
V.34 Transmitter and Receiver
Implementation on the
TMS320C50 DSP

Application
Report

1997 Digital Signal Processing Solutions

Printed in U.S.A., June 1997 SPRA159

V.34 Transmitter and Receiver
Implementation

on the TMS320C50 DSP

Dr. Steven A. Tretter, Faculty Advisor

Christopher J. Buehler, Jonas Keating, Hayden Metz,
Carl J. Nuzman, and Hemanth Sampath

University of Maryland, Department of Electrical Engineering

This application report consists of one of the entries in a contest, The 1995 TI DSP Solutions
Challenge. The report was designed, prepared, and tested by university students who are not
employees of, or otherwise associated with, Texas Instruments. The user is solely responsible for
verifying this application prior to implementation or use in products or systems.

SPRA159
June 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Contents
1 Introduction 1.

2 V.34 Transmitter 4.
2.1 General Overview 4.
2.2 Parse 6.

2.2.1 Scrambler 6.
2.2.2 Parser 6.

2.3 Point-Select 7.
2.3.1 Shell Mapper 9.
2.3.2 Mapper 11.
2.3.3 Differential Encoder 11.

2.4 Precode 12.
2.4.1 Nonlinear Precoder 12.
2.4.2 Trellis Encoder 13.

2.5 Modulate 15.

3 V.34 Receiver 17.
3.1 General Overview 17.
3.2 Demodulate 18.

3.2.1 Symbol Clock Recovery 19.
3.2.2 Phase-Splitting Fractionally-Spaced Equalizer 20.
3.2.3 Fast Equalizer 22.

3.3 Decoder 23.
3.3.1 Viterbi Decoder 23.
3.3.2 Inverse Precoder 25.
3.3.3 Inverse Mapper 25.

4 Summary 27.

References 28.

Appendix A. VIII. Constellation Shaping by Shell Mapping A-1.
A. System Description A-3.
B. Weights of Ring Blocks, the Basic Concept of Shell Mapping, and

Some Data Tables Required for Efficient Implementations A-5.
C. The Decoding Algorithm A-8.
D. The Encoding Algorithm A-16.

Appendix VIII-A. A-22.

Appendix B. B-1.
A.30 A Method for Determining the Binary Subset Label From the

Coordinates of a 2D Point B-1.

Figures

SPRA159iv

List of Figures
1 Block Diagram of the Transmitter 3.
2 Mapping Frame Conventions 5.
3 Scrambler Diagram 6.
4 240-Point Quarter Superconstellation 8.
5 16-State Convolutional Encoder 14.
6 Block Diagram of Receiver 16.
7 Symbol Clock Recovery Block Diagram 20.
8 Equalizer Adaptation-Loop Block Diagram 21.
9 Fast Equalizer Block Diagram 22.
VIII–1 Constellation Shaping With Shell Mapping A-3.
VIII–2 Plot of Function in Summation A-15.
VIII–3 Concentric Shaping Rings A-22.
IX–3 The 2D Partition Tree B-2.

1 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

V.34 Transmitter and Receiver Implementation on the
TMS320C50 DSP

ABSTRACT
This application report presents the design of an efficient V.34 transmitter and
receiver pair. The algorithms behind the advanced encoding and decoding schemes
of the V.34 recommendation are described, and the assembly language functions
that implement these algorithms are referenced. The entire assembly language
source code of the project is provided with full documentation of the details of the
implementation. C source code from V.34 modem simulations is also provided. It is
found that the TMS320C50 digital signal processor (DSP) is exceptionally
well-suited to the task of encoding and decoding V.34 modem signals.

1 Introduction

The International Telecommunications Union (ITU) modem
recommendation V.34 represents the state of the art in modern modem
design [1]. Through the use of advanced coding techniques, modems
conforming to the V.34 standard can achieve data communication rates
previously thought unattainable on standard general-switched telephone
networks (GSTNs). Such modems are rapidly becoming the method of
choice for transmitting data quickly and reliably over standard telephone
lines. Because of this popularity, the practical design and implementation of
a V.34 class modem using conventional digital signal processing hardware
is of prime importance.

This project submission details the implementation of a V.34
transmitter-and-receiver pair using standard TMS320C50 evaluation
modules (EVMs). The project was designed using two unmodified EVMs on
identical Hewlett Packard Vectra 486 PCs. The project consists of two
components: the V.34 transmitter and the V.34 receiver.

The transmitter has two parts: an EVM-compatible object file called tran.out
and a PC-based front-end called transmit.exe.To run the transmitter, one
must first load and run the object file on the EVM, and then run the PC
executable file on the host PC.

The receiver has two analogous parts: recv.out and receive.exe. The
procedure for running them is the same as for the transmitter. To
demonstrate their operation, the output of the EVM running the transmitter
should be connected to the input of the EVM running the receiver.

Introduction

SPRA1592

The programs for both the transmitter and receiver are written entirely in
TMS320C50 assembly language. They implement a large subset of the ITU
recommendation V.34. The transmitter operates at 9.6-, 14.4-, and
19.2-kbps data rates only. However, this speed limitation is imposed only by
the choice of a 2400-baud symbol rate. The routines developed in this
project are fully general and can be used to transmit at up to the full speed
of the V.34 specification (if the maximum 3200-baud symbol rate is utilized).
The PC front-end programs are written in C and provide a rudimentary user
interface to the DSP programs. In particular, they display the transmitted and
received point constellations on the PC graphics screen. These displays are
especially useful for debugging purposes, but they also illustrate the
operation of the transmitter-receiver pair nicely. Data typed at the terminal
also can be transmitted over the data channel once a connection has been
made.

The bulk of this paper documents the algorithms used in the two programs.
The assembly language routines that implement the particular algorithms
are referenced throughout the text. The source files contain explanations of
the ’C50 implementation particulars. Therefore, these source files should be
examined in addition to the text of the project submission.

Introduction

3 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

QAM

Trellis
Encoder

Precoder

Scrambler

{Qi,j,k, 1, Qi,j,k,2 , Qi,j,k,3, , Qi,j,k,q }

01010101
Data Stream

Ii,j,1

Ii,j,2

Ii,j,3

{Si,1, Si,2, , Si,k }

U0(m)

Z (m)

{mi,j,k }

MAPParse
Data

Differential
Encoder

Shell
Mapper

Modulate Precode

Parse Point-Select

Phone Line

Figure 1. Block Diagram of the Transmitter

V.34 Transmitter

SPRA1594

2 V.34 Transmitter

The transmitter consists of four logical units that correspond to the stages
through which the data flows as it is encoded for transmission. A block
diagram of the basic V.34 transmitter is shown in Figure 1. The first of these
units, called parse, accepts a stream of binary input data, scrambles it, and
then partitions these scrambled bits into different groups to be passed to the
next unit. The second logical unit, point-select, uses the parsed bits to select
signal points from a constellation of 2-dimensional (2D) points that has been
specified for use in V.34. The third logical unit, precode, applies a precoding
filter to the signal points to compensate for the noise-whitening filter present
in the V.34 receiver. This unit also contains the trellis encoder, connected in
a feedback configuration, which ensures that the transmitted points
correspond to a proper trellis sequence. The final unit, modulate, performs
standard quadrature amplitude modulation (QAM) of the signal points to
construct the final output waveform.

2.1 General Overview

The goal of the V.34 transmitter is to map binary input data to an output
sequence of 2D signal points. These points are modulated using QAM at a
specified carrier frequency for transmission over an analog channel. The
frequency at which the modem outputs these points, or symbols, is called
the symbol rate. The speed of a modem, or data-transmission rate, is a
function of its symbol rate and the method by which the binary data is
mapped to the symbols. As an example, a very simple encoding scheme
might map 4 bits of data to one of 16 different 2D points. Using a typical
symbol rate of 2400 symbols/sec would allow such a modem to transmit at
9600 bits/sec. This general procedure is used in most modern high-speed
modems. While the V.34 modem uses the same basic ideas, it employs
more advanced techniques to select particular sequences of 2D points that
simultaneously minimize the transmitted signal power and maximize the
probability of correct decoding in the receiver.

In the V.34 modem, the output sequence of 2D points is divided into
sub-sequences of eight points called mapping frames. These mapping
frames also can be viewed as a sequence of four 4D points or as a single
16D point. These interpretations are useful when considering the operation
of the trellis encoder, which operates on 4D points, and the shell mapper,
which operates on 16D points. In this paper, mapping frames are referred
to by time index i, 4D points are referred to by time index m=4i+j (j=0,1,2,3),
and 2D points are referred to by time index n=2m+k (k=0,1). These
relationships are illustrated in Figure 2.

V.34 Transmitter

5 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Output Stream

10 3216D: j =

10

2D Symbols

4D: k =

i–1i–2 i+1i i+3i+2 i+4

Figure 2. Mapping Frame Conventions

A mapping frame is the smallest unit of output from the transmitter. Each
iteration of the main loop of the transmitter program transmits a sequence
of eight output points corresponding to one mapping frame. The amount of
data encoded in one mapping frame varies according to the
data-transmission rate and the symbol rate. For example, at its maximum
data-transmission rate of 28800 bits/sec and a symbol rate of
3200 symbols/sec, the V.34 modem encodes 72 bits of data in one mapping
frame (28800/3200/8 = 72). This simplified implementation of the transmitter
operates at 2400 symbols/sec with data-transmission rates of 9600, 14400,
and 19200 bits/sec. For these rates, the transmitter encodes 32, 48, and 64
bits per mapping frame, respectively. Although the number of bits encoded
per mapping frame varies, the algorithms used to map this data to signal
points are the same regardless of either symbol rate or data-transmission
rate. Because of this generality, the algorithms developed in this project can
be used for data transmission at any speed, supported by the V.34
recommendation with little or no modification.

The algorithms used by the V.34 transmitter to encode a block of data for a
single mapping frame are presented in the following sections. The assembly
language functions that implement these algorithms on the TMS320C50
DSP are referenced and described. Refer to Figure 1 for an illustration of
how the four different logical units of the transmitter interact and to
Appendix A for assembly language source code listings.

V.34 Transmitter

SPRA1596

2.2 Parse

The parse logical unit serves two major purposes in the transmitter. First, it
scrambles the input data to eliminate long, repetitive sequences of bits.
Such sequences could cause a periodic output signal, eliciting loss of
symbol clock tracking, or unstable behavior in the adaptive filters of the V.34
receiver. Second, it groups the scrambled bits into discrete packets for
further processing by the point-select stage of the transmitter.

D2D1 D18 D19 D23

 +

+
Input x(n)

Output y(n)

Figure 3. Scrambler Diagram

2.2.1 Scrambler
The data scrambler specified for V.34 uses a linear-shift feedback register
with the following generating polynomial (GP):

(GP) = 1 + x–18 + x–23

A diagram of this scrambler, viewed in terms of a 23-tap delay line, is shown
in Figure 3. This particular scrambler has been used in many recent modem
designs because of its desirable properties. Among other things, the
scrambler is self-synchronizing, and the generating polynomial has a
maximal period of 223 ± 1.

