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ABSTRACT

This paper describes a speaker adaptation technique for a phonet-
ic vocoder based on HMM. In the vocoder, the encoder performs
phoneme recognition and transmits phoneme indexes and state du-
rations to the decoder, and the decoder synthesizes speech using
HMM-based speech synthesis technique. One of the main prob-
lems of this vocoder is that the voice characteristics of synthetic
speech depend on HMMs used in the decoder, and are therefore
fixed regardless of a variety of input speakers. To overcome this
problem, we adapt HMMs to input speech by transmitting transfer
vectors, information on mismatch between the input speech and
HMMs. The results of the subjective tests show that the perfor-
mance of the proposed vocoder without quantization of transfer
vectors is comparable to that of a speaker dependent vocoder.

1. INTRODUCTION

To code speech at rates on the order of 100 bit/s, phonetic or
segment vocoders are the most popular techniques [1]-[6]. These
coders decompose speech into a sequence of speech units (i.e.,
phonetic units or acoustically derived segment units), and trans-
mit the obtained unit indexes and unit durations. The decoders
synthesize speech by concatenating typical instances of speech
units according to the unit indexes and unit durations. We have
also proposed a phonetic vocoder based on HMM (hidden Markov
model) [7], in which the encoder is equivalent to an HMM-based
phoneme recognizer, and the decoder does the inverse operation
of the encoder using an HMM-based speech synthesis technique
[8]-[10].

Speaker recognizability of the coded speech is one of the main
problems for phonetic vocoders. Since the voice characteristics of
coded speech depend on the synthesis units used in the decoder,
some types of speaker adaptation is required for speaker indepen-
dent coding. One possible method is to select the most suitable
codebook from multiple speaker dependent codebooks, and an-
other is to adapt the codebook to the input speech [5]. In this
paper, we propose a new adaptation technique to realize a speak-
er independent version of the phonetic vocoder based on HMM
which we have already proposed in [7].

In the following, we summarize the HMM-based speech synthesis
technique, and describe the speaker adaptation in Section 2 and
3, respectively. The results of subjective evaluation tests are also
shown in Section 4.

2. PHONETIC VOCODER BASED ON
HMM

A block diagram of the proposed speech coder is illustrated in
Fig.1. In this coder, speech spectra are consistently represented
by mel-cepstral coefficients obtained by a mel-cepstral analysis
technique [11],[12], and the sequence of mel-cepstral coefficient
vectors for each speech unit is modeled by phoneme HMM. The
encoder performs phoneme recognition which adopts advanced
techniques used in the area of speech recognition, and phoneme
indexes and state durations transmitted to the decoder by using
entropy coding and vector quantization. Pitch information is al-
so transmitted to the decoder. In the decoder, phoneme HMMs
are concatenated according to the phoneme indexes, and the s-
tate sequence is determined from the transmitted state durations.
Then a sequence of mel-cepstral coefficient vectors is determined
in such a way that the likelihood of the sequence of mel-cepstral
coefficient vectors is maximized for the concatenated HMM and
the state sequence [8]-[10]. Finally speech signal is synthesized
by the MLSA (Mel Log Spectrum Approximation) filter accord-
ing to the obtained mel-cepstral coefficients [12]. In the follow-
ing, we summarize two principal technique used in the coder: a
mel-cepstrum-based vocoding and HMM-based speech parameter
generation.

2.1. Vocoding Technique Based on Mel-
Cepstrum

We model speech spectrum H(ej!) by the mel-cepstral coeffi-
cients c(m), 0 � m �M [12] as follows:

H(z) = exp
MX
m=0

c(m)z̃�m (1)

where

z̃
�1 =

z�1 � �

1 � �z�1
; j�j < 1: (2)

When the sampling frequency is 10kHz, the phase characteristics
!̃ of the all-pass transfer function z̃�1 = e�j!̃ with � = 0:35
gives a good approximation to the mel frequency scale. Taking
the gain factor K outside from H(z), we can rewrite (1) as

H(z) = K �D(z): (3)

The coefficients c(m) is determined by minimizing

" = E[e2(n)] (4)
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Figure 1: A very low bit rate speech coder based on HMM.

with respect to c(m) where e(n) is the output of the inverse filter
1=D(z).

