Kramers–Kronig Relations

The notions of impedance, admittance, and transfer function are commonly used to describe the
properties of linear, time-invariant (LTI) systems. If the signal at the input port of the LTI system varies
in time as exp ( jωt), the signal at the output is a sine wave of the same frequency with a different
amplitude and phase. In other words, the LTI conserves the waveform of sine signals. A pure sine
waveform is a mathematical entity. However, it is easy to generate physical quantities that vary in time
practically as exp( jω t). Signal generators producing nearly ideal sine waves are widely used in many
applications, including precise measurements of the behavior of circuits and systems. The transfer
function of the LTI system is defined as a quotient of the output and input analytic signals

(7.17.1)

This transfer function describes the steady-state, input-output relations. Theoretically, the input sine
wave should be applied at the time at minus infinity. In practice, the steady state arrives if the transients
die out. The transfer function is time independent because the term exp( jω t) may be deleted from the
nominator and denominator of Equation (7.17.1).

FIGURE 7.16.7 Envelope of the compatible with a linear FM detector single side-band FM signal. β-modulation
index in radians.
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FIGURE 7.16.8  One-sided spectrum of the modulation function of the compatible with a linear detector FM signal.
© 2000 by CRC Press LLC



The frequency domain description by means of the transfer function can be converted into the time-
domain description using the Fourier transformation. A response of the LTI system to the delta pulse,
i.e., the impulse response, is defined by the Fourier pair:

(7.17.2)

where 1.

Causality

All physical systems are causal. Causality implies that any response of a system at the time t, depends
only on excitations at earlier times. For this reason, the impulse response of a causal system is one-sided;
that is, h(t) = 0 for t < 0. But one-sided time signals have analytic spectra (see Section 7.3). Therefore,
the spectrum of the impulse response given by Equation (7.17.2), and thus the transfer function of a
causal system is an analytic function of the complex frequency s = α + jω. The analytic transfer function

H(s ) = A(α , ω ) + j B(α , ω ) (7.17.3)

satisfies the Cauchy-Riemann equations (see Equation [7.2.4])

(7.17.4)

and the real and imaginary parts (α = 0) of the transfer function form a Hilbert pair:

(7.17.5)

(7.17.6)

A one-sided impulse response can be regarded as a sum of noncausal even and odd parts (see Equations
[7.3.2] and [7.3.3])

h(t ) = he(t ) + ho(t ) (7.17.7)

because h(t) is real, we have the following Fourier pairs:

(7.17.8)

(7.17.9)

The causality of h(t) yields the relations

he(t ) = sgn(t )ho(t ) (7.17.10)
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ho(t ) = sgn(t )he(t ) (7.17.11)

These products are the time-domain representation of the convolution integrals (7.17.5) and (7.17.6)
(convolution to multiplication theorem).

Physical Realizability of Transfer Functions

The Hilbert relations between real and imaginary parts of transfer functions are valid for physically
realizable transfer functions. The terminology “physically realizable” may be misleading because a transfer
function given by a closed algebraic form is a mathematical representation of a model of a circuit built
using ideal inductances, capacitances, and resistors or amplifiers. Such models are a theoretical, approx-
imate description of physical systems. The physical realizability of a particular transfer function in the
sense of circuit (or systems) theory is defined by means of causality. A general question of whether a
particular amplitude characteristic can be realized by a causal system (filter) is answered by the Paley-
Wiener criterion. Consider a specific magnitude of a transfer function |H(jω)| (an even function of ω).
It can be realized by means of a causal filter if and only if the integral

(7.17.12)

is bounded.28 Then a phase function exists such that the impulse response h(t) is causal. The Paley-
Wiener criterion is satisfied only if the support of |H(jω)| is unbounded, otherwise |H(jω)| would be equal
to zero over finite intervals of frequency resulting in infinite values of the logarithm (ln|H(jω)| = –∞).

Minimum Phase Property

Transfer functions satisfying the Paley-Wiener criterion have a general form:

H(jω ) = Hϕ (jω )Hap(jω ) (7.17.13)

where Hϕ (jω) is called a minimum phase transfer function and Hap(jω) is an all-pass transfer function.
The minimum phase transfer function

Hϕ (jω ) = |H( jω )|e jϕ (ω ) = Aϕ (ω ) + jBϕ (ω ) (7.17.14)

has a minimum phase lag ϕ (ω) for a given magnitude characteristic. The minimum phase transfer
function Hϕ (s) has all the zeros lying in the left half-plane (i.e., α < 0) of the s-plane. The minimum
phase transfer function is analytic and its real and imaginary parts form a Hilbert pair

(7.17.15)

An important feature of the minimum phase transfer function is that the propagation function

γ (s) = ln[H(s)] = β (α , ω ) + jϕ (α , ω ) (7.17.16)

is analytic in the right half-plane. It is so because all zeros are in the left half-plane and, because we
postulate stability, all poles are in the left half-plane, too. Then the real and imaginary part of the
propagation function form a Hilbert pair:
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(7.17.17)

(7.17.18)

These relations can be converted to take the form of the well-known Bode phase-integral theorem:

(7.17.19)

where u = ln(ω /ω 0) is the normalized logarithmic frequency scale, and dβ /du is the slope of the β-
curve in ln-ln scale. The Bode formula shows that for the minimum-phase transfer functions the phase
depends on the slope of the β-curve (β  is the damping coefficient). The factor ln[coth|u/2|] is peaked at
u = 0 (or ω = ω 0) and, hence, the phase at a given ω 0 is mostly influenced by the slope dβ /du in the
vicinity of ω 0.

The all-pass part of the nonminimum phase transfer function defined by Equation (7.17.13) may be
written in the form:

Ha p(jω ) = e jψ (ω ) (7.17.20)

Therefore, the total phase function has two terms:

arg[H(jω )] = ϕ (ω ) + ψ (ω ) (7.17.21)

where ϕ (ω) is the minimum phase and ψ (ω) the nonminimum phase part of the total phase.

Amplitude-Phase Relations in DLTI Systems

A discrete, linear, and time-invariant system (DLTI) is characterized by the Z-pair (see also Chapter 6)

(7.17.22)

The sequence h(i) (i = 0, 1, 2, …) is the impulse response of the system to the excitation by the Kronecker
delta and H(z) is the one-sided Z transform of the impulse response called the transfer function (or
frequency characteristic) of the DLTI system, a function of the dimensionless normalized frequency ψ
= 2π f/ f s , where f is the actual frequency and fs the sampling frequency. For causal systems the impulse
response is one-sided (h(i) = 0 for i < 0). The transfer function H(ejψ) is periodic with the period equal
to 2π. This periodic function may be expanded into a Fourier series

(7.17.23)

The Fourier coefficients h(t) are equal to the terms of the impulse response and are given by the Fourier
integral:
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(7.17.24)

In general, the transfer function is a complex quantity

H(e jψ ) = A(ψ ) + j B(ψ) (7.17.25)

Analogously to Equation (7.17.7) the causal impulse response h(i) can be regarded as a sum of two
noncausal even and odd parts of the form

h(i) = h(0) + he(i) + h0(i) (7.17.26)

The even part is defined by the equation

he(i) = 0.5[h(i) + h(–i)] ;    | i | > 0 (7.17.27)

and the odd part by the equation:

h0(i) = 0.5[h(i) – h(–i)] (7.17.28)

Let us write the Fourier series (7.17.23) term-by-term. We get

(7.17.29)

The comparison of Equations (7.17.25) and (7.17.29) shows that

(7.17.30)

and

(7.17.31)

and we have a Hilbert pair:

(7.17.32)

We used the relations H[h(0)] = 0 and H[cos(ψ i)] = sin(ψ i). Because A(ψ ) and B(ψ ) are periodic
functions of ψ, we may apply the cotangent form of the Hilbert transform (see Section 7.6).

(7.17.33)
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(7.17.34)

Minimum Phase Property in DLTI Systems

Analogous to Equations (7.17.13) and (7.17.14) the transfer function of the DLTI system may be written
in the form:

H(z) = Hϕ(z)Hap(z) (7.17.35)

where Hϕ(z) satisfies the constraints of a minimum phase transfer function; that is, has all the zeros
inside the unit circle of the z-plane and Ha p(z) is an all-pass function consisting of a cascade of factors
of the form:

(7.17.36)

The all-pass function has a magnitude of one, hence, H(z) and Hϕ(z) have the same magnitude. Hϕ(z)
differs from H(z) in that the zeros of H(z), lying outside the unit circle at points z = 1/zi, are reflected
inside the unit circle at z = . Let us take the complex logarithm of Hϕ (e j ψ ):

ln[Hϕ (ejψ )] = ln|Hϕ (ejψ )| + j arg[Hϕ (e jψ)] (7.17.37)

and analogous to Equations (7.17.17) and (7.17.18), we have a Hilbert pair

(7.17.38)

(7.17.39)

It can be proved that the relations (7.17.38) and (78.17.39) are valid for transfer functions with zeros on
the unit circle. In general, a stable and causal system has all its poles inside, while its zero may lie outside
the unit circle. However, starting from a nonminimum-phase transfer function, a minimum-phase
function can be constructed by reflecting those zeros lying outside the unit circle, inside it.

Kramers–Kronig Relations in Linear Macroscopic Continuous Media

The amplitude-phase relations of the circuit theory are known in the macroscopic theory of continuous
lossy media as the Kramers–Kronig relations.18,19 Almost all media display some degree of frequency
dependence of some parameters, called dispersion. Let us take the example of a linear and isotropic
electromagnetic medium. The simplest constitutive macroscopic relations describing this medium are32 

D = εεoE = (1 + χe)εoE (7.17.40)

B = µµoH = (1 + χm)µoH (7.17.41)

and

P = χeεoE (7.17.42)
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M = χmH (7.17.43)

where E[V/m] is the electric field vector, H[A/m] is the magnetic field vector, D[C /m2] is the electric
displacement, B[Wb/m2] is the magnetic induction, µo = 4π 10–7[Hy/m] the permeability, ε0 =
1/36π 10–9[F/m] the permittivity of free space, and ε, µ , χ m, and χe are dimensionless constants. The
vectors P and M are called polarization and magnetization of the medium. If we substitute the electrostatic
field vector E with a field varying in time as exp(jω t), then the properties of the medium are described
by the frequency-dependent complex susceptibility

χ(jω ) = χ′(ω ) – jχ″(ω ) (7.17.44)

where χ ′ is an even and χ″ an odd function of ω. The imaginary term χ″ represents the conversion of
electric energy into heat; that is, losses of the medium. In fact, χ (jω ) plays the same role as the transfer
function in circuit theory and is defined by the equation:

(7.17.45)

Let us apply Fourier spectral methods to examine Equations (7.17.42) and (7.17.45). We consider a
disturbance E(t) given by the Fourier pair

(7.17.46)

The response P(t) is represented by the Fourier pair:

(7.17.47)

where

Xp(jω ) = εoχ (jω )XE(jω ) (7.17.48)

The multiplication-convolution theorem yields the time-domain solution:

(7.17.49)

where h(t) is given by the Fourier pair

(7.17.50)

is the “impulse response” of the medium; that is, the response to the excitation δ (t ). For any physical
medium, the impulse response is causal. This is possible if χ (jω ) is analytic. Therefore, its real and
imaginary parts form a Hilbert pair

(7.17.51)
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(7.17.52)

These relations are known as the Kramers–Kronig relations and are a direct consequences of causality.
They apply for many media; for example, in optics, the real and imaginary parts of the complex reflection
coefficient form a Hilbert pair.

Concept of Signal Delay in Hilbertian Sense

Consider a signal and its Fourier transform:

(7.17.53)

Let us assume that the Fourier spectrum X(jω ) may be written in the form of a product defined by
Equation (7.17.13)

X(jω ) = X1(jω ) X2(jω ) (7.17.54)

where X1(jω ) fulfills the constraints of a minimum-phase function and X2(jω ) is an “all-pass” function
of the magnitude equal to one and the phase function ψ (ω ); that is, X2(jω ) = e jψ (ω ). The application
of the convolution-multiplication theory yields the convolution

x(t ) = x1(t ) ∗ x2(t ) (7.17.55)

where x1(t) X1(jω) is defined as a minimum-phase signal satisfying relations (7.17.17) and (7.17.18);

that is,

(7.17.56)

and the signal

(7.17.57)

is defined as the nonminimum-phase part of the signal x(t). Let us formulate the following definitions:

Definition 1
The minimum phase signal x1(t) has a zero delay in the Hilbert sense.

Definition 2
The delay of the signal relative to the moment t = 0 is defined by a specific property of the signal x2(t).
Krylov and Ponomariev20 used the name “ambiguity function” for x2(t) and proposed to define the delay
by the position of its maximum. Another possibility is to define the delay using the position of the center
of gravity of x2(t).

Examples

1. If the function x2(t) = δ(t), the delay equals zero because
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x(t ) = x1(t ) ∗ δ (t ) = x1(t ) (7.17.58)

2. If the function x2(t) = δ(t – t0), the delay equals t0 because

x(t) = x 1(t) ∗ δ (t – t 0) = x 1(t – t 0) (7.17.59)

3. Consider a phase-delayed harmonic signal and its Fourier image:

(7.17.60)

or

(7.17.61)

Evidently the “ambiguity function” x2(t) is

(7.17.62)

and the time delay is, of course, t0 = ϕ0 /ω0 , as we could expect.
4. Consider the series connection of the first-order low-pass with the transfer function

(7.17.63)

and the first-order all-pass with the phase function of the form

(7.17.64)

The impulse response of the low-pass is:

(7.17.65)

and satisfies the definition of the minimum-phase signal. The impulse response of the all-pass
plays here the role of the “ambiguity function” and has the form:

We observe that the maximum of x2(t) is at t = 0. However, we expect that the all-pass introduces
some delay. In this case it would be advisable to define the delay using the center of gravity of the
signal x2(t).
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7.18 Hilbert Transforms in the Theory of Sampling

The generation of a sequence of samples of a continuous signal (sampling) and the recovery of this signal
from its samples (interpolation) is a widely used procedure in modern signal processing and communi-
cations techniques. Basic and advanced theory of sampling and interpolation is presented in many
textbooks. This section presents the role of Hilbert transforms in the theory of sampling and interpolation.
Figure 7.18.1, for reference, is the usual means by which the sequence of samples is produced. In general,
the sampling pulses may be nonequidistant. However, this section presents the role of Hilbert transforms
in the basis WKS (Wittaker, Kotielnikow, Shannon) theory of periodic sampling and interpolation.

