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ignal processing is concerned with the modelling, detection, 
identification and utilisation of patterns and structures in a signal 
process. Applications of signal processing methods include audio hi-

fi, digital TV and radio, cellular mobile phones, voice recognition, vision, 
radar, sonar, geophysical exploration, medical electronics, and in general 
any system that is concerned with the communication or processing of 
information. Signal processing theory plays a central role in the 
development of digital telecommunication and automation systems, and in 
efficient and optimal transmission, reception and decoding of information. 
Statistical signal processing theory provides the foundations for modelling 
the distribution of random signals and the environments in which the signals 
propagate. Statistical models are applied in signal processing, and in 
decision-making systems, for extracting information from a signal that may 
be noisy, distorted or incomplete. This chapter begins with a definition of 
signals, and a brief introduction to various signal processing methodologies. 
We consider several key applications of digital signal processing in adaptive 
noise reduction, channel equalisation, pattern classification/recognition, 
audio signal coding, signal detection, spatial processing for directional 
reception of signals, Dolby noise reduction and radar. The chapter concludes 
with an introduction to sampling and conversion of continuous-time signals 
to digital signals. 
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2 Introduction 

 
1.1 Signals and Information 
 
A signal can be defined as the variation of a quantity by which information 
is conveyed regarding the state, the characteristics, the composition, the 
trajectory, the course of action or the intention of the signal source. A signal 
is a means to convey information. The information conveyed in a signal may 
be used by humans or machines for communication, forecasting, decision-
making, control, exploration etc. Figure 1.1 illustrates an information source 
followed by a system for signalling the information, a communication 
channel for propagation of the signal from the transmitter to the receiver, 
and a signal processing unit at the receiver for extraction of the information 
from the signal. In general, there is a mapping operation that maps the 
information I(t) to the signal x(t)  that carries the information, this mapping 
function may be denoted as T[· ] and expressed as 
 

)]([)( tITtx =          (1.1) 
 
For example, in human speech communication, the voice-generating 
mechanism provides a means for the talker to map each word into a distinct 
acoustic speech signal that can propagate to the listener. To communicate a 
word w, the talker generates an acoustic signal realisation of the word; this 
acoustic signal x(t) may be contaminated by ambient noise and/or distorted 
by a communication channel, or impaired by the speaking abnormalities of 
the talker, and received as the noisy and distorted signal y(t).  In addition to 
conveying the spoken word, the acoustic speech signal has the capacity to 
convey information on the speaking characteristic, accent and the emotional 
state of the talker. The listener extracts these information by processing the 
signal y(t).  

In the past few decades, the theory and applications of digital signal 
processing have evolved to play a central role in the development of modern 
telecommunication and information technology systems.  

Signal processing methods are central to efficient communication, and to 
the development of intelligent man/machine interfaces in such areas as 
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Figure 1.1 Illustration of a communication and signal processing system. 
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speech and visual pattern recognition for multimedia systems. In general, 
digital signal processing is concerned with two broad areas of information 
theory:  

 
(a) efficient and reliable coding, transmission, reception, storage and 

representation of signals in communication systems, and  
(b) the extraction of information from noisy signals for pattern 

recognition, detection, forecasting, decision-making, signal 
enhancement, control, automation etc.  

 
In the next section we consider four broad approaches to signal processing 
problems. 
 
 
1.2 Signal Processing Methods 
 
Signal processing methods have evolved in algorithmic complexity aiming 
for optimal utilisation of the information in order to achieve the best 
performance. In general the computational requirement of signal processing 
methods increases, often exponentially, with the algorithmic complexity. 
However, the implementation cost of advanced signal processing methods 
has been offset and made affordable by the consistent trend in recent years 
of a continuing increase in the performance, coupled with a simultaneous 
decrease in the cost, of signal processing hardware. 

Depending on the method used, digital signal processing algorithms can 
be categorised into one or a combination of four broad categories. These are 
non−parametric signal processing, model-based signal processing, Bayesian 
statistical signal processing and neural networks. These methods are briefly 
described in the following. 

