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1 Introduction
In this paper the basic techniques of data analysis for the detection of pe-

riodic gravitational waves are presented. We start with the easiest model
of the signal and the noise and then we introduce some complications that
are or can be present in the data. The most promising method for this de-
tection is the power spectrum estimate by the use of the periodograms for
the blind search and the lock-in method for the targeted search, with some
complication to overcome the problems of the real data. Anyway the real
data detection is a very complex problem, up to now largely open (even if
in the last years there have been many contributions) and so the detection
procedure could be composed of some di®erent stages, at which other pro-
cedures can be used; so we also speak brie°y of other "non-linear" methods.
Because of the introductory character of this paper, also other miscellaneous
arguments, that have been of interest in the discussion about the periodic
source detection, are presented.

The use of the tecniques here presented is limited by the needed com-
putational power, that grows with high powers of the observing time. So
in practice only "hyerarchical" procedures, based on division of the data in
pieces, are possible; some of these more advanced procedures will be pre-
sented in another paper, Advanced techniques.

2 Basic tools

2.1 The basic model

In this section we discuss the basic tools for the detection of small periodic
signals in noisy data.

Let us de¯ne the more or less simpli¯ed hypothesis that we assume:

2



1. The signal simply adds to the noise, so our data are

x(t) = h(t) + n(t) (1)

that we know as a set of samples fxig with sampling time ¢t, supposing
that such a sampling excludes the aliasing (1=¢t > ºmax, being ºmax
the maximum frequency of x(t)); h(t) and n(t) are the signal and the
noise.

This hypothesis is not stringent and, in the case of small signals, doesn't
require absolute linearity of the detector.

2. The noise is gaussian. Only with this hypothesis some of the results
we refer are valid. But in general this is a good approximation of
the real gravitational data. The noise is completely described by the
power spectrum Sn(º); we will use the bilateral form (i.e. de¯ned in
the range ¡1 < º < 1), that, in the case of real (not complex)
noise signal, is symmetric about the origin. The total variance of the
noise ¾2

n is the integral in the full range of S(º). In the gravitational
wave detectors literature the h-equivalent output noise amplitude den-
sity Hn(º) =

q
Sn(º) is normally used.

3. The noise is white, i.e. Sn(º) = const. This hipothesis is not too
important, because in this simple case the band of interest is very
narrow, so it is likely that in the narrow band of interest the noise
power spectrum is °at.

4. The noise is stationary. This is an important point, hardly ful¯lled in
practice. As it is shown in section 3, many types of non-stationarities
can be present in the data.

5. The signal is exactly periodic, with angular frequency

!0 = 2¼º0 =
2¼
T0

(2)

and constant amplitude h0 and phase '0. We consider mainly the case
of sinusoidal signal

h(t) = h0 ¢ sin(!0t+ '0) (3)

but we refer also about methods for non-sinusoidal signals.
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6. Absence of "holes" in the data, i.e. the data are continuously observed
during the observation period of duration tobs. In practice, this hypoth-
esis can be hardly ful¯lled.

7. There are no errors on data timing.

The analysis type will depend on the a priori knowledge. We consider
three cases:

1. We know the frequency and the phase of the signal.

2. We know only the frequency.

3. We don't know anything.

In practice the data are sampled, so often we refer to the samples

xi = hi + ni (4)

We will discuss also the case of non-sinusoidal signal.

2.2 Knowledge of frequency and phase: the matched
¯lter

If we know the "exact shape" of the signal and what is unknown is the
amplitude h0 (that is 0 if the signal is not present), as is in the case of
knowledge of the frequency and phase for a sinusoidal signal, the optimal
detection is performed by means of the matched ¯lter. Often the matched
l̄ter is applied with known shape and unknown time of occurrence; this, in

the case of a sinusoidal signal, means unknown phase: this case, with the
name of cross-correlation l̄ter, is considered in the next session.