The periodic sequence of sampling pulses may be written in the form (see Equation [7.6.4])

(7.18.1)

where pT(t) defines the waveform of the sampling pulse (the generating function of the periodic sequence
of pulses) and f = 1/T is the sampling frequency. From the point of view of the presentation of the role
of Hilbert transforms in sampling and interpolation, it is sufficient to use the delta sampling sequence
inserting pT(t) = δ(t). The delta sampling sequence is given by the formula (remember that δ(t) ∗ δ(t)
= δ(t))

(7.18.2)

For convenience, let us write here the Hilbert transform of this sampling sequence (see Section 7.6,
Equation [7.6.18])

(7.18.3)

FIGURE 7.18.1 A method of generation of a sequence (t) of samples of the analog signal x(t).x̂
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The Fourier image of the delta sampling sequence is given by another periodic delta sequence

(7.18.4)

The sampler produces as an output a sequence of samples given by the formula

(7.18.5)

that is, a sequence of delta functions weighted by the samples of the signal x(t). Let us recall the basic
WKS sampling theorem. Consider a signal x(t) and its Fourier image X( f), ω = 2π f. If the Fourier image
is low-pass band limited, i.e., |X( j f)| = 0 for | f | > W, then x(t) is completely determined by the sequence
of its samples taken at the moments tk spaced T = 1/2W apart. The sampling frequency fs = 2W is called
the Nyquist rate. The multiplication to convolution theorem yields the spectrum of the sequence of
samples

(7.18.6)

Figure 7.18.2 shows an example of a low-pass band-limited spectrum of a signal x(t) and the well-known
three spectra of the sequence of samples: the spectrum of oversampled signal with no aliasing with the
sampling frequency f s = 1/T > 2W, the limit case with fs = 2W, and the spectrum of undersampled signal
with fs < 2W. Notice that the sequence of samples given by Equation (7.18.5) may be regarded as a model
of a signal with pulse amplitude modulation (PAM). The original signal x(t) may be recovered by filtering
this PAM signal using the ideal noncausal and physically unrealizable low-pass filter defined by the transfer
function

(7.18.7)

The noncausal impulse response of this filter is

(7.18.8)

and is called the interpolatory function. The total response is a sum of responses to succeeding samples
giving the well-known interpolatory expansion (fs = 2W):

(7.18.9)
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The summation exactly restores the original signal x(t). In the following text the argument of the
interpolatory function will be written using the notation

(7.18.10)

giving the following form of the interpolation expansion

FIGURE 7.18.2 (a) A band-limited low-pass spectrum of a signal, (b) the corresponding spectrum of the sequence
of sampled with Nyquist rate of sampling fs < 2W, (c) spectrum by oversampling fs > 2W, and (d) spectrum by
undersampling fs < 2W showing the aliasing of the sidebands.
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(7.18.11)

Notice that the sampling of the function x(t) = a (a constant) yields the formula

(7.18.12)

This equation may be used to calculate the accuracy of the interpolation due to any truncation of the
summation.

The Whittaker’s interpolatory function and its Hilbert transform are forming the Hilbert pair

(7.18.13)

Therefore, the interpolatory expansion of the Hilbert transform H[x(t)] = , due to the linearity
property, is given by the formula

(7.18.14)

This formula may be applied to calculate the Hilbert transforms of low-pass signals using their samples.
The transfer function of the low-pass Hilbert filter (transformer) is given by the Fourier transform of
the impulse response given by the right-hand side of Equation (7.18.13):

(7.18.15)

The sampling of the function x(t) = a yields

(7.18.16)
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The expansion of the analytic signal ψ(t) = x(t) + j using interpolatory functions has the form

(7.18.17)

and using trigonometric identities we get the following form of the interpolatory expansion of the analytic
signal:

(7.18.18)

Band-Pass Filtering of the Low-Pass Sampled Signal

Consider the ideal band-pass with a physically unrealizable transfer function in the form of a “spectral
window” as shown in Figure 7.18.3. The impulse response of this filter is

(7.18.19)

The insertion f1 = W and f 2 = 3W yields

(7.18.20)

If the sequence of samples of the signal x(t) is applied to the input of this band-pass, the output signal
z(t) is given by the interpolatory expansion of the form

(7.18.21)

where α(t , k) is given by Equation (7.18.10). We obtained the compressed-carrier amplitude-modulated
signal of the form

FIGURE 7.18.3 The magnitude of the transfer function of an ideal band-pass.
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z (t) = x(t) cos(4πW t) (7.18.22)

with a carrier frequency 2W. Therefore, the AM-balanced modulator may be implemented using a sampler
and a band-pass. Multiplication of the carrier frequency is possible using band-pass filters with f1 = 3W
and f2 = 5W or f1 = 5W and f2 = 7W , …. The conclusion is that in principle one may multiply the carrier
frequency of AM signals getting undistorted sidebands (envelope). The comparison of Equations (7.18.11)
and (7.18.22) enables us to write the signal z(t) in the form:

(7.18.23)

and because cos(4πWt – k2π) = cos(4πWt), in the form

(7.18.24)

Analogously, a single side-band AM signal may be produced by band-pass filtering of the sequence of
samples using a filter with f1 = 2W and f2 = 3W (upper sideband). The impulse response of this filter is

(7.18.25)

and the interpolatory expansion is:

(7.18.26)

This SSB signal may be written in the standard form given by Equation (7.16.16) (see Section 7.16)

(7.18.27)

Let us derive the above form starting with Equation (7.18.25). Using the trigonometric identity cos(5α)
= cos α cos(4α) – sin α sin(4α), Equation (7.18.26) becomes

(7.18.28)

It may be shown in the same manner as before that Equations (7.18.27) and (7.18.28) have identical left-
hand sides.
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Sampling of Band-Pass Signals

Consider a band-pass signal f(t) with the spectrum limited in band f1 < | f | < f2 = f1 + W (see Figure
7.18.4). In general, a so-called second-order sampling should be applied to recover, using interpolation,
the signal f(t). However, it may be shown that alternatively, first-order sampling at the rate W may be
applied with simultaneous sampling of the signal f (t) and of its Hilbert transform H[f(t)] = (t). The
following interpolation formula has to be applied to recover the signal using the sequences of samples
f(k/W) and (k/W).

(7.18.29)

where the interpolating functions are given by the impulse response of the band-pass

(7.18.30)

and of a band-pass Hilbert filter (see Section 7.21)

(7.18.31)

7.19 Definition of Electrical Power in Terms of Hilbert 
Transforms and Analytic Signals

The problem of efficient energy transmission from the source to the load is of importance in electrical
systems. Usually the voltage and current waveforms may be regarded as sinusoidal. However, many loads
are nonlinear and, therefore, nonsinusoidal cases should be investigated. In many applications the voltages
and currents are nearly periodic, unperiodic, or even random. Therefore, some generalizations of theories
developed for periodic cases are needed.

FIGURE 7.18.4 The magnitude of the spectrum of a band-pass signal.
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Consider an electrical one-port (linear or nonlinear) as shown in Figure 7.19.1. The instantaneous
power is defined by the equation:

P(t ) = u(t)i (t ) (7.19.1)

where u(t) is the instantaneous voltage across the load and i(t) the instantaneous current in the load.
We arbitrarily assign a positive sign to P if the energy P(t)dt is delivered from the source to the load and
a negative sign for the opposite direction. The above formal definition of power involves all limitations
associated with the definition of voltage, current, and the electrical one-port.

Let us introduce the notion of quadrature instantaneous power defined by the equation

Q(t ) = u(t)î (t) = –û(t )i (t ) (7.19.2)

where û and î are Hilbert transforms of the voltage and current waveforms.

Harmonic Waveforms of Voltage and Current

Consider the classical case of a linear load with sine waveforms of u(t) and i(t). We have 

u(t) = U cos(ω t + ϕu) (7.19.3)

i (t) = J cos(ω t + ϕi ) (7.19.4)

The instantaneous power is

P(t ) = U J cos(ω t + ϕu) cos(ω t + ϕi) (7.19.5)

The Fourier series expansion of P(t) is

P(t) = 0.5U J cos(ϕi – ϕu) + 0.5U J [cos[2(ω t + ϕi )] cos(ϕi – ϕu )

– sin[2(ωt + ϕi)] sin(ϕi – ϕu)] (7.19.6)

The instantaneous quadrature power is

Q(t) = U J cos(ω t + ϕu) sin(ω t + ϕi ) (7.19.7)

FIGURE 7.19.1 An electrical one-port where u(t) is the instantaneous voltage and i(t) the instantaneous current.
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The Fourier series expansion of Q(t) is

Q(t) = 0.5U J sin(ϕ i – ϕu) + 0.5U J [sin[2(ω t + ϕi)] cos(ϕi – ϕu)

+ cos[2(ω t + ϕi)] sin(ϕ i – ϕu )] (7.19.8)

The mean value of P(t) defined by the equation

(7.19.9)

is called the active power and it is a measure of the unilatral energy transfer from the source to the load.
The mean value of the quadrature power Q(t) defined by the equation

(7.19.10)

is called the reactive power. The value of the reactive power depends on energy that is delivered period-
ically back and forth between the source and the load with no net transfer. The waveform of the
instantaneous power given by Equation (7.19.6) is shown in Figure 7.19.2 (for convenience ϕu = 0). The
energy transfer from the source to the load is given by the integral

(7.19.11)

and the energy transfer from the load to the source during the remaining part of the half-period is

(7.19.12)

Therefore, the net energy transfer toward the load is

(7.19.13)

FIGURE 7.19.2 The waveform of the instantaneous power given by Equation (7.19.5).
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The division of this energy by 0.5T gives the mean value of the power equal to the active power. However,
the division of E– by 0.5T yields

(7.19.14)

and this mean power differs from the reactive power defined by Equation (7.19.10). Therefore, the notions
of active and reactive power differ considerably. The active power equals the time-independent or constant
term of the instantaneous power given by the Fourier series (7.19.6) while the reactive power equals the
amplitude of the quadrature (or sine) term of (7.19.6). Notice that in the Fourier series (7.19.8) the role
of both quantities is reversed. Let us recall that the quantity

S = 0.5UJ = URMS JRMS (7.19.15)

is called the apparent power and the quantity

(7.19.16)

is called the power factor. The power factor may be regarded as a normalized correlation coefficient of
the voltage and current signals while sin(ϕi – ϕu) = SQR(1 – ρ2) may be called the anticorrelation
coefficient. The quantities S, , and satisfy the relation

(7.19.17)

Notion of Complex Power

Consider the analytic (complex) form of the voltage and current harmonic signals defined by Equations
(7.19.3) and (7.19.4). We have ψu(t) = U exp(ωt + ϕu) and ψi(t) = J exp(ωt + ϕi). The complex power
is defined by the equation:

(7.19.18)

In the following text, the symbol S will be used to denote the complex power. We have

S = P + j Q = |S| exp[j (ϕi  – ϕu)] (7.19.19)

The real part of S equals the active power and the imaginary part equals the reactive power. The module
of the complex power equals the apparent power and the argument equals the phase angle ϕi  – ϕu.

Generalization of the Notion of Power

The above-described well known notions of apparent, active, and reactive power were in the past gen-
eralized by several authors for nonsinusoidal cases and later for signals with finite average power. The
nonsinusoidal periodic waveforms of u(t) and i(t) may be described in the frequency domain by the
Fourier series:

(7.19.20)
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(7.19.21)

where ω is a constant equal to the fundamental angular frequency, ω = 2π /T, and T is the period. Some
or even all harmonics of the voltage waveform may not be included in the current waveform and vice
versa. The active power may be defined using the same equation (7.19.9) as for sinusoidal waveforms.
Inserting Equations (7.19.20) and (7.19.21) into (7.19.9) yields

(7.19.22)

The summation involves terms included in both waveforms. Analogously, the reactive power is defined
using Equation (7.19.10):

(7.19.23)

This definition of the reactive power was proposed in 1927 by Budeanu6 and is nowadays commonly
accepted. It has been sometimes criticized as “lacking of physical meaning.” Another definition of reactive
power was introduced by Fryze10 who proposed to resolve the current waveform in two components:

i (t) = ip(t ) + iq(t ) (7.19.24)

The “in-phase” component is given by the relation

(7.19.25)

URMS is the root mean square (RMS) value of the voltage. The “quadrature” component is

iq = i – ip (7.19.26)

and satisfies the orthogonality property

(7.19.27)

This orthogonality yields for the RMS values:

(7.19.28)

The reactive power is defined by the product

Q = URMS Iq,RMS (7.19.29)

The comparison of Budeanu’s and Fryze’s definitions of the reactive power shows how misleading it is
to apply the same name, “reactive power,” for notions having different definitions. Let us illustrate this
statement with an example. A source of a cosine voltage is loaded with the ideal diode with a nonlinear
characteristic (see Figure 7.19.3)
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(7.19.30)

The current has the waveform of a half-wave rectified cosine (see Figure 7.19.3a) and may be resolved
into the “in-phase” and “quadrature” components. The Fourier series expansion of the current has the
form

(7.19.31)

FIGURE 7.19.3    (a) A source of sine voltage loaded with a diode, (b) the voltage and current waveforms, (c) the
in-phase component of the current, (d) the quadrature component of the current, and (e) the waveform of the
instantaneous power.
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The “in-phase” component is

(7.19.32)

and the Fourier series of the “quadrature” component (full-wave rectified cosine) is

(7.19.33)

The reactive power defined by Equation (7.19.23) equals zero while the reactive power is defined by
Equation (7.19.29) equals

(7.19.34)

However, the instantaneous power (Figure 7.19.3) is always positive, so there is no energy oscillating
back and forth between the source and load. Therefore, we should expect that the reactive power equals
zero. This requirement is satisfied using Budeanu’s definition but not Fryze’s definition.