 
 
1.2.1 Non−parametric Signal Processing 
 
Non−parametric methods, as the name implies, do not utilise a parametric 
model of the signal generation or a model of the statistical distribution of the 
signal. The signal is processed as a waveform or a sequence of digits. 
Non−parametric methods are not specialised to any particular class of 
signals, they are broadly applicable methods that can be applied to any 
signal regardless of the characteristics or the source of the signal. The 
drawback of these methods is that they do not utilise the distinct 
characteristics of the signal process that may lead to substantial 
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improvement in performance. Some examples of non−parametric methods 
include digital filtering and transform-based signal processing methods such 
as the Fourier analysis/synthesis relations and the discrete cosine transform. 
Some non−parametric methods of power spectrum estimation, interpolation 
and signal restoration are described in Chapters 9, 10 and 11. 
 
 
1.2.2 Model-Based Signal Processing 
 
Model-based signal processing methods utilise a parametric model of the 
signal generation process. The parametric model normally describes the 
predictable structures and the expected patterns in the signal process, and 
can be used to forecast the future values of a signal from its past trajectory. 
Model-based methods normally outperform non−parametric methods, since 
they utilise more information in the form of a model of the signal process. 
However, they can be sensitive to the deviations of a signal from the class of 
signals characterised by the model. The most widely used parametric model 
is the linear prediction model, described in Chapter 8. Linear prediction 
models have facilitated the development of advanced signal processing 
methods for a wide range of applications such as low−bit−rate speech coding 
in cellular mobile telephony, digital video coding, high−resolution spectral 
analysis, radar signal processing and speech recognition.  
 
 
1.2.3 Bayesian Statistical Signal Processing 
 
The fluctuations of a purely random signal, or the distribution of a class of 
random signals in the signal space, cannot be modelled by a predictive 
equation, but can be described in terms of the statistical average values, and 
modelled by a probability distribution function in a multidimensional signal 
space. For example, as described in Chapter 8, a linear prediction model 
driven by a random signal can model the acoustic realisation of a spoken 
word. However, the random input signal of the linear prediction model, or 
the variations in the characteristics of different acoustic realisations of the 
same word across the speaking population, can only be described in 
statistical terms and in terms of probability functions. Bayesian inference 
theory provides a generalised framework for statistical processing of random 
signals, and for formulating and solving estimation and decision-making 
problems. Chapter 4 describes the Bayesian inference methodology and the 
estimation of random processes observed in noise.  
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1.2.4 Neural Networks 
 
Neural networks are combinations of relatively simple non-linear adaptive 
processing units, arranged to have a structural resemblance to the 
transmission and processing of signals in biological neurons. In a neural 
network several layers of parallel processing elements are interconnected 
with a hierarchically structured connection network. The connection weights 
are trained to perform a signal processing function such as prediction or 
classification. Neural networks are particularly useful in non-linear 
partitioning of a signal space, in feature extraction and pattern recognition, 
and in decision-making systems. In some hybrid pattern recognition systems 
neural networks are used to complement Bayesian inference methods. Since 
the main objective of this book is to provide a coherent presentation of the 
theory and applications of statistical signal processing, neural networks are 
not discussed in this book. 

 
1.3 Applications of Digital Signal Processing 
 
In recent years, the development and commercial availability of increasingly 
powerful and affordable digital computers has been accompanied by the 
development of advanced digital signal processing algorithms for a wide 
variety of applications such as noise reduction, telecommunication, radar, 
sonar, video and audio signal processing, pattern recognition, geophysics 
explorations, data forecasting, and the processing of large databases for the 
identification extraction and organisation of unknown underlying structures 
and patterns. Figure 1.2 shows a broad categorisation of some DSP 
applications. This section provides a review of several key applications of 
digital signal processing methods. 
 
 
1.3.1 Adaptive Noise Cancellation and Noise Reduction 
 
In speech communication from a noisy acoustic environment such as a 
moving car or train, or over a noisy telephone channel, the speech signal is 
observed in an additive random noise. In signal measurement systems the 
information-bearing signal is often contaminated by noise from its 
surrounding environment. The noisy observation y(m) can be modelled as 
 

y(m) = x(m) + n(m)        (1.2) 
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where x(m)  and n(m) are the signal and the noise, and m is the discrete-
time index. In some situations, for example when using a mobile telephone 
in a moving car, or when using a radio communication device in an aircraft 
cockpit, it may be possible to measure and estimate the instantaneous 
amplitude of the ambient noise using a directional microphone. The signal 
x(m)  may then be recovered by subtraction of an estimate of the noise from 
the noisy signal. 
Figure 1.3 shows a two-input adaptive noise cancellation system for 
enhancement of noisy speech. In this system a directional microphone takes 
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Speech recognition, image 
and character recognition, 
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Parameter Estimation