The scrambling function of the parse unit is performed by the subroutine
scramble16 found in the source file scram.asm. The subroutine maintains
the delay line in a 32-bit state variable (of which only 23 bits are significant)
throughout the execution of the program. Using the fact that the first
non-zero coefficient of the generating polynomial occurs at the 18th position
of the delay line, the routine efficiently scrambles 16 bits in parallel.

2.2.2 Parser
The parser partitions the block of binary data for one mapping frame into
different groups of bits for processing by subsequent stages of the
transmitter. One group of bits goes to the shell mapper, four groups go to the
differential encoder, and the others pass uncoded into the point-select
stage. These groups of bits are arranged in the following manner:

V.34 Transmitter

7 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

(Si,1,Si,2,...,Si,K)
(I1i,0,I2i,0,I3i,0),(Qi,0,0,1,Qi,0,0,2,...,Qi,0,0,q),(Qi,0,1,1,Qi,0,1,2,...,Qi,0,1,q),
(I1i,1,I2i,1,I3i,1),(Qi,1,0,1,Qi,1,0,2,...,Qi(,1,0,q),(Qi,1,1,1,Qi,1,1,2,...,Qi,1,1,q),
(I1i,2,I2i,2,I3i,2),(Qi,2,0,1,Qi,2,0,2,...,Qi,2,0,q),(Qi,2,1,1,Qi,2,1,2,...,Qi,2,1,q),
(I1i,3,I2i,3,I3i,3),(Qi,3,0,1,Qi,3,0,2,...,Qi,3,0,q),(Qi,3,1,1,Qi,3,1,2,...,Qi,3,1,q).

As mentioned previously, the subscript i refers to the time index of the
mapping frame. The K bits labeled S are the inputs to the shell mapper, the
four groups of three bits labeled I are the inputs to the differential encoder,
and the eight groups of q bits labeled Q are the uncoded bits. The values of
the constants K and q vary depending on the data transmission rate, while
there are always four groups of three I bits. These constants determine the
size of a block of bits for one mapping frame. Complete details are given in
Table 10/V.34 in reference [1]. For 9600 bits/sec, K=20 and q=0. Therefore,
one mapping frame consists of 20+12=32 bits. For 14400 bits/sec, the
constants are K=28 and q=1 (28+12+8=48 bits per mapping frame), and for
19200 bits/sec, they are K=28 and q=3 (28+12+24=64 bits per mapping
frame).

The parsing operation is carried out by the parsedata function found in the
file parse.asm. This function of the transmitter differs for each set of
constants K and q. Therefore, the actual parsing of data is carried out by one
of three sub-functions: parsedata96, parsedata144, or parsedata192. The
choice of which parsing function to use is determined at the beginning of the
execution of the program and is dynamically executed by using the bacc
assembly language instruction.

2.3 Point-Select

The unique method of 2D point selection used by the V.34 transmitter is one
of its main advancements over previous generations of modems. It is
because of these advancements that data-transmission rates twice those
of older modems are now achievable.

The V.34 transmitter selects 2D points from a subset of the 2Z2+(1,1) lattice.
This subset is called the superconstellation, and it consists of 960 total
points. A 240-point subset of the superconstellation, on the 4Z2+(1,1) lattice,
is shown in Figure 4. The full superconstellation can be obtained from this
subset by rotating it by 0�, 90�, 180�, and 270� degrees. Each combination
of symbol rate and data rate uses a particular subset of the
superconstellation; rarely is the full superconstellation utilized. In this report,
these subsets of the superconstellation are referred to as transmission
constellations.

V.34 Transmitter

SPRA1598

194

238 186

108148

142 103

5075

69 43

6

1

1328

22 9

84

0 5

3821

16 32

9363

56 85

171127

122 163

219

213

190 106144 4573 31125

199 113152 5280 121933

210 128167 6794 273447

232 149183 89115 465368

176214 116139 7482

2

95

187

205

5936

150

166

176

124

107

88

114

10

130

2614 6642

184

174

215

134

145

97

153

23

169

4029 8157

233

187147

192

111

200

44

211

6151 9978 209168132

70 8676 129104 235195157

105 120109 161136 227191

143 159151 202178 231

188 204196 223

217

225

237

206234 164173185

226 165193 123133146

189229 131156 8796110

160201 98126 586479

222 135177 77102 354155

203 119158 6084 172439

162 181170 220197

121 137125 179154 207

83 10092 140117 208172

54 7162 11290 221180141

31 4837 9165 198155118

15 3020 7249 182138101 230

216224236 212 228218

239

-31

-23

-27

-15

-19

-3

-7

-11

1

9

5

17

13

29

25

21

33

-35

-31 -23-27 -15-19 -3-7-11 1 95 1713 292521 33-35

-31 -23-27 -15-19 -3-7-11 1 95 1713 292521 33-35

-31

-23

-27

-15

-19

-3

-7

-11

1

9

5

17

13

29

25

21

33

-35

Figure 4. 240-Point Quarter Superconstellation

The points of the transmission constellations are organized into concentric
rings of increasing distance from the origin. Each ring contains an equal
number of constellation points. The distance metric is defined as the
squared Euclidean norm, and it is proportional to the power of the point;
consequently, points farther from the origin have greater power. Since one
goal of the V.34 transmitter is to minimize the average power of the
transmitted signal, it is advantageous to use a point-selection scheme that
chooses points from inner rings more often than those from outer rings. This
aim is accomplished by the shell mapper.

V.34 Transmitter

9 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

The V.34 point-selection scheme has three parts that correspond to the
three sets of bits generated in the parse unit. First, the shell mapper uses
the K S bits to generate a sequence of eight rings. Second, the eight groups
of q uncoded Q bits are used to select a point within each ring from the
one-quarter superconstellation (see Figure 4). Third, the four groups of I bits
(along with output bits U0 from the trellis encoder) are used by the differential
encoder to rotate the four pairs of 2D points. The 90� rotations applied by
the differential encoder result in points from the full superconstellation.

2.3.1 Shell Mapper

Shell mapping is a technique used to achieve shaping gain while minimizing
the power of the transmitted signal [2],[3]. The shell mapper algorithm
selects a sequence of eight rings for the eight 2D points in a single mapping
frame.

All transmission constellations are divided into M rings labeled 0 to M±1.
Each of the rings is assigned a weight defined to be equal to its label (other
weight assignments are possible, but are not used in V.34). In one mapping
frame, there are M8 possible orderings of M rings, and the algorithm seeks
to map blocks of K bits to the 2K sequences of eight rings with the least
energy. The energy of a single block of rings is measured in terms of the total
weight of the block, which is the sum of the weights of its constituent rings.
The M8 sequences of rings are ordered from least weight to greatest, with
each sequence assigned a label from 0 to M8±1. Runs of sequences that
have the same weight form a shell (from which the algorithm derives its
name), and the sequences are ordered lexicographically within shells. The
first 2K sequences with the smallest weights are those selected by the shell
mapper algorithm. Therefore, given a K-bit number as input, the shell
mapper algorithm outputs the sequence of rings which has that number as
its label.

As an example, consider the sequence of rings {0,0,0,0,0,0,0,0}. It has
weight 0 and is assigned label 0 since there are no sequences of less weight.
Therefore, given an input of 0, the shell mapper will return the sequence
{0,0,0,0,0,0,0,0}. For weight 1, there are eight possible sequences. These
sequences are ordered {0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,1,0}, ...,
{1,0,0,0,0,0,0,0} with labels 1, 2, ..., 8. Together, they form the shell of weight
1. Given these labels as input, the shell mapper will select the corresponding
sequence of rings. At the other extreme, the sequence {5,5,5,5,5,5,5,5} has
weight 40 but is never selected by the algorithm since 2K < M8, leaving this
sequence with a label greater than 2K±1. Clearly, this inequality must hold
for the shell mapping to be possible.

V.34 Transmitter

SPRA15910

The easiest and fastest way to implement shell mapping is by table lookup.
However, the memory needed to store an 8 × 228-word lookup table far
exceeds that of most modem systems (as well as the 64K of SRAM on the
’C50 evaluation module that was used for this project). In light of this fact,
a divide-and-conquer approach, which combines smaller lookup tables with
some computational effort, is used. The ITU recommendation V.34 provides
the actual algorithm that was used in this implementation of a transmitter
(see Appendix A). A very brief description of how the algorithm works
follows.

Assume that the input to the shell mapper is a K-bit number R0. Three lookup
tables are used by the algorithm. The table g2(p) is the number of ring
sequences of length two with weight p. Likewise, table g4(p) is the number
of ring sequences of length four with weight p. Finally, the table z8(p) is the
number of ring sequences of length eight with weight less than p. The first
step in the algorithm is to determine the value p such that z8(p) < R0 <
z8(p+1). This value of p is the weight of the sequence of eight rings
corresponding to R0, and the difference R0–z8(p) is its offset into the shell
of equal-weight sequences. Using the value of the offset, the algorithm then
uses the g4 table to determine the weights and offsets of the two
sub-sequences of length four, which make up the final sequence. In a similar
fashion, the g2 table is used to find the weights of the four sub-sequences
of length two that constitute the final output sequence. Given the weight of
a length-two sequence, the two rings of the sequence can be determined by
a simple conditional statement. After finding the two rings in each of the four
sub-sequences, the final sequence is found by concatenation. A more
complete description of the algorithm is beyond the scope of this paper; refer
to Appendix A for a more detailed explanation.

The shell mapping operation is accomplished by the assembly language
function called shell_map in the source file named shell.asm. It accepts an
input in the accumulator and returns a sequence of eight shells in the array
mjk. Although the shell mapping algorithm remains invariant for any number
of shells, the lookup tables change with the number of shells. In this
implementation, the 9.6-kbps data rate requires M=6 shells, while the 14.4-
and 19.2-kbps data rates require M=12 shells. Two sets of tables are stored
to accommodate both configurations. The function shell_map dynamically
loads the addresses of all tables, so it can function correctly with any number
of shells (provided that the proper tables are pre-computed).

V.34 Transmitter

11 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

2.3.2 Mapper

Mapping the eight sets of uncoded Q bits to a point within a shell is a
straightforward operation. The points in Figure 4 are each labeled with a
number ranging from 0 to 239. They are numbered in order of increasing
power, and these numbers are the point indices into a lookup table. To select
a point within shell m with a given set of q Q bits = {Q1,Q2,...,Qq}, the following
equation is used:

point index� Q1� 21Q2�, . . . , 2q–1Qq� 2qm

In essence, the Q bits are taken as a binary number, and they are added to
the index of the first point within the shell. This addition results in the index
of a point within the quarter superconstellation. This point can then be
retrieved from the lookup table for further processing by the differential
encoder.

The mapping operation is carried out by the assembly language function
get_initial_point found in the source file getpoint.asm. It loads the
constellation point from a table called coords in the file data.asm.

2.3.3 Differential Encoder

After the initial points from the quarter superconstellation have been
selected by the shell mapper and the mapper portions of the point-select
unit, they are differentially encoded to ensure that the transmitted sequence
of symbols is 90o rotationally invariant. The differential encoder takes four
bits as inputs: one set of three I bits, and the output bit U0 from the trellis
encoder (described later). It operates on one 4D symbol (two 2D points) at
a time. Therefore, for one mapping frame, the differential encoder is applied
four times. In contrast, the shell mapper is called once per mapping frame,
and the simple mapper is used eight times.

