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iener theory, formulated by Norbert Wiener, forms the 
foundation of data-dependent linear least square error filters. 
Wiener filters play a central role in a wide range of applications 

such as linear prediction, echo cancellation, signal restoration, channel 
equalisation and system identification. The coefficients of a Wiener filter 
are calculated to minimise the average squared distance between the filter 
output and a desired signal. In its basic form, the Wiener theory assumes 
that the signals are stationary processes. However, if the filter coefficients 
are periodically recalculated for every block of N signal samples then the 
filter adapts itself to the average characteristics of the signals within the 
blocks and becomes block-adaptive. A block-adaptive (or segment 
adaptive) filter can be used for signals such as speech and image that may 
be considered almost stationary over a relatively small block of samples. In 
this chapter, we study Wiener filter theory, and consider alternative 
methods of formulation of the Wiener filter problem. We consider the 
application of Wiener filters in channel equalisation, time-delay estimation 
and additive noise reduction. A case study of the frequency response of a 
Wiener filter, for additive noise reduction, provides useful insight into the 
operation of the filter. We also deal with some implementation issues of 
Wiener filters. 
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6.1 Wiener Filters: Least Square Error Estimation 
 
Wiener formulated the continuous-time, least mean square error, estimation 
problem in his classic work on interpolation, extrapolation and smoothing 
of time series (Wiener 1949). The extension of the Wiener theory from 
continuous time to discrete time is simple, and of more practical use for 
implementation on digital signal processors. A Wiener filter can be an 
infinite-duration impulse response (IIR) filter or a finite-duration impulse 
response (FIR) filter. In general, the formulation of an IIR Wiener filter 
results in a set of non-linear equations, whereas the formulation of an FIR 
Wiener filter results in a set of linear equations and has a closed-form 
solution. In this chapter, we consider FIR Wiener filters, since they are 
relatively simple to compute, inherently stable and more practical. The main 
drawback of FIR filters compared with IIR filters is that they may need a 
large number of coefficients to approximate a desired response. 
Figure 6.1 illustrates a Wiener filter represented by the coefficient vector w. 
The filter takes as the input a signal y(m), and produces an output signal 
ˆ x (m) , where ˆ x (m)  is the least mean square error estimate of a desired or 
target signal x(m). The filter input–output relation is given by  
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where m is the discrete-time index, yT=[y(m), y(m–1), ..., y(m–P–1)] is the 
filter input signal, and the parameter vector wT=[w0, w1, ..., wP–1] is the 
Wiener filter coefficient vector. In Equation (6.1), the filtering operation is 
expressed in two alternative and equivalent forms of a convolutional sum 
and an inner vector product. The Wiener filter error signal, e(m) is defined 
as the difference between the desired signal x(m) and the filter output signal 
ˆ x (m) : 
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In Equation (6.2), for a given input signal y(m) and a desired signal x(m), 
the filter error e(m) depends on the filter coefficient vector w.  
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 To explore the relation between the filter coefficient vector w and the 
error signal e(m) we expand Equation (6.2) for N samples of the signals 
x(m) and y(m): 
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(6.3) 
 
In a compact vector notation this matrix equation may be written as 
 

Ywxe −=                   (6.4) 
 
where e is the error vector, x is the desired signal vector, Y is the input 
signal matrix and x=Yw ˆ  is the Wiener filter output signal vector. It is 
assumed that the P initial input signal samples [y(–1), . . ., y(–P–1)] are 
either known or set to zero.  
 In Equation (6.3), if the number of signal samples is equal to the 
number of filter coefficients N=P, then we have a square matrix equation, 
and there is a unique filter solution w, with a zero estimation error e=0, such 
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Figure 6.1 Illustration of a Wiener filter structure. 
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that ˆ x =Yw = x . If N < P then the number of signal samples N is 
insufficient to obtain a unique solution for the filter coefficients, in this case 
there are an infinite number of solutions with zero estimation error, and the 
matrix equation is said to be underdetermined. In practice, the number of 
signal samples is much larger than the filter length N>P; in this case, the 
matrix equation is said to be overdetermined and has a unique solution, 
usually with a non-zero error. When N>P, the filter coefficients are 
calculated to minimise an average error cost function, such as the average 
absolute value of error E [|e(m)|], or the mean square error E [e2(m)], where 