We can compute

y(tobs)=
Z tobs

0
x(t) ¢ sin(!0t+ '0) ¢ dt (5)

the value of y due to the signal is

yh(tobs) = h0 ¢
tobs
2

(6)
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the e®ect of the integration (5) on the noise is to "move" the signal band
around zero frequency and apply a low pass l̄tering that cancels the high
frequency components and reduces the variance of the noise to

¾2
n = Sn(º0) ¢

tobs
2

(7)

so the (quadratic) SNR (signal-to-noise ratio) is

SNRmf =
h2

0tobs
2Sn(º0)

= 5 ¢
Ã

h0

10¡26

!2 Ã Hn(º0)
10¡23Hz¡1=2

!¡2 µ tobs
107s

¶
(8)

The distribution of the noise is gaussian. Let us de¯ne the parameter k as

k =
h2

0tobs
Sn(º0)

; (9)

So, in order to have a false alarm probability of 1 %, k = 4:6.

2.3 Knowledge of only the frequency: the lock-in and
the cross-correlation

Often the knowledge of the phase of the signal is practically impossible. In
this case one can do one of the following procedures:

A) the two-phases lock-in1. It is performed by computing

y(tobs) =
Z tobs

0
x(t) ¢ exp(j!0t) ¢ dt (10)

y(tobs) is a complex number, of which we consider the square modulus. For
the signal,

jyh(tobs)j2 =
µ
h0 ¢

tobs
2

¶2
(11)

so the signal has the same value of the case of the matched ¯lter. The
noise is distributed exponentially, with expected value (equal to the standard
deviation) 2¾2

n. The SNR is

SNRli =
h2

0tobs
4Sn(º0)

(12)

1This is not the standard operation of a laboratory lock-in, that has an exponential
running integration.
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i.e. it is the double of SNRmf ; but there is a loss due to the di®erent
distribution of the noise, that is exponential. In order to achieve a false
alarm probability of 1 %, we need k = 18:4.

B) the cross-correlation with the signal sin(!0t)

bC (¿ ) =
1

tobs¡ ¿

Z tobs¡¿

0
x(t) ¢ sin[!0(t+ ¿ )] ¢ dt (13)

bC(¿ ) is computed for 0 < ¿ < T and it is taken the maximum value.
Note that, respect to the case A), the noise variance is one half , but
also the mean quadratic value of the signal is one half. This method
is practically the same as the matched ¯lter; only the evaluation of the
probability is di®erent because of the di®erent a priori knowledge.

2.4 Unknown frequency search: autocorrelation and
spectrum

If the frequency of the signal is not known, one can use detection methods
based on estimates of the autocorrelation and of the power spectrum (that
is the Fourier transform of the autocorrelation).

The method that uses the autocorrelation estimate is heavily based on
our simpli¯ed hypotheses. The autocorrelation of the data x(t) is equal to
the sum

Rxx(¿ ) = Rhh(¿) + Rnn(¿) (14)

where
Rhh(¿) = h2

0
2

cos!0¿ (15)

Rnn(¿) =
(

¾2
n for ¿ = 0

0 for j¿j À 0 (16)

Using an estimation of the autocorrelation for j¿j À 0 we have not exactly
0, but a °uctuation value "(t) with

¾" =
s

1
Beqtobs

[¾4
n + ¾2

nh2
0] '

¾2
nq

Beq tobs
(17)
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where Beq is the equivalent bandwidth of n(t), de¯ned by

Beq =

³R1
¡1 Sn(º)dº

´2

2
R1
¡1 S2

n(º)dº
= ¾4

n
2
R1
¡1R2

n(¿ )d¿
(18)

So, in places far from the origin, the SNR is

SNRac =
h2

0

2¾2
n

q
Beqtobs (19)

If the autocorrelation is computed on N samples and the noise samples are
uncorrelated, we have

SNR =
h2

0

2¾2
n

p
N (20)