The purpose of the differential encoder is to make the sequence of symbols
generated by the transmitter invariant to 90o rotations. Since the receiver
cannot detect a phase offset of 90o (i.e., the constellation looks the same
rotated 90o), the data to be transmitted is encoded according to differences
in phase rather than absolute phases. This encoding is accomplished by the
following procedure.

Assume that the input to the differential encoder is {I3, I2, I1, U0}, and that the
encoder has a pair of initial points (i.e., one 4D symbol) to encode. Then, by
considering the bit pair (I3,I2) to be a 2-digit binary number, the differential
encoder calculates the modulo-4 sum

V.34 Transmitter

SPRA15912

Zm� [(I3, I2)� Zm–1] mod 4,

where Zm±1 is the previously calculated value of Zm. The 2-bit number Zm
can assume the values (0,1,2,3) and represents a rotation of Zm*90o

clockwise. The first point of the 4D pair then is rotated by the amount
specified by Zm. The second point in the 4D pair is rotated in a similar
manner, with the rotation factor computed as

Wm� [(Zm� (I1, U0)] mod 4,

where (I1,U0) is considered a 2-digit binary number. The second point then
is rotated Wm*90o clockwise.

The functions of the differential encoder are performed by three assembly
language routines:

• Compute_rotation_factorZ

• Compute_rotation_factorW

• Rotate90_cw

These routines are found in the source file rotate.asm and provide
straightforward implementations of the operations described previously.

2.4 Precode

The precode unit consists of the combined nonlinear precoder and trellis
encoder. The innovative combination of the two is another feature unique to
the V.34 modem. By including the trellis encoder in a feedback loop (as
shown in Figure 1), it is possible to compensate for the noise-whitening
prediction-error filter of the V.34 receiver without destroying the shaping gain
provided by the shell mapper.

2.4.1 Nonlinear Precoder

The V.34 receiver contains a 4-tap prediction-error filter that is used for
noise-whitening purposes. This finite impulse response (FIR) filter has
complex coefficients and is given by the transfer function

H(z)� 1� h1z–1
� h2z–2

� h3z–3.

V.34 Transmitter

13 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

The V.34 transmitter contains a local replica of this filter, the inverse of which
is used to precode the transmitted signal points. This precoding has the
effect of pre-emphasizing the points in a certain way so that they will be
properly decoded at the receiver after the noise-whitening process. The
downside of this precoding is that it destroys the trellis sequence (see next
section) that is transmitted. To remedy this situation, V.34 provides for a
correction bit to be computed by the nonlinear precoder to preserve the
validity of the trellis sequence. This correction bit, C0, is computed once for
every 4D symbol. It is then exclusive-ORed with the output Y0 of the trellis
encoder to form the bit U0, one of the input bits to the differential encoder.

The functions of the nonlinear precoder are performed by a variety of short
assembly routines in the transmitter. The filtering process is done by a pair
of routines: precoder_filter_real and precoder_filter_imag. The strict
rounding procedures dictated by the V.34 recommendation are carried out
by two functions: round_precoder_output and quantize. The function
quantize is actually a wrapper for three other functions, quantize96,
quantize144, and quantize192, each of which executes slightly different
rounding techniques for the different speeds of the transmitter. The
computation of the correction bit is done by the routine compute_C0. These
routines are found in the source files pre_filt.asm, quantize.asm, and
conv_enc.asm.

2.4.2 Trellis Encoder

In short, trellis encoding is a method of achieving coding gain by increasing
the density of the constellation while keeping the minimum distance
between points the same. One important task of the trellis encoder is to
ensure that the transmitted sequence of points conforms to a trellis
sequence. A valid trellis sequence is essential for proper decoding by the
receiver. Explaining the details of trellis encoding could easily fill this entire
paper, so the interested reader is referred to L-F Wei’s paper “Trellis-Coded
Modulation with Multidimensional Constellations” [4]. It is instructive to note
that while trellis encoding has been used in previous modem designs, the
unique feedback configuration is particular to the V.34.

V.34 Transmitter

SPRA15914

There are three 4D trellis encoders specified for use with V.34: a 16-state
code, a 32-state code, and a 64-state code. In this transmitter, however, only
the 16-state 4D code invented by L-F Wei is implemented. The heart of the
trellis encoder is the 16-state convolutional encoder shown in Figure 5. In
a typical configuration, the convolutional encoder’s two inputs would be
taken from the differentially encoded I bits. However, when configured as in
the V.34 transmitter, the inputs are computed from the output points after the
nonlinear precoding has been applied. The algorithm for computing these
inputs to the convolutional encoder from the precoded output points is given
in Appendix A. This algorithm yields the inputs for all three types of encoders
for V.34. Modifying the transmitter to use one of the other codes would
require only inserting a new state table to implement the convolutional
encoder.

D2 D2D2D2

Y2(m) Y2(m)

Y0(m)

Y1(m)

Figure 5. 16-State Convolutional Encoder

The output Y0 of the convolutional encoder is computed once for every 4D
symbol. After modification by the correction bit C0, the resultant bit U0 is
used to select the next 4D point. It is important to note that the output of the
convolutional encoder depends only on past 4D symbols. This fact makes
it possible to connect it in such a feedback loop.

The trellis encoder is implemented in the program with two lookup tables by
the function do_convolutional_encoder. One lookup table is used by the
algorithm in Appendix A to compute the inputs to the convolutional encoder,
and the other is used to compute the next state and output of the encoder
given the current state and the inputs. The U0 bit is calculated by the function
compute_U0. Both of these routines are found in the file conv_enc.asm.

V.34 Transmitter

15 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

2.5 Modulate

The QAM of the transmitter is done in an efficient manner. The
digital-to-analog (D/A) converter on the EVM is configured to operate at
9600 samples per second. With a symbol rate of 2400 symbols/sec, this
results in four samples per symbol. A window of eight 2D symbols is stored
at any one time, so the modulator uses a baseband-shaping filter
32-samples wide whose output is modulated up to the passband around the
carrier frequency of 1800 Hz. The shaping filter used is a raised cosine filter
with excess bandwidth factor equal to 0.12. However, to save computation,
two passband-shaping filters are used: one for the in-phase component, and
the other for the quadrature component, both of which have been
pre-modulated by the carrier frequency. The 2D symbols must be modulated
into the passband before application of the filters. Because of the particular
choice of symbol rate and carrier frequency (2400 symbols/second and
1800 Hz), this modulation of the symbols simplifies to a rotation by a multiple
of 90o. This operation is performed by a short-jump table routine.

To save further computation, the passband-shaping filters are implemented
as four banks of 8-tap interpolation filters. Instead of
256 multiply-and-accumulate instructions per output symbol (32 taps ×
4 samples × 2 channels), only 64 (8 taps × 4 samples × 2 channels) are
required.

The QAM in the transmitter is performed by two functions: QAM_mod and
QAM_wait, located in the qam_mod.asm source file. QAM_mod performs
the actual filter calculations using repeated mac and macd instructions,
while QAM_wait simply pauses the execution of the program so that the
interrupt-driven output procedure can “sync up” with the main transmitter
routines. Since the ’C50 DSP is idle over 95% of the time that the transmitter
is executing, the QAM_wait function is essential for synchronizing the
program to the symbol rate.

V.34 Transmitter

SPRA15916

Demodulate

Decode

Passband
Equalizer

Demod
 Prediction
Error Filter

Viterbi
Decoder

y(n)

x(n) y(n)

Inverse
Precoder

Inverse
Map

Analog
Signal

Output
Bitsu(n)

Figure 6. Block Diagram of Receiver

V.34 Receiver

17 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

3 V.34 Receiver

A block diagram of this implementation of a typical V.34 receiver is shown
in Figure 6. The receiver consists of two logical units that correspond to the
two major functions of a modem receiver. The first unit, demodulate, accepts
an analog waveform as input and demodulates it from a passband QAM
signal to a series of baseband signal points. Much of the demodulate unit
is based on algorithms found in reference [5]. The second unit, decode,
takes the raw 2D points output by the demodulate unit, determines the most
likely trellis sequence of constellation points, and decodes each mapping
frame into the original sequence of bits.

3.1 General Overview

The goal of the V.34 receiver is to sample the sequence of 2D points that was
transmitted by the V.34 transmitter and to perform the inverse of the
transmitter’s encoder operations on this sequence. This goal is simple in
theory but difficult to achieve in practice because the transmitted QAM signal
is distorted by a variety of nonlinearities during its journey to the receiver. In
typical modem connections, these distortions result from traversing
numerous consumer phone lines and switching stations. For the
transmitter-receiver pair of this project, the distortions arise as the
transmitted signal travels through a coaxial cable, into an oscilloscope, and
finally to the receiver. Clearly, the distortions experienced by this signal are
(presumably) less than those found on a standard phone line, but they are
significant nonetheless.

The ideal situation for any modem receiver is to sample the exact
transmitted analog signal at the precise symbol rate. By doing so, the
sequence of 2D symbols can be retrieved exactly. There are two primary
problems that prevent the receiver from doing this directly: first, the sampling
rate of the receiver may not match exactly the symbol rate of the transmitter;
and second, the received signal may not have the same “shape” as the
transmitted signal (i.e., even if the sampling rate were exact, the sampled
points would not be exactly those transmitted). The first problem is caused
by small, but significant differences in the environment of the transmitter and
the receiver. Temperature differences, clock crystal differences, and
numerous other factors contribute to slight mismatches in the symbol rates
between two modems. The second problem is due to the channel distortions
mentioned above. These variations are unpredictable characteristics of the
channel through which the signal is transmitted.

V.34 Receiver

SPRA15918

The front-end (demodulate unit) of the V.34 receiver is designed to combat
these sources of error in sampling signal points. The first problem is handled
by the symbol clock recovery mechanism. This process adjusts the
sampling rate of the receiver to match the symbol rate of the received signal.
The receiver’s nominal sampling rate is 7200 Hz, or about three samples per
symbol. The symbol clock recovery mechanism continuously corrects this
sampling rate based on a computed error estimate. A 144-tap adaptive
equalizer compensates for the second problem of channel distortion. The
adaptive equalizer is well suited to correcting problems due to unpredictable
channel conditions.

The back-end (decoder unit) of the V.34 receiver operates on the sequence
of 2D points that is returned by the demodulate unit. The main workhorse
of this portion of the receiver is the Viterbi decoder. The Viterbi decoder is
an algorithm that is used to determine the most likely sequence of points that
was received by the front-end. Once the most likely sequence has been
ascertained, the inverse-mapping and unshell-mapping routines transform
the points back into the original stream of bits that produced them. Like the
transmitter’s encoder algorithms, the receiver’s decoding algorithms work
on one mapping frame (eight 2D symbols) at a time. Brief descriptions of the
main units of the V.34 receiver follow.