E [.] is the expectation operator. The choice of the error function affects the 
optimality and the computational complexity of the solution. 
 In Wiener theory, the objective criterion is the least mean square error 
(LSE) between the filter output and the desired signal. The least square 
error criterion is optimal for Gaussian distributed signals. As shown in the 
followings, for FIR filters the LSE criterion leads to a linear and closed-
form solution. The Wiener filter coefficients are obtained by minimising an 

average squared error function )]([ 2 meE  with respect to the filter 
coefficient vector w. From Equation (6.2), the mean square estimation error 
is given by 
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where Ryy=E [y(m)yT(m)] is the autocorrelation matrix of the input signal 

and rxy=E [x(m)y(m)] is the cross-correlation vector of the input and the 
desired signals. An expanded form of Equation (6.5) can be obtained as  
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where ryy(k) and ryx(k) are the elements of the autocorrelation matrix Ryy 

and the cross-correlation vector rxy respectively. From Equation (6.5), the 
mean square error for an FIR filter is a quadratic function of the filter 
coefficient vector w and has a single minimum point. For example, for a 
filter with only two coefficients (w0, w1), the mean square error function is a 
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bowl-shaped surface, with a single minimum point, as illustrated in Figure 
6.2. The least mean square error point corresponds to the minimum error 
power. At this optimal operating point the mean square error surface has 
zero gradient. From Equation (6.5), the gradient of the mean square error 
function with respect to the filter coefficient vector is given by 
 

yyyx Rwr

yywy
w

T

TT2

22

)]()([2)]()([2 )]([

+−=

+−= mmmmxme EEE
∂
∂

     (6.7) 

 
where the gradient vector is defined as 
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The minimum mean square error Wiener filter is obtained by setting 
Equation (6.7) to zero: 

Ryy w  = r yx                  (6.9) 
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Figure 6.2 Mean square error surface for a two-tap FIR filter. 
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or, equivalently,  

yxyy r Rw 1   −=                 (6.10) 

 
In an expanded form, the Wiener filter solution Equation (6.10) can be 
written as 
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(6.11) 
 
From Equation (6.11), the calculation of the Wiener filter coefficients 
requires the autocorrelation matrix of the input signal and the cross-
correlation vector of the input and the desired signals.  
 In statistical signal processing theory, the correlation values of a 
random process are obtained as the averages taken across the ensemble of 
different realisations of the process as described in Chapter 3. However in 
many practical situations there are only one or two finite-duration 
realisations of the signals x(m) and y(m). In such cases, assuming the signals 
are correlation-ergodic, we can use time averages instead of ensemble 
averages. For a signal record of length N samples, the time-averaged 
correlation values are computed as  
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Note from Equation (6.11) that the autocorrelation matrix Ryy has a highly 
regular Toeplitz structure. A Toeplitz matrix has constant elements along 
the left–right diagonals of the matrix. Furthermore, the correlation matrix is 
also symmetric about the main diagonal elements. There are a number of 
efficient methods for solving the linear matrix Equation (6.11), including 
the Cholesky decomposition, the singular value decomposition and the QR 
decomposition methods.    
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6.2 Block-Data Formulation of the Wiener Filter 
 
In this section we consider an alternative formulation of a Wiener filter for a 
block of N samples of the input signal [y(0), y(1), ..., y(N–1)] and the 
desired signal [x(0), x(1), ..., x(N–1)]. The set of N linear equations 
describing the Wiener filter input/output relation can be written in matrix 
form as 
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Equation (6.13) can be rewritten in compact matrix notation as  
 

wYx=ˆ                  (6.14) 
 
The Wiener filter error is the difference between the desired signal and the 
filter output defined as 

e = x − ˆ x 

= x − Yw
                 (6.15) 

 
The energy of the error vector, that is the sum of the squared elements of 
the error vector, is given by the inner vector product as 
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The gradient of the squared error function with respect to the Wiener filter 
coefficients is obtained by differentiating Equation (6.16): 
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The Wiener filter coefficients are obtained by setting the gradient of the 
squared error function of Equation (6.17) to zero, this yields 
 

( ) xYwYY TT =                  (6.18) 
or 

( ) xYYYw T1T −
=             (6.19) 

 
Note that the matrix YTY is a time-averaged estimate of the autocorrelation 
matrix of the filter input signal Ryy, and that the vector YTx is a time-
averaged estimate of rxy the cross-correlation vector of the input and the 
desired signals. Theoretically, the Wiener filter is obtained from 
minimisation of the squared error across the ensemble of different 
realisations of a process as described in the previous section. For a 
correlation-ergodic process, as the signal length N approaches infinity the 
block-data Wiener filter of Equation (6.19) approaches the Wiener filter of 
Equation (6.10): 
 

 ( ) xy
N

rRxYYYw yy
1T1Tlim −−

∞→
=



 =           (6.20) 

 
Since the least square error method described in this section requires a 
block of N samples of the input and the desired signals, it is also referred to 
as the block least square (BLS) error estimation method. The block 
estimation method is appropriate for processing of signals that can be 
considered as time-invariant over the duration of the block.  
 