Detection can be enhanced of a factor
q
tobs=T0 taking the average of the

M = tobs=T0 periods, because of the uncorrelation of "(t); so we have

SNR =
h2

0

2¾2
n

p
N ¢M

The power spectrum is the Fourier transform of the autocorrelation. Then
an estimation of the power spectrum can be obtained, doing the Fourier
transform of the autocorrelation. Another way of doing an estimation of the
power spectrum, that gives similar results, is by taking the squared modulus
of the Fourier transform of the stretch of data: this is called periodogram
and it is normally accomplished by a Fast Fourier Transform algorithm, with
a strong gain in computation time, that is proportional to N logN instead
of the N 2 of more direct algorithms.

Regarding the periodogram of the x(t) during tobs, the frequency bins
have width ±º = 1=tobs, so the signal power, that is h0tobs=2, is divided (in
the ideal case) in the two bins at º0 and ¡º0. The SNR is the same of 12,

SNRper =
h2

0tobs
4Sn

(21)

and the distribution is exponential, but, because there are many bins, the
probabilistic meaning is di®erent. To discuss a simpli¯ed version of the prob-
lem, let us consider the case that Sn(º) be constant in the band ¢º. In that
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band we have (at least) ¢º ¢ tobs bins (in one day, for a band of 1000 Hz,
there are about 108 bins). In order to have a false alarm probability of ", we
must have

k = 4 ¢ log
µ¢º ¢ tobs

²

¶
(22)

that, for 108 bins and " = 0:01, is 92.
Another way of performing the estimation in this case, useful in practical

cases (as we'll see later), is by dividing the observation time in m intervals,
taking the periodograms of the pieces and making the average. In this way
we will have

SNRmper =
h2

0tobs
4
p
mSn

(23)

but there are two gains:

² the number of bins is m times lower

² the distribution is no more exponential, but "normalized" Â2 with 2m
degrees of freedom.

The value of k to have a false alarm probability ² depends on m and on
the ratio

q =
²

¢º ¢ tobs
The power spectrum estimation by means of periodograms can be en-

hanced by "windowing" the input chunk of data by particular window func-
tions. This technique reduces the energy that goes in the side lobs of the
principal peak. Extensive treatment of the windowing techniques can be
found in many introductory texts of signal analysis. The standard approach,
anyway, is not su±cient for the real gravitational data analysis, because in
that case the frequency of the signal is time-varying and so di®erent opti-
mization procedures must be used.

2.5 Non-sinusoidal signals

Let us suppose that the periodic signal is not simply sinusoidal, as in the
case of sources that have the ¯rst and the second harmonics of the rotation
frequency. If we know the shape, we can perform the matched ¯lter with the
shape funcion. Otherwise two techniques can be used:
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1. the epoch folding method

2. the multi-harmonics search

With the ¯rst method the function

y(t) =
M¡1X

i=0
[x(t+ i ¢ T0)¡ x] (24)

is computed, where x is the mean value of x(t), T0 is the period of the signal
and M is the number of periods in tobs. y(t) is de¯ned in the interval
0 · t · T0.

To evaluate the sensitivity of the method, for simplicity, let us suppose
that the data are sampled at frequency

ºs =
N
T0

(25)

and the noise samples are independent; we have the N values

yi =
1
M

MX

k=1

³
xi+(k¡1)N ¡ x

´
(26)

with M = tobs=T0 , integer number. Then we can build the variable

Â2 =
NX

i=1

y2
i

¾2
y

(27)

and, if the signal h(t) is absent,

¾2
y = ¾2

n
M

(28)

and we can perform a Â2 test for N degrees of freedom.
If only the signal is present, we should have

yi = hi ¡ h (29)

where h is negligible (it should be not observable) and we have

Â2
h =

M
¾2
n

NX

i=1
h2
i
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This value will be added to the noise, that, in expected value, is N .
If hi is sinusoidal, as

hi = h0 sin
2¼i
N

(30)

we have
Â2
h =

M
¾2
n

Nh2
0

2
(31)

With the multi-harmonics search method we work in the frequency do-
main, observing the power spectrum estimate at the m frequencies 1

T0
, 2
T0

,
3
T0

,..., m
T0

and taking the sum of these values (possibly a weighted sum, if
there are some a priori information on the harmonics strength or if there is
di®erent background noise). In the simplest case this leads to a Â2 test with
2m degrees of freedom.