Spectral analysis, radar  
and sonar signal processing, 
signal enhancement, 
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Channel EqualisationSource/Channel Coding

Speech coding, image coding, 
data compression, communication 
over noisy channels

Signal and data  
communication on 
adverse channels

 
 

Figure 1.2 A classification of the applications of digital signal processing. 
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Figure 1.3 Configuration of a two-microphone adaptive noise canceller. 
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as input the noisy signal x(m) + n(m) , and a second directional microphone, 
positioned some distance away, measures the noise α n(m + τ ). The 
attenuation factor α and the time delay τ provide a rather over-simplified 
model of the effects of propagation of the noise to different positions in the 
space where the microphones are placed. The noise from the second 
microphone is processed by an adaptive digital filter to make it equal to the 
noise contaminating the speech signal, and then subtracted from the noisy 
signal to cancel out the noise. The adaptive noise canceller is more effective 
in cancelling out the low-frequency part of the noise, but generally suffers 
from the non-stationary character of the signals, and from the over-
simplified assumption that a linear filter can model the diffusion and 
propagation of the noise sound in the space. 

In many applications, for example at the receiver of a 
telecommunication system, there is no access to the instantaneous value of 
the contaminating noise, and only the noisy signal is available. In such cases 
the noise cannot be cancelled out, but it may be reduced, in an average 
sense, using the statistics of the signal and the noise process. Figure 1.4 
shows a bank of Wiener filters for reducing additive noise when only the 
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Figure 1.4 A frequency−domain Wiener filter for reducing additive noise. 
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noisy signal is available. The filter bank coefficients attenuate each noisy 
signal frequency in inverse proportion to the signal–to–noise ratio at that 
frequency. The Wiener filter bank coefficients, derived in Chapter 6, are 
calculated from estimates of the power spectra of the signal and the noise 
processes.  

 
 
1.3.2 Blind Channel Equalisation 
 
Channel equalisation is the recovery of a signal distorted in transmission 
through a communication channel with a non-flat magnitude or a non-linear 
phase response. When the channel response is unknown the process of 
signal recovery is called blind equalisation. Blind equalisation has a wide 
range of applications, for example in digital telecommunications for 
removal of inter-symbol interference due to non-ideal channel and multi-
path propagation, in speech recognition for removal of the effects of the 
microphones and the communication channels, in correction of distorted 
images, analysis of seismic data, de-reverberation of acoustic gramophone 
recordings etc.  

In practice, blind equalisation is feasible only if some useful statistics of 
the channel input are available. The success of a blind equalisation method 
depends on how much is known about the characteristics of the input signal 
and how useful this knowledge can be in the channel identification and 
equalisation process. Figure 1.5 illustrates the configuration of a decision-
directed equaliser. This blind channel equaliser is composed of two distinct 
sections: an adaptive equaliser that removes a large part of the channel 
distortion, followed by a non-linear decision device for an improved 
estimate of the channel input. The output of the decision device is the final 
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Figure 1.5 Configuration of a decision-directed blind channel equaliser. 
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estimate of the channel input, and it is used as the desired signal to direct 
the equaliser adaptation process. Blind equalisation is covered in detail in 
Chapter 15. 
 
 
1.3.3 Signal Classification and Pattern Recognition 
 
Signal classification is used in detection, pattern recognition and decision-
making systems. For example, a simple binary-state classifier can act as the 
detector of the presence, or the absence, of a known waveform in noise. In 
signal classification, the aim is to design a minimum-error system for 
labelling a signal with one of a number of likely classes of signal.  

To design a classifier; a set of models are trained for the classes of 
signals that are of interest in the application. The simplest form that the 
models can assume is a bank, or code book, of waveforms, each 
representing the prototype for one class of signals. A more complete model 
for each class of signals takes the form of a probability distribution function. 
In the classification phase, a signal is labelled with the nearest or the most 
likely class. For example, in communication of a binary bit stream over a 
band-pass channel, the binary phase–shift keying (BPSK) scheme signals 
the bit “1” using the waveform Ac sinωct  and the bit “0” using −Ac sinωct . 
At the receiver, the decoder has the task of classifying and labelling the 
received noisy signal as a “1” or a “0”. Figure 1.6 illustrates a correlation 
receiver for a BPSK signalling scheme. The receiver has two correlators, 
each programmed with one of the two symbols representing the binary 
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Figure 1.6 A block diagram illustration of the classifier in a binary phase-shift keying 
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states for the bit “1” and the bit “0”. The decoder correlates the unlabelled 
input signal with each of the two candidate symbols and selects the 
candidate that has a higher correlation with the input.  

