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The Costas Loop – Closing the Loop 
 

by Eric Hagemann 
 
My previous column (check for it in the online archives) introduced a structure suitable 
for implementing a phase-locked loop in software. It derived the structure from work 
done by J. P. Costas, work he originally described in his patent 
(http://www.eepatents.com/feature/?m07d01). Left unexamined in my introductory 
column were the feedback mechanism as well as how to close the loop and bring it into 
lock. Thus, this column focuses on methods of closing the loop and finishing the 
structure; the next installment will focus on setting loop behavior. 

 
The Costas loop  
 
To refresh your memory, examine Fig 1, which depicts the basic structure of the Costas 
loop. It performs a quadrature mix between a reference waveform and a received 
waveform to form two error signals, which when multiplied together creates a suitable 
signal for adjusting the oscillator. With care you can adjust the oscillator into lock -- a 
condition where the oscillator and reference waveform are matched in phase and 
frequency.  
 
 
 
 
 
 
 
 
 
 
 
The software oscillator this design employs is a numerically controlled oscillator (NCO), 
which generates the reference waveform with the help of table-driven lookup techniques. 
The software NCO has an advantage over the hardware analog VCO (voltage controlled 
oscillator) that find use in analog based PLLs, specifically its ability to control both 
frequency and phase of the generated waveform. Typical hardware VCOs only allow 
frequency adjustments.  
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Fig 1 -- A Costas loop uses a quadrature mix and lowpass filters to generate 
an error signal suitable for adjusting the oscillator into lock 
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The NCO  
 
During my previous investigation of table-based techniques for waveform generation, I 
noted that the position in the table is equivalent to the instantaneous phase of the sine 
wave. Further, motion though the table (how many entries an algorithm skips each time it 
extracts a sample) is related to the frequency. The following equation drives the lookup 
table (LUT) technique 

( ) ( ) ( )1n n f nθ θ+ = + . 

where ( )nθ is the waveform’s present phase (position of last extracted sample in the 

table) and ( )f n is the present frequency.  

 
Before finishing the discussion of the NCO, let’s move on to a few definitions. In the 
PLL literature you’ll often encounter a mention of the “order” of a PLL. In one sense that 
term refers to how many integrators are in the feedback path. More importantly, “order” 
refers to the loop’s ability to acquire lock to different input signal conditions and reduce 
the feedback error term to zero. Now consider several different possibilities: 
 
First order -- A first-order loop can acquire lock to the incoming signal and adjust the 
phase of the reference waveform to match it in phase. However, the loop can’t modify the 
frequency of the reference oscillator and therefore can’t track a received waveform that 
has a constant frequency difference with a zero error signal. Because frequency is the rate 
of change of phase, some ability to track frequency is available because the loop can 
make constant phase adjustments. 
 
Second Order -- The second-order loop is the most popular implementation, and it 
provides the ability to track both frequency and phase differences. This class of loop can 
track a constant frequency offset (by adjusting the oscillator’s frequency) and thus 
produce a zeroed error signal. Note, though, that this loop can’t track a received 
waveform that experiences acceleration (rate of change in frequency) with a zeroed error 
signal.  
 
Third Order -- Although we won’t consider it here, there is a third-order loop that can 
track phase, frequency and acceleration. These loops are important when the transmitter 
or receiver is experiencing Doppler shifts (frequency deviation due to motion or changes 
in motion). Important examples are airborne and satellite-based transmitters or receivers. 
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Recall from Physics 101 that objects with constant speed but circular motion experience 
constant acceleration (the definition of acceleration include changes in direction).  
 

Simplified model 
 
To gain a better understanding of loop operation with these three classes in mind, start by 
examining Fig 2, which depicts a simplified model of the loop where we consider only 

phase. The received waveform has an instantaneous phase of ( )nφ , and the oscillator has 

a phase of ( )nθ . The error or feedback waveform is the difference between these two 

phases. The scheme then provides a scaled version of this error signal as feedback to the 
oscillator.  
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Fig 2 -- It’s convenient to define PLL loop operation in terms of instantaneous phase angles. 

 

Back to the NCO  
 
Considering the first-order case (adjusting phase only), we can modify the equation for 
the LUT generator as follows (ignoring frequency for the moment): 

( ) ( ) ( )1n n e nθ θ α+ = + . 

In this equation, ( )e n refers to the error feedback term, which is the product of the output 

of the arm filters. The scheme uses the scalar α  to control the amount of feedback going 
to the oscillator. It’s also possible to highlight the operation of a first-order loop with the 
Z-transform. 
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This manipulation reveals that the relationship between the received waveform phase and 
the reference waveform phase is a recursive lowpass filter with one pole, which is located 
on the real axis. Further, the feedback parameter α  controls the pole’s position and hence 
filter bandwidth. As long as α < 1, the system is bounded and stable. The closer α comes 
to unity, the narrower the filter and the longer it takes to adapt. 
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Move on to the second-order loop by modifying the LUT driving equation to include both 
frequency and the adjustment of frequency. Now you have two difference equations and 
an additional feedback parameter, β . 
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Again by examining the Z–transform of these time equations you can develop an 
understanding of the loop operation. This time the system is a filter with two poles.  
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This time you control the location of the poles and thus filter operation by the choice of 
feedback parametersα and β . Because the polynomial in the denominator has real 

coefficients, you can categorize their locations into three distinct cases. The poles can be 
real but not equal; real and equal; or complex conjugates of each other. If the poles are 
complex the filter oscillates about the angle of the pole and thus acts as a bandpass filter.  
 
You want a lowpass filter, so make both poles real. If you solve for the case where two 
real poles are equal you end up with the fastest adaptation time. In control theory this is 
the case of critical damping. Because this discussion hasn’t yet addressed the effect of the 
feedback parameter on loop operation, you can solve for the relationship between α and 
β that provides the critical damped case for any α . Using the quadratic equation, the 

answer is 
2

4
αβ = . 
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So where are we? 
 
With all this knowledge in hand, you can create a closed loop. For either a first- or 
second-order loop you can mix the received waveform with a reference one and construct 
a feedback signal. Using the feedback signal you now have equations for updating the 
frequency and phase of the reference oscillator. Further, it should now be clear that the 
update equations lead us to a 1- or 2-pole filter relationship between the instantaneous 
incoming and reference phases. The interested reader can use the same techniques 
outlined for first- and second-order loops for investigating loops of higher orders. 
Already you can see that choices in the feedback parameters affect these filters, and an 
inappropriate choice could generate an unstable filter and in turn an unstable feedback 
mechanism. What remains, then, is to develop an understanding of these feedback 
equations with a variety of input signal types -- a great topic for my next column. 
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