3 More complex models
In this section we discuss what can be done if one or more of the basic
hypothesis were not valid. We refer to cases that are of possible interest in
the detection of gravitational waves. The following discussion is essentially
qualitative and has just the goal of illustrating the (possible) problems. When
the real data will be available, one should recognize the actual problems and
then elaborate a detailed strategy.

3.1 Non-linearity

If the interaction between the signal and the noise is not linear, the model
can become very complex. If such an interaction were present, one could use
it for a better detection, or build a detector in which this phenomenon were
enhanced. Anyway this is not foreseen by theory. The smallness of the signal,
that can be discriminated from the noise only with very long observations,
ensures the correcteness of the linear model.

A di®erent problem arises if the noise has a non-linear dynamics; in this
case a better ¯ltering can be achieved by non-linear models (see [1]), but
only if it is not gaussian. In fact the optimum l̄tering theorem, that demon-
strates that the optimum l̄ter is linear in the case of additive gaussian noise,
excludes any enhancement due to the dynamics of the noise.
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3.2 Non-gaussianity
This case can be due to

a) statical non-linearities, as saturations, distorted ampli¯cation,...

b) dynamical non-linearities

c) presence of (local) disturbances.

This situation should be corrected or solved at the step of h reconstruc-
tion; however a not heavy distortion from gaussianity has no practical impact
on the data analysis. If the imput data to a linear l̄ter are not gaussian, gen-
erally the output is more gaussian; this because of the central limit theorem
and the fact that the linear ¯lter is a linear combination of the input.

3.3 Non-°atness of the noise spectrum
There are two problems associated with this situation:

a) the level of the background noise is slowly varying in the frequency do-
main: in this case the only problem is that the SNR is di®erent at
di®erent frequency; no whitening is needed because the very narrow
band of the signal (the noise is supposed to be °at in this narrow
band).

b) there are spectral peaks, sometimes slowly changing in frequency: this
case, very common in real data, can cause false allarms. Anyway the
complex structure of the frequency and amplitude of the signal can be
hardly mimicked by a disturbance, but the detection methods must
recognize this structure.

3.4 Non-stationarity
The case of non-stationarity is more complex to discuss, because many dif-
ferent types of non-stationarities can be present.
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² Slow variation of the noise statistics: in this case, in practice, the
sensitivity of the detector changes and therefore one must use methods
optimezed for this, or, at least, methods that are robust enough for this
type of disturbance.In some cases we can decide to analize only data
with the minimum value of the background.

² Pulses or burst disturbances: these are often wide-band distur-
bances, that have the e®ect to increase the power spectrum background
noise level in the periodograms. We must subtract them and, if they
are not many or very long, it is not important the method (for example
one can simply zero the data when a pulse disturbance is present).

² Varying frequency lines: if it is possible, we must recognize them.

² Undetected changes in calibration: we must determine the am-
plitude of this e®ect and, if it is an heavy problem, the use of robust
methods (like the Hough transform method) is advisable.