Figure 1.7 illustrates the use of a classifier in a limited–vocabulary, 
isolated-word speech recognition system. Assume there are V words in the 
vocabulary. For each word a model is trained, on many different examples 
of the spoken word, to capture the average characteristics and the statistical 
variations of the word. The classifier has access to a bank of V+1 models, 
one for each word in the vocabulary and an additional model for the silence 
periods. In the speech recognition phase, the task is to decode and label an 
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Figure 1.7 Configuration of speech recognition system, f(Y|Mi) is the likelihood of 
the model Mi given an observation sequence Y. 
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acoustic speech feature sequence, representing an unlabelled spoken word, 
as one of the V likely words or silence. For each candidate word the 
classifier calculates a probability score and selects the word with the highest 
score. 
 
 
1.3.4 Linear Prediction Modelling of Speech 
 
Linear predictive models are widely used in speech processing applications 
such as low–bit–rate speech coding in cellular telephony, speech 
enhancement and speech recognition. Speech is generated by inhaling air 
into the lungs, and then exhaling it through the vibrating glottis cords and 
the vocal tract. The random, noise-like, air flow from the lungs is spectrally 
shaped and amplified by the vibrations of the glottal cords and the resonance 
of the vocal tract. The effect of the vibrations of the glottal cords and the 
vocal tract is to introduce a measure of correlation and predictability on the 
random variations of the air from the lungs. Figure 1.8 illustrates a model 
for speech production. The source models the lung and emits a random 
excitation signal which is filtered, first by a pitch filter model of the glottal 
cords and then by a model of the vocal tract. 
 The main source of correlation in speech is the vocal tract modelled by a 
linear predictor. A linear predictor forecasts the amplitude of the signal at 
time m, x(m) , using a linear combination of P previous samples 

��x(m −1),�, x(m − P)[ ] as 
 

∑
=

−=
P

k
k kmxamx

1

)()(ˆ     (1.3) 

 
where ˆ x (m)  is the prediction of the signal x(m) , and the vector 

],,[ 1
T

Paa �=a  is the coefficients vector of a predictor of order P. The 
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Figure 1.8 Linear predictive model of speech. 



12 Introduction 

  

prediction error e(m) , i.e. the difference between the actual sample x(m)  
and its predicted value ˆ x (m) , is defined as 
 

e(m) = x(m) − akx(m − k)
k=1

P

∑     (1.4) 

 
The prediction error e(m) may also be interpreted as the random excitation 
or the so-called innovation content of x(m) . From Equation (1.4) a signal 
generated by a linear predictor can be synthesised as  
 

x(m) = ak x(m − k) + e(m)
k=1

P

∑    (1.5) 

 
Equation (1.5) describes a speech synthesis model illustrated in Figure 1.9.  
 
 
1.3.5 Digital Coding of Audio Signals 
 
In digital audio, the memory required to record a signal, the bandwidth 
required for signal transmission and the signal–to–quantisation–noise ratio 
are all directly proportional to the number of bits per sample. The objective 
in the design of a coder is to achieve high fidelity with as few bits per 
sample as possible, at an affordable implementation cost. Audio signal 
coding schemes utilise the statistical structures of the signal, and a model of 
the signal generation, together with information on the psychoacoustics and 
the masking effects of hearing. In general, there are two main categories of 
audio coders: model-based coders, used for low–bit–rate speech coding in 
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Figure 1.9 Illustration of a signal generated by an all-pole, linear prediction 
model. 
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applications such as cellular telephony; and transform-based coders used in 
high–quality coding of speech and digital hi-fi audio.  