3.2 Demodulate

Given an out-of-sync and distorted analog signal, it is the responsibility of
the demodulate unit to produce solid, accurate data for the decoder unit.
This is accomplished in two separate steps. First, the demodulate unit must
compensate for any errors in the signal’s phase. This is accomplished by the
symbol clock recovery section of the demodulator. This section of the
demodulator continuously modifies the sampling rate of the analog interface
chip (AIC) to ensure that the samples taken by the analog-to-digital (A/D)
converter will be as accurate as possible. The second problem, that of
channel distortion, is handled in the adaptive equalizer section of the
demodulator. This section maintains an array of coefficients which, when
convolved with the analog input signal, enables the demodulator to undo the
effects of channel distortion. Between these two tools, the demodulator is
able to transform an analog input into digital points for use by later parts of
the receiver.

V.34 Receiver

19 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

3.2.1 Symbol Clock Recovery

With a symbol rate of 2400 symbols/sec and a sampling rate of three
samples per symbol, the AIC is set to sample the received signal at a
frequency of 7200 Hz. Given this, the sampling instants are 1/7200 + t,
where t represents the clock phase. This phase varies due to offsets
between the transmitter and receiver, and the goal of the symbol clock
recovery loop is to adjust the AIC sampling frequency to ensure that t
remains as close to zero as possible. Any error in the clock recovery will
cause the receiver timing reference to drift away from the center of the delay
line. This would lead to inaccuracy and instability in the receiver.

Each time through the main loop, the main receiver program calls the
sym_clock routine in the file sc.asm. The main loop is executed every
sampling instant (every time a transmit interrupt occurs), as shown in
Figure 7. The sym_clock routine applies two bandpass filters to the sampled
data in the input buffer, inpbuffer. One of the filters is tuned to the upper
Nyquist frequency of 3000 Hz, while the other is tuned to the lower Nyquist
frequency of 600 Hz. The intermediate real variables, eta_l(n) and eta_h(n),
correspond to the upper and lower bandpass filter outputs, respectively.
They are computed every sampling instant. On the other hand, the
imaginary part of the product Gu(1/7200 + t)*Gl(1/7200 + t)’ is computed only
once per baud. After extraneous terms of the cross-correlation are removed
by DC and AC filtering, the timing error v(n) is hard-limited to 2, -2, or 0
depending on its sign. Then, v(n) is passed through a random walk filter to
reduce clock jitter, and the output is stored in a threshold flag. This threshold
flag, thresh, can have values of 1, -1, or 0. At this point, the AIC sampling
phase is either advanced or retarded depending on the value of thresh. If
thresh is negative, the AIC phase is retarded; if thresh is positive, the AIC
phase is advanced; and when thresh=0, the AIC phase is not adjusted. The
overall effect of this loop is to ensure that the AIC samples the analog signal
at the most accurate possible time.

V.34 Receiver

SPRA15920

AC & DC

Filter / Hard

Limiter

Im(Gu * Gl)A/D
Inpbufferr(t)

Delay (1 Baud)

Hl(w)

Hu(w)

+

+

*

Gu(1/7200 + t)

Gl(1/7200 + t)

v(n)

v(n) - Timing

Phase Error

Threshold

Detector

Figure 7. Symbol Clock Recovery Block Diagram

3.2.2 Phase-Splitting Fractionally-Spaced Equalizer

The purpose of the equalizer is to compensate for the amplitude and phase
distortions of the channel. Since channel frequency and noise statistics
cannot be known exactly, it is necessary to implement the equalizer using
a least-mean square (LMS) adaptive-tap-adjustment algorithm. The
process is illustrated in Figure 8. A general introduction to adaptive
equalization can be found in reference [6]. First, the baseband error is
computed by comparing the output from the demodulated filter to an ideal
constellation point. The goal is to iteratively minimize the baseband error (B)
by incrementing the complex tap values, h(m,n) = (hr1(m,n) + j*hi1(m,n)) by
small amounts in the directions opposite to the gradient. The gradient is
calculated from the following derivatives:

dB
dh

� dB
dhr1

� j * dB
dhi1

� –2 * E�e(nT) * inpbuffer �nT–m T
3
��

where e(nT) is the passband error, inpbuffer is the 144-word buffer where
the sampled received data are stored, n is the time instant, T is one over the
baud rate, and m runs from 0 to 143.

V.34 Receiver

21 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

In the equalize routine, found in the file eq.asm, the real filter hr1 is initialized
as a unit impulse function, so that its coefficients are zero everywhere except
for the center filter element, which is a one. The imaginary filter, hi1, is
initialized to be the Hilbert transform of hr1. First, the data in the input buffer
(inpbuffer) is convolved with real and imaginary filter taps. The convolved
output, represented in the program by two arrays sigR and sigI such that the
output is equal to (sigR + j*sigI), is then demodulated. This is accomplished
by performing a complex multiplication with the angle supplied by the carrier
tracking loop. The demodulated output (modR + j*modI) is then quantized
to the nearest ideal constellation point (cnR+j*cnI) in the slicer routine. Next,
the baseband error (diffR+ j*diffI) is computed by finding the difference
between the actual and the ideal points. Finally, this error is remodulated,
by again using the output from the carrier tracking loop to form the passband
error (errorR +j*errorI).

The routine eq_adapt, also found in eq.asm, uses the computed passband
error to update the filter taps (hr1 + j*hi1) in double precision. A block
diagram of the tap update process is shown in Figure 8. During any given
baud, only 36 real and imaginary filter taps of the 144 total real and imaginary
filter taps are updated. This is to ensure that the routine never runs for more
than one-third of a baud (2777 cycles). After testing the modem, it was noted
that by the time the initial training period is finished, the taps have become
very stable, and the updating can be done even less frequently.

Decode
Unit

Slicer

Carrier
Tracking

Loop

144-Tap
Adaptive
Equalizer

Tap Update

Input
X

-

X

144
Imaginary

144
Real

Figure 8. Equalizer Adaptation-Loop Block Diagram

V.34 Receiver

SPRA15922

Finally, the slicer routine, found in slicer.asm, quantizes (modR,modI) to the
ideal constellation point, (cnR,cnI). First, the routine zeros out the lowest
n bits of the incoming data (modR,modI). It then adds a one into the n-th bit,
resulting in an odd constellation point, and stores the upper 16 bits of the
modified data into (cnR, cnI). This number is hard-limited to a maximum
value and stored into cnR and cnI. Based on these values, the inverse
magnitude square of the point is computed, to be used in the carrier routine.

3.2.3 Fast Equalizer

The receiver employs a modified version of the training mechanism
described in “Rapid Training of a Voiceband Data-Modem Receiver
Employing an Equalizer with Fractional-T Spaced Coefficients” by Chevillat
et al. [7]. A simple block diagram can be found in Figure 9. The fast equalizer
routine first traps a periodic training signal in the delay line by counting off
a specified number of bauds after the carrier-detect routine has detected a
signal. The routine computes the equalizer coefficients by spectral division
and then performs coefficient centering of the computed data. The routine
thus performs cyclic equalization on a periodic training sequence (a
constant amplitude zero autocorrelation sequence) whose period is equal
to the length of the equalizer delay line.

Unscrambler
144 Point

Complex FFT

Unscramble2

fr

fi

Inpbuffer
Spectral

Division

hr1

hi1

144-Point

Complex IFFT

fr fi

Circular Copy

Real Equalizer

Coefficients

Imaginary Equalizer

Coefficients

Figure 9. Fast Equalizer Block Diagram

The implementation of this algorithm can be found in the fast_equalize
routine in the assembly language file fast.asm, which works as follows. First,
the input buffer, inpbuffer, is taken as the real part of the data, and the
imaginary part is set to all zeros. Next, a fast Fourier transform (FFT) is
performed on the data and the result is passed through the descramble
routine (found in the file descram.asm). Then, the following equation is
implemented to obtain the frequency components of the equalizer
coefficients, C(i):

V.34 Receiver

23 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

C(i) �
B(i mod 48) * D(i)�

D(i mod 48)2� D(48� i mod 48)2� D(96� i mod 48)2

where i runs from 0 to 143, and B(i) is the FFT of the periodic sequence
transmitted by the transmitter. Next, the FFT routine is used to compute the
inverse Fourier transform of C to get the equalizer coefficients in time
domain. Then, unscramble2 is called to unscramble the FFT output, fr. The
output is placed into gr, which is copied into hr1 in a circular fashion, placing
the maximum value from gr into the center of hr1. Finally, unscramble2 is
called again on fi, and the result, gr, is copied circularly into hi1 such that it
is rotated by the same amount. Through this process, the fast equalizer is
able to completely fill all real and imaginary coefficients in a single pass.

3.3 Decoder

The output of the demodulate unit is a sequence of noise-corrupted 2D
points. The first step of the decoder unit is to decide to which ideal
constellation points these distorted points correspond. This task is
accomplished by the Viterbi decoder. Next, groups of eight points (i.e., one
mapping frame) are passed through the inverse precoder and the inverse
mapper to be decoded into the output data stream.

3.3.1 Viterbi Decoder

The Viterbi maximum-likelihood algorithm is a procedure used for
determining the most likely sequence of transmitted points. The key concept
behind the operation of the Viterbi algorithm is the idea of a trellis sequence
that is generated in the transmitter by the trellis encoder.

Recall that the selection of points in the transmitter is governed in part by the
operation of a 16-state convolutional encoder (the trellis encoder). The
convolutional encoder takes only two input bits, implying that there are state
transitions out of each state to only four different subsequent states. It can
similarly be reasoned that there are four different transitions into each state
from four previous states. The encoder also has one output bit that is used
to select the 4D point from which the current two input bits are derived.
These three bits the two input bits and the single output bit taken
together as a binary number, specify in which of eight different 4D subsets
the current 4D symbol is found. Since this subset is specified in part by the
trellis encoder (and only a limited number of different state transitions are
possible), if the receiver can deduce which state the trellis encoder is in, it
can eliminate certain subsets of points from consideration when trying to
determine the most likely sequence.

V.34 Receiver

SPRA15924

The Viterbi algorithm is one way of implementing this point elimination
technique. It maintains a large table in memory to store all possible state
transitions and their probabilities of occurring for a finite window of 4D
symbols. This particular implementation keeps track of a history of 16 4D
symbols, and, for each 4D symbol, it stores 16 entries corresponding to the
16 states in the convolutional code. Each state entry contains a pointer to
the most likely previous state as well as a pointer to the ideal 4D constellation
points which correspond to the path to that state. The previous path pointers
in the table for the most current 4D symbol point back through 16 states in
the Viterbi table. These pointers form what is called a trellis path. At each
iteration of the Viterbi algorithm, the most likely trellis path is selected, and
the oldest 4D symbol in the path is output as part of the transmitted
sequence of symbols.

The Viterbi algorithm is initiated once every time the receiver has
demodulated two noise-corrupted 2D symbols (i.e., once every 4D symbol
period). It is assumed that the receiver has been operating for some time,
and that the Viterbi table has already been filled with valid data. The first step
in the algorithm is to quantize the noise-corrupted points to the closest point
in each of the eight possible 4D subsets. The squared errors for each of
these eight subsets, called the branch errors, are recorded. Next, the
algorithm iterates through each of the 16 state entries in the Viterbi table that
corresponds to the current 4D symbol. For each state, it seeks to update the
cumulative path metric, described in the following paragraph.