In the stationary case we can de¯ne the SNR rate as

SNRR =
@ SNR
@ tobs

= k
h2

0

Sn(º0)
(32)

where k depends on the particular estimation method. In the non-stationary
case we can de¯ne

SNRR(t) = k
h2

0(t)
Sn(t; º0)

(33)

and the total SNR is

SNR =
Z tobs

0
SNRR(t)dt (34)

3.5 Variable frequency and amplitude signal

The biggest problem in periodic gravitational wave source detection is that
the frequency of the signal at the detector is not constant. This happens for
various reasons. From the point of view of the signal analysis, there are two
main cases:
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² The frequency is a stochastic process. This can be the case of emission
processes driven by stochastic excitation, as in the case of Wagoner
sources, where the signal, in the easiest case, can be modeled as a
second order stochastic process.

² The frequency is a deterministic function of time.

The ¯rst case is not discussed in this introductory paper. The second one
is the case of variations due to

1. Doppler e®ect due to the motion of the Earth, depending on the po-
sition of the source in the sky and the position of the detector on the
Earth. This e®ect has two periodic components, one due to the revo-
lution motion, that has the period of 1 year, a maximum spread of

¢ºrev = 0:1986 ¢ º0 ¢ cos ¯ecl mHz (35)

where º0 is the frequency of the source and ¯ecl is the ecliptical latitude;
the maximum time derivative

j _ºrevj = º0 ¢ 0:197 ¢ 10¡10 ¢ cos¯ecl Hz=s (36)

The other, due to the rotation that has a period of 1 sidereal day, has
a maximum spread of

¢ºrot = 0:00308 ¢ º0 ¢ cos¯ter ¢ cos ± mHz (37)

where ¯ter is the terrestrial latitude of the detector and ± is the decli-
nation of thesource; the maximum time derivative of

j _ºrotj = º0 ¢ 0:112 ¢ 10¡9 ¢ cos¯ter ¢ cos ± Hz=s (38)
The Doppler shift of the observed frequencies can be used as a signature
identifying true gw signals and obtain informations on the location of
the source.

2. intrinsic causes, as the source not constant rectilinear motion, as in a
binary system, or its loss of energy. This can be due to many factors;
the most interesting, because it constitutes a lower limit, is the loss of
energy caused by the emission of the gravitational waves. In the case
of a rotating neutron star, there is a lowering of the frequency that is
simply
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_ºgw damping = 1
4
c3

G
º0 ¢ h2

0d2

Izz
(39)

where d is the distance of the source and Izz is the moment of inertia
of the star (typically of the order of 1038 » 1039 kg m2) and h0 is the
amplitude of the wave at the detector.

Although both the e®ects are deterministic, normally their knowledge is
not su±cient to be used for the proposed methods. Small errors in the posi-
tion of the source in the sky can cause small frequency errors that can cause
big phase shifts, and big detection errors, for long enough data sequences.
The same happens for small errors in the intrinsic frequency variation. So,
the precision needed depends on the length of the data sequence.

Lack of precision (or of knowledge) in the parameters of the source can
be overcome by a choice of many "hypothesized" sources, each one with
a di®erent position in the sky and/or a di®erent decay parameters for the
frequency, in order to cover with su±cient precision the parameters space.

A particular case is that of "all sky search" or blind search, where the
hypothesized sources cover densely all the sky. This is a very interesting case,
because it is supposed that only a small fraction of the sources are known.

Besides of the variation in frequency, there is also a variation in amplitude,
now due to

1. the rotation of the Earth, that changes the angle from which the de-
tector "sees" the source, because of its radiation pattern, that, for a
given detector, is a function G(®; ±; Ã) of the position in the sky (®; ±)
and the polarization angle Ã; knowing ®; ±; Ã, we can compute the am-
plitude modulation g(t) for such a source on the given detector. This
modulation spreads the power of the signal in side bands mostly at
about §0:116 mHz and §0:232 mHz. Typically the side bands con-
tain about 1/3 of the total received power. Also this e®ect can be
used to identify true gw signal and determine the source position and
polarization.

2. intrinsic variation of the structure of the source, that we will neglect
here.