Figure 1.10 shows a simplified block diagram configuration of a speech 
coder–synthesiser of the type used in digital cellular telephone. The speech 
signal is modelled as the output of a filter excited by a random signal. The 
random excitation models the air exhaled through the lung, and the filter 
models the vibrations of the glottal cords and the vocal tract. At the 
transmitter, speech is segmented into blocks of about 30 ms long during 
which speech parameters can be assumed to be stationary. Each block of 
speech samples is analysed to extract and transmit a set of excitation and 
filter parameters that can be used to synthesis the speech. At the receiver, the 
model parameters and the excitation are used to reconstruct the speech.  
 A transform-based coder is shown in Figure 1.11. The aim of 
transformation is to convert the signal into a form where it lends itself to a 
more convenient and useful interpretation and manipulation. In Figure 1.11 
the input signal is transformed to the frequency domain using a filter bank, 
or a discrete Fourier transform, or a discrete cosine transform. Three main 
advantages of coding a signal in the frequency domain are:  
 

(a) The frequency spectrum of a signal has a relatively well–defined 
structure, for example most of the signal power is usually 
concentrated in the lower regions of the spectrum. 
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Figure 1.10 Block diagram configuration of a model-based speech coder. 
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(b) A relatively low–amplitude frequency would be masked in the near 
vicinity of a large–amplitude frequency and can therefore be 
coarsely encoded without any audible degradation.  

(c) The frequency samples are orthogonal and can be coded 
independently with different precisions.  

 
 The number of bits assigned to each frequency of a signal is a variable 
that reflects the contribution of that frequency to the reproduction of a 
perceptually high quality signal. In an adaptive coder, the allocation of bits 
to different frequencies is made to vary with the time variations of the 
power spectrum of the signal.  
 
 
1.3.6 Detection of Signals in Noise 
 
In the detection of signals in noise, the aim is to determine if the observation 
consists of noise alone, or if it contains a signal. The noisy observation 
y(m) can be modelled as 
 

y(m) = b(m)x(m) + n(m)        (1.6) 
 
where x(m) is the signal to be detected, n(m) is the noise and b(m)  is a 
binary-valued state indicator sequence such that b(m) =1 indicates the 
presence of the signal x(m)  and b(m) = 0  indicates that the signal is absent. 
If the signal x(m)  has a known shape, then a correlator or a matched filter 
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Figure 1.11 Illustration of a transform-based coder. 
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can be used to detect the signal as shown in Figure 1.12. The impulse 
response h(m) of the matched filter for detection of a signal x(m)  is the 
time-reversed version of x(m)  given by 
 

 10)1()( −≤≤−−= NmmNxmh     (1.7) 

 
where N is the length of x(m) . The output of the matched filter is given by  
 

∑
−

=
−=

1

0

)()()(
N

m

mykmhmz        (1.8) 

 
The matched filter output is compared with a threshold and a binary 
decision is made as 



 ≥

=
otherwise0

threshold)(if1
)(ˆ

mz
mb      (1.9) 

 

where ˆ b (m) is an estimate of the binary state indicator sequence b(m), and 
it may be erroneous in particular if the signal–to–noise ratio is low. Table1.1 
lists four possible outcomes that together b(m) and its estimate ˆ b (m)  can 
assume. The choice of the threshold level affects the sensitivity of the 

Matched filter

h(m) = x(N – 1–m)

y(m)=x(m)+n(m) z(m)
Threshold  
comparator

b(m)
^

Figure 1.12 Configuration of a matched filter followed by a threshold comparator for 
detection of signals in noise. 

 

 
ˆ b (m)  b(m) Detector decision 

0 0        Signal absent      Correct 
0 1        Signal absent      (Missed) 
1 0        Signal present     (False alarm) 
1 1        Signal present     Correct 

 
Table 1.1 Four possible outcomes in a signal detection problem. 
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detector. The higher the threshold, the less the likelihood that noise would 
be classified as signal, so the false alarm rate falls, but the probability of 
misclassification of signal as noise increases. The risk in choosing a 
threshold value θ can be expressed as 
 

( ) )()(Threshold MissAlarmFalse θθθ PP +==R     (1.10) 

 
The choice of the threshold reflects a trade-off between the misclassification 
rate PMiss(θ) and the false alarm rate PFalse Alarm(θ).  
 