Generalization of the Notion of Power for Signals with 
Finite Average Power

A generalized theory of electric power by use of Hilbert transforms was presented by Nowomiejski.24 He
considered voltages and currents with finite average power; that is, finite RMS defined by the equations

(7.19.35)

(7.19.36)

The apparent power is defined as

S = URMS IRMS (7.19.37)

and the active and reactive powers are defined by means of the relations:
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(7.19.40)

where ^ indicates the Hilbert transform. Nowomiejski has not explicitly defined the notion of the
quadrature power (see Equation [7.19.2]) but in fact the integrand in Equations (7.19.39) and (7.19.40)
equals Q(t). However, a new quantity called distortion power was defined. Generally, for each value of
T the identity

(7.19.41)

holds true, and because the limit exists

(7.19.42)

the quantity D, called distortion power, may be defined by means of the equation

(7.19.43)

Based on Equation (7.19.41) we arrive at

(7.19.44)

In the case

i (t) = const u(t ) (7.19.45)

the “quadrature” component defined by Equation (7.19.19) equals zero and the distortion power equals
zero, too. Otherwise, the distortion power is given by

(7.19.46)

Let us define a power factor ρD using the relation:

(7.19.47)

The power factor is a measure of the efficiency of the utilization of the power supplied to the load being
equal to unity only, if the distortion power D = 0. The cross-correlation of the instantaneous voltage and
current waveforms is defined by the integral
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(7.19.48)

This function enables us to introduce the frequency domain interpretations of the above-defined powers.
The cross-power spectrum Θ(ω) is defined by the Fourier pair

(7.19.49)

It may be shown that the active power is given by the integral of the power spectrum

(7.19.50)

In general, Θ(ω) is a complex function, but the integral of the odd imaginary part equals zero. The
reactive power is given by

(7.19.51)

Hence, the complex power is

(7.19.52)

Because the integrand presents a one-sided complex power spectrum, the complex power is an analytic
function and and form a pair of Hilbert transforms. If at least one of the signals u(t) or i(t) does
not contain a constant component, Equation (7.19.52) reduces to the form

(7.19.53)

Notice that the Wiener-Khinchin relation (7.19.49) holds for stationary and ergodic processes. If the load
presents a linear, time-invariant, and strictly stable system defined by the Fourier pair

(7.19.54)

(where h(t) is the impulse response and H(jω) is the transfer function) then the autocorrelation function
of the voltage and its power spectrum are given by the Fourier pair

(7.19.55)

and the RMS values of the voltage and current have the form

(7.19.56)
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and the complex power is given by

(7.19.57)

7.20 Discrete Hilbert Transformation

The theory and applications of the DHT (Discrete Hilbert Transformation) are closely tied with the
principles of digital signal processing.26,30 Because discrete transforms will be included in another hand-
book in this series, this section presents only basic concepts. The formulas for the DFT and for the Z-
transformation are given to fix the notations because there are various notations (definitions) of the DFT.

For reference, let us recall the Fourier transformations given by Equations (7.1.6) or (7.1.7) and defined
using the exponential kernels exp(–j2π ft) and exp(j2π ft), respectively (ω = 2π f). In digital signal
processing, a time signal u(t) is substituted by a sequence of samples u(i). Therefore, in the DFT the time
variable t is replaced by the discrete integer variable i, 0 ≤ i ≤ N – 1, where N is the length of the sequence.
The discrete signal has the form of a sequence of samples u(0), u(1), u(2), …, u(N – 1). The DFT of this
sequence is defined by the formula

(7.20.1)

where k is a discrete integer frequency variable, 0 ≤ k ≤ N – 1. The discrete spectrum is periodic; that is
U(k) = U(k + N) = U(k + 2N)… . The inverse transformation denoted DFT–1 has the form

(7.20.2)

The sequence generated by this inverse transformation is periodic; that is, u(t) = u(i + N) = u(i + 2N)
= … . Usually of interest is the basic period. The comparison of Fourier integrals with the DFT shows
that integration is replaced by summation and the exponential kernel exp(±jω t) is replaced by exp(± jw ).
The discrete Fourier pair may be shortened to

(7.20.3)

In general, for real sequences u(i) is the spectral function U(k) is complex, i.e.,

U (k) = U re (k) + j Ui m (k) (7.20.4)

The real part is defined by the cosine DFT of the form

(7.20.5)

and the imaginary part by the sine DFT of the form

(7.20.6)
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A given sequence may be resolved in two parts

u(i ) = ue (i ) + u0(i ) (7.20.7)

where for even values of N the even and odd parts are given by

(7.20.8)

with N/2 ≤ i ≤ N – 1. The cosine transform depends only on ue(i) and the sine transform on u0(i). Using
the complex form (7.20.4) the inverse DFT may be written in the form

(7.20.9)

The one-sided Z-transformation of the sequence u(i) is defined by the formula (see also Chapter 6)

(7.20.10)

where the complex frequency variable z = x + jy is continuous differently than the discrete frequencies
used in the DFTs. We shall denote the Z-pair by

(7.20.11)

The discrete one-sided convolution is defined by the equation

(7.20.12)

and if h(i) H(z) and u(i) U(z) then the well-known convolution to multiplication property
yields the Z-pair

(7.20.13)

Because the DFT is periodic, it is a periodic function of the normalized frequency

ψ = 2π k/N (7.20.14)

The basic period equals the interval 0 ≤ ψ < 2π , the next period is 2π ≤ ψ < 4π , and so forth. The
DFT equals the Z-transform for values of z given by

z = e jψ;        ψ = 2πk/N (7.20.15)

that is, equally spaced on the unit circle of the z-plane (see Figure 7.20.1). The half-period 0 ≤ ψ < π
(upper half-circle) is classified as positive frequencies and the other half-period, π ≤ ψ < 2π , as negative
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frequencies. The insertion of Equation (7.20.15) in (7.20.13) yields the k-domain form of the multipli-
cation to convolution theorem

(7.20.16)

The discrete equivalent of the delta pulse is the Kronecker delta sample

(7.20.17)

The impulse response of the DLTI system defined as the response to the δK sample and the transfer
function H(z) of the system are forming a Z-pair

(7.20.18)

The insertion z = e j ψ (ψ = 2π k/N) yields the relation

(7.20.19)

FIGURE 7.20.1    The unit circle in the z = x + jy plane (see Equation (7.20.15), N = 24.
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The transfer function of an ideal discrete Hilbert filer is defined by the equation (N even)7 

(7.20.20)

This transfer function may be written in the closed form

H(k) = –j sgn(N/2 – k) sgn(k) (7.20.21)

where

(7.20.22)

The output sequence υ (i) of the Hilbert filter by a given input sequence u(i) defines the discrete Hilbert
pair

(7.20.23)

The impulse response of the Hilbert filter is given by the inverse DFT of H(k):

(7.20.24)

(w = 2πik/N). The closed form of this sum is (see Figure 7.20.2)

(7.20.25)

Therefore, the impulse response is given by the samples of the cotangent function (compare with Equation
[7.6.27] with the even samples (i = 0, 2, 4, …, N) cancelled by the term sin2 (πi/2). The convolution to
multiplication theorem (7.20.16) yields the DHT in the form of the convolution:

(7.20.26)

where the sign ⊗ denotes a so-called circular convolution. This convolution may be written in the form

(7.20.27)

Concluding, the DHT of a given sequence u(i) may be calculated using the above circular convolution
or alternatively via the DFT using the algorithm:
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(7.20.28)

Both algorithms give exactly the same result. Of course, the convolution algorithm is faster, because it
involves only a single summation. However, the DFT may be replaced by the FFT.

The above formulas apply for even values of N. If N is odd, the transfer function of the Hilbert filter
has the form

(7.20.29)

and the impulse response is

(7.20.30)

FIGURE 7.20.2    The noncausal impulse response of a Hilbert filter (see Equation 7.20.5)), N = 24.
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or

(7.20.31

Properties of the DFT and DHT Illustrated with Examples

Parseval’s Theorem

Consider the discrete Fourier pair u(i) U(k). The discrete form of the Parseval’s energy (or power)
equality has the form

(7.20.32)

This equation may be used to check the correctness of calculations of DFTs and DHTs. However, the
energies of the sequences u(i) and its DHT, υ (i), may differ, in general,

E[u(i)] ≠ E[υ(i)] (7.20.33)

The explanation is given by Equation (7.20.28). The operator – j sgn(N/2 – k) sgn(k) cancels the spectral
terms U(0) and U(N/2). The term U(0) has the form

(7.20.34)

where uDC is the mean value of the signal sequence u(i ), or in electrical terminology, the DC term. The
algorithm of DHT cancels this term. Therefore, the sequence υ (i) is defined by the DHT pair

(7.20.35)

where uAC(i) = u(i) – uDC is the alternate current component of the signal sequence (with DC term
removed). The energies of the sequences uAC(i) and υ (i) are given by the equation

(7.20.36)

that is, the energies differ by the energy of the spectral term U(N/2) and only if this term equals zero are
both energies equal.

Example

Consider the signal given by a Kronecker delta u(0) = δK(i ) and u(i) = 0 for i ≥ 1, N = 8. This sequence
and its DFT are shown in Figure 7.20.3a,b. The circular convolution (7.20.26) yields in this case

(7.20.37)
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that is, the following sequence

where [cot(π/8)]/4 = ( + 1)/4 = 0.6035… and [cot(3π/8)]/4 = ( – 1)/4 = 0.1035…. The sequence
υ(i) and its DFT are shown in Figure 7.20.3c,d. The DC term defined by Equation (7.20.34) is uDC =
1/N = 0.125. For convenience, Figure 7.20.3e,f shows the sequence uAC(i) and its DFT. The energies are:
E[u(i)] = 1, E[uAC(i)] = 1 – 12/N = 0.875, E[υ(i)] = 1 – 12/N – 12/N = 1 – 2/N = 0.75.

Shifting Property

Consider the discrete Fourier pair u(i ) U(k). It can be shown that

(7.20.38)

where m is an integer.

FIGURE 7.20.3    (a) The sequence u(i) consisting of a single sample δK(i), (b) its spectrum U(k) given by the DFT,
(c) the samples of the discrete Hilbert transform, (d) the corresponding spectrum V(k), (e) the samples of the AC
component of u(i), and (f) the corresponding spectrum UAC(k).
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Example

The spectrum of Figure 7.20.3b is real with all samples equal to 1. The shifted-by-one interval (m = 1)
delta pulse and its spectrum are

(7.20.39)

This spectrum is complex and of the form

This example shows the general rule that shift changes in phase relations will have no effect on the
magnitude of the spectrum.

Linearity

Consider the discrete Fourier pairs u1(i) U1(k) and u2(i) U2(k). Due to the linearity property
the summation of the sequences yields

(7.20.40)

where a and b are constants. The linearity property applies also for the DHTs:

(7.20.41)

Example

Consider the sequence of two deltas u(i) = δK(i) + δK(i – 1) for i = 0 and 1 and u(i) = 0 for 1 < i ≤ N
– 1, N = 8. The DFT of this sequence may be obtained by adding to each term of the real part of the
spectrum given by Equation (7.20.39) the number 1; that is, the terms of the spectrum of δK(i) (see
Figure 7.20.3b). This yields the complex spectrum

Notice that the term U(N/2) = U(4) equals zero. Therefore, the energies E[uAC(i)] = E[υ (i)] = 2 – 22/N
= 1.5 are equal. The DC term uDC = 2/N = 0.25.

Example

Consider the sequence

(7.20.42)
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representing a sampled Gaussian pulse as shown in Figure 7.20.4 (top). Figure 7.20.4 (middle/bottom)
shows the DFT of this pulse and the DHT calculated via the DFT. The DC term equals uDC = 0.2795….
The energies are: E[u(i)] = 3.1622…, E[uAC(i)] = E[υ (i)] = 1.9122…, that is, the energy difference is
negligible due to the negligible value of the term U(N/2).

Complex Analytic Discrete Sequence

A sequence of complex samples of a signal and its discrete Hilbert transform does not represent an
analytic signal in the sense of the definition of the analytic function. However, it is possible to define the
analytic sequence of the form of a sequence of samples

FIGURE 7.20.4    (Top) A sequence of samples of a Gaussian pulse, (middle) the samples of the DHT, and (bottom)
the samples of the magnitude of the DFT of the Gaussian pulse.
© 2000 by CRC Press LLC



ψ(i) = u(i) + jυ(i) (7.20.43)

where υ (i) is the DHT of u(i). Let us derive the spectrum of the sequence ψ (i). If u(i) U(k), then
the spectrum of υ (i) is given by Equation (7.20.28), and due to the linearity property, the spectrum of
the complex sequence ψ (i) is

that is,

(7.20.44)

The spectrum is doubled at positive frequencies and canceled at negative frequencies.

Example

Consider the signals and spectra of Figure 7.20.3. Figure 7.20.5 shows the real spectra of the delta pulse
and its DHT and the resulting spectrum of the complex sequence. The terms of the spectrum of u(i) are
canceled at negative frequencies and doubled at positive frequencies. The DC term, i.e., U(0), is unaltered.
The property that analytic sequences have a one-sided spectrum makes it possible to implement anti-
aliasing schemes of sampling.