These variations are much less problematic than that of the frequency,
from the point of view of detection.
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If we know the exact frequency variation in time (that means the exact
position of the source in the sky and its intrinsic frequency time changes),
the signal is

h(t) = h0(t) ¢ sin'(t) = h0 ¢ g(t) ¢ sin'(t) (40)

where g(t) is the amplitude modulation and

'(t) =
Z t

0
!(t0)dt0 + '0 (41)

where !(t) is the varying angular frequency of the signal at the detector.

The "classical" method to detect and study a varying frequency signal is
by a time-frequency representation, as the Wigner-Ville representation

W (t; !) =
Z
x(t¡ ¿

2
)x¤(t +

¿
2
)e¡j!¿d¿ (42)

The main problem with this method is that the signal-to-noise ratio must be
high enough. Better results can be obtained by the use of the matched l̄ter

y(tobs)=
Z tobs

0
x(t) ¢ g(t) ¢ sin('(t)) ¢ dt (43)

if we know the phase of the signal. Otherwise by the lock-in, driven by the
varying frequency and modulated by the g(t) in order to "weigh" more the
period with higher SNR.

The spectral estimation based on the periodogram, used in the case of un-
known non-varying frequency, doesn't work in the case of varying frequency
because the energy of the periodic signal is spread on many frequency bins,
reducing strongly the signal-to-noise ratio.

If we know, or hypothesize, the position, in the case of unknown source
frequency, we can "correct" the Doppler e®ect (that can be seen as a varying
delay in the detection) in the data x(t), obtaining a new signal x0(t) in which
the varying frequency sinusoid is transformed in a ¯xed signal sinusoid, ob-
tained suitably "stretching" the data or suitably "resampling" non-uniformly
them. The periodogram of these resampled data put all the energy of the
periodic signal (if there is no intrinsic variation) in a single frequency bin.

Another serious problem is the possible presence of glitches. Glitches are
sudden increases of the frequency of the pulsar, that slowly comes back at
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about the same preceding value. These events are more frequent in the young
pulsars, with high _p (there are no glitches in the millisecond pulsars): in some
cases they can occur more times in a year, with duration of the order of ten
days each time.

3.6 Presence of holes in the data

Because of the setup operation or presence of disturbances, "holes" could
be present in the data. In this case we can take zero as the output of the
detector during the holes; this in order to keep the coherence of the data.
This is like the data were multiplied by a window function that has normally
value 1, and value 0 during the holes.

The presence of holes in the data has two negative e®ects:

² it reduces the energy of the signal that goes in the detector, reducing
the SNR.

² the spectrum estimated by the periodogram is the convolution of the
true spectrum and the spectrum of the window, so that the energy of
the peaks is partially spread in side bands.

3.7 Detection with more than one antenna

The use of two or more gravitational antennas is of paramount importance
for the detection of pulses and of the stochastic background; this is because
only the analysis of the coincidences (in the case of the pulses) and of the
correlation (in the case of the stochastic background) can exclude local dis-
turbances. In the case of the periodic sources this aspect is less important,
because the frequency and amplitude modulation of the signal is very peculiar
and, if the SNR is su±ciently high, this excludes the local disturbances.

If we have two or more antennas, we have the following advantages:

² the sensitivity can be enhanced, just summing the output data; in
the better case, the quadratic SNR for N antennas is enhanced by a
factor N: If the antennas are not in the same place, we must know (or
hypothesize) the position of the source in the sky and the sum must be
done by suitably delaying the data of the various antennas.
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² we can do a cross-spectrum detection.

² we can "con¯rm" the results of an antenna by the others, diminuishing
the chance probability, as it is done with the coincidences of pulse
events.

² although normally the detection of a periodic source with an SNR not
too low gives the important information on the polarization of the wave,
a better work can be done with more antennas, especially in more com-
plex cases (e.g. time variations of the polarization); remember that at a
given time, a gravitational antenna "sees" only one polarization, so we
need at least two antennas, di®erently oriented, to have instantaneous
informations on the polarization status.