 
1.3.7 Directional Reception of Waves: Beam-forming 
 
Beam-forming is the spatial processing of plane waves received by an array 
of sensors such that the waves incident at a particular spatial angle are 
passed through, whereas those arriving from other directions are attenuated. 
Beam-forming is used in radar and sonar signal processing (Figure 1.13) to 
steer the reception of signals towards a desired direction, and in speech 
processing for reducing the effects of ambient noise.  
 To explain the process of beam-forming consider a uniform linear array 
of sensors as illustrated in Figure 1.14. The term linear array implies that 
the array of sensors is spatially arranged in a straight line and with equal 
spacing d between the sensors. Consider a sinusoidal far–field plane wave 
with a frequency F0 propagating towards the sensors at an incidence angle 
of θ as illustrated in Figure 1.14. The array of sensors samples the incoming 

 

 
 

Figure 1.13 Sonar: detection of objects using the intensity and time delay of 
reflected sound waves. 
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wave as it propagates in space. The time delay for the wave to travel a 
distance of d between two adjacent sensors is given by 
 

τ = d sinθ
c

        (1.11) 

 
where c is the speed of propagation of the wave in the medium. The phase 
difference corresponding to a delay of τ is given by 
 

c

d
F

T
θπτπϕ sin

22 0
0

==        (1.12) 

 
where T0 is the period of the sine wave. By inserting appropriate corrective 
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Figure 1.14 Illustration of a beam-former, for directional reception of signals. 
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time delays in the path of the samples at each sensor, and then averaging the 
outputs of the sensors, the signals arriving from the direction θ will be time-
aligned and coherently combined, whereas those arriving from other 
directions will suffer cancellations and attenuations. Figure 1.14 illustrates a 
beam-former as an array of digital filters arranged in space. The filter array 
acts as a two–dimensional space–time signal processing system. The space 
filtering allows the beam-former to be steered towards a desired direction, 
for example towards the direction along which the incoming signal has the 
maximum intensity. The phase of each filter controls the time delay, and can 
be adjusted to coherently combine the signals. The magnitude frequency 
response of each filter can be used to remove the out–of–band noise.  
 
 
1.3.8 Dolby Noise Reduction 
 
Dolby noise reduction systems work by boosting the energy and the signal 
to noise ratio of the high–frequency spectrum of audio signals. The energy 
of audio signals is mostly concentrated in the low–frequency part of the 
spectrum (below 2 kHz). The higher frequencies that convey quality and 
sensation have relatively low energy, and can be degraded even by a low 
amount of noise. For example when a signal is recorded on a magnetic tape, 
the tape “hiss” noise affects the quality of the recorded signal. On playback, 
the higher–frequency part of an audio signal recorded on a tape have smaller 
signal–to–noise ratio than the low–frequency parts. Therefore noise at high 
frequencies is more audible and less masked by the signal energy. Dolby 
noise reduction systems broadly work on the principle of emphasising and 
boosting the low energy of the high–frequency signal components prior to 
recording the signal. When a signal is recorded it is processed and encoded 
using a combination of a pre-emphasis filter and dynamic range 
compression. At playback, the signal is recovered using a decoder based on 
a combination of a de-emphasis filter and a decompression circuit. The 
encoder and decoder must be well matched and cancel out each other in 
order to avoid processing distortion. 
 Dolby has developed a number of noise reduction systems designated 
Dolby A, Dolby B and Dolby C. These differ mainly in the number of bands 
and the pre-emphasis strategy that that they employ. Dolby A, developed for 
professional use, divides the signal spectrum into four frequency bands: 
band 1 is low-pass and covers 0 Hz to 80 Hz; band 2 is band-pass and covers 
80 Hz to 3 kHz; band 3 is high-pass and covers above 3 kHz; and band 4 is 
also high-pass and covers above 9 kHz. At the encoder the gain of each band 
is adaptively adjusted to boost low–energy signal components. Dolby A 
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provides a maximum gain of 10 to 15 dB in each band if the signal level 
falls 45 dB below the maximum recording level. The Dolby B and Dolby C 
systems are designed for consumer audio systems, and use two bands 
instead of the four bands used in Dolby A. Dolby B provides a boost of up 
to 10 dB when the signal level is low (less than 45 dB than the maximum 
reference) and Dolby C provides a boost of up to 20 dB as illustrated in 
Figure1.15. 
 