Bilinear Transformation and the Cotangent Form of Hilbert Transformations

The transfer function of an analog LTI system is defined as the quotient of the output-to-input analytic
signals (see Equation [7.17.1]), and if analytical, is an analytic function of the complex frequency s = α
+ jω. Similarly, the transfer function of the DLTI system defined by Equation (7.20.18), if analytical, is
an analytic function of the complex variable z = x + jy. Let us study the problem of a conformal mapping
of the s-plane into the z-plane by means of the bilinear transformations defined by the formulae

FIGURE 7.20.5    (Top, middle) The spectra U(k) and V(k) of Figure 7.20.3; (bottom) the corresponding spectrum
of the analytic sequence.
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(7.20.45)

and

(7.20.46)

where s is a normalized complex frequency (normalized s = s /fs = s ∆ t, where fs is the sampling frequency
and ∆t the sampling period). Inserting s = α + jω  into Equation (7.20.45) and equating the real and
imaginary parts yields:

(7.20.47)

These equations are mapping a family of orthogonal lines a = const. and ω = const. of the s-plane into
a family of orthogonal circles of the z-plane, as shown in Figure 7.20.6. The magnitude of the variable
is |z| = SQR(x2 + y2) giving

(7.20.48)

and the argument

(7.20.49)

This equation defines the nonlinear dependence between the angular frequency ω and the normalized
frequency ψ defined by the representation z = e jψ (see Equation [7.20.15]). For s = jω ; that is, α = 0,
Equation (7.20.49) takes the form of a quadratic equation

tan(ψ)ω2 + 2ω – tan(ψ) = 0 (7.20.50)

The roots of this equation are

ω = tan(ψ/2) (7.20.51)

and

ω = – cot(ψ/2) (7.20.52)

Let us use these nonlinear relations to derive a new form of Hilbert transformations. We start with the
Hilbert transformation

(7.20.53)
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Let us introduce the notations

η = tan(φ /2);    ω = tan(ψ /2) (7.20.54)

and dη = 0.5[1 + tan2(φ /2]dφ. We get

(7.20.55)

By means of the trigonometric relation

(7.20.56)

we get

(7.20.57)

FIGURE 7.20.6    The mapping of the s-plane, s = α + jω , into the z-plane, z = x + jy , defined by Equation (7.20.47).
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If we start with the inverse Hilbert transformation

(7.20.58)

the same derivation gives

(7.20.59)

The first term of Equation (7.20.57) is a constant depending only on the even part of A[tan(φ /2)], while
the first term of Equation (7.20.59) depends only on the odd part of B[tan(ψ /2)].

If we use instead of Equation (7.20.51) the next root defined by Equation (7.20.52), then Hilbert
transformations (7.20.57) and (7.20.59) have the alternative form:

(7.20.60)

(7.20.61)

The Hilbert transforms in the cotangent form are periodic functions of the variable ψ.

Example

Consider the square function

(7.20.62)

Introducing ω = tan(ψ/2) gives

(7.20.63)

The Hilbert transform defined by Equation (7.20.61) is here
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(7.20.64)

The first integral equals zero and the result of the second integration (Cauchy Principal Value (CPV)
value) is

(7.20.65)

Figure 7.20.7 shows B(ψ ) for two values of ψp: 0.4π and 0.1π corresponding to the normalized frequencies
ω ≅ .726 and 0.155. The functions A(ψ ) and B(ψ ) are periodic with the period of 2π .

7.21 Hilbert Transformers (Filters)

The Hilbert transformer, also called a quadrature filter or wide-band 90° phase shifter, is a device in
the form of a linear two-port whose output signal is a Hilbert transform of the input signal. Hilbert
transformers find numerous applications, for example, in radar systems, single side-band modulators,
speech processing, measurement systems, schemes of sampling band-pass signals, and many other sys-
tems. They are implemented as analog or digital filters. The transfer function of the ideal analog Hilbert
filter is (see Equation [7.1.10])

H (j f ) = F [1/(π t )] = |H ( j f )|e jϕ ( f ) = – j sgn( f ) (7.21.1)

Hence, the transfer function is given by

(7.21.2)

The magnitude is |H( j f)| = 1 and the phase function is

ϕ ( f ) = arg[H ( j f )] = – (π /2) sgn( f ) (7.21.3)

Notice that the convention with a + sgn by ϕ ( f) results in a negative slope of the phase function. The
last equation explains the terminology “quadrature filter” or “wide-band 90° phase shifter.” The ideal
Hilbert filter is noncausal and physically unrealizable. Causality implies the introduction of an infinite
delay. In any practical implementation of the Hilbert filter, the output signal is a delayed and more or
less distorted Hilbert transform of the input signal. The spectrum of the input signal should be band-
limited between the low-frequency edge f1 and high-frequency edge f2 of the pass-band. The necessary
delay depends only on f1. Inside the pass-band W = f2 –f1 , it is possible to get an approximate version
of the transfer function defined by Equation (7.21.1). Good approximations require sophisticated meth-
ods of design and implementations.

Hilbert transformers can be implemented in the form of analog or digital convolvers using the time
definition of the Hilbert transforms given by Equations (7.1.3) and (7.1.4) (analog convolutions) or by
Equation (7.20.26) (discrete circular convolution). An other implementation uses so-called quadrature
filters.
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The performance of analog Hilbert transformers depends on design and alignment. Having in mind
that ideal alignment is impossible and that even by good initial alignment it is detoriated by aging and
various physical changes; for example, temperature, humidity, pressure, vibrations, and others, the use
of extremely sophisticated design methods and implementations may be unreasonable. Differently, the
performance of digital Hilbert transformers may depend only on design.

Because the magnitude of the transfer function defined by Equation (7.21.2) equals 1, all-pass filters
are frequently used in analog and digital implementations of Hilbert transformers.

Phase-Splitter Hilbert Transformers

Analog Hilbert transformers are mostly implemented in the form of a phase splitter consisting of two
parallel all-pass filters with a common input port and separated output ports, as shown in Figure 7.21.1.
The transfer functions of the all-pass filters are

FIGURE 7.20.7    The function B(ψ) given by Equation (7.20.65).
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(7.21.4)

The magnitude of both functions equals 1. The antisymmetry of the phase functions allows us to consider
only the positive frequency part. The phase difference of the harmonic signals at the output ports of the
phase splitter should be:

δ( f ) = ϕ 1( f ) – ϕ 2( f ) = –π /2 ;    all f > 0 (7.21.5)

The realization of this requirement is possible in a limited frequency band between the low-frequency
edge f1 and the high-frequency edge f2, as shown in Figures 7.21.6 to 7.21.9. Therefore, the spectrum of
the input signal should be band limited between f1 and f2. Due to unavoidable amplitude and phase
errors, the output signals of the phase splitter approximately are forming a Hilbert pair. The phase
functions of the all-pass filters defined by Equation (7.21.4) should be inside the band W = f2 – f1,
approximately linear in the logarithmic frequency scale, but are nonlinear in a linear scale. This nonlin-
earity introduces phase distortions. Therefore, the output signals are forming a distorted in relation to
the input signal Hilbert pair. The distortions can be removed using a suitable phase equalizer connected
in series to the input port, as shown in Figure 7.21.2. By proper phase equalization the output signals
are forming an undistorted pair of Hilbert transforms.

Analog All-Pass Filters

Hilbert transformers in the form of phase splitters are implemented using all-pass filters. A convenient
choice is the all-pass consisting of two complementary filters, a low-pass and a high-pass, as shown in
Figure 7.21.3a. The impedance Z(jω ) = X(jω ) is a loss-less one-port (pure reactance). The transfer
function of this all-pass has the form:

(7.21.6)

The magnitude of this function equals one for all f and the phase function is

FIGURE 7.21.1    A phase splitter Hilbert transformer, where H1( j f ) and H2( j f ) are all-pass transfer functions.
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(7.21.7)

The insertion X = 1/ωC (see Figure 7.21.3b) yields the phase function of a first-order all-pass

(7.21.8)

The insertion X = ωL – 1/ωC (see Figure 7.21.3c) yields a phase function of a second-order all-pass

(7.21.9)

where y = ω /ω r , ω r = 1/ and q = ω r RC = R . The phase functions defined by Equations
(7.21.8) and (7.21.9) are shown in Figure 7.21.4 in linear and logarithmic frequency scales. The second-
order function best shows linearity in the logarithmic scale for q = 4. Notice that the phase functions
are continuous if we remove the phase jumps by π  by changing the branch of a multiple-valued tan–1

function, similar to that in Figure 7.15.2. To get a wider frequency range of Hilbert transformers, higher
order all-passes have to be applied. But more practical is the use of a series connection of first-order all-
passes with appropriate staggering of the individual phase functions. For a given frequency band W = f2

– f1 , optimum staggering yields the smallest value of the RMS phase error. The local value of the phase
error is defined as a difference between δ(f) given by Equation (7.21.5) and –π /2. Therefore, the local
error is

ε(f) = δ(f) + π/2 (7.21.10)

The design methods of 90° phase splitters were described by Dome9 in 1946. Later Darlington,8 Orchard,27

Weaver,38 and Saraga33 described design methods based on a Chebyshev approximation of a desired phase
error. Tables and diagrams of these approximations can be found in Bedrosian.2

FIGURE 7.21.2    The series connection of a phase equalizer and the Hilbert transformer of Figure 7.21.1.
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A Simple Method of Design of Hilbert Phase Splitters

Analog Hilbert transformers are designed using models of a given filter consisting of loss-less capacitors,
low-loss inductors, ideal resistors, and ideal operational amplifiers. More accurate models that take into
account spurious capacitances, inductances, and other spurious effects are sophisticated and rarely
applied at the design stage. The alignment of circuits with an accuracy better than 0.5 to 1% is difficult
to achieve. Having in mind the above arguments, the required accuracy of design of the parameters of
the phase splitter is limited. Therefore, the simple method of design using a personal computer may be
effective in many applications and is presented here.

The method consists of two steps. In the first step, the phase function ϕ 1( f), given by Equation (7.21.4),
is linearized in the logarithmic frequency scale. In the second step, the phase function ϕ 2( f) is obtained

FIGURE 7.21.3    An all-pass consisting of (a) a low-pass and a complementary high-pass, (b) a first-order RC low-
pass and complementary CR high-pass, and (c) a second-order RLC low-pass and complementary RLC high-pass.
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FIGURE 7.21.4    (a) Nonlinear phase functions of the first-order all-pass given by Equation (7.21.8) and the second-
order all-pass given by Equation (7.21.9). (b) The same functions in a logarithmic frequency scale. The second-order
function shows best linearity for q = 4.
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by shifting the function ϕ 1(f) in order to get a minimum value of the RMS phase error defined by
Equation (7.21.5). The lower and upper frequency edges f1 and f2 are chosen as abcissae at which the
error function diverges. The method is illustrated by four examples of design of Hilbert transformers
given by the circuit models in Figure 7.21.5.

Example

First example: The Hilbert transformer of this example is implemented using two first-order all-pass
filters (see Figure 7.21.5a). The phase function of the first filter is (see Equation [7.21.8])

(7.21.11)

The first step is abandoned because ϕ1(f) has no degree of freedom for linearization. In the second step
we have to find the shift parameter denoted a in the phase function

(7.21.12)

giving the minimum RMS phase error. The functions ϕ1(f), ϕ2(f), and the error function ε (f) are shown
in Figure 7.21.6. Simple computer calculations yield the value of a = 0.167 giving the normalized
frequency edges y1 = 1.75 and y2 = 3, 5, and the RMS phase error ε RMS = 0.012. The pass-band equals
one octave.

Second example: The phase splitter of this example is implemented using two first-order all-pass filters
in each chain (see Figure 7.21.5b). The phase function of the first filter is 

(7.21.13)

In the first step, we have to find the shift parameter a to get the best linearity of ϕ1(f) in the logarithmic
scale. Small changes of a introduce a tradeoff between the RMS phase error and the pass-band of the
Hilbert transformer. In the second step we have to find the value of the shift parameter b in the phase
function

(7.21.14)

yielding the minimum of the RMS phase error. Figure 7.21.7 shows an example with a = 0.08 and b =
0.24 giving the normalized edge frequencies y1 = 1.6 and y2 = 30 (f2/f1 = 18.75 or more than 4 octaves)
with ε RMS = 0.016.

Third example: The phase splitter consists of three first-order all-passes in each chain (see Figure
7.21.5c). The phase functions are 

(7.21.15)

and

(7.21.16)
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FIGURE 7.21.5    The phase splitter Hilbert transformer using (a) first-order all-pass filters, (b) a series connection
of two first-order all-passes, (c) three first-order all-passes, and (d) second-order all-passes.
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FIGURE 7.21.6    The phase functions and the phase error of the Hilbert transformer of Figure 7.21.5a.

FIGURE 7.21.7    The phase functions and the phase error of the Hilbert transformer of Figure 7.21.5b.
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Good linearity of the phase function ϕ1(f) depend on the shift parameters a and b. The first step yields
a = 0.08 and b = 0.008. In the second step the parameter c = 0.24 yields the minimum value of the RMS
phase error. Figure 7.21.8 shows the phase functions and the error distribution ε (f). The RMS phase
error is ε RMS = 0.025. The edge frequencies are y1 = 1.8, y2 = 300 giving f2/f1 = 166 (more than 7 octaves).
A smaller phase error may be achieved at the cost of frequency range.

Fourth example: The phase splitter consists of one second-order all-pass in each chain (see Figure
7.21.5d). The phase functions are

(7.21.17)

FIGURE 7.21.8    The phase functions and the phase error of the Hilbert transformer of Figure 7.21.5c.
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(7.21.18)

Good linearity of ϕ 1(f) yields the value q = 4 (see Figure 7.21.9). The minimum value of the RMS phase
error yields the shift parameter a = 0.232. The phase functions and the error distribution are shown in
Figure 7.21.4. The edge frequencies are y1 = 0.5 and y2 = 9 giving f2 /f1 = 18 with ε RMS = 0.0186. The
bandwidth is about the same as in the second example with two first order all-passes in each chain.