Each state has a previous cumulative path metric and a current cumulative
path metric (which is currently being computed). These metrics are the total
sum of all the individual branch errors that make up the trellis path
terminating at that state. A small cumulative path metric indicates that the
branches composing the path are very likely to be the correct ones. A large
path metric indicates just the opposite. Since the path branches correspond
directly to certain 4D symbols, finding the path with the smallest cumulative
path metric will result in the most likely sequence of points.

To compute the current cumulative path metric for a single state, the Viterbi
algorithm checks the four possible state transitions into that state. Each of
these transitions, or branches, has a branch error associated with it that was
calculated at the beginning of the algorithm. The current cumulative path
metric is chosen to be the minimum of the sums of the four previous path
metrics and their associated branch errors. The Viterbi algorithm updates
the current path metrics for all 16 states in this manner.

V.34 Receiver

25 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Once the current cumulative path metrics have been computed, the
algorithm can determine a 4D output symbol. It does this by following the
trellis path starting at the state with the smallest cumulative path metric back
until it reaches the oldest state in the table. The 4D symbol located at this
state then is output for further processing by the later stages of the decode
unit.

The assembly language routines for implementing the Viterbi algorithm are
found in the source file viterbi.asm. Quantizing to the 4D subsets and
calculating the branch errors are accomplished by the routines quantize4,
calculate_errors, and calc_branch_errors. Updating the cumulative path
metrics is done in two passes, eight states each, by the routines
update_path_metrics and upm_finish. Tracing back the most likely trellis
path is done by the function trace_back.

3.3.2 Inverse Precoder

The outputs of the Viterbi decoder correspond to the estimated trellis
sequence that was transmitted. However, because of the transmitter’s
nonlinear precoder, this trellis sequence is not necessarily the actual
sequence of points that was selected by the transmitter’s point-select unit.
To account for this possible discrepancy, the trellis sequence from the Viterbi
decoder must be inversely precoded by the inverse of the receiver’s noise
whitening filter. Performing this operation in the receiver is almost identical
to precoding the points in the transmitter.

The same routines for performing the precoding operation in the V.34
transmitter are used for the inverse precoder in the receiver with little
modification. They are found in the pre_filt.asm assembly language file.

3.3.3 Inverse Mapper

The goal of the inverse mapper is to recover the input bits (the S, Q, and I
bit groups) from one entire mapping frame. Ideally, the input to the inverse
mapper is the exact sequence of points that was output from the point-select
stage of the transmitter. To retrieve the original sequence of bits from these
points, it is necessary to invert the operation of the differential encoder, the
shell mapper, the simple mapper, the scrambler, and the parser. Undoing
these operations is very similar to the actual encoding methods themselves,
so the descriptions here will be brief.

Extracting the I bits from the received points is accomplished by reversing
the equations of the differential encoder. The rotation factor of the received
point within its ring is easy to obtain. With this information, it is possible to
solve the equations

V.34 Receiver

SPRA15926

(I3, I2)� [Zm–1–Zm] mod 4,
(I1, I0)� [Zm–Wm] mod 4,

to determine the bits (I3, I2, I1) for each received 4D point.

The Q bits and the ring index of each point are found through the use of an
inverse constellation point lookup table. This two-dimensional table is
indexed by the x and y coordinates of a constellation point, and its entries
contain the point indices of the point table in the transmitter. After consulting
the lookup table, the lower q bits of the index are masked off to obtain the
q Q bits. The remaining high-order bits after the first q constitute the ring
index of the point, and they are stored in an array until a block of eight ring
indices has been obtained. When eight ring indices have been stored, the
end of a mapping frame has been reached, and the unshell-mapper can be
called to compute the final K S bits of the original bit sequence. At this point,
the eight groups of Q bits have been retrieved.

The unshell-mapper is the most complex routine in the inverse mapper. In
essence, it precisely reverses the process of shell mapping to build the index
of the received 8-ring sequence. The unshell-mapper algorithm uses the
same tables g2, g4, and z8 as the shell mapper. It starts with the four pairs
of 2-ring indices. The length-2 shell mapper indices of these pairs are easily
determined by way of conditional statements. Next, the algorithm combines
the two pairs of length-2 sequences to determine the indices of the two
sequences of length 4. Finally, the algorithm combines the indices of the two
length-4 sequences to retrieve the index of the final length-8 sequence. For
a more detailed explanation of the inverse shell mapping algorithm, refer to
Appendix A.

Upon decoding the S, I, and Q bits, the inverse mapper reverses the
operation of the parser to combine these groups of bits into one final output
array. This array is then unscrambled using a descrambler algorithm with the
same generator polynomial as that found in the transmitter. If all went well,
the unscrambled output is the same sequence of bits that was transmitted.

The inverse mapper routines are found in the source files invmap.asm and
unshell.asm. The simple decoding of the differential encoder is done using
the routine get_binary_subset_label to determine the rotation factor of the
points and the routine compute_ibits to retrieve the I bits. The function
find_point_index returns the index of the unrotated 2D constellation point as
well as its uncoded Q bits and ring index. The routine unshell_map performs
the inverse shell mapping algorithm to determine the S bits of the mapping
frame.

Summary

27 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

4 Summary
This project is implemented on two TMS320C50 EVM systems. It consists
of two parts: a V.34 transmitter and a V.34 receiver. One-way communication
links at speeds of 9.6, 14.4, and 19.2 kbps can be established, and the
performance of the ’C50 DSP has been evaluated.

Four distinct operational units comprise the V.34 transmitter. The parse unit
transforms the input data stream into a form usable by the rest of the
transmitter. The point-select unit chooses a sequence of constellation points
in a manner that minimizes transmitted signal power and maximizes the
probability of correct decoding. The precode unit precodes the transmitted
points to compensate for a prediction error filter in the receiver and ensures
that these precoded points still conform to a valid trellis sequence. The final
unit, modulate, uses QAM to construct the final output waveform.

The V.34 receiver has been similarly divided into distinct units: the
demodulate front-end and the decode back-end. The demodulate unit is
responsible for correctly sampling the input analog waveform at the symbol
instants. It contains functions for symbol clock recovery as well as adaptive
channel equalization. The decode unit performs the inverse of the
transmitter’s encoding operations. It uses the Viterbi algorithm to determine
the most likely trellis sequence.

The operations required to perform the encoding and decoding functions for
V.34 are ideally suited to fast DSPs such as the ’C50. By implementing the
algorithms entirely in assembly language, it is possible to exploit the unique
hardware features of the ’C50. Simulations of the transmitter program
indicate that the DSP is idle (i.e., waiting for interrupts to occur) over 95%
of the execution time. Although the task of the receiver is more complex
computationally, even the most conservative estimates show that the DSP
is working less than 42% of the time. These numbers demonstrate that the
next phase of the implementation of a V.34 modem, the combination of the
transmitter and receiver functions onto one DSP, is easily achievable on a
single ’C50 DSP. Additional features of V.34, such as channel separation by
echo cancellation techniques, could be accommodated with the excess
processor time.

References

SPRA15928

References
1. ITU Study Group 14, “Draft Recommendation V.34 for a Modem

Operating at Data Signalling Rates of up to 28800 bit/s for Use on the
General Switched Telephone Network and on Leased Point-to-Point
2-Wire Telephone-Type Circuits”, Document 57-E, June 1994.

2. S. A. Tretter, “Fundamentals of Trellis Shaping and Precoding”,
unpublished notes.

3. R. Laroia, N. Farvardin, and S. A. Tretter, “On Optimal Shaping of
Multidimensional Constellations”, IEEE Trans. Inform. Theory,
Vol. IT-40, pp. 1044-1056, July 1994.

4. L. F. Wei, “Trellis Coded Modulation with Multidimensional
Constellations”, IEEE Trans. Inform. Theory, vol. IT-33, pp. 483-501,
July 1987.

5. S. A. Tretter, Communication System Design Using DSP Algorithms:
With Laboratory Experiments for the TMS320C30, Plenum Publishing
Corp., 1995.

6. R. D. Gitlin, J. H. Hayes, S. B. Weinstein, Data Communication
Principles, Plenum Publishing Corp, 1992.

7. P. R. Chevillat, D. M. Maiwald, and G. Ungerboeck, “Rapid Training of
a Voiceband Data-Modem Receiver Employing an Equalizer with
Fractional-T Spaced Coefficients”, IEEE Trans. Commun., vol. COM-35,
pp. 869±876, Sept. 1987.

8. v.34 transmitter and receiver code at:
ftp://ftp.ti.com/pub/tms320bbs/c5xfiles/apprep34.exe

Constellation Shaping by Shell Mapping

A-1 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Appendix A. VIII. Constellation Shaping by Shell Mapping
Selected excerpts from Dr. Steven A. Tretter’s “Fundamentals of Trellis
Shaping and Precoding” on the subject of shell mapping. Used with
permission.

A technique known as shell mapping or SVQ shaping has recently been
proposed for constellation shaping in V.fast modems. It achieves higher
shaping gains with comparable or less computational complexity than trellis
shaping or precoding. Shell mapping can be easily combined with trellis
channel coding. Constraints on constellation expansion ratio (CERs) and
peak-to-average ratio (PAR2) are easily included. Shell mapping achieves
shaping gains close to that of N-sphere shaping if there are no PAR2 or CERs
constraints. Also, LTF precoders can be cascaded with shell mapped
constellations to perform channel equalization at the transmitter without
destroying shaping gain.

Constellation Shaping by Shell Mapping

SPRA159A-2

The initial use of shell mapping appears to be in a commercial modem
manufactured by ESE1 of Canada to map data blocks to 24-dimensional
constellation points selected from the Leech lattice. This mapping method
was also suggested in a Ph. D. thesis by Frank Robert Kschischang2 of the
University of Toronto and he also thoroughly analyzed the problem of CERs
and PAR2 constraints using multidimensional truncated polydisks.
Khandani and Kabal3,4, also independently studied the properties of
truncated polydisks but did not give them a name and they discuss some
constellation addressing schemes that are not the same as the shell
mapping method proposed for V.fast. Also independently, Laroia, Farvardin,
and Tretter5 at the University of Maryland discovered the same shell
mapping and truncated polydisk ideas of Kschischang which they called
structured vector quantizer (SVQ) shaping. In addition, they suggest
grouping the shells into rings as suggested by Calderbank and Ozarow6 to
simplify the mapping complexity yet retain most of the possible shaping gain.
In May 1992 Motorola Information Systems7 (Codex) presented a paper to
the CClTT V.fast committee also proposing the use of shell mapping and
rings to achieve shaping gain relatively easily and stated that “Trellis
shaping is no longer required.”
1. G. Lang and F. Longstaff, “A Leech Lattice Modem,” Journal on Selected Areas in

Communications, Aug. 1989.

2. Frank Robert Kschischang, “Shaping and Coding Gain Criteria in Signal Constellation
Design,” Ph.D. Thesis, University of Toronto, Canada, Department of Electrical
Engineering, Communications Group Technical Report, June 1991.