4 Other methods for periodic signal detec-
tion

4.1 Introduction

The methods described in section 2 are called "linear methods" because the
operations performed on the data are linear operation (with, at most, the
square modulus). They have in common the characteristic that the detection
SNR (signal-to-noise ratio) to the amplitude of the signal: then they are very
good for the case of small signals.

However they have low frequency resolution and create artifacts due to
the observation window. Moreover, in order to reduce the estimation error,
one must reduce more the resolution.

Non-linear methods have been developed, that overcome, often largely,
these limitations; they are also called model-based methods, because they
assume a particular model of the data. The limitation is that they work well
if the "input" SNR is large enough. For these reasons these methods are not
suitable directly for detection of small periodic signals. Nevertheless they are
here reported not only for completeness, but also because they could be part
of more complex analysis methods.

Here we will present brie°y the methods that seems more interesting
for the periodic source detection; they are based on the estimation of the
autocorrelation of the data Rxx(¿ ).
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4.2 Maximum entropy method (and AR model)
The periodogram power spectrum estimate assumes that the autocorrelation
is limited, at most, at the length of the stretch, and it is null outside this
range. The maximum entropy power spectrum estimate is based on the
principle that we know only the ¯rst part of the autocorrelation and, outside
the known range, the autocorrelation corresponds to that of the most random
signal. It was demonstrated that this corresponds to model the data xi as
an autoregressive (AR) process

xi = b0ui +
mX

k=1
akxi¡k (44)

where ui is a white noise sequence with unitary variance and b0 and the ak
are suitable coe±cients. So the method consists in the identi¯cation of the
coe±cients ak, that can be obtained by the Yule and Walker equations

Rxx(j) =
mX

k=1
akRxx(j ¡ k) (45)

with 1 · j · m, that can be solved in various ways, taking into account that
the matrix

R =

0
BBB@

Rxx(0) Rxx(1) ::: Rxx(m¡ 1)
Rxx(1) Rxx(0) ::: Rxx(m¡ 2)
::: ::: ::: :::

Rxx(m¡ 1) Rxx(m¡ 1) ::: Rxx(0)

1
CCCA (46)

is a Toeplitz matrix. Then the power spectrum estimation is

bSn(º) =
b20

j1¡Pm
k=1 ake¡j2¼ºkj

(47)

4.3 Pisarenko method

This method models the data as the sum of m sinusoids and white noise. In
this case the autocorrelation is

Rxx(k) = A0±(k) +
mX

j=1
Aj cos

µ
2¼k

ºj
ºS

¶
(48)
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±(k) is 1 for k = 0 and 0 elsewhere. The problem is to ¯nd, from the
autocorrelation estimate, the values of the A coe±cients and the frequencies
ºj.

The AR (autoregressive) model of a sinusoid of frequency ºj is

xi = b0 ¢ ±i¡i0 + 2 ¢ cos
µ
2¼
ºj
ºS

¶
¢ xi¡1¡ xi¡2 (49)

So for m sinusoids the AR model has 2m+ 1 coe±cients2

xi = b0 ¢ ±i +
2mX

k=1
akxi¡k (50)

The solution consists in solving the eigenvector problem

R ¢ a = ¾2
0a (51)

where R is the Toeplitz autocovariance matrix estimated from the data, ¾2
0

is the variance of the noise and aT = (1;¡a1;¡a2; :::;¡a2m) . From the
knowledge of a, we can compute the power spectrum or the amplitude and
the frequency of the sinusoids.