To synthesize speech from the mel-cepstral coefficients, we have
to realize the transfer function of (1), which is not a rational
function. Fortunately, the MLSA filter approximates H(z) with
sufficient accuracy. The MLSA filter is an IIR filter which has a
special structure shown in [12], and its stability is guaranteed for
speech sounds. Thus, by using the MLSA filter, synthetic speech
is obtained directly from the mel-cepstral coefficients.

2.2. Parameter Generation from HMM

Let ct be the mel-cepstral coefficient vector at frame t. Then
the dynamic features ∆ct and ∆2

ct, i.e., delta and delta-delta
mel-cepstral coefficients at frame t, respectively, are calculated as
follows:

∆ct =

L1X
�=�L1

w1(�)ct+� (5)

∆2
ct =

L2X
�=�L2

w2(�)ct+� : (6)

We assume that the speech parameter vector ot at frame t consists
of the static feature vector ct and the dynamic feature vectors
∆ct;∆2

ct, that is, ot = [c0t;∆c0t;∆2
c
0

t]
0, where �0 denotes matrix

transpose.

For a given continuous HMM � and a state sequence Q =
fq1; q2; . . . ; qT g, we obtain a sequence of mel-cepstral coefficient

vectors C = [c01; c
0

2; . . . ; c0T ]
0 by maximizing P (O jQ; �) with

respect to O = [o01;o
0

2; . . . ; o0T ]
0 under the constraints (5) and

(6). Here we assume that the output distribution of each state is a
single Gaussian distribution. Thus the logarithm of P (O jQ; �)
can be written as

logP (O jQ; �) = �
1
2
(O�M)0U�1(O�M)

�
1
2

log jUj+ Const. (7)

where

M =
�
�
0

q1
;�

0

q2
; . . . ;�0qT

�
0

(8)

U = diag
�
Uq1 ;Uq2 ; . . . ;UqT

�
; (9)

and �qt and Uqt are the mean vector and the covariance matrix
associated with state qt, respectively. Without dynamic features
(i.e., ot = ct), it is obvious that P (O jQ; �) is maximized when
C = M, that is, the speech parameter vector sequence is de-
termined by the mean vectors, independently of the covariances
U.

On the other hand, under the constraints (5) and (6), the sequence
of mel-cepstral coefficient vectors C is determined by a set of
linear equations @ logP (O jQ; �)=@C = 0, which can easily
be solved by a fast algorithm derived in [8], [9]. It has been
shown that the obtained mel-cepstral coefficient vectors reflect
not only the means of static and dynamic feature vectors but also
the covariances of those, and as a result, the synthetic speech is
quite smooth and natural sounding.

3. ADAPTATION TO INPUT SPEECH

The HMM-based phonetic vocoder described above has a problem
that the voice characteristics of synthetic speech are fixed regard-
less of a variety of input speakers, because the voice character-
istics of synthetic speech depend on HMMs used in the decoder.
Moreover, mismatch between training and input speakers may
cause much recognition error, resulting degradation of quality of
the coded speech which does not occur in the speaker dependent
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Figure 2: Adaptation of output distributions.



coder. To overcome this problem, we propose a technique for
adapting phoneme HMMs used in the decoder by transmitting
additional information on input speech.

To adapt HMMs to input speech, we move the output distributions
of HMMs by adding a transfer vector to mean vectors so as to fit
the distributions to the input parameter vectors (Fig.2).