Delay, Phase Distortions, and Equalization

The phase functions of the all-pass filters used to implement the Hilbert transformer are, disregarding
the small phase errors, linear in the logarithmic frequency scale, but nonlinear in a linear frequency scale.
Let us investigate the phase distortions due to that nonlinearity for the Hilbert filter of the second example.
Consider a wide-band test signal given by the Fourier series of a square wave truncated at the seventh
harmonic term:

(7.21.19)

where ω 1 = 2π f1 = 1.75/τ was chosen near the low-frequency edge of the pass-band W. The spectrum
of this signal is enclosed inside W. The waveforms of this signal and its Hilbert transform are shown in
Figure 7.21.10a. The phase-distorted Hilbert pair at the output ports of the phase splitter is shown in
Figure 7.21.10b. The phase distortions can be removed by connecting a phase equalizer in series to the
input port, predistorting the input signal (see the waveform of Figure 7.21.10d). The required phase
functions of the equalizer may have the form

FIGURE 7.21.9    The phase functions and the phase error of the Hilbert transformer of Figure 7.21.5d.
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ϕequalizer( f ) = ϕ L( f ) – ϕ2( f ) (7.21.20)

where ϕ2(f) is given by Equation (7.21.14) and

(7.21.21)

FIGURE 7.21.10    The waveform given by (a) the truncated Fourier series (7.21.15) and of its Hilbert transform,
(b) the distorted Hilbert pair at the output with no equalization, (c) the equalized undistorted and delayed Hilbert
pair, and (d) the input signal predistorted by the equalizer.
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is a linear phase function tangential to ϕ2(f) at f = f0. Figure 7.21.11 shows the phase function of the
equalizer for three different values of the abcissae f0. Figure 7.21.10c shows the delayed and practically
undistorted output waveforms of the equalized Hilbert transformer with f0 = 0. The delay is given by
the slope of the phase function

(7.21.22)

giving the delay t0 = 0.5065 sec (τ = 1). Another method of linearization of the phase function is given
in Reference 21.

Hilbert Transformers with Tapped Delay-Line Filters

Tapped delay-line filters often referred to as transversal filters may be used as phase equalizers. Such a
filter enables the approximation of a given transmittance H( j f) with a desired accuracy. Therefore, a
Hilbert filter may be implemented using a tapped delay line,15,34 (see Figure 7.21.12). If the spectrum of
the input signal is band-pass limited such that X( f) = 0 for | f | > W , then the transfer function of the
ideal Hilbert transformer given by Equation 7.21.2 may be truncated at |f | = W . The tapped delay-line
Hilbert filter may be designed using a periodic repetition of this truncated function, as shown in Figure
7.21.13. The expansion of this function in a Fourier series yields, using truncation, the following approx-
imate form of the transfer function

FIGURE 7.21.11    The phase functions of the equalizer given by Equation (7.21.10) for the phase function ϕ2(f)
given by Equation (7.21.14).
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(7.21.23)

with

(7.21.24)

Different from the implementations of Hilbert transformers with all-pass filters, where the design ampli-
tude equals error zero and the phase error is distributed over the pass-band, here the roles are inter-
changed. The amplitude error is distributed over the pass-band and there is no phase error (linear phase).
The RMS amplitude ripple decreases with the increasing number of tapes of the delay line (increasing

FIGURE 7.21.12    A tapped delay line Hilbert transformer.

FIGURE 7.21.13    A truncated at ± W and periodically repeated transfer function of an ideal Hilbert transformer
(see Equation [7.21.2]).
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number of coefficients b(n). The transversal Hilbert transformer, disregarding the small distortions due
to the amplitude ripple, produces at the output a delayed undistorted signal and its Hilbert transform.
However, analog implementations are rarely used in favor of digital implementations in the form of FIR
(Finite Impulse Response) Hilbert transformers.

Band-Pass Hilbert Transformers

The transfer function of a band-pass Hilbert transformer may be defined as the frequency-translated
transfer function of a low-pass Hilbert transformer. The transfer function of an ideal low-pass with linear
phase is given by the formula

H L P ( j f ) = Π[f /(2W)]e – j 2π f τ (7.21.25)

where τ is the time delay and Π(x) has the form

(7.21.26)

This is illustrated in Figure 7.21.14. The impulse response of this filter is

(7.21.27)

where X = 2π W(t – τ ). The response, as shown in Figure 21.15 is noncausal, but for large delays τ is
nearly causal. The transfer function of the Hilbert transformer derived from Equation (7.21.25) is given by

HH( j f) = HLP( j f) e – j [0.5π sgn(f) + 2π fτ ] (7.21.28)

as illustrated in Figure 7.21.14a,c. The impulse response of such a Hilbert transformer is

(7.21.29)

or

(7.21.30)

This is illustrated in Figure 7.21.15b. If W goes to infinity the mean value of hH(t ) taken over the period
T = 1/W approximates the distribution 1/(π (t – τ ). The transfer function of an ideal band-pass filter is
given by

(7.21.31)

This is illustrated in Figure 7.21.16a,b. The impulse response of this filter is
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(7.21.32)

and is shown in Figure 7.21.17a. The transfer function of an ideal band-pass Hilbert transformer derived
from the transfer function (7.21.31) is

HHBP(jf) = HBP(jf) exp{–j 0.5π[sgn(f + f0) + sgn(f – f0)]} (7.21.33)

This is illustrated in Figure 7.21.16a,c. The impulse response of this Hilbert transformer is

(7.21.34)

and is shown in Figure 7.21.17b.

FIGURE 7.21.14    The transfer function of the ideal low-pass: (a) magnitude, (b) linear phase function, and (c)
phase function of a Hilbert transformer derived from the low-pass function.
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Consider the response of the band-pass Hilbert transformer to a band-pass signal u1(t) = x(t) cos(2π f0t)
where x(t) has no spectral terms for | f | > W and f0 > W. This response has the form

(7.21.35)

that is, the modulating signal x(t) is replaced by the delayed version of its Hilbert transform. Notice that
due to Bedrosian’s theorem the Hilbert transform of the input signal (see Section 7.12) has the form

FIGURE 7.21.15    Impulse responses of (a) the low-pass and (b) the corresponding Hilbert transformer. Transfer
functions are shown in Figure 7.21.14.
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u2(t) = x(t – τ) sin[2π f0(t – τ)] (7.21.36)

that is, only the carrier is Hilbert transformed, compared to signal (7.21.35), for which the envelope is
transformed. The transfer function of a band-pass producing at the output the Hilbert transform in
agreement with Bedrosian’s theorem is given by the equation

HHBP( j f) = –j sgn(f) HBP( j f) (7.21.37)

where HBP(j f) is given by Equation (7.21.31) and is shown in Figure 7.21.18.
A possible implementation of a band-pass Hilbert transformer defined by Equation (7.21.31) is shown

in Figure 7.21.19. It consists of a linear phase lower side-band band-pass, analogous upper side-band
band-pass, and a substractor. Figure 7.21.20 shows the implementation of such a Hilbert transformer by
use of a SAW (Surface Acoustic Wave) filter.

Generation of Hilbert Transforms Using SSB Filtering

The Hilbert transform of a given signal may be obtained by band-pass filtering of a double side-band
AM signal. The SSB signal has the form (see Section 7.16)

(7.21.38)

FIGURE 7.21.16 The transfer functions of an ideal band-pass filter and of the corresponding Hilbert transformer:
(a) the magnitude, (b) the phase function of the band-pass, and (c) the Hilbert transformer.
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FIGURE 7.21.17 The envelopes of the impulse responses of (a) a band-pass and (b) the Hilbert transformer. Transfer
functions are shown in Figure 7.21.16.
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FIGURE 7.21.18 The transfer function of a Hilbert transformer that transforms the carrier signal with no change
of the waveform of the envelope.

FIGURE 7.21.19 The implementation of the Hilbert transformer of the transfer function defined in Figure 7.21.16
using two band-pass filters.
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where F0 is the carrier frequency. Such a signal can be obtained by band-pass filtering of a double side-
band AM signal. A synchronous demodulator using the quadrature carrier sin(2π F0t) generates at his
output the Hilbert transform (t).

Digital Hilbert Transformers

The ideal discrete-time Hilbert transformer is defined as an all-pass with a pure imaginary transfer
function, that is, if

(7.21.39)

and

(7.21.40)

or in another equivalent notation

H(e j ψ ) = – j sgn(sin ψ ) = – sgn(sin ψ )e jπ /2 = |H(ψ)|e j  arg H (ψ ) (7.21.41)

The magnitude (see Figure 7.21.21) has the form

(7.21.42)

and the phase function is

arg[H(ψ)] = – (π/2) sgn(sin ψ) (7.21.43)

Notice that ψ = 2π f n , where fn = f /fs is a frequency normalized against the sampling frequency fs. The
basic period has the interval from –π  to π corresponding to the values of fn from –0.5 to 0.5. The

FIGURE 7.21.20  A SAW filter implementing the band-pass Hilbert transformer of Figure 7.21.19.
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noncausal infinite range impulse response of the ideal Hilbert transformer has the form of the antisym-
metric sequence

h (i ) = (2/π i) sin2(iπ /2) (7.21.44)

If one allows the addition of a linear phase term in the ideal frequency response introducing a frequency-
independent group delay (in samples), then the transfer function (7.21.40) takes the form

(7.21.45)

and the impulse response takes the form

(7.21.46)

FIGURE 7.21.21    An ideal discrete-time Hilbert transformer’s (a) transfer function, (b) magnitude, and (c) phase
function.
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The important feature of the impulse response given by (7.21.44) is that even-numbered samples are
exactly zero, and that the samples are antisymmetric, that is,

h(i) = –h(–i) ;    i = 0, 1, … (7.21.47)

Methods of Design

There are several methods of realizing digital Hilbert transformers. The three basic implementations are

1. The FIR (Finite Impulse Response) Hilbert transformer.
2. The IIR (Infinite Impulse Response) Hilbert transformer.
3. Digital phase splitter Hilbert transformer.

It is possible to realize a differentiating Hilbert transformer that produces at the output the derivative of
the Hilbert transform of the input signal.

FIR Hilbert Transformers25,31

The FIR Hilbert transformer is a digital version of the taped delay line Hilbert transformer (see Section
7.21). Its structure is shown in Figure 7.21.22. The string of z–1 delays acts as a discrete taped delay line.
Such a filter is inherently stable and its impulse response is given by the coefficients (gains) h(0), h(1),
h(2), …, h(i), …, h(N – 1), that is, has the length of N samples. An  example of the impulse response
of the FIR Hilbert transformer is shown in Figure 7.21.23b, where for convenience, N is an odd number.
This causal impulse response is obtained by a truncation and shifting by (N –1)/2 samples of the finite
impulse response of the ideal Hilbert transformer in Figure 7.21.23a. The transfer function of the Hilbert
filter defined by the causal impulse response (see Equations [7.20.10] and [7.20.11]) is given by the Z-
transform

(7.21.48)

where i1 is the discrete coordinate given in the Equation (7.21.49). The shifted causal impulse response
h1(i1) and the noncausal impulse h(i ) of Figure 7.21.23a satisfy the relation

FIGURE 7.21.22    The structure of the FIR Hilbert transformer.
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(7.21.49)

The insertion of z = e jψ in Equation (7.21.48) (see Equation [7.20.15]) and using (7.21.49) yields

(7.21.50)

Using Euler’s formula for the sine function and the relation h(i) = –h(–i), this transfer function takes
the form

(7.2.1.51)

FIGURE 7.21.23    Impulse responses of (a) the ideal discrete time Hilbert transformer (see Equation [7.21.44]) and
(b) a FIR Hilbert transformer given by the truncation and shifting of the impulse response shown in (a).
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Because every second sample of the impulse response equals zero, the summation should be written:
from i = 1 to (N –1)/2 step 2. Let us denote this by

(7.21.52)

This function has the form of a Fourier series and defines the amplitude of the transfer function of the
Hilbert transformer (this is not the magnitude because G(e jψ ) has positive and negative values). An
example is shown in Figure 7.21.24. The normalized dimensionless pass-band of this Hilbert transformer
is given by the edge frequencies

Wψ = ψ2 – ψ1 = π– 2∆ (7.21.53)

Because ψ = 2π f /fs, where f is the frequency in [Hz] and fs is the sampling frequency, the pass-band in
[Hz] is

(7.21.54)

The pass-band increases and the amplitude δ of the ripple decreases with increasing length N of the
impulse response; that is, at the cost of the delay, which equals (N – 1)/2 samples. The amplitude ripple
in the pass-band depends on the coefficients h(i) in the Fourier series (7.21.52). Let us consider three cases:

1. The coefficients h(i) are given by the Fourier series of an odd square periodic function of the
form

FIGURE 7.21.24    The G(e jψ ) function of a FIR Hilbert transformer defined by the Fourier series (7.21.55).
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(7.21.55)

corresponding to the truncation of the Fourier series by a rectangular window. This yields a
nonequiripple amplitude distribution with “Gibbs peaks” at the edges of the pass-band, as shown
in Figure 7.21.24.

2. The coefficients h(i) in the above Fourier series are changed using an appropriate spectral window
function; for example, Blackman, Hamming, or Kaiser windows. This yields a more uniform
amplitude ripple.

3. The coefficients h(i) are calculated to obtain an equiripple amplitude distribution in the pass-
band in the mini-max or Tchebycheff sense; for example, using the Parks-McClellan algorithm.22

Figure 7.21.25 shows an example for N = 19. The product of N and ∆ is given by the asymptotic
relation derived by Kaiser29

N ∆ ≅ 0.61 log10δ (7.21.56)

Concluding, the FIR Hilbert transformer has a linear-phase characteristic and an amplitude ripple in the
pass-band depending on design. Odd values of N are preferred. Design with even N is possible but
inconvenient because all the impulse response coefficients are nonzero and the frequency response cannot
have the required symmetry. A symmetric FIR Hilbert transformer (odd N) may be eventually derived
from the corresponding designs of symmetric half-band FIR filters.16

FIGURE 7.21.25    The equiripple G(e jψ) function of a FIR Hilbert transformer designed in the mini-max or
Tchebycheff sense.
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Digital Phase Splitters

A digital Hilbert transformer may be implemented in the form of a digital phase splitter as shown in
Figure 7.21.26. The transfer functions of the all-pass filters may be derived directly from the analog
transfer functions by use of the bilinear frequency transformation (see Section 7.20). Details of the
procedure can be found in any textbook on digital filters. All basic properties of the analog implemen-
tation are conserved. Without a phase equalizer the output Hilbert pair is distorted in reference to the
input signal. Nonlinearity of the bilinear transformation introduces some tradeoffs not present in the
analog case.