5 Miscellaneous problems

5.1 Sampling precision needed

Let us suppose we have data sampled at frequency ºS, with sampling quan-
tum ¢x. Let the data be

xi = h0 sin
µ
!0

i
ºS

¶
+ ni (52)

The sampling error, due to the value of ¢x, is an uncorrelated sequence "i
(if the signal is small and the noise is white), uniformly distributed in the
range ¡¢x=2 < " < ¢x=2, with mean value 0 and standard deviation

¾" = ¢xp
12

(53)

2For the real data we have 3 degrees of freedom for each sinusoid (the amplitude, the
frequency and the phase). In this model the phase is not important and anyway cannot
be determined from the autocorrelation. So the degree of freedom are reduced to 2 for
each sinusoid and one for the white noise.
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The power spectrum of "i is then white and

S² =
¢x2

12ºS
(54)

This is a very tiny increase in the background noise ni

S"
Sn

=
¢x2

12¾2
n

(55)

For example, with a 16-bit analog-to-digital converter, a good choice can be
to take ¢x ¼ 10¡3¾n and then the increase in the background noise is only
of 1 part in 107. So the problem is negligible, if the noise is about white or
whitened.

Note that, if the observation time is tobs, we can narrow the bin width of
the spectrum to 1=tobs, so that the signal-to-noise ratio between the sinusoidal
signal peak and the sampling noise background is

SNR = 6 ¢ h2
0

¢x2 ¢ ºS ¢ tobs (56)

that, with ºS = 20kHz and tobs = 5000s, is 1 for h0 ¼ 0:4 ¢ 10¡4 ¢x.
The fact that a sinusoid, sampled with a very big sampling quantum, is well
seen in the spectrum, is due to the "bene¯c" presence of the noise ("dither"
e®ect).

5.2 Subsampling and band extraction
If the data are sampled at a frequency ºS much higher than that (º0) of
the signal to search, it can be convenient to reduce in software the sampling
frequency of the data to a value º 0S less than ºS, but greater than 2 ¢º0. This
can be done by l̄tering the data by a low-pass ¯lter that makes negligible
the power of the data at frequencies over º 0S=2 (anti-aliasing ¯lter) and then
sub-sampling the data with frequency º 0S.

This operation can be performed directly in the frequency domain, with
very good results.

This procedure in the frequency domain can be used, with some caution,
to extract a band of signal and transfer it at zero Hz; this is the analogous,
in the frequency domain, of the heterodyne mechanism that is done in the
time domain.
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5.3 Log16 format
This is a format that can describe a real number with little more than 16 bits.
It best applies to sets of homogeneous numbers. Let us divide the data in
sets that are enough homogeneous, as a continuous stretch of sampled data.
The conversion procedure computes the minimum and the maximum of the
set, checks if the numbers are all positive or negative, or if are all equal,
then computes the better way to describe them as a power of a certain
base multiplied by a constant (plus a sign). So, any number of the set is
represented by

xi = S ¤m ¤ bE (57)

or, if all the number of the set have the same sign,

xi = m ¤ bE (58)

where
S is the sign (one bit)
m is the minimum absolute value of the numbers in the set
b is the base, computed from the minimum and the maximum absolute

value of the numbers of the set
E is the (positive) exponent (¯fteen or sixteen bits).

In an header are stored m, b, and a control variables that says if all the
number are positive, negative or mixed. For each number two bytes are
stored, containing S and E or only E .

The minimum and maximum values can be imposed externally.
The mean percentage error in the case of a gaussian white sequence is

better then 10¡4:

6 Bibliographic note

A very good introduction to the stochastic processes and probability from
the point of view of the signal processing is in [2]. The same author has
written a good introduction on continuous and discrete signal theory (see
[3]). Other books on the subject are [4], and, more recent, [5] and [6]. A
selection of papers of historical (but not only) papers is in [7]
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General introductions to signal processing are in [8] [9] and [10], with
more applicative issues (but a little dated) in [11]. The ¯rst thorough work
on the spectral estimation and windowing is in [12].

Good introduction to detection theory are in [13] and [14]; more (and
particular) issues are in [15].

An introduction to non-linear time series is in [16]; a good book on the
maximum entropy method and other non-linear methods of spectral estima-
tion is [1].
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