Toward Spontaneous Speech Recognition and Understanding

Sadaoki Furui

Tokyo Institute of Technology Department of Computer Science 2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552 Japan Tel/Fax: +81-3-5734-3480 <u>furui@cs.titech.ac.jp</u> http://www.furui.cs.titech.ac.jp/

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

	Dialogue	Monologue
Human to human	(Category I) Switchboard, Call Home (Hub 5), meeting task	(Category II) Broadcasts news (Hub 4), lecture, presentation, voice mail
Human to machine	(Category III) ATIS, Communicator, information retrieval, reservation	(Category IV) Dictation

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

Language model is crucial !

- Rudolph the red nose reindeer.
- Rudolph the Red knows rain, dear.
- Rudolph the Red Nose reigned here.

0205-03

• This new display can recognize speech.

This nudist play can wreck a nice beach.

Problems of context-free grammars

0205-02

- Over generation problem: not only generates correct sentences but also many incorrect sentences.
- Ambiguity problem: the number of syntactic ambiguities in one sentence becomes increasingly unmanageable with the number of phrases.
- Suitability for spontaneous speech is arguable.

→Stochastic context-free grammars

Good-Turing estimate

For any *n*-gram that occurs *r* times, we should pretend that it occurs *r** times as follows:

$$r^* = (r+1) \frac{n_{r+1}}{n_r}$$

where n_r is the number of *n*-grams that occur exactly *r* times in the training data.

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

Spontaneous speech corpora (cont.)

- How to ensure the corpus quality?
- Research in automating or creating tools to assist the verification procedure is by itself an interesting subject.
- Task dependency: It is desirable to design a task-independent data set and an adaptation method for new domains → Benefit of a reduced application development cost.

Name		0			
	No.CD	No.hours	Giga-bytes	No. speakers	No. units
TI Digits	3	~14	2	326	>2,500 numbers
TIMIT	1	5.3	0.65	630	6,300 sentences
NTIMIT	2	5.3	0.65	630	6,300 sentences
RM1	4	11.3	1.65	144	15,024 sentences
RM2	2	7.7	1.13	4	10,608 sentences
ATIS0	6	20.2	2.38	36	10,722 utterances
Switchboard (Credit Card)	1	3.8	0.23	69	35 dialogues
TI-46	1	5	0.58	16	19,136 isol. words
Road Rally	1	~10	~0.6	136	Dialogues/sentences
Switchboard (Complete)	30	250	15	550	2,500 dialogues
ATC	9	65	5.0	100	30,000 dialogues
Map Task	8	34	5.1	<256	128 dialogues
MARSEC	1	5.5	0.62	-	53 monologues
ATIS2	6	~37	~5	351	12,000 utterances
WSJ-CSR1	18	80	9.2	>124	38,000 utterances

	Transcrip	otion		Recording	SR	7
Name	Based on:	TA	Speech style	environment	kHz	Sponsor
TI Digits	Word	No	Reading	QR	20	TI
TIMIT	Phone	Yes	Reading	QR	16	DARPA
NTIMIT	Phone	Yes	Reading	Tel	8	NYNEX
RM1	Sentence	No	Reading	QR	20	DARPA
RM2	Sentence	No	Reading	QR	20	DARPA
ATIS0	Sentence	No	Reading spon.	Ofc	16	DARPA
Switchboard (Credit Card)	Word	Yes	Conv. spon.	Tel	8	DARPA
TI-46	Word	No	Reading	QR	16	TI
Road Rally	Word	Yes	Reading spon.	Tel	8	DoD
Switchboard (Complete)	Word	Yes	Conv. spon.	Tel	8	DARPA
ATC	Sentence	Yes	Spon.	RF	8	DARPA
Map Task	Sentence	Yes	Conv. spon.	Ofc	20	HCRC
MARSEC	Phone	-	Spon.	Various	16	ESRC
ATIS2	Sentence	No	Spon.	Ofc	16	DARPA
WSJ-CSR1	Sentence	Yes	Reading	Ofc	16	DARPA

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

Mean and standard deviation for each attribute of presentation speech								
	Acc	AL	SR	PP	OR	FR	RR	
Mean	68.6	-53.1	15.0	224	2.09	8.59	1.5	
Standard deviation	7.5	2.2	1.2	61	1.18	3.67	0.72	

Acc: word accuracy (%), AL: averaged acoustic frame likelihood, SR: speaking rate (number of phonemes/sec), PP: word perplexity, OR: out of vocabulary rate, FR: filled pause rate (%), RR: repair rate (%)

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

	9903-4
Message-driven speech recognition	
Maximization of <i>a posteriori</i> probability,	
$\max_{M} P(M \mid X) = \max_{M} \sum_{W} P(M \mid W) P(W \mid X) $ (1)	
Using Bayes' rule, it can be expressed as	
$\max_{M} P(M \mid X) = \max_{M} \sum_{W} P(X \mid W) P(W \mid M) P(M) / P(X) $ (2)	
For simplicity, we can approximate the equation as	
$\max_{M} P(M \mid X) \approx \max_{M,W} P(X \mid W) P(W \mid M) P(M) / P(X) $ (3)	
P(W M): hidden Markov models, $P(M)$: uniform probability for all	<i>M</i> .
We assume that $P(W M)$ can be expressed as follows.	
$P(W M) \approx P(W)^{1-\lambda} P(W M)^{\lambda} $ (4)	
where λ , $0 \le \lambda \le 1$, is a weighting factor.	

- Fundamentals of automatic speech recognition
- Acoustic modeling
- Language modeling
- Database (corpus) and task evaluation
- Transcription and dialogue systems
- Spontaneous speech recognition
- Speech understanding
- Speech summarization

Linguistic score

0205-13

Linguistic likelihood of word strings (bigram/trigram) in a summarized sentence

$$\log P(v_m | v_{m-2} v_{m-1})$$

Linguistic score is trained using a summarization corpus.

Examples of automatic summarization for manually transcribed CNN news - 2

0205-26

- Transcription: We are dealing with something of such a massive uh size and potential impact, um that a lot of people wisely are saying hands off.
- Automatic summarization (20-40% summarization ratio) : We're dealing something __impact lot of people saying hands __.
- The most similar word string in the manual summarization network : We're dealing something such impact lot of people saying hands off.
- Automatic summarization (50-70% summarization ratio) : We're dealing with something of a size and impact, a lot of people wisely are saying hands ___.
- The most similar word string in the manual summarization network : We're dealing with something of such size and impact, a lot of people wisely are saying hands off.

Recognition result: Vice president Al Gore says the government has a plan to avoid the inevitable prospect of increased airplane crashes and fatality is
Automatic summarization (40% summarization ratio) : Gore the government has a plan to avoid the increased airplane crashes
The most similar word string in the word network: <INS> the government has a plan to avoid the increased airplane crashes
Automatic summarization (70% summarization ratio) : Vice president Al Gore says the government has a plan to avoid increased airplane crashes
The most similar word string in the word network: Vice president Al Gore says the government has a plan to avoid increased airplane crashes

Summary

- Speech recognition technology has made significant progress with many potential applications.
- How to model and recognize *spontaneous speech* is one of the most important issues.
- Construction of a large-scale *spontaneous speech corpus* is crucial.
- Paradigm shift from recognition to *understanding* is needed.
- *Speech summarization* is attractive as information extraction and speech understanding.