3. A.K. Khandani and P. Kabal, “Shaping Multi-dimensional Signal Spaces — Part I:
Optimum Shaping Shell Mapping,” Submitted to IEEE Trans. Information Theory, July
5, 1991, Revised April 1, 1992. Presented in part at the IEEE Int. Symp. Inform. Theory,
June 24–28, 1991.

4. A.K. Khandani and P. Kabal, “Shaping Multi-dimensional Signal Spaces — Part II:
Shell-addressed Constellations,” Submitted to IEEE Trans. Information Theory, July 5,
1991, Revised April 1, 1992.

5. Rajiv Laroia, Nariman Farvardin, and Steven A. Tretter. “On SVQ Shaping of
Multidimensional Constellations — High-Rate Large-Dimensional Constellations,”
Proceedings of the Princeton Conference on Information Sciences and Systems, March
1992. Also submitted to the IEEE Trans. on Information Theory, January 1992.

6. A.R. Calderbank and L.H. Ozarow. “Nonequiprobable Signaling on the GAussian
Channel.” IEEE Transactions on Information Theory, Vol. 36, No. 4, July 1990,
pp. 726–740.

7. Motorola Information Systems, “Signal mapping and shaping for V.fast.” CCITT working
paper, Question 3/XVII, WP XVII/1, May 1992.

(VIII–1)

Constellation Shaping by Shell Mapping

A-3 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

A. System Description

The block diagram of the transmitter for a system using shell mapping for
constellation shaping is shown in Figure VIII–1. The diagram shows the Wei
16-state 4D channel code but can easily be generalized to use any channel
code. As described in Section IV, the transmitted 2D constellation is a subset
of z2+(1/2�

1/2) and this constellation is partitioned into four 2D subsets A, B,
C, and D. The Wei encoder takes in 3 bits every 4D symbol and generates
4 output bits per 4D symbol. The first and second pairs of output bits specify
the pair of 2D symbols that form the 4D subset selected by the Wei encoder.

2D Symbol
Selector

Shell Mapping Ring
Sequence Algorithm

WEI 4D Encoder With the
Differential Encoding

Blocks of N
Ring Indices

(r1, r2, . . . , rN)

Select Point Within
Ring and Subset

nc = 4 Bits per
4D Symbol

Sequences of
2D Subsets

K Bits per
Shaping Block of

N 2D Symbols

u Uncoded Bits
per 2D Symbol

kc = 3 Bits per
4D Symbol

Figure VIII–1. Constellation Shaping With Shell Mapping

The 2D constellation is partitioned into M “rings” so that each ring contains
the same number of points according to the approach of Calderbank and
Ozarow. Furthermore, if the transmitter accepts u uncoded bits per 2D
symbol, each ring must contain 2u points from each of the four 2D subsets.
Thus the total number of points in the 2D constellation is

L� 4M 2u
� M 2u�2

The ring closest to the origin should contain the 2u+2 constellation points of
least energy. The next ring should contain the next 2u+2 points in order of
energy, etc.

(VIII–2)

(VIII–3)

(VIII–4)

(VIII–5)

(VIII–6)

(VIII–7)

Constellation Shaping by Shell Mapping

SPRA159A-4

The sequence of 2D rings is determined on a block basis by the shell
mapping algorithm. The transmitter takes in K bits every N 2D symbols to
select a block of N rings. The shell mapping algorithm for selecting the ring
sequences will be described in detail in the following sections. Basically, the
algorithm maps blocks of K bits to the 2K least energy blocks of N rings out
of the MN possible ring blocks. The algorithm requires a reasonable amount
of computation and memory for tables.

A relationship between the number of rings M and the number of shaping
bits K will now be determined. The K shaping bits specify 2K blocks of
N rings. Each 2D constellation is partitioned into M rings, so there are
MN possible ring blocks. Therefore, it is necessary that

2K � MN or 2K�N � M

To achieve shaping gain, the constellation size must be expanded. Forney
and Wei8 show that most of the available shaping gain can be obtained with
a constellation expansion ratio of CERs = 1.5. Each shaping block the
transmitter accepts Nu uncoded bits, K shaping bits, and 3(N/2) coded bits
which the Wei encoder converts to 4(N/2) bits. Thus the total number of bits
for constellation point selection per block is

B� Nu� K� 4(N�2)� N(u� 2)� K

In an unshaped system this requires a 2D constellation of size

[2
N(u�2)�K]

1�N

� 2u�2�K�N

According to (VIII–1), the number of points in the 2D constellation for the
shell mapped system is L = M 2u+2 so the constellation expansion ratio is

CERs � M 2u�2�2u�2�K�N � M2–K�N

If CERs is required to be no greater than 1.5, this upper bounds M by

M� 1.5 2K�N

Combining (VIII–2) and (VIII–6), we see that M must be limited to the range

2K�N � M� 1.5 2K�N

8. G.D. Forney and L-F. Wei, “Multidimensional Constellations, Part I,” IEEE J. SAC,
Vol. 7, No. 6, August 1989, p. 887.

(VIII–8)

(VIII–9)

(VIII–10)

(VIII–11)

(VIII–12)

Constellation Shaping by Shell Mapping

A-5 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

The selection of the number of rings M allows a tradeoff between
constellation expansion and shaping gain. Using the smallest M gives the
smallest constellation expansion and smallest shaping gain, while the
largest M gives the largest constellation expansion and shaping gain.

The Motorola CCITT paper7 on page 7 has some additional formulas
relating M, L, and K. We will now see where they come from. First, the
number of shaping bits K can be divided by the shaping block length N to
give a quotient p and remainder k. Thus K can be expressed as

K� Np� k for 0� k� N–1

Substituting this form for K into (VIII–3) gives

B� N(u� 2)� K� N(u� 2)� (Np� k)� N(u� 2� p)� k

� nN� k where n� u� 2� p or u� 2� n–p

According to (VIII–1) the number of points in the 2D constellation is

L� M 2u�2
� M 2n–p

The number of uncoded bits must be positive, so from (VIII–9) we find that

u� n� 2� p� 0

or 0� p� n–2

and n� 2

For a fixed 2D constellation size L, increasing p forces the number of rings
M to increase and results in greater complexity. For a block size of N=8,
Motorola recommends using p � 3.

B. Weights of Ring Blocks, the Basic Concept of Shell Mapping, and Some
Data Tables Required for Efficient Implementations

Suppose that the rings are labelled from 0 to M–1 with ring 0 being closest
to and ring M–1 furthest from the origin. Let a block of ring indices be denoted
by

r� [r1, r2,��� , rN]

(VIII–13)

(VIII–14)

(VIII–15)

Constellation Shaping by Shell Mapping

SPRA159A-6

with ri � {0, 1, ��� , M–1} for i=1, ... , N. Each ring must be assigned an integer
weight W1(ri) where the subscript 1 indicates that the argument is a
one-dimensional vector. For example, assuming that the constellation point
coordinates are integers, the ring weight could be the average squared
distance of points in the ring from the origin. Motorola7 suggests using the
weight function w1(i) = i for i = 0, ... , M–1. Justification is given in
Appendix VIII–A. The ring weights must form a nondecreasing sequence,
that is,

w1(0) � w1(1) ���� � w1(M–1)

The weight of a sequence will be defined as the sum of the component
weights, that is

wN(r) ��
N

i�1

w1(ri)

The basic idea behind shell mapping is that the MN possible ring blocks are
arranged in an ordered list with lower weight blocks appearing closer to the
beginning of the list. There may be many blocks with the same weight and
these are called a shell. We will see how to lexicographically order the blocks
in a shell. The block at the beginning of the list will be labelled or indexed by
0 and the one at the end by MN – 1. The 2K blocks closest to the beginning
of the list which are also the 2K lowest weight blocks are used as the shell
sequences. Encoding is performed by using the binary K-tuples of shaping
bits as the indexes of the list elements. Decoding is performed, basically, by
observing that given a ring block, its index is the number of blocks below it
on the list. We will see how to achieve reasonable table storage
requirements by a “divide and conquer” approach where the N dimensional
problem is divided into two N/2 dimensional problems, etc. The problem,
then, is to efficiently assign shaping K-tuples to ring blocks and vice versa.

To perform shell mapping, the number of vectors with a given weight must

be known. Let Mp(j) be the number of p-tuples of ring indices r � �r1,��� , rp�
with total weight j � w1

	r1

 � ��� � w1

	rp
. The weight generating
function is defined to be

Gp (z) � �
k

Mp (k) zk

For example, with the Motorola weight function w1(i)=i, the number of
1-tuples of weight j is M1(j) = 1 for j = 0, ... , M–1 and is 0 otherwise. The
corresponding generating function is

(VIII–16)

(VIII–17)

(VIII–18)

(VIII–19)

Constellation Shaping by Shell Mapping

A-7 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

G1 (z)� �
M – 1

k� 0

zk � 1–zM

1–z

The number of (2p)-tuples of weight j can be computed from the number of
p-tuples of each weight in the following way. Each 2p-tuple can be
considered to be the concatenation of a pair of p-tuples. The weight of the
2p-tuple is the sum of the weights of the two p-tuples. If the first p-tuple has
weight k, then the second p-tuple must have weight j–k to make the total
weight equal to j. Thus the number of 2p-tuples of weight j must be

M2p (j) � �
j

k�0

Mp(k) Mp(j–k)

This sum is just a convolution so the corresponding generating function is

G2p (z) � G2
p (z)

If the shaping block length N is a power of 2, MN(j) can be found by
successively applying (VIII–17) for 2p = 2, 4, ... , N since the initial sequence
M1(j) is easily determined. The shell mapping encoding and decoding
algorithms assume that the intermediate results Mk(j) have been stored in
memory for k = 1, 2, 4, ... , 2n, ... , N/2 and all relevant j.

Another sequence that will be used in shell mapping is the number of ring
blocks with weight less than or equal to j. This will be designated by CN(j)
and can be computed from MN(j) by

CN (j) � �
j

k�0

MN (k)

These values should also be stored in a table.

The number of ring blocks required is 2K. Thus, the maximum value, J,
required for j is the smallest j such that CN(j) � 2K. Then 2K blocks can be
selected from the CN(J) blocks. J is called the SVQ threshold.

(VIII–20)

(VIII–21)

(VIII–22)

(VIII–23)

Constellation Shaping by Shell Mapping

SPRA159A-8

C. The Decoding Algorithm
The shell mapping technique can be best understood by first looking at the
decoding algorithm, which is the method for mapping a received block of
N rings back into the original input block of K shaping bits. In the receiver,
the received signal is demodulated and Viterbi decoded to give a maximum
likelihood estimate of the transmitted sequence of constellation points. Then
blocks of N estimated 2D constellation points are quantized into blocks of
ring indexes.

Given a received block r of N ring indexes, the decoding function DN(r)
computes the index of r in the list. The decoding function can also be
expressed as

DN (r) � {number of blocks below r on the list}

Binary shaping K-tuples can be assigned to ring blocks in many ways. The
method we will examine is based on a splitting algorithm that successively
divides blocks into pairs of half the length until blocks of length 1 are
reached. Therefore, we will assume that the original block length is a power
of 2, that is, N = 2q.

At each step, the i-tuples of rings will be ordered according to rules which
will be given shortly. The decoding, ordering, or indexing function on i-tuples
will be called Di(·).