IIR Hilbert Transformers

IIR Hilbert transformers may be derived using noncausal generalized half-band filters. Generalized half-
band filters are derived by modifying the conventional elliptic filter design so that all poles of the half-
band filter lie on the imaginary axis. The IIR ideal half-band transfer function proposed by Ansari1 has
the form

HHB(z) = 1 + z–1G(z 2) (7.21.57)

where G(z2) is an all-pass filter with unit magnitude. The ideal example of this transfer function is shown
in Figure 7.21.27a. Let us show that the transfer function of an ideal IIR Hilbert transformer is given by

HH (z) = z–1G(–z 2) (7.21.58)

This is illustrated step-by-step in Figure 7.21.27. The term

F(z) = z–1G(–z 2) (7.21.59)

is an all-pass with F(e jψ) shown in Figure 7.21.27b. It has a unit magnitude and a phase function equal
to zero in the pass-band and ±π in the stop-band as shown in Figure 7.21.27d. This phase function can
be written in the form

Φ(ψ ) = 0.5π [sgn(sin(2ψ)) – sgn(ψ )] (7.21.60)

FIGURE 7.21.26    The discrete-time (or digital) version of the phase splitter Hilbert transformer of Figure 7.21.1
.
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The term F (z) can be written in the form (z = e jψ)

(7.21.61)

where

ΦG(ψ) = Φ(ψ) + ψ (7.21.62)

FIGURE 7.21.27    Step-by-step derivation of the IIR transfer function of a Hilbert transformer defined by Equation
(7.21.58), starting from the transfer function of the ideal half-band filter given by (7.21.57).
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This phase function is shown in Figure 7.21.27e. Because z2 = e j 2ψ and –z2 = e j2(0.5π+ψ ), we have

(7.21.63)

The phase function ΦG(0.5π + ψ ) is shown in Figure 7.21.27f and is the same as the phase function of
the ideal Hilbert transformer (see Equation [7.21.43]) and finally the phase function of HH(z) is shown
in Figure 7.21.27g.

Differently than FIR transformers, the above IIR Hilbert transformer is designed with an equiripple
phase function and exact amplitude. The explicit form of the noncausal transfer function may have the
form

(7.21.64)

where N is an integer. Let us present an example. Consider the IIR Hilbert transformer with the low-
frequency edge ψ 1 = 0.02π , the high-frequency edge ψ 2 = 0.98π (∆ = 0.02π ), and with the required
amplitude of the phase ripple |∆Φ| ≤ 0.01π. The following relation between the phase ripple and the
stop-band amplitude ripple of the half-band filter was derived1 

δ = sin(0.5∆Φ) (7.21.65)

Inserting ∆Φ = 0.01π gives δ = 0.0157. The design procedure described in Reference 1a was applied to
find the filter coefficients a(i) giving a(1) = 5.36078, a(2) = 1.2655, a(3) = 0.94167, and a(4) = 0.53239.
The insertion of the coefficients in Equation (7.21.64) enabled the calculation of the phase function
shown in Figure 7.21.28. The phase error has a symmetric distribution around Ψ = 0.5π, i.e., half of the
sampling frequency. The pass-band of this Hilbert transformer covers about 4.5 octaves. The phase ripple
in the pass-band may be eliminated using half-band Butterworth IIR filters. For this kind of filter the
coefficients a(i) in Equation (7.21.64) are given by a simple formula

ai = tan2[πi/2N + 1)];    i = 1, 2, …, N (7.21.66)

Figure 7.21.29 shows a family of maximum flat phase functions for N = 2, 4, and 6. The pass-band
depends considerably on the permissible phase error at the edges. The edge frequencies for edge errors
0.1% and 1% are given in the table:

The widest pass-band for N = 6 and 1% error covers about 3 octaves and the smallest for N = 2 and
0.1% only 1 octave. The frequency around which the phase function is maximally flat equals ψ = 0.5π.
It can be shifted by use of a suitable digital-to-digital frequency transformation. The disadvantage of
the Butterworth filter is that the ratio of the first to the last coefficient is very large and increases with N.

N 2 4 6

Edge Error ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

0.1% 0.36 0.64 0.24 0.76 0.165 0.835
1% 0.265 0.735 0.165 0.835 0.115 0.885
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Differentiating Hilbert Transformers

The differentiating Hilbert transformer is defined as a linear system the output of which is the derivative
of the Hilbert transform of the input signal. In principle, a differentiating Hilbert transformer may be
implemented as a cascade connection of a differentiator and a Hilbert transformer as shown in Figure
7.21.30. However, it may be designed as a specialized FIR filter. Due to the cascade connection, the

FIGURE 7.21.28    An example of the equiripple phase function of the IIR Hilbert transformer.

FIGURE 7.21.29    Phase errors of Butterworth IIR Hilbert transformers.
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transfer function of the differentiating discrete Hilbert transformer is given by the product of the transfer
function of the discrete Hilbert transformer given by Equation 7.21.45 and the transfer function of the
ideal discrete differentiator of the form29 

(7.21.67)

or using the equivalent notation

HD(ejψ) = [ψ + sgn(sin(ψ)) – 1]e j [0.5π–ψ τ–π τ(sgn(sin(ψ)) – 1)

0 < ψ < 2π (7.21.68)

The product of both transfer functions may be written in the form

HHD(ejψ) = [ψ + π (sgn(sin(ψ)) – 1] sgn(sin(ψ))e–j[2ψ τ–π τ (sgn(sin(ψ)) – 1) (7.21.69)

The magnitude and the phase function of this transfer function of the differentiating Hilbert transformer
are shown in Figure 7.21.31. The inverse Fourier transform with (τ = 0) yields the noncausal, even, and
of infinite duration impulse response:

(7.21.70)

This is illustrated in Figure 7.21.32a. The design method is the same as for the discrete Hilbert filter. The
impulse response should be truncated to include N samples and shifted by τ = (N – 1)/2 samples as
shown in Figure 7.21.31b. The G(ejψ) function defined by Equation (7.21.52) here takes the form

GHD(ejψ) = [ψ + π(sgn(sin(ψ)) – 1] sgn(sin(ψ)):    0 < ψ < 2π (7.21.71)

and in this case is equal to the magnitude of the transfer function (see Figure 7.21.31). The truncated
Fourier series is

FIGURE 7.21.30    A cascade connection of a Hilbert transformer and a differentiating filter.
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(7.21.72)

Compare this function with the analogous function of the FIR Hilbert transformer (see Equation
[7.21.31]). The design methods to get the desired amplitude ripple are the same as described in the three
points following Equation (7.21.52). However, the Fourier series given by Equation (7.21.53) takes for
the differentiating Hilbert transformer the form

FIGURE 7.21.31    The transfer function of a differentiating Hilbert transformer: (a) magnitude and (b) phase
function.

G e a i ij

i

N

HDT
ψ π ψ( ) = − ( ) ( )

=

−( )

∑0 5 2
1

1 2

. cos
© 2000 by CRC Press LLC



(7.21.73)

This Fourier series differs by three important features from the series given by Equation (7.21.53). First,
it converges faster (coefficients 1/i 2 instead 1/i ) and, second, there are no Gibbs peaks at the edges of
the pass-band. Third, the function is unipolar with the mean value equal to π /2. An example of the
magnitude designed in the minimax sense is shown in Figure 7.21.33. The coefficients are given in
Table 7.21.1.

FIGURE 7.21.32    The impulse responses of the differentiating Hilbert transformer: (a) noncausal ideal and (b)
truncated and causal.
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7.22 Multidimensional Hilbert Transformations

Multidimensional transformations are applied in modern multidimensional digital signal processing.
The theory of complex notation of multidimensional signals uses multidimensional Hilbert transforms.
These are the reasons basic definitions and properties of multidimensional Hilbert transformations are
presented here. As in the one-dimensional case, the theory of Hilbert transformations is closely tied with
multidimensional Fourier transformations.

Let us define the n-dimensional signal u(x) as a function of the n-dimensional variable x = {x1, x2 ,
…, xn}, an n-dimensional real column vector. For example, a single frame of a video black-and-white
signal may be described by the 2-D signal u(x1 , x2).

FIGURE 7.21.33    The G(e jψ) function of a FIR differentiating Hilbert transformer.

TABLE 7.21.1 

Pass-Band Edges
ψ1 = 0; ψ2 = π ψ1 = 0.2π; ψ2 = 0.8π*
N = 7 N = 11 N = 19 N = 11 N = 19

a(1) 0.6426919 0.6388893 0.6373537 0.6068935 0.6184231
a(3) 0.0997952 0.07348499 0.0715001 0.0450341 0.05423771
a(5) 0.0459263 0.0263422 0.00615878 0.0118350*
a(7) 0.0140561 0.00260689
a(9) 0.0020769 0.0003889

(Data from a paper of Cizek, 1989, URSI, ISSSE, *corrected by this author.)
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Evenness and Oddness of N-Dimensional Signals

Let us remember that the 1-D signal may be resolved in a sum of the even and odd parts (see Equations
[7.3.2] and [7.3.3]). Therefore, it has two degrees of freedom concerning evenness or oddness. In general,
the n-dimensional real signal u(x) has 2n degrees of freedom in this respect. For example, a 2-D function
may be resolved into a sum of four terms:

u(x2 , x1) = uee(x2 , x1) + ueo(x2 , x1) + uoe(x2 , x1) + uoo(x2 , x1) (7.22.1)

where the indices “e” and “o” indicate evenness or oddness in respect to the variables x1 and x2 . Notice
that the indices “ee ,” “eo ,” “oe ,” and “oo” are written in the natural order of binary numbers using “e ”
= 0 (zero) and “o” = 1, i.e., 00, 01, 10, 11. The even-even part is given by

(7.22.2)

the even-odd part by

(7.22.3)

the odd-even part by

(7.22.4)

and the odd-odd part by

(7.22.5)

We used a reversed order of the indices, that is, (x2 , x1) instead of (x1 , x2) and as before used the order
00, 01, 10, 11. The sign of a given term in the nominators of Equations (7.22.2) to (7.22.5) is equal to
the product of the signs of odd indexed variables. If only one variable is odd, as in Equations (7.22.3)
or (7.22.4), its sign decides. For example, in Equation (7.22.4) we have –u(–x2 , x1) and –u(–x2 , –x1)
because only the variable x2 is odd indexed.

A 3-D function may be resolved into a sum of eight terms

u(x3 , x2 , x1) = ueee + ueeo + ueoe + ueoo + uoee + uoeo + uooe + uooo (7.22.6)

Using the same rules as above, we get:
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(7.22.8)

(7.22.9)

(7.22.10)

It is possible to introduce a geometric interpretation of the decomposition of a function into even and
odd terms, as shown in Figure 7.22.1, and to define the “distance” between the terms. The distance D is

1 > D > n (7.22.11)

For example, the distance between fe and fo or between feo and foo equals 1, between fee and foo equals 2.

n-D Hilbert Transformations

The n-dimensional (n-D) Hilbert transformation of the n-dimensional function u(x) is defined by the
n-fold integral37

FIGURE 7.22.1    The geometrical interpretation of the “distance” concerning the evenness and oddness of 1-D, 2-
D, and 3-D functions.
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(7.22.12)

where P denotes the Cauchy principal value and Hn the operator of the n-D Hilbert transformation. The
inverse transformation is

(7.22.13)

The n-dimensional Hilbert pair will be denoted by

(7.22.14)

Analogous to the 1-D case, the n-dimensional Hilbert transformation changes the indices of the terms
in equations, such as Equations (7.22.1) or (7.22.6), from even to odd and from odd to even. Similar to
the 1-D case, the n-D Hilbert transformation may be derived from the n-dimensional Cauchy integral

(7.22.15)

where Γ = ∂D1 × L × ∂Dn is an n-D surface, being the bound of ∂D, where the region D has the form
of the Cartesian product D = D1 × L × Dn.

2-D Hilbert Transformations

The 2-D Hilbert transformation is given by Equation (7.22.12) with n = 2 and has the form36

(7.22.16)

and because n is even, the inverse Hilbert transformation has the same form:

(7.22.17)

The 2-D Hilbert transformation may be written using the convolution notation:
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Partial Hilbert Transformations

The partial Hilbert transformation of the n-D function u(x), x = {x1 , x2 , …, xn} is defined as the Hilbert
transformation in respect to a part of the variables. For example, the partial transformation of a 2-D
function in respect to x1 has the form

(7.22.20)

and in respect to the variable x2 

(7.22.21)

For 3-D functions it is possible to derive three first-order partial Hilbert transforms denoted υ1, υ2, υ3

and three second-order Hilbert transforms denoted υ12, υ13, υ23 . For example,

(7.22.22)

and

(7.22.23)

Spectral Description of n-D Hilbert Transformations

The n-dimensional Fourier transformation of u(x) is defined by the n-fold integral

(7.22.24)

where Ω = {ω1 , ω2, …, ωn} is the n-dimensional column vector of Fourier frequencies. The index “T”
denotes transpose. Therefore, the exponential kernel of the n-D Fourier transformation has the form

(7.22.25)

The inverse Fourier transformation is defined by the n-fold integral

(7.22.26)

where dfi = dω i /2π (i = 1, 2, …, n). The n-D Fourier pair may be denoted

(7.22.27)

υ
π

η

η
η1 1 2

1 2

1 1

1

1
x x P

u x

x
d,

,
( ) =

( )
−( )−∞

∞

∫

υ
π

η

η
η2 1 2

1 2

2 2

2

1
x x P

u x

x
d,

,
( ) =

( )
−( )−∞

∞

∫

υ
π

η

η
η1 1 2 3

1 2 3

1 1

1

1
x x x P

u x x

x
d, ,

, ,
( ) =

( )
−( )−∞

∞

∫

υ
π

η η

η η
η η12 1 2 3 2

1 2 3

1 1 2 2

1 2

1
x x x P

u x

x x
d d, ,

, ,
( ) =

( )
−( ) −( )−∞

∞

−∞

∞

∫ ∫

U F u u j dnΩΩ ΩΩ( ) = ( )[ ] = ( ) −( )
−∞

∞

−∞

∞

∫ ∫x x x xL exp T

exp −( ) − + + +( )j e
j x x xn nΩΩTx =
ω ω ω1 1 2 2 L

u F U U j df df dfn nx x( ) = ( )[ ] = ( ) ( )
−∞

∞

−∞

∞

∫ ∫– exp1
1 2ΩΩ ΩΩ ΩΩL KT

u U
n F

x( )⇐⇒ ( )−
ΩΩ
© 2000 by CRC Press LLC



The n-D Fourier image of the Hilbert transform is given by the formula

(7.22.28)