 
1.3.9 Radar Signal Processing: Doppler Frequency Shift 
 
Figure 1.16 shows a simple diagram of a radar system that can be used to 
estimate the range and speed of an object such as a moving car or a flying 
aeroplane. A radar system consists of a transceiver (transmitter/receiver) that 
generates and transmits sinusoidal pulses at microwave frequencies. The 
signal travels with the speed of light and is reflected back from any object in 
its path. The analysis of the received echo provides such information as 
range, speed, and acceleration. The received signal has the form 
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Figure 1.15 Illustration of the pre-emphasis response of Dolby-C: upto 20 dB 
boost is provided when the signal falls 45 dB below maximum recording level. 
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where A(t), the time-varying amplitude of the reflected wave, depends on the 
position and the characteristics of the target, r(t) is the time-varying distance 
of the object from the radar and c is the velocity of light. The time-varying 
distance of the object can be expanded in a Taylor series as 
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where r0 is the distance, r�  is the velocity, r��  is the acceleration etc. 
Approximating r(t) with the first two terms of the Taylor series expansion 
we have  

trrtr �+≈ 0)(         (1.15) 

 
Substituting Equation (1.15) in Equation (1.13) yields 
 

]/2)/2cos[()()( 0000 crtcrtAtx ωωω −−= �     (1.16) 

 
Note that the frequency of reflected wave is shifted by an amount 
 

crd /2 0ωω �=        (1.17) 

 
This shift in frequency is known as the Doppler frequency. If the object is 
moving towards the radar then the distance r(t) is decreasing with time, r� is 
negative, and an increase in the frequency is observed. Conversely if the 

 

r=0.5Tc

cos(ω0t)

Cos{ω0[t-2r(t)/c]}

 
Figure 1.16 Illustration of a radar system. 
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object is moving away from the radar then the distance r(t) is increasing, r� is 
positive, and a decrease in the frequency is observed. Thus the frequency 
analysis of the reflected signal can reveal information on the direction and 
speed of the object. The distance r0 is given by 
 

cTr ×= 5.00         (1.18) 

 
where T is the round-trip time for the signal to hit the object and arrive back 
at the radar and c is the velocity of light. 
 
 
1.4 Sampling and Analog–to–Digital Conversion 
 
A digital signal is a sequence of real–valued or complex–valued numbers, 
representing the fluctuations of an information bearing quantity with time, 
space or some other variable. The basic elementary discrete-time signal is 
the unit-sample signal δ(m) defined as 

 

 δ(m) =
1 m = 0

0 m ≠ 0
 
 
 

       (1.19) 

 
where m is the discrete time index. A digital signal x(m) can be expressed as 
the sum of a number of amplitude-scaled and time-shifted unit samples as 
 

x(m) = x(k)δ(m − k)
k=−∞

∞
∑       (1.20) 

 
Figure 1.17 illustrates a discrete-time signal. Many random processes, such 
as speech, music, radar and sonar generate signals that are continuous in 

 

 

Discrete time 
m

 
Figure 1.17 A discrete-time signal and its envelope of variation with time. 
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time and continuous in amplitude. Continuous signals are termed analog 
because their fluctuations with time are analogous to the variations of the 
signal source. For digital processing, analog signals are sampled, and each 
sample is converted into an n-bit digit. The digitisation process should be 
performed such that the original signal can be recovered from its digital 
version with no loss of information, and with as high a fidelity as is required 
in an application. Figure 1.18 illustrates a block diagram configuration of a 
digital signal processor with an analog input. The low-pass filter removes 
out–of–band signal frequencies above a pre-selected range. The sample–
and–hold (S/H) unit periodically samples the signal to convert the 
continuous-time signal into a discrete-time signal.  
 The analog–to–digital converter (ADC) maps each continuous 
amplitude sample into an n-bit digit. After processing, the digital output of 
the processor can be converted back into an analog signal using a digital–to–
analog converter (DAC) and a low-pass filter as illustrated in Figure 1.18.  
 