The ordering of 1-tuples is easy. According to (VIII–13), the ring weights
must form a nondecreasing sequence. Therefore, 1-tuples will be listed in
numerical order. That is, the one-dimensional decoding function is

D1(r)� r for r� 0, ..., M–1

This is the starting point for building higher dimensional decoding functions.

As a matter of notation, let an i-tuple of ring indexes be

r[i]
�

�r1, ..., ri
�

The first and second halves of r[i] will be designated by

r
[i]
1 � [r1, ��� , ri�2] and r

[i]
2 � [ri�2�1, ��� , ri]

We will now see how to define a decoding function for i-tuples in terms of one
for i/2-tuples. Assume Di/2(·) is known. First, order i-tuples of rings according
to the following rules for the three possible cases:

(VIII–24)

(VIII–25)

Constellation Shaping by Shell Mapping

A-9 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Case 1: Different Weight i-tuples

An i-tuple u[i] is listed below v[i] if wi
�u[i]	 < wi

�v[i]	 where wi(�) is the
i-dimensional weight function.

Case 2: Equal Weight i-tuples, but First Halves have Different
i/2-dimensional Indexes

When wi
�u[i]	 = wi

�v[i]	, then u[i] is listed below v[i] if

Di�2 (u
[i]
1) � Di�2 (v

[i]
1)

Case 3: Equal Weight i-tuples. Indexes of 1st Halves are the same

When wi
�u[i]	 = wi

�v[i]	 and u1
[i] = v1

[i], then list u[i] below v[i] if

Di�2 (u
[i]
2) � Di�2 (v

[i]
2)

.

The i-dimensional decoding function can also be expressed in terms of the
following function:

Ni
�v[i]	 � {number of i-tuples u[i] with wi(u

[i]) � wi(v
[i])

and u[i] below v[i] }

This quantity will be called the offset into the shell. Then, the i-dimensional
decoding function can be expressed as

Di
�v[i]	 � {number of i-tuples below v[i]}

� {number of i-tuples u[i] with wi(u
[i]) � wi(v

[i])}
� {number of i-tuples u[i] with wi(u

[i]) � wi(v
[i])

and u[i] below v[i]}

� Ci
�wi

�v[i]	 – 1� � Ni
�v[i]	

The quantities Di(·) for i < N do not have to be computed. Also, Ci(·) is needed
only for i=N. Finally, we will see in the next paragraph how to recursively
compute Ni(·) for i = 2, 4, ... , N using Ni/2(·) and Mi/2(·). Then DN(·) can be
computed by (VIII–25) for i=N.

The vectors counted in Ni(v[i]) can be partitioned into the following three
types:

(VIII–26)

(VIII–27)

(VIII–28)

(VIII–29)

(VIII–30)

(VIII–31)

(VIII–32)

Constellation Shaping by Shell Mapping

SPRA159A-10

Type 1: 1st Halves Differ in Weight

Consider the set

�u[i] � wi (u[i]) � wi(v
[i]) �wi�2 (u

[i]
1

) � wi�2 (v
[i]
1

)�
The number of elements in this set is

a1 � �
wi�2 (v

[i]
1) –1

k�0

Mi�2 (k) Mi�2 [wi (v[i])–k]

Type 2: 1st Halves Differ but Have the Same Weight

Consider the set

�u[i] � wi (u[i]) � wi (v[i]) � wi�2 (u
[i]
1) � wi�2 (v

[i]
1) � Di�2 (u

[i]
1) � Di�2 (v

[i]
1)�

According to (VIII–24), the number of choices for u1[i] is Ni/2(v1[i]). The total
weight must be wi(v[i]), so the number of choices for u2[i] is Mi/2[wi(v[i]) –
wi/2(v1[i])]. Thus the number of type 2 vectors is

a2 � Ni�2 (v
[i]
1) Mi�2 [wi (v[i])–wi�2 (v

[i]
1)]

Type 3: 1st Halves Identical

The number of vectors in the set

�u[i] � wi
	u[i]
 � wi

	v[i]
� u
[i]
1 � v

[i]
1 �Di�2 	u [i]

2

 � D1�2 	v [i]

2

�

is

a3 � Ni�2 	v [i]
2

Notice, also, that the weight of v[i]
2
 is

wi�2 	v [i]
2

 � wi

	v[i]
 � wi�2 	v [i]
1

(VIII–33)

(VIII–34)

(VIII–35)

(VIII–36)

Constellation Shaping by Shell Mapping

A-11 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Adding the numbers for the three cases gives

Ni
	v[i]
 � �

wi�2 (v
[i]
1)–1

k�0

Mi�2 (k) Mi�2
�wi

	v[i]
 � k�

� Ni�2 	v
[i]
1

 Mi�2 �Wi�2 	v [i]

2

�� Ni�2 	v [i]

2

The decoding operation is performed iteratively. First, r = v[N] is divided into
N/2 pairs of ring indexes and N2(·) is computed for each of the pairs using
(VIII–33). Adjacent pairs are then combined into N/4 4-tuples and N4(·) is
computed for each. The doubling procedure is repeated until NN(r) is
computed. Then the index DN(r) is computed by (VIII–25) with i=N.

Example VIII–1. N = 2 and Motorola Weight Function

Let the one-dimensional weight function be

w1 (r) � r for r � 0, ��� , M � 1

and designate 2-tuples by v[2] � [r1, r2]. The number of 1-tuples of each
weight is

M1 (k) � �10 for k � 0, ��� , M � 1
elsewhere

For this example,

v1
[2] � �r1

� and v2
[2] � �r2

�

Then, according to (VIII–33), the shell offset is

N2
	v[2]
 � �

w1
	r1

 � 1

k�0

M1 (k) M1
�w2

	v[2]
 � k�

� N1
	r1

 M1

�w2
	v[2]
 � w1

	r1

� � N1

	r2

(VIII–37)

(VIII–38)

Constellation Shaping by Shell Mapping

SPRA159A-12

Since there is a single 1-tuple of each weight, N1(r) = 0, so the last line of
(VIII–36) is zero and

N2
�v[2]	 �

r1 �1

k�0

M1
�k	 M1

�r1 � r2 � k	 �

r1 �1

k�0

M1
�r1 � r2 � k	

From Figure VIII–2 it can be seen that this sum is

N2 ��r1, r2
�	 � �r1

M � 1 � r2

for 0 � r1 � r2 � M � 1

for M � r1 � r2 � r1 � M � 2

Example of Shell Sequence Ordering for N = 4 and M = 3
D1(r) r

0 0 M1(0) = 1

1 1 M1(1) = 1

2 2 M1(2) = 1

D2(r) r

0 00 M2(0) = 1

–––––––––––– –––––––––––

1 01 M2(1) = 2

2 10

–––––––––––– –––––––––––

3 02 M2(2) = 3

4 11

5 20

–––––––––––– –––––––––––

6 12 M2(3) = 2

7 21

–––––––––––– –––––––––––

8 22 M2(4) = 1

D4(r) r

0 0000 M4(0) = 1

–––––––––––– –––––––––––

1 0001 M4(1) = 4 C4(0) = 1

2 0010

3 0100

4 1000

Constellation Shaping by Shell Mapping

A-13 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

–––––––––––– –––––––––––

5 0002 M4(2) = 10 C4(1) = 5

6 0011

7 0020

8 0101

9 0110

10 1001

11 1010

12 0200

13 1100

14 2000

–––––––––––– –––––––––––

15 0012 M4(3) = 16 C4(2) = 15

16 0021

17 0102

18 0111

19 0120

20 1002

21 1011

22 1020

23 0201

24 0210

25 1101

26 1110

27 2001

28 2010

29 1200

30 2100

–––––––––––– –––––––––––

31 0022 M4(4) = 19 C4(3) = 31

32 0112

33 0121

34 1012

35 1021

36 0202

37 0211

38 0220

39 1102

40 1111

Constellation Shaping by Shell Mapping

SPRA159A-14

41 1120

42 2002

43 2011

44 2020

45 1201

46 1210

47 2101

48 2110

49 2200

–––––––––––– –––––––––––

50 0122 M4(5) = 16 C4(4) = 50

51 1022

52 0212

53 0221

54 1112

55 1121

56 2012

57 2021

58 1202

59 1211

60 1220

61 2102

62 2111

63 2120

64 2201

65 2210

–––––––––––– –––––––––––

66 0222 M4(6) = 10 C4(5) = 66

67 1122

68 2022

69 1212

70 1221

71 2112

72 2121

73 2202

74 2211

75 2220

–––––––––––– –––––––––––

76 1222 M4(7) = 4 C4(6) = 76

Constellation Shaping by Shell Mapping

A-15 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

77 2122

78 2212

79 2221

–––––––––––– –––––––––––

80 2222 M4(8) = 1 C4(7) = 80

–––––––––––– –––––––––––

C4(8) = 81

r1 + r2 – (M – 1)

M1 (r1 + r2 – k)

0 r1 – 1

k

(a) 0 ≤ r1 + r2 ≤ M – 1

r1 + r2

1

r1 + r2 – (M – 1)

M1 (r1 + r2 – k)

0 r1 – 1

k

(b) M ≤ r1 + r2 ≤ r1 + M – 2

r1 + r2

1

Figure VIII–2. Plot of Function in Summation

(VIII–39)

Constellation Shaping by Shell Mapping

SPRA159A-16

D. The Encoding Algorithm

The encoding algorithm maps binary K-tuples of shaping bits into N-tuples
of ring indexes. The mapping is based on the ordering of ring blocks
described in the previous section. Let the shaping bit K-tuple be the binary
representation for the index DN(v[N]). The problem is to find v[N]. According
to (VIII–25)

DN
�v[N]� � CN

�wN
�v[N]� � 1� � NN

�v[N]�

(VIII–40)

(VIII–41)

(VIII–42)

(VIII–43)

(VIII–44)

(VIII–45)

Constellation Shaping by Shell Mapping

A-17 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Remember that NN(v[N]) is the number of blocks with the same weight as v[N]

that are below it on the list. Also, MN(wN(v[N])) is the number of blocks with
the weight of v[N]. Therefore,

0 � NN
�v[N] � MN

�wN
�v[N]	

Also,

CN
�wN

�v[N]	 � CN
�wN

�v[N] � 1 � MN
�wN

�v[N]	

Thus,

CN
�wN

�v[N] –1	 � DN
�v[N] � CN

�wN
�v[N]	

This shows that the index DN will always fall in an interval bracketed by a pair
of successive CN’s.