Proof 

By the definition given by Equation (7.22.24)

(7.22.29)

where H = {η 1, η 2, …, η n}, dH = dη 1, dη 2, …, dη n and for convenience the n-fold integrals are denoted
by a single integral sign. Formally

(7.22.30)

In the one-dimensional case, we have

H[exp(–jω x)] = j sgn(ω ) exp(–jω x) (7.22.31)

Hence,

(7.22.32)

and this is equal to Equation (7.22.28).
This equation enables the calculation of the n-D Hilbert transform using the inverse Fourier transform

of the spectrum given by the above equation, i.e., using the algorithm

(7.22.33)

For example, in the 2-D case the Hilbert transform is given by

(7.22.34)

(ω1 = 2π f1, ω 2 = 2π f2). This general formula may be simplified, if the signal given by Equation (7.22.1)
has only a part of the four terms.
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Example14

Consider the 2-D Gaussian signal and its Fourier image given by the Fourier pair

(7.22.35)

where ω1 = 2π f1 and ω2 = 2π f2. The Fourier image of the Hilbert transform is

(7.22.36)

Because this spectral function is real and odd-odd, the 2-D inverse Fourier transformation takes the
simplified form

(7.22.37)

n-D Hilbert Transforms of Separable Functions

The n-dimensional function u(x) is said to be separable in the coordinates x = {x1, x2, …, xn} if it is
given by the product of 1-D functions

u(x) = f1(x1)f2(x2) … fn(xn) (7.22.38)

Let us denote by g1(x1), g2(x2), …, gn(xn) the Hilbert transforms of the terms of this product. Because the
Fourier image of a separable function is a separable function of the Fourier coordinates Ω = {ω1, ω2, …,
ωn} the inverse Fourier transform is a product of 1-D integrals. Therefore, the Hilbert transform of a
separable function has the form

υ (x) = g1(x1)g2(x2) … gn(xn) (7.22.39)

Analogously, the partial Hilbert transforms of u(x) are separable functions; for example, a first-order
partial transform is

υ 1(x) = g1(x1)f2(x2) … fn(xn) (7.22.40)

and a second order partial transform is

υ12(x) = g1(x1)g2(x2)f3(x3) … fn(xn) (7.22.41)

Examples

1. The 2-D delta pulse is a separable distribution of the form

δ (x1, x2) = δ (x1)δ (x2) (7.22.42)

Because δ (x1) 1/(π x1) and δ (x2) 1/(π x2), the Hilbert transform of the 2-D delta pulse

has the form
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(7.22.43)

and the partial transforms are

υ 1(x1, x2) = δ (x2)/(π x1);

υ 2(x1, x2) = δ (x1)/(π x2) (7.22.44)

2. The 2-D signal has the form

u(x1, x2) = Πa(x1) Πb(x2) (7.22.45)

The Hilbert transform takes the form (see Table 7.7.1, 4)

(7.22.46)

and the partial transforms are

(7.22.47)

3. Derivation of the Hilbert Transform of a nonseparable function defined by the equation

(7.22.48)

The support S is shown in Figure 7.22.2b. This function has the geometric form of a pyramid
(Figure 7.22.2a). The Hilbert transform of this function is

(7.22.49)
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The integration yields:

(7.22.50)

The one-dimensional integrals do not have a closed solution and a numerical integration should
be applied. Notice that the support of the Hilbert transform (7.22.50) is infinite, which is different
than the finite support of u(x1, x2). The partial Hilbert transforms, defined by Equations (7.22.20)
and (7.22.21) are

(7.22.51)

FIGURE 7.22.2a The pyramid pulse.
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(7.22.52)

The supports of these functions are shown in Figure 7.22.2c. They are infinite in one dimension
and finite in a band (–a, a) in the second dimension.

Properties of 2-D Hilbert Transformations

Selected properties of 2-D Hilbert transformations are summarized in Table 7.22.1.

Orthogonality

The terms of the 1-D Hilbert pair form a pair of orthogonal functions satisfying the condition

(7.22.53)

that is, the mutual energy of both signals equals zero. In general, the terms of the 2-D Hilbert pair are
not orthogonal; that is, the mutual energy

FIGURE 7.22.2b The support of the pyramid pulse.
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(7.22.54)

does not equal zero. However, this integral equals zero for 2-D separable signals and for nonseparable
signals with certain symmetry; for example, the pyramid signal defined by Equation (7.22.48). For
separable signals the above double integral takes the form of a product of single integrals, each of which
equals zero.

Example

Consider the 2-D Gaussian signal of the form14

(7.22.55)

This function is well known in probability theory. It is a separable function if the parameter ρ = 0.
Otherwise, for 0 < ρ < 1 it is a nonseparable function. Its Hilbert transform may be calculated using the
inverse  Fourier transform of the Fourier image, which has the form

(7.22.56)

FIGURE 7.22.2c The supports of the partial Hilbert transforms of this pulse.
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Because U is a real function, the inverse Fourier transformation has the simplified form

(7.22.57)

and the partial Hilbert transforms are given by the integrals

(7.22.58)

(7.22.59)

Because these integrals cannot be expressed in the closed form, a numerical integration scheme must be
used for their approximation. Figure 7.22.3 shows the equal-value contour lines of the Gaussian function
u(x1, x2) and the total and partial Hilbert transforms (ρ = 0.5, σ1 = 1, σ2 = 2). The numerical integration
yields the value of the mutual energy E ≅ 0.25 (relative to the signal energy). E equals zero only if ρ =
0, i.e., for separable Gaussian signals.

TABLE 7.22.1 
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FIGURE 7.22.3    The elliptical equal-value contours of a nonseparable Gaussian function (see Equation [7.22.55])
and of the Hilbert transforms υ, υ1, and υ2, where ρ = 0.5, σ1 = 1, σ2 = 2.
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Stark’s Extension of Bedrosian’s Theorem37

Bedrosian’s theorem defines the Hilbert transform of a product of low-pass and high-pass signals. Stark

formulated an extension of this theorem for 2-D signals. A 2-D function uLP(x1, x2) ULP(ω1, ω2) is

said to be low-pass with cutoff vector Ω0 = {ω10, ω20} if

max |ω 1| = ω 10    and    max |ω 2| = ω 20

all ω1 ∈ supp ULP(ω1, ω2)    all ω2 ∈ ULP(ω1, ω2) (7.22.60)

where supp ULP denotes the support of the Fourier image; that is, the set of points for which ULP(ω1, ω2)

is not zero. Analogously, the function UHP(x1, x2) UHP(ω1, ω2) is said to be high-pass with cutoff

vector Ω0 = {ω10, ω20} if

min |ω 1| = ω 10    and    min |ω2| = ω 20

all ω 1 ∈ supp UHP(ω 1, ω 2)    all ω 2 ∈ UHP(ω 1, ω 2) (7.22.61)

The signals uLP and uHP are said to be strongly spectrally separable if the conditions (7.22.60) and (7.22.61)
are satisfied. We say that the functions ULP and UHP are spectrally disjointed if they have nonoverlapping
supports. However, spectral disjointedness may not coincide with strong separability, as shown in Figure
7.22.4. Stark’s extension of Bedrosian’s theorem has the form

H2[uLP(x1, x2)uHP(x1, x2)] = uLP(x1, x2)H2[uHP(x1, x2)] (7.22.62)

that is, only the high-pass term of the product is transformed.

Appendix 7.22

Consider the 2-D signal given by Equation (7.22.1). Its 2-D Fourier transform is

FIGURE 7.22.4    (a) LP is the support of the spectrum of a low-pass signal, HP is the support of the spectrum of
a high-pass signal strongly separable from the low-pass. (b) Analogous spectra with spectral disjointedness.

⇐⇒
−2 F

⇐⇒
−2 F
© 2000 by CRC Press LLC



(7.22.63)

where

(7.22.64)

(7.22.65)

(7.22.66)

(7.22.67)

TABLE 7.22.2    2-D Total and Partial Hilbert Transforms
Notations: u(x1, x2) — original signal, υ(x1, x2) — total Hilbert transform, υ1(x1, x2) or υ2(x1, x2) — partial
Hilbert transforms
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Using computer programs for numerical integration, the insertion in these integrals of u(x1, x2) instead
of uee, uoo, … does not change the result because the trigonometric kernels are selecting the right terms
themselves. Because the Fourier image of the Hilbert transform is

(7.22.68)

TABLE 7.22.3    2-D Total and Partial Hilbert Transforms of Periodic Functions
Notations: u(x1, x2) — original signal, υ(x1, x2) — total Hilbert transform, υ1(x1, x2) or υ2(x1, x2) — partial
Hilbert transforms

TABLE 7.22.4    n-D Hilbert Transforms of Harmonic Functions

V U U j U Uee oo oe eoω ω ω ω1 2 1 2,( ) = − ( ) ( ) − − +( )[ ]sgn sgn
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the inverse Fourier transform yields the Hilbert transform

υ(x1, x2) = υee + υoo + υoe +υeo (7.22.69)

where due to the symmetry conditions, the terms of u may be given by one-sided integrals

(7.22.70)

(7.22.71)

(7.22.72)

(7.22.73)

Two-Dimensional Hilbert Transformers

The transfer function of the ideal “noncausal” 2-D Hilbert transformer is given by a product of 1-D
transfer functions (see Equations [7.21.11] to [7.21.13]). Therefore,

(7.22.74)

The magnitude equals 1 and the phase function is

(7.22.75)

7.23 Multidimensional Complex Signals

Short Historical Review

The complex notation of harmonic signals in the form of Euler’s equation e jωt = cos(ω t) + j sin(ω t)
was introduced to electrical engineering at the end of the 19th century (E. Kennedy and C. Steinmetz)
and soon proliferated to many science and engineering disciplines. Restating the equation in the form
cos(ω t) = 0.5(e jωt + e– jωt) introduces the concept of negative frequencies, commonly used in modern
Fourier spectral analysis. In 1946, Gabor11 introduced the extension of the complex notation of time
signals in the form of the analytic signal ψ(t) = u(t) + jυ(t) where υ(t) is the Hilbert transform of u(t)
(see Section 7.3). It has the unique feature that its Fourier transform is one-sided. In 1964 this author12

used the analytic signal to define the notion of the instantaneous complex frequency. This section presents
how the complex notation of signals and the notion of the analytic signal can be generalized for
multidimensional signals. This generalization has been recently developed by this author.13

Definition of the Multidimensional Complex Signal

Let us remember that no definition is “true” or “false.” However, it is very desirable that a definition of
the n-dimensional complex signal satisfy certain requirements. The basic requirement is the compatibility
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with the 1-D case, i.e., with the definition  of the analytic signal. Many other requirements may be
formulated, such as usefulness in applications. The definition of the multidimensional complex signal
introduced in Reference 13 is based on the frequency domain description of the multidimensional signals
given by the Fourier pair

(7.23.1)

where x = {x1, x2, …, xn} and Ω = {ω1, ω2, …, ωn} are n-dimensional real column vectors (see Section

7.22). Let us remember that the kernels of the n-D Fourier transformations are: in 1-D e± jωt, in 2-

D , in 3-D , and in n-D . These kernels have the form of complex
signals of a constant amplitude A = 1 and linear phase in respect to the variables x1, x2, …, xn. Therefore,

a compatible definition of a multidimensional complex signal should define n-dimensional complex
harmonic signals in the form of the above kernels of the n-D Fourier transformation. Because the 1-D
complex analytic signal has a one-sided spectrum at positive frequencies, let us define the n-dimensional
complex signal using the inverse Fourier transform of its spectrum cancelled at all orthants of the Fourier
frequencies space except in the first orthant. In 1-D this space has two half-axes, in 2-D four quadrants,
in 3-D eight octants, and in general 2n orthants. Mathematicians denote the orthant with all the axis of
positive sign by R+. Therefore, the n-D complex signal is defined by the Fourier pair

(7.23.2)

The cancellation of the spectrum in all but the first orthant is achieved by multiplication of the n-D
Fourier image by the n-D unit step function (or distribution) 1(Ω) defined by the formula (Ω = {ω1,
ω2, …, ωn})

(7.23.3)

The numerical factor 2n is used to normalize the energy of the complex signal. The n-D unit step may
be written in the form of a product of 1-D unit steps; that is, given by the formula

1(Ω) = 1(ω1) ⊗ 1(ω2) ⊗L⊗ 1(ωn) (7.23.4)

where ⊗ denotes a tensor product of distributions. In the following text we will suppress the symbol ⊗
because here it has a pure formal meaning. The 1-D unit step may be written in the form 1(ω) = 0.5[1
+ sgn(ω)] (see Equation [7.3.16]). The insertion of this form in Equation (7.23.4) yields

1(Ω) = [0.5 sgn(ω1)][0.5 + 0.5 sgn(ω2)]…[0.5 + 0.5 sgn(ωn)] (7.23.5)

The application of the convolution to multiplication theorem of Fourier analysis to the spectrum Γ(Ω)
defined by Equation (7.23.2) yields the signal domain definition of the n-D complex signal in the form
of the n-fold convolution

ψ (x) = ψδ (x) ∗L∗ u(x) (7.23.6)

where the signal ψ δ (x) is given by the inverse Fourier transform of the unit step; that is, 

u U
n F

x( )⇐⇒ ( )−
ΩΩ

e
j x x± +( )ω ω1 1 2 2 e

j x x x± + +( )ω ω ω1 1 2 2 3 3 e
j x xn n± + +( )ω ω1 1 L

ψ x 1( )⇐⇒ ( ) = ( ) ( )−n F
n UΓ ΩΩ ΩΩ ΩΩ2

1 ΩΩ( ) =

>

=

<









1 0

0 5 0

0 0

all 

all 

all 

ω

ω

ω

.
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(7.23.7)

The n-D delta pulse (distribution) δ (x) = δ (x1)δ (x2)…δ (xn) may be defined by the inverse Fourier
transform of the spectrum U(Ω) = 1, i.e., by the Fourier pair

(7.23.8)

Therefore, the signal ψδ (x) defines the n-D complex delta distribution (see the 1-D case, Section 7.5,
Equation [7.5.7] and a more detailed description in the next part of this section). Notice that Equations
(7.23.2) and (7.23.6) uniquely define the n-D complex signal due to the uniqueness theorem of the
Fourier analysis.