 
1.4.1 Time-Domain Sampling and Reconstruction of Analog 

Signals 
 
The conversion of an analog signal to a sequence of n-bit digits consists of 
two basic steps of sampling and quantisation. The sampling process, when 
performed with sufficiently high speed, can capture the fastest fluctuations 
of the signal, and can be a loss-less operation in that the analog signal can be 
recovered through interpolation of the sampled sequence as described in 
Chapter 10. The quantisation of each sample into an n-bit digit, involves 
some irrevocable error and possible loss of information. However, in 
practice the quantisation error can be made negligible by using an 
appropriately high number of bits as in a digital audio hi-fi. A sampled 
signal can be modelled as the product of a continuous-time signal x(t) and a 
periodic impulse train p(t) as 
 

   

Analog input 
y(t)

LPF & 
S/H

ADC DAC LPF
y(m) x(m) x(t)

Digital signal 
processor

xa(m)ya(m)

 
 

Figure 1.18 Configuration of a digital signal processing system. 
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where Ts is the sampling interval and the sampling function p(t) is defined 
as 
 

p(t) = δ (t − mTs )
m=−∞

∞

∑         (1.22) 

 
The spectrum P( f )  of the sampling function p(t) is also a periodic impulse 
train given by 
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where Fs=1/Ts is the sampling frequency. Since multiplication of two time-
domain signals is equivalent to the convolution of their frequency spectra 
we have  
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where the operator FT[.] denotes the Fourier transform. In Equation (1.24) 
the convolution of a signal spectrum X( f ) with each impulse )( skFf −δ , 

shifts X( f )  and centres it on kFs. Hence, as expressed in Equation (1.24), 
the sampling of a signal x(t) results in a periodic repetition of its spectrum 
X( f )  centred on frequencies �,2,,0 ss FF ±± . When the sampling 

frequency is higher than twice the maximum frequency content of the 
signal, then the repetitions of the signal spectra are separated as shown in 
Figure 1.19. In this case, the analog signal can be recovered by passing the 
sampled signal through an analog low-pass filter with a cut-off frequency of 
Fs. If the sampling frequency is less than 2Fs, then the adjacent repetitions 
of the spectrum overlap and the original spectrum cannot be recovered. The 
distortion, due to an insufficiently high sampling rate, is irrevocable and is 
known as aliasing. This observation is the basis of the Nyquist sampling 
theorem which states: a band-limited continuous-time signal, with a highest 
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frequency content (bandwidth) of B Hz, can be recovered from its samples 
provided that the sampling speed Fs>2B samples per second.  

In practice sampling is achieved using an electronic switch that allows a 
capacitor to charge up or down to the level of the input voltage once every 
Ts seconds as illustrated in Figure 1.20. The sample-and-hold signal can be 
modelled as the output of a filter with a rectangular impulse response, and 
with the impulse–train–sampled signal as the input as illustrated in 
Figure1.19. 
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Figure 1.19 Sample-and-Hold signal modelled as impulse-train sampling followed 

by convolution with a rectangular pulse. 
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1.4.2 Quantisation 
 
For digital signal processing, continuous-amplitude samples from the 
sample-and-hold are quantised and mapped into n-bit binary digits. For 
quantisation to n bits, the amplitude range of the signal is divided into 2n 
discrete levels, and each sample is quantised to the nearest quantisation 
level, and then mapped to the binary code assigned to that level. Figure 1.21 
illustrates the quantisation of a signal into 4 discrete levels. Quantisation is a 
many-to-one mapping, in that all the values that fall within the continuum of 
a quantisation band are mapped to the centre of the band. The mapping 
between an analog sample xa(m) and its quantised value x(m) can be 
expressed as 
 

[ ])()( mxQmx a=         (1.25) 

 
where Q[· ] is the quantising function.  
 The performance of a quantiser is measured by signal–to–quantisation 
noise ratio SQNR per bit. The quantisation noise is defined as 
 

)()()( mxmxme a−=        (1.26) 

 
Now consider an n-bit quantiser with an amplitude range of ±V volts. The 
quantisation step size is ∆=2V/2n. Assuming that the quantisation noise is a 
zero-mean uniform process with an amplitude range of ±∆/2 we can express 
the noise power as 

C
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Figure 1.20 A simplified sample-and-hold circuit diagram. 
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where f E e(m)( )=1/ ∆  is the uniform probability density function of the 
noise. Using Equation (1.27) he signal–to–quantisation noise ratio is given 
by 
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where Psignal is the mean signal power, and α is the ratio in decibels of the 
peak signal power V2 to the mean signal power Psignal. Therefore, from 
Equation (1.28) every additional bit in an analog to digital converter results 
in 6 dB improvement in signal–to–quantisation noise ratio. 
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Figure 1.21 Offset-binary scalar quantisation 
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