Encoding Step 1: Compute the Weight of v[N]

Based on (VIII–42), the weight of v[N] is

wN
�v[N] �

max
n
n � CN (n � 1) � DN

�v[N]�

Encoding Step 2: Compute the Offset

Once the weight is known, we can compute the offset as

NN
�v[N] � DN

�v[N] � CN
�wN

�v[N] � 1	

According to (VIII–33),

NN
�v[N] � �

��
�

�
�

wN�2
�v[N]

1
�1

k�0

MN�2 (k) MN�2
�wN

�v[N] � k	�
��
�

�

�
NN�2
�v[N]

1
MN�2

�WN�2
�v(N)	�

�
NN�2
�v[N]

2
�

(VIII–46)

(VIII–47)

(VIII–48)

(VIII–49)

(VIII–50)

Constellation Shaping by Shell Mapping

SPRA159A-18

Of the weight wN(v[N]) N-tuples, the number with the same weight as v[N] in
the first half, that is, wN�2(u[N]

1
) � wN�2(v[i]

1
), is

MN�2 �wN�2 �v [N]
1
	 MN�2 �wN�2 �v [N]

2
	

where wN�2 (v[N]
2

) � wN (v[N])–wN�2 (v[N]
1

). Thus, the sum of the second and

third terms in the curly braces in (VIII–45), which is the number of N-tuples
below v[N] with the same total weight as v[N] and the same weight in the first
half as v1

[N], must satisfy,

0 � NN�2
�v[N]

1
 MN�2

�wN�2
�v[N]

2
	 � NN�2

�v[n]
2
 � MN�2

�wN�2
�v[N]

1
	 MN�2

�wN
�v[N]

2
	

Rearranging this last inequality gives

NN�2
�v[N]

1
 MN�2

�wN�2
�v[N]

2
	 � NN�2

�v[N]
2
� � MN�2

�wN�2
�v[N]

1
	 MN�2

�wN
�v[N]

2
	

� �
��
�

�
NN

�v[N] � �
wN�2 �v[N]

1
�1

k�0

MN�2 �k� M
N�2

�wN
�v[N] � k	�

��
�

�
–MN�2

�wN�2
�v[N]

1
	 MN�2

�wN�2
�v[N]

2
	 � 0

Encoding Step 3: Finding the Weights of v1[N] and v2[N]

From the inequality (VIII–48), we see that the weight of the first half of v[N]

must be

WN�2
�v[N]

1
 � max

n
n � �n–1

k�0

MN�2
�k 	 MN�2

�wN�2
�v[N] � k	 � NN

�v[N]�
The weight of the second half can then be computed as

wN�2
�v[N]

2
 � wN

�v[N] � wN�2
�v[N]

1

(VIII–51)

(VIII–52)

(VIII–53)

(VIII–54)

(VIII–55)

Constellation Shaping by Shell Mapping

A-19 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Encoding Step 4: Compute the Partial Offset

Now the following partial offset d can be computed:

d � NN�2
	v[N]

1

 MN�2

�wN�2
	v[N]

2

� � NN�2

	v[N]
2

� NN
	v[N]
 � �

wN�2
	v[N]

1

�1

k�0

MN�2 (k) MN�2
�wN

	v[N]
 � k�

Encoding Step 5: Compute the Offsets of the 1st and 2nd Halves

Remember that NN�2 (v[N]
2

) is the number of weight wN�2 (v[N]
2

) N/2-tuples

below v[N]
2

. The total number of N/2-tuples with weight wN�2 (v[N]
2

) is

MN�2 [wN�2 (v[N]
2

)], so

0 � NN�2
	v[N]

2

 � MN�2

�wN�2
	v[N]

2

�

Using the same reasoning, we see that the following inequality must also be
true:

0 � NN�2
	v[N]

1

 � MN�2

�wN�2
	v[N]

1

�

Using the Euclidean division algorithm, NN�2 (v[N]
2

) and NN�2 (v[N]
1

) can be

found by dividing d by MN�2 [wN�2 (v[N]
2

)]. NN�2 (v[N]
1

) is the remainder and

NN�2 (v[N]
2

) is the quotient.

Thus, to complete step 5, compute the following:

NN�2 	v [N]
1

 � int ��

d�MN�2 �wN�2 	v [N]
2

����

and

NN�2 	v [N]
2

 � d �MN�2 �wN�2 	v [N]

2

� NN�2 	v [N]

1

(VIII–56)

Constellation Shaping by Shell Mapping

SPRA159A-20

Encoding Step 6: Iterate the Procedure

Steps 3, 4, and 5 can now be applied to the two N/2-tuples to find the weights
and offsets of four N/4-tuples, and the procedure can be repeated until
1-tuples are reached. Then the ring index for a 1-tuple will be obvious from
its weight w1(·) and offset N1(·).

Example 1. (Continued)

For the Motorola ring weight assignment, it is not necessary to decompose
2-tuples into 1-tuples since the results have been analytically computed and
can be found from (VIII–38). Let v = [r1,r2] so w2(v) = r1 + r2. Then from the
first part of Example 1, it follows that

r1 � �N2 (v) for w2 (v) � M� 1

W2 (v)� N2 (v)� (M� 1) for M� 1 � W2 (v)

r2 � w2 (v)� r1

Encoding Example for N = 4 and M = 3

Suppose D4
�r[4]	 � 13

Step 1

From the ordered list of 4-tuples, we see that

C4 (1) � 5 � 13 � C4 (2) � 15

Thus, according to Step 1, w4
�r[4]	 � 2.

Step 2

The offset is D4
�r [4]	 � C4 (1) � 13 � 5 � 8

Step 3 Find Weights of 1st and 2nd Halves

M2 (0) M2 (2) � M2 (1) M2 (1) � 1 � 3 � 2 � 2 � 7 � 8

� M2 (0) M2 (2) � M2 (1) M2 (1) � M2 (2) M2 (0) � 10

Thus

w2 �r[4]
1
	 � 2 and w2 �r[4]

1
	 � w4

�r[4]	 � w2 �r[4]
1
	 � 2 � 2 � 0

Step 4

The partial offset is d = 8 – 7 = 1

Constellation Shaping by Shell Mapping

A-21 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Step 5

Find Offsets of 1st and 2nd Halves

M2
�w2

�r2
[4]�� � M2 (0) � 1

N2
�r1

[4]� � int�d � M2
�w2

�r2
[4] �� � 1

N2
�r2

[4]� � d � M2
�w2

�r2
[4]�� N2

�r1
[4]� � 1 � 1� 1 � 0

Using (VIII–56) we find that

r1 � N2
�r1

[4]� � 1, r2 � w2
�r1

[4]� � r1 � 2 � 1 � 1

r3 � N2
�r2

[4]� � 0, r4 � w2
�r2

[4]� � r3 � 0 � 0 � 0

So the encoded ring block is r[4] = [1100]

(VIII–57)

(VIII–58)

Constellation Shaping by Shell Mapping

SPRA159A-22

Appendix VIII-A
Justification for using the Motorola weight function is given in this appendix.
Suppose that the rings are formed from M concentric circles as shown in
Figure VIII–3.

M – 1

0

1

RM – 1 RM = R

R2

R1

Figure VIII–3. Concentric Shaping Rings

The M concentric circles form shaping rings labelled 0, 1, ... , M–1. The radii
R1, ... , RM are selected so the rings all have the same area. Thus, the area
of ring 0 must be

A0 � �R
2
1 � �R2 � M

so

R
2
1 � R2 � M

(VIII–59)

(VIII–60)

Constellation Shaping by Shell Mapping

A-23 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

The area enclosed by the outer circle of ring k is

Ak � �R
2
K� 1 � (k� 1) A0 � (k� 1) � R

2
1

so

R
2
K� 1 � (k� 1) R

2
1 � (k� 1) R2 � M

(VIII–61)

(VIII–62)

(VIII–63)

Constellation Shaping by Shell Mapping

SPRA159A-24

The average power of ring k is

Pk� �
Rk�1

Rk

r 2 dA
Ak

� �
Rk�1

Rk

r 2 2�r dr

��R 2
k � 1 – R

2
k�

�
R

4
k � 1 – R

4
k

2�R 2
k � 1 – R

2
k�

�
R

2
k � 1 � R

2
k

2

On using (VIII–60) this reduces to

Pk �
R2

M
(k � 0.5)

The average power in a ring block r= [r1,r2,...,rN] is

P(r) � �
N

k�1

Prk
� R2

M
�0.5N ��

N

k�1

rk�
Thus, any ring sequence with the same sum has the same average power.
This justifies using the sum of the ring values as a weight function.

B-1 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

Appendix B.
Selected excerpts from Dr. Steven A. Tretter’s “Fundamentals of Trellis Shaping and
Precoding” on the subject of obtaining the inputs to the convolutional encoder. Used
with permission.

A.30 A Method for Determining the Binary Subset Label From the
Coordinates of a 2D Point

The combined precoding and trellis coding scheme for V.34 will be
presented in Chapter X. Finding the input to the trellis encoder involves
finding the subset binary labels for 2D constellation points. A simple method
for finding these labels will now be presented.

Let (x,y) be a 2D constellation point. First translate this point to a lattice point
by forming

(IX–9)�x0, y0
	 � �x, y	 – �0.5, 0.5	

According to (IX–8)

(IX–10)�x0, y0
	 � 2RZ2 � �J2 � �J0·J1

	� (2, 0)� J1(1, 1)� J0(0, 1)

The sum of the components of any point in 2RZ2 is some even number 2n.
Thus,

(IX–11)x0 � y0 � 2n� 2�J2 � �J0 � J1
	� � 2J1 � J0

This sum is even if J0 = 0 and is odd if J0 = 1. Let the function mod(a,b) be
defined to be

(IX–12)mod(a, b) = remainder when a is divided by b

Then the rule for finding J0 is

(IX–13)J0 � mod�x0 � y0, 2	

SPRA159B-2

2 RZ2 2 RZ2 + (2, 0) 2 RZ2 + (1, 1) 2 RZ2 + (3, 1)

a A

J2 = 0 J2 = 1

2Z2

c C

J2 = 0 J2 = 1

2Z2 + (1, 1)

J1 = 0

RZ2

J1 = 1

2 RZ2 + (2, 1) 2 RZ2 + (0, 1) 2 RZ2 + (1, 2) 2 RZ2 + (3, 2)

b B

J2 = 0 J2 = 1

2Z2 + (0, 1)

d D

J2 = 0 J2 = 1

2Z2 + (1, 2)

J1 = 0

RZ2 + (0, 1)

J1 = 1

Z2

J0 = 0 J0 = 1

Figure IX–3. The 2D Partition Tree

The x component of any point in 2RZ 2 must be some even integer 2n1.
Therefore, it follows from (IX–10) that

(IX–14)x0 � 2n1 � 2� J2 � �J0 ·J1
�� � J1

which is even or odd depending on whether J1 is even or odd. Therefore,

(IX–15)J1 � mod�x0, 2� � lsb of x0

Once J0 and J1 have been determined, their effects can be subtracted out
to form

(IX–16)

�x1, y1
� �

�x0, y0
� – J1(1, 1) – J0(0, 1)

2

�
2RZ2 � �J2 � �J0 ·J1

�� (2, 0)

2
� RZ2 � �J2 � �J0 ·J1

�� (1, 0)

The sum of the coordinates of any point in RZ 2 must be some even number
2n3. Therefore,

(IX–17)x1 � y1 � 2n3 � �J2 � �J0 ·J1
��

so

B-3 V.34 Transmitter and Receiver Implementation on the TMS320C50 DSP

(IX–18)�J2 � �J0 ·J1
�� � mod�x1 � y1, 2�

and

(IX–19)J2 � mod�x1 � y1, 2� � �J0 ·J1
�

SPRA159B-4