In the encoder, first, the input parameter sequence O is divided
into short segments. The lengths of segments may be fixed or
variable. Then, from the input speech parameter sequence and
the corresponding state sequence obtained by phoneme recog-
nition, the transfer vector is determined for each segment by
maximizing the output probability of the input sequence. Let
On = (ok; . . . ; ok+l�1) be the input parameter sequence of the
n-th segment which starts at time t = k and continues l frames,
and Qn = (qk; . . . ; qk+l�1) be the corresponding state sequence
of HMM� obtained by the Viterbi alignment. Here we assume that
the output distribution of each state is a single Gaussian distribu-
tion for convenience. Then the transfer vector mn is determined
by maximizing the output probability P (OnjQn;mn; �) with
respect tomn. We can write logP (OnjQn;mn; �) in the form

logP (OnjQn;mn; �)

= �
1
2

k+l�1X
t=k

fot� (�qt+mn)g
0

U
�1
qt fot� (�qt+mn)g

+Const.; (10)

where �qt andUqt are the mean vector and the covariance matrix
of the output distribution of the state qt, respectively. Differenti-
ating logP (OnjQn;mn; �) with respect to mn and setting the
result to zero, the transfer vectormn which maximizes Eq.(10) is
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Figure 3: The decoder with speaker adaptation.

obtained as follows:

mn =

 
k+l�1X
t=k

U
�1
qt

!
�1

�

 
k+l�1X
t=k

U
�1
qt

(ot � �qt)

!
: (11)

The transfer vectormn is quantized and its VQ index is transmit-
ted to the decoder. In the decoder (Fig.3), the decoded transfer
vector m̃n is added to the mean vectors in the corresponding
segment, and a sequence of mel-cepstral coefficient vectors is ob-
tained by the parameter generation algorithm described in 2.2,
using

M̃ =
�
(�q1

+ m̃1)
0

; . . . ;

(�qk + m̃n)
0

; . . . ; (�qk+l�1
+ m̃n)

0| {z }
n-th segment

;

. . . ; (�qT + m̃N )0
�
0

(12)

instead of (8), whereN is the number of segments in the sentence.

4. EXPERIMENTS

To evaluate the speech quality of the proposed speech coder, we
conducted DMOS tests.

We trained a set of speaker independent (SI) models using 1,500
sentences in the ATR Japanese speech database uttered by 10
male speakers, and two sets of speaker dependent (SD) mod-
els using phonetically balanced 450 sentences uttered by male
speakers MHT and MYI to compare with adapted models. It is
noted that neither MHT nor MYI were included in the speakers
of the training data of SI models. Speech signals were sampled
at 10kHz and windowed by a 25.6ms Blackman window with a
5ms shift, and then mel-cepstral coefficients were obtained by the
mel-cepstral analysis technique. The feature vectors consisted of
16 mel-cepstral coefficients including the 0th coefficient, and their
delta and delta-delta coefficients.

We used 5-state left-to-right triphone models with no skip. Each
state was modeled by a single Gaussian distribution with the di-
agonal covariance. Total of 49 phoneme models including a silent
model were prepared. Decision-tree based model clustering was
applied to each set of triphone models under the same ending con-
ditions, and the resultant sets of tied triphone SI, MHT, and MYI
models has 2,213, 2,262 and 1,709 distributions, respectively.

Transfer vectors were obtained for every 100ms (20 frames) and
quantized with 10 bits, i.e., 100 bits per a second were used for
adaptation of the models. The VQ codebook was trained by the
LBG algorithm using the training data of the SI models.

Test utterances were 4 sentences which are not included in the
training data. Subjects were 6 males. In the experiments, state
durations and pitch were not quantized.

Fig.4 and 5 show the results of subjective tests for speakers MHT
and MYI, respectively. From these figures, it can be seen that
the proposed adaptation technique significantly improves the per-
formance of the SI coder, and the quality of coded speech from
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Figure 4: DMOS score for speaker MHT.
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adapted models without quantization of transfer vectors was com-
parable to the SD coders. From informal listening tests, we ob-
served that the adaptation technique improves not only speaker
recognizability but also intelligibility.

In the experiments, quantization of transfer vectors degrades the
performance of the coder. However, by taking account of corre-
lation between successive transfer vectors, the performance of the
coder with quantization will be improved. Furthermore, by using
regression matrices instead of transfer vectors, we will be able to
improve the performance of the corder.

5. CONCLUSION

In this paper, we have proposed a speaker adaptation technique
for a phonetic vocoder based on HMM, and shown that we can
improve the performance of the vocoder for speaker independent
use. Further research should be concentrated on developing a
better adaptation technique to improve speaker recognizability
and intelligibility without significant increase of the bit rate.
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