
Signals and Systems

Projects

ROYAL MILITARY ACADEMY
Electrical Engineering Dept.

26th november 2002
154 POL

Contents

1 Introduction 1

2 Signal processing 1
2.1 Processing chain of a compact disc . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Time-frequency representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Image processing 3
3.1 Convolution: Edge-effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Convolution & deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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1 Introduction

The last part of the practial works consists in small projects to be performed in groups of 2 students.
This document lists the different projects1 students can choose from. There are two main subjets:
signal processing and image processing. Students considering a thesis in the Signal & Image Centre
should definitely take a subject in image processing.

Students are expected to provide a written report and a PowerPoint presentation of the main results
of their work.

2 Signal processing

2.1 Processing chain of a compact disc

The processing chain of a compact disk was studied during one of the lessons. We recal here that the
signals are upsampled to cope with practical realisation difficulties of precise high-performance filters
using discrete electronic components while such filters are easy to implement in numerical form.

You are asked to

1. Simulate the numerisation chain of a compact disk. You should be able to handle actual audio
signals coming from files. For practical reasons, you can work at lower sampling frequency
than the actual 44 � 1kHz sampling frequency, take for instance 4 � 41kHz. You should produce
graphs of the spectras, illustrating the points.

2. Simulate the reproduction chain of a compact disk.

1Input data for the different projects if available on the project’s page at http://www.sic.rma.ac.be/˜
xne/el401/.
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2.2 Time-frequency representation

In some applications, it might be necessary to characterise a signal both in frequency and in time (e.g.
determine when a particular frequency occured such as in DTMF2 systems).

The Fourier transform allows a precise characterisation of the frequency behaviour of a particular
system, but has very poor temporal localisation (the Fourier transform of a DTMF signal could be
used to determine which keys were pressed but not in which order).

To solve this problem, the windowed Fourier transform was developped, having both time and
frequency localization properties. The windowed Fourier transform is defined as the Fourier transform
of a windowed signal f

�
t � τ � with

f
�
t � τ ��� f

�
t � e ��� t � τ 	 2

σ (1)

and hence the windowed Fourier transform of f
�
t � is

F
�
τ � ω �
����
 ∞

� ∞
f
�
t � e ��� t � τ 	 2

σ e � jωtd t (2)

The windowed Fourier transform f
�
t ����� F

�
τ � ω � is thus a mapping of the 1 dimensional space R to

a two dimensional space R 2.
This can also be seen as the decomposition of the signal f

�
t � in a space with basis functions3

e
�
t � τ � ω ��� e ��� t � τ 	 2

σ e jωt (3)

while the basis functions of the Fourier decomposition were

e
�
t � ω ��� e jωt (4)

The transform using a gaussian window as described above is called the Gabor transform and is a
particular case of the windowed Fourier transforms. Other type of windows (Hamming, Hanning, ...)
are sometimes used.

The work consist in the following

1. Display some of the basis functions (real part only) e
�
t � τ � ω � for different values of τ and ω.

What is the influence of τ and of ω. What do the basis functions of the Fourier transform look
like?

2. Implement the windowed Fourier transform. Take care to be able to vary σ easily and to have
a meaningful representation of the result F

�
τ � ω � . (only the amplitude of F

�
τ � ω � should be

represented).

3. Analyse the signals debussy.wav and dtfm.wav and compare the result with their Fourier
analysis. What is the influence of the parameter σ on the time-frequency localization?

2Dual Tone Multi Frequency phone dialing.
3notice that these basis functions are not necessarily orthogonal.

2



EL401 – Projects

3 Image processing

The theory developped for one-dimensional signals f
�
t � (e.g. time signals, sound, ...) can directly

be transposed to two-dimensional signals4 f
�
x � y � (e.g. images). The bidimensional convolution5 is

defined by

h
�
x � y ��� 2D f

�
x � y ��� � h � 2D f � � x � y ��� � 
 ∞

� ∞
� 
 ∞

� ∞
f
�
x̃ � ỹ � h � x � x̃ � y � ỹ � dx̃dỹ (5)

The convolution can be computed either directly using6 the formula or by using the properties of
the Fourier transform of a convolution product

g
�
x � y ��� h

�
x � y ��� 2D f

�
x � y ����� G

�
ωx � ωy � � H

�
ωx � ωy � F � ωx � ωy � (6)

where ωx and ωy denote the spatial frequencies (respectively horizontal and vertical).

3.1 Convolution: Edge-effects

The artefacts that occurs at the first and the last few samples of a sequence are called edge-effects.
These effects are often neglected in one-dimensional time signal due to the length of the signal. In
image processing, where the “length” of the signals are much smaller, these effects are an important
issue and hence, image edges should be handled with care.

1. Compute the convolution of an image with the following filters7 h
�
j � i �

a � � 1
9

��
1 1 1
1 1 1
1 1 1

�	
� b � � 1

2

��
0 0 0� 1 0 1
0 0 0

�	
�

c � � 1
2

��
0 � 1 0
0 0 0
0 1 0

�	
� d � �

�� � 1 � 1 � 1� 1 8 � 1� 1 � 1 � 1

�	

and explain in words what each filter does. Justify the result from a mathematical point of view.

2. Compute and display the Fourier transform (actually, the DFT) of images consisting in
 a uniform image
 an image containing one white point
 an image containing a vertical line
 an image containing a white square

Comment your results and compare them with the theoretical solution.
4in particular, the 2D FFT can be computed using the fft2 command of matlab.
5the symbol � 2D will denote the bidimensional convolution. Where non-ambiguous and to simplify the notation, the 2D

subscript will be supressed.
6the conv2(A,B) command computes the bidimensional convolution of matrices A and B.
7element h(2,2) correspond to the center of the filter
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3. Compute the convolution of an image with the following impulse response

h
�
j � i ��� i j e � i2 � j2

σ (7)

(choose a meaningful σ) using a direct implementation of the convolution8 and an implementa-
tion using the Fourier transform eq. (6).

