
 

Page 1 
© Eric Hagemann, 2001 

The Costas Loop – Setting the Loop 
 

by Eric Hagemann 
 
In previous columns (available from the online archives) I introduced a structure suitable 
for implementing a phase-locked loop in software – the Costas loop. Those articles 
described the loop’s structure and operation, but I’ve postponed a discussion of how to 
“set the loop” until now.  
 
The Costas loop implementation consists of a feedback structure where a derived error 
term forces the loop into a lock condition. As in any feedback arrangement, applying an 
incorrect amount can cause the loop either to not adapt (too little feedback) or blow up 
(too much feedback). In this installment I’ll begin to investigate procedures for properly 
choosing the feedback coefficients for efficient operation.  

 
A loop review 
 
Let’s start by refreshing you on a few fundamentals. Fig 1 depicts the basic structure of 
the Costas loop. It performs a quadrature mix between a reference waveform and a 
received waveform to form two error signals, which when multiplied together create a 
suitable signal for adjusting the oscillator. With care you can adjust the oscillator into 
lock -- a condition where the oscillator and reference waveform are matched in phase and 
frequency.  
 
 
 
 
 
 
 
 
 
 
 
The loop is a nonlinear structure, and so understanding its operation is somewhat tricky. 
Last month I developed a linearized model (detailed in Fig 2) to help the discussion. 
Using this model, the column showed how to construct equations relating the input phase 
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Fig 1 -- A Costas loop uses a quadrature mix and lowpass filters to generate 
an error signal suitable for adjusting the oscillator into lock. 
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to the phase of the internal oscillator for several cases. Focusing on the 2nd-order case 
(where the loop can compensate for both frequency and phase offsets), it used the 
following time equations for updating the internal oscillator’s phase and 

frequency( ), fθ , respectively.  
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Solving for the transfer function of the linearized loop reveals a 2nd-order equation 
defining the relationship between the instantaneous phase of the received signal and the 
local oscillator.  
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Fig 2 -- It’s convenient to define PLL loop operation in terms of 
instantaneous phase angles. 

 
While this transfer function defines the operation of the linearized model and not the real 
loop, it’s a useful basis to guide the choice of the feedback constants α and β . Having a 

2nd- order denominator, this polynomial indicates that the system has two poles. For 
critical damping you set these to be both real and equal, leaving a relationship of  
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αβ = . 

Using the quadratic equation and the relationship between α and β , you can find the 

poles are located at  
2
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which supports a stable system when  
0 4α< ≤ . 

In addition, you must consider the numerator where the single zero is located at 
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Typical ranges for α include 0.01 and smaller. 
 

Acquisition 
 
Now that you have a structure and a basic understanding of its operation, probably the 
primary remaining questions are these: Over what frequency range can the loop acquire 
lock? And, even more basic, exactly what is lock ? 
 
A good observation point for watching loop behavior is the phase “error term” as 
provided into the NCO. Ideally this term should become zero when the loop reaches a 
stable locked operating point. As a simplification, the author calculated the next few plots 
using a Costas loop that had a complex input signal (received waveform). The 
multiplication of sine and cosine was a full complex multiplication. This modification, 
while only useful in limited applications, allows you to concentrate on loop operation  
without concern of the arm filters. You still compute phase error in a similar fashion: as 
the product of the real (in phase) and imaginary (quadrature) results of the down 
conversion. 
 
Fig 3 shows a loop locking to a small (0.001) frequency offset. Fig 4 shows a loop 
locking to larger frequency offset (0.01). All frequency terms are normalized as  
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Fig 3-- Phase-error curve when locking to minor frequency offset, fn = 0.001 

 

 
Fig 4 -- Phase-error curve showing cycle slip and lock-in  

for larger frequency difference fn = 0.01. 
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In Fig 4, where the initial frequency offset is larger, the system experiences cycle slips as 
the phase of the received and reference waveforms ‘slip’ past each other. This effect 
continues until the system can bring the frequency of the reference oscillator close 
enough to the received stream to start the lock-in process. When cycle slipping, the 
phase-error term is biased to one direction or the other (in this case positive) as the 
received waveform leads the reference oscillator in phase.  
 
In the case of the complex Costas loop, you can compute the time to lock versus initial 
frequency offset. For the next two plots, the author set the received waveform to fn = 0.25 
and the reference waveform to a variety of values between fn = 0 and 0.5. Fig 5 details 
this result for an α of 0.05, while Fig 6 shows the time to lock (in terms of samples) for 
an α of 0.01. 

 

Fig 5 – Lock time (in samples) of a complex Costas loop versus initial frequency 
difference, 0.05α =  
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Fig 6 – Lock time (in samples) of a complex Costas loop versus initial frequency 
difference, 0.01α =  

 
The behavior of the loop indicates that no matter what value for the input frequency 
difference, the loop always acquire lock – it just might take a while. The parameter 
α controls the amount of feedback and thus the time required to lock. The lower the 
value of α  , the slower the loop is to adapt; conversely, the larger the faster. 
 
Based on these results, you might expect that the operation of a loop as drawn in Fig 1 
would behave the same. Except for the filters, this is essentially true. In the case of Fig 1 
the arm filters are in place to remove the summed frequency term that results from the 
real multiplication. To make this loop work, the arm filters must be matched to each other 
and have sufficient bandwidth to pass the maximum expected initial frequency offset as 
well as attenuate the summed frequency term. Fig 7 shows a plot of lock time for a real 
Costas loop using FIR-based arm filters. This loop has a frequency-lock range of 0.0046 
around the nominal frequency of 0.1. At a 10-kHz sample rate, this value gives an 
effective lock range of 46 Hz. 
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Fig 7 -- Lock time for Real Costas loop with FIR arm filters and nominal center 
frequency of  fn = 0.01 

 

What’s left ? 
 
With the basics of the Costas loop operation in hand and a general idea of how to set the 
loop’s behavior, what’s left to do? There remain two major factors that affect loop 
operation: noise and amplitude variations. All simulations for this series of columns thus 
far have been both noise free and non-varying in amplitude. As you might predict, 
examining the effect of both will be the focus of the next column. 
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