To get the structure of the n-D complex signal ψ(x) let us insert in the spectrum Γ(Ω) defined by
Equation (7.23.2) the developed form of the multiple product given by Equation (7.23.5), as shown in
Table 7.23.1. The real part of the complex signals ψ1 in Table 7.23.1 corresponds to the spectral terms
obtained by multiplication of Γ(Ω) by 1, sgn(ω1) sgn(ω2), …, sgn(ω1) sgn(ω2) sgn (ω3) sgn(ω4), …; that
is, by a product of an even number of signum functions, and the imaginary part by sgn(ω1), …, sgn(ω1)
sgn(ω2) sgn(ω3), …; that is, by a product of an odd number of signum functions.

Example

Consider the 2-D harmonic signal u = cos(ω1x1) cos(ω2x2). The Hilbert transforms are (see Table 7.22.3)
υ = sin(ω 1x1) sin(ω 2x2), υ1 = sin(ω1x1) cos(ω2x2),υ 2 = cos(ω 1x1) sin(ω 2x2).The insertion of u, υ , υ 1,
and υ2 into Equation (7.23.10) yields the complex signal

ψ 1(x1, x2) = cos(ω 1x1) cos(ω 2x2) – sin(ω 1x1) cos(ω 2x2)

+ j[sin(ω1x1) cos(ω2x2) + cos(ω1x1) cos(ω2x2)] (7.23.13)

The application of standard trigonometric relations yields

(7.23.14)

TABLE 7.23.1    The n-D Complex Signals and Its Fourier Spectra

ψδ x 1( )⇐⇒ ( )−n F
n2 ΩΩ

δ x 1( )⇐⇒
−n F

ω ω ω
1 1 2

1 1 2 2x x e j x x,( ) = +( )
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Notice that the real part of this signal equals u – υ = cos(ω1x1 + ω2x2) and is not equal to u. The n-D
generalization of the above signal is u(x) = cos(ω1x1) cos(ω2x2) … cos(ω2x2), yielding the complex signal

(7.23.15)

This formula gives evidence that the important requirement of compatibility of the definition of a
multidimensional complex signal with the 1-D case is satisfied by complex signals with single orthant
spectra.

Example

Consider the 2-D delta pulse distribution δ (x1, x2) = δ (x1)δ (x2). The Hilbert transforms are given in
Table 7.23.2 and Equation (7.23.10) yields the following form of the 2-D complex delta distribution

ψδ (x1, x2) = δ (x1, x2) – 1/(π 2x1x2) + j[δ (x2)/(π x1) + δ (x1)/(π x2)] (7.23.16)

The insertion in Equation (7.23.11) of the appropriate Hilbert transforms of the 3-D delta pulse δ (x1,
x2, x3) yields the following form of the 3-D complex delta distribution

(7.23.17)

Conjugate 2-D Complex Signals

The 2-D complex signal defined by Equation (7.23.10) has the single quadrant spectrum in the first
quadrant. Let us define 2-D complex signals with single quadrant spectra in successive quadrants. The
accepted numeration of the quadrants is shown in Figure 7.23.1. The so-defined complex signals and
their spectra are shown in Table 7.23.2.

FIGURE 7.23.1    The numeration of quadrants (see Appendix)
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Local (or “Instantaneous”) Amplitudes, Phases, and Complex Frequencies

Let us write the complex signals of Table 7.23.2 in polar coordinates:

(7.23.18)

(7.23.19)

This representation defines the local (or “instantaneous”) amplitudes

A1(x1, x2) = SQR {[u(x1, x2) – υ(x1, x2)]2 + [υ1(x1, x2) + υ2(x1, x2)]2} (7.23.20)

A2(x1, x2) = SQR {[u(x1, x2) + υ(x1, x2)]2 + [υ1(x1, x2) – υ2(x1, x2)]2} (7.23.21)

and the local (or “instantaneous”) phases

(7.23.22)

(7.23.23)

of the real signal u(x1, x2). Analogous to the 1-D case (see Section 7.15, Equation [7.15.12]) let us define
the complex phases

Φ1c(x1, x2) = Ln ψ1(x1, x2) (7.23.24)

Φ2c(x1, x2) = Ln ψ3(x1, x2) (7.23.25)

and the partial instantaneous complex frequencies

TABLE 7.23.2    2-D Complex Signals with Single-Quadrant Spectra in Successive Quadrants of the Fourier 
Frequency Plane (ω1, ω2)

ψ ψ1 1 2 4 1 2 1 1 2
1 1 2x x x x A x x e

j x x
, , ,* ,( ) = ( ) = ( ) ( )Φ

ψ ψ3 1 2 2 1 2 2 1 2
2 1 2x x x x A x x e

j x x
, , ,* ,( ) = ( ) = ( ) ( )Φ

Φ1 1 2
1 1 1 2 2 1 2

1 2 1 2

x x
x x x x

u x x x x
, tan

, ,

, ,
( ) =

( ) + ( )
( )− ( )

−
υ υ

υ

Φ2 1 2
1 1 1 2 2 1 2

1 2 1 2

x x
x x x x

u x x x x
, tan

, ,

, ,
( ) =

( )− ( )
( ) + ( )

−
υ υ

υ
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(7.23.26)

(7.23.27)

(7.23.28)

(7.23.29)

In Equations (7.23.26) and (7.23.28) x2 is a parameter and the complex frequencies are defined along
the lines parallel to the x1 axis. Similarly, Equations (7.23.27) and (7.23.29) define complex frequencies
parallel to the x2 axis.

For separable 2-D signals (see Equation [7.22.38]), the amplitudes A1 and A2 defined by Equations
(7.23.20) and (7.23.21) are equal and given by the formula

(7.23.30)

and the phases (7.23.22) and (7.23.23) are

Φ1(x1, x2) = ϕ1(x1) + ϕ2(x2) (7.23.31)

Φ2(x1, x2) = ϕ1(x1) – ϕ2(x2) (7.23.32)

where ϕ1 = tan–1 (g1/f1) (see Equation [7.22.38]). The complex frequencies have, for separable signals,
the simplified form

(7.23.33)

(7.23.34)

Example

Consider the 2-D signal of the form

(7.23.35)

The insertion of this signal and its Hilbert transforms υ, υ1, and υ2 (see Table 7.22.2) in Equation (7.23.30)
using certain trigonometric relations yields

(7.23.36)
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The phase functions (7.23.31) and (7.23.32) take the form

(7.23.37)

(7.23.38)

The local partial angular frequencies defined by the imaginary parts of (7.23.33) and (7.23.34) are ω1 =
a/2 and ω2 = b/2. The local amplitude (7.23.36) is a product of local amplitudes of the separable terms
of the signal (7.23.35), and the phase is a sum (or difference) of phases of these terms. The phase functions
in this example are linear (a constant slope if we remove the jumps of the multibranch tan–1 function),
giving constant values of the angular frequencies.

Relations Between Real and Complex Notation

In one dimension, we have the following well-known relations:

(7.23.39)

In two dimensions, the corresponding relations become (see Table 7.23.2)

(7.23.40)

(7.23.41)

(7.23.42)

(7.23.43)

Using the relations ψ1 = and ψ3 = , the real part of the complex signal ψ1 takes the form

(7.23.44)

and the real part of ψ3 is

(7.23.45)

Notice that the spectra of these two signals exist in two quadrants of the Fourier frequency plane. The
insertion of the polar representations (7.23.18) and (7.23.19) into (7.23.44) and (7.23.45) yield
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u – υ = A1 cos(Φ1) (7.23.46)

u + υ = A2 cos(Φ2) (7.23.47)

The summation (or substraction) yields the following relations

(7.23.48)

(7.23.49)

and analogous derivation yields

(7.23.50)

(7.23.51)

For separable signals, these relations have the simplified form

u(x1, x2) = A cos[ϕ1(x1)] cos(ϕ2(x2)] (7.23.52)

υ(x1, x2) = A sin[ϕ1(x1)] sin[ϕ2(x2)] (7.23.53)

υ1(x1, x2) = A sin[ϕ1(x1)] cos[ϕ2(x2)] (7.23.54)

υ2(x1, x2) = A cos[ϕ1(x1)] sin[ϕ2(x2)] (7.23.55)

In three dimensions the number of octants equals eight and the relation between the real and complex
notation becomes (we applied the method of numeration of octants given in Appendix 7.23.1),

(7.23.56)

Using the relations , , , and , the
above formula takes the form

(7.23.57)

For separate signals all amplitudes are equal and the phase functions are

Φ1(x1, x2, x3) = ϕ1(x1) + ϕ2(x2) + ϕ3(x3) (7.23.58)

Φ2(x1, x2, x3) = –ϕ1(x1) + ϕ2(x2) + ϕ3(x3) (7.23.59)
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Φ3(x1, x2, x3) = ϕ1(x1) – ϕ2(x2) + ϕ3(x3) (7.23.60)

Φ4(x1, x2, x3) = –ϕ1(x1) – ϕ2(x2) + ϕ3(x3) (7.23.61)

The insertion of these phase functions in Equation (7.23.57) yields

u(x1, x2, x3) = A cos[ϕ1(x1)] cos[ϕ2(x2)] cos[ϕ3(x3)] (7.23.62)

Similar formulae for u, u1, and u2 may be easily derived or written directly by comparison with the 2-D

case. In general, for the n-D separable signal of the form u(x) = ak f(xk) this formula takes the form

u(x) = A cos[ϕ(xk)], where A = ak. If all ak’s are equal to a, then A = an or a = .

Example

Consider again the signal u(x1, x2) = cos(ω10x1) cos(ω20x2) of the previous example. The four complex
signals of Table 7.23.2 and their spectra are

 The spectrum of the signal u is shown in Figure 7.23.2. The insertion of these functions in Equations
(7.23.40) to (7.23.51) gives the verifications of these relations.

Quadrant Complex Signal Fourier Image

1 ψ1 = e j(ω10x1+ω20x2) δ(ω1 – ω10, ω2 – ω20)
2 ψ2 = e j(–ω10x1+ω20x2) δ(ω1 + ω10, ω2 – ω20)
3 ψ3 = e j(ω10x1–ω20x2) δ(ω1 – ω10, ω2 + ω20)
4 ψ1 = e j(–ω10x1–ω20x2) δ(ω1 + ω10, ω2 + ω20)

FIGURE 7.23.2    The Fourier spectrum of the 2-D harmonic signal u(x1, x2) = cos(ω10x1) cos(ω20x2).
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2-D Modulation Theory

The 1-D modulated signal has the complex representation in the form of a product of the modulation
function and the complex harmonic carrier (see Section 7.16, Equation [7.16.6]). From the formal point
of view, the concept of the modulation function can be extended to multidimensional modulating signals
with multidimensional harmonic carriers. The n-D complex harmonic carrier has the form

(7.23.63)

We define the n-D modulated signal in the form of a product

ψ(x) = γ(x)ψc(x) (7.23.64)

where γ (x) = f [u(x)] is called the n-D modulation function and f[u(x)] is a function of the n-D message
u(x). As in the 1-D case, the function f defines a specific type of modulation. The 2-D modulated signal
has the form

(7.23.65)

where for convenience, the phases ϕ1 = ϕ2 = 0.

Example

Consider a 2-D low-pass message and its Fourier image

(7.23.66)

with the base-band spectrum band limited such that U(jω1, jω2) = 0 for |ω1| > a and |ω2| > b. The
modulation function of the 2-D suppressed carrier amplitude modulation is

γAM(x1, x2) = mu(x1, x2) (7.23.67)

Figure 7.23.3 shows the spectra of the base-band signal u and of the modulated signal.
The 2-D equivalent of the 1-D SSB modulation is the single quadrant modulation (SQM). The

modulation function is given by the inverse Fourier transform of the base-band single quadrant spectrum

γSQM(x1, x2) = F–1 [41(ω1, ω2) U(ω1, ω2)]

= u(x1, x2) – υ(x1, x2) + j[υ1(x1, x2) + υ2(x1, x2)] (7.23.68)

that is, in the form of the complex signal (7.23.10) in Table 7.23.1. The insertion of this modulation
function in Equation (7.23.55) yields the complex SQM signal

(7.23.69)

and its real notation is

uSQM(x1, x2) = u cos(ω10x1) cos(ω20x2) + υ sin(ω10x1) sin(ω20x2) +

– υ1 sin(ω10x1) cos(ω20x2) – υ2 cos(ω10x1) sin(ω20x2) (7.23.70)
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Figure 7.23.4 shows the supports of the spectra of γ SQM, ΨSQM, and uSQM.

7.23.1 Appendix: A Method of Labeling Orthants

The applied numbering method of successive orthants is the following: we assign the binary number
zero to a plus sign and the binary number 1 to a minus sign of the variable ω. For example, the unit step
function 1(ω4, –ω3, –ω2, ω1) corresponds to the binary number 0110. If the decimal-coded binary number
is a, we assign to the given orthant the decimal number l = a + 1. So, we have in four dimensions:

FIGURE 7.23.3    The supports of the spectrum of a 2-D carrier with 2-D amplitude modulation.

l = a + 1
Binar

y Sign of the Ω Axis
ω4 ω3 ω2 ω1

1 0000 + + + +
2 0001 + + + –
3 0010 + + – +
4 0011 + + – –

16 1111 – – – –
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