Altough both results should look the same, they are different. Describe the differences and their
fundamental origin. Can you solve the problem?

Apply filter d) to the result of your solution. Comment.

3.2 Convolution & deconvolution

When performing measures on physical systems, one often only has access to the result of a convolu-
tion product (think to the — now fixed — Hubble space telescope whose mirror had an abberation; the
images provided by the telescope were a result of the convolution of the real scene with the impulse
response of the mirror system, that was different from a dirac impulse). In these cases, it is interesting
to be able to compute the original signal/image f starting from the result of the convolution g � h � f
(with known h). This process is called deconvolution. Real physical processes usually add noise to
the convolution and the measure actually is

g
�
t ��� h

�
t ��� f

�
t � � n

�
t � or G

�
ω ��� H

�
ω � F � ω � � N

�
ω � (8)

where n is the noise signal/image (often at least partially unknown).
A first trivial solution might be to compute

F
�
ω ��� G

�
ω �

H
�
ω � � N

�
ω �

H
�
ω � � Hinv

�
ω � G � ω � � Hinv

�
ω � N � ω � (9)

this expression will exhibit some artefacts, and Hinv is in all practical cases replaced by a more elabo-
rated filter

Hw
�
ω �
� Pf

�
ω � H � � ω �

Pf
�
ω ���H � ω ��� 2 � Pn

�
ω � (10)

where Pf and Pn are the power spectral densities9 respectively of the signal f and the noise n.
Perform the analysis of Hinv and Hw first in one dimension and then in two dimensions.

1. Compute the convolution of an image with the following impulse response (horizontal line)

h
�
j � i �
� �

1 i � 0 � j � � 5 � � 4 � � � � � 0 � 1 � � � � � 5
0 elsewhere

(11)

(normalize the filter10) using an implementation of the convolution in the Fourier domain (see
eq. (6)). Add a random noise of reasonable amplitude.

Compare the original image with the result. What kind of real-world degradation does the filter
(11) model?

8conv2 command in matlab.
9recall that the power spectral density is the square of the Fourier transform of the signal Pf � ω �	��
F � ω ��
 2.

10h = h/sum(sum(h)); will do this in matlab.
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2. Extract a horizontal line in the middle of the image to perform the subsequent analysis. Compare
this line with the same line extracted from the original image.

3. Compute the Hinv filter. Plot H
�
ω � , Hinv

�
ω � and the product of both. Describe and comment

what you see.

4. Compute the Hw filter. Plot H
�
ω � , Hw

�
ω � and the product of both. Describe and comment what

you see.

5. Compute the filters Hinv
�
ωx � ωy � and Hw

�
ωx � ωy � using eq. (9) and (10), and apply the to the

image. Discuss the results for different values of the noise amplitude.

3.3 Karhunen-Loève transform

Consider a non-stationary stochastic process fτ
�
n � (τ identifies a particular realisation). The autocor-

relation matrix of a stochastic process is defined as

R
�
k � l � � Eτ � fτ

�
l � f T

τ
�
k ��� (12)

where Eτ � � denotes the expectation on different realisations of the stochastic process fτ
�
n � .

The Karhunen-Loève transform Φ is the transform that diagonalizes the autocorrelation matrix R

ΦRΦT � Λ ��� RΦT � ΦT Λ (13)

where Λ is a diagonal matrix. This relation implies

RΦn � λnΦn (14)

where Φn is the nth column of Φ. Φn is an eigenvector of the signal covariance matrix R.
Φ being a unitary transformation, one has

ξτ � Φ fτ (15)

where ξτ is a vector. Φ being a unitary transformation we have from (15)

fτ � ΦT ξτ � N � 1

∑
n � 0

ξτ
�
n � Φn (16)

which state that one particular realization τ of the stochastic process fτ
�
n � can be expressed as a linear

combination of the eigenvectors Φn of the transform Φ.
It is easy to show that the autocorrelation matrix of the ξτ is equal to Λ, which means that the

Karhunen-Loève transform has transformed the stochastic signal fτ
�
n � into a white noise ξτ

�
n � . One

can also show that the Karhunen-Loève transform perform an optimum compaction of the informa-
tion in the coefficients ξτ what means that even only considering L � N terms in (16) yields a close
approximation of fτ

�
n � .

Consider several images f � τx � τy �
�
n � , where n denotes the number of the image and τ � �

τx � τy � a
particular pixel in the image. The random process here is the selection of one particular pixel. Hence
the signal fτ

�
n � is constructed by taking the same pixel (same τ) in each image.

1. Load the 19 images available. Have a look at the images.

2. Compute the autocorrelation matrix R
�
k � l � . What are the ranges for k and l? Can you see

something characteristic at the matrix R?

3. Compute the eigenvectors11 Φn and the eigenvalues λn of R. Normalize each eigenvector.
11use the command [V,D] = eig(R).
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4. Look at the different decorrelated stochastic variables ξτ
�
n � . For the best visual effect, display

them for constant n.

5. Evaluate

gτ
�
n �
� L � 1

∑
k � 0

ξτ
�
k � Φk (17)

for L � N. For which values of L does gτ
�
n � closely approximate one particular fτ

�
n � (perform

a visual comparison)?

6. Can you see an application of the latter point (provided the Karuhnen-Loève transform could
be approximated by a signal-independent transform)?
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