 
6.2.1 QR Decomposition of the Least Square Error Equation 
 
An efficient and robust method for solving the least square error Equation 
(6.19) is the QR decomposition (QRD) method. In this method, the N × P  
signal matrix Y is decomposed into the product of an N × N  orthonormal 
matrix Q and a P × P  upper-triangular matrix R as 
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where 0 is the (N − P) × P  null matrix, I== TT QQQQ , and the upper-

triangular matrix R  is of the form 
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Substitution of Equation (6.21) in Equation (6.18) yields 
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From Equation (6.23) we have 
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From Equation (6.24) we have
 

Qxw=R                   (6.25) 

 
where the vector xQ on the right hand side of Equation (6.25) is composed 
of the first P elements of the product Qx. Since the matrix R is upper-
triangular, the coefficients of the least square error filter can be obtained 
easily through a process of back substitution from Equation (6.25), starting 
with the coefficient 111 /)1( −−− −= PPP rPxw

Q
. 

 The main computational steps in the QR decomposition are the 
determination of the orthonormal matrix Q and of the upper triangular 
matrix R. The decomposition of a matrix into QR matrices can be achieved 
using a number of methods, including the Gram-Schmidt orthogonalisation 
method, the Householder method and the Givens rotation method.  
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6.3 Interpretation of Wiener Filters as Projection in Vector Space 
 
In this section, we consider an alternative formulation of Wiener filters 
where the least square error estimate is visualized as the perpendicular 
minimum distance projection of the desired signal vector onto the vector 
space of the input signal. A vector space is the collection of an infinite 
number of vectors that can be obtained from linear combinations of a 
number of independent vectors.  
 In order to develop a vector space interpretation of the least square 
error estimation problem, we rewrite the matrix Equation (6.11) and express 
the filter output vector ˆ x  as a linear weighted combination of the column 
vectors of the input signal matrix as 

x(m) 
x(m–1) 
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y(m) 
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Figure 6.3 The least square error projection of a desired signal vector x onto a 
plane containing the input signal vectors y1 and y2 is the perpendicular projection 

of x shown as the shaded vector. 
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In compact notation, Equation (6.26) may be written as 
 

111100ˆ −−+++= PPwww yyyx �            (6.27) 
 

In Equation (6.27) the signal estimate ˆ x  is a linear combination of P basis 
vectors [y0, y1, . . ., yP–1], and hence it can be said that the estimate ˆ x  is in 
the vector subspace formed by the input signal vectors [y0, y1, . . ., yP–1]. 
 In general, the P N-dimensional input signal vectors [y0, y1, . . ., yP–1] 
in Equation (6.27) define the basis vectors for a subspace in an N-
dimensional signal space. If P, the number of basis vectors, is equal to N, 
the vector dimension, then the subspace defined by the input signal vectors 
encompasses the entire N-dimensional signal space and includes the desired 
signal vector x. In this case, the signal estimate ˆ x = x  and the estimation 
error is zero. However, in practice, N>P, and the signal space defined by 
the P input signal vectors of Equation (6.27) is only a subspace of the N-
dimensional signal space. In this case, the estimation error is zero only if 
the desired signal x happens to be in the subspace of the input signal, 
otherwise the best estimate of x is the perpendicular projection of the vector 
x onto the vector space of the input signal [y0, y1, . . ., yP–1]., as explained in 
the following example. 
 
Example 6.1 Figure 6.3 illustrates a vector space interpretation of a 
simple least square error estimation problem, where yT=[y(2), y(1), y(0), y(–
1)] is the input signal, xT=[x(2), x(1), x(0)] is the desired signal and 
wT=[w0, w1] is the filter coefficient vector. As in Equation (6.26), the filter 
output can be written as  
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In Equation (6.28), the input signal vectors T
1y =[y(2), y(1), y(0)] and 

T
2y =[y(1), y(0), y(−1)] are 3-dimensional vectors. The subspace defined by 

the linear combinations of the two input vectors [y1, y2]  is a 2-dimensional 
plane in a 3-dimensional signal space. The filter output is a linear 
combination of y1 and y2, and hence it is confined to the plane containing 
these two vectors. The least square error estimate of x is the orthogonal 
projection of x  on the plane of [y1, y2] as shown by the shaded vector ˆ x . If 
the desired vector happens to be in the plane defined by the vectors y1 and 
y2 then the estimation error will be zero, otherwise the estimation error will 
be the perpendicular distance of x from the plane containing y1 and y2. 
 
 
6.4 Analysis of the Least Mean Square Error Signal 
 
The optimality criterion in the formulation of the Wiener filter is the least 
mean square distance between the filter output and the desired signal. In 
this section, the variance of the filter error signal is analysed. Substituting 
the Wiener equation Ryyw=ryx in Equation (6.5) gives the least mean square 
error:  
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Now, for zero-mean signals, it is easy to show that in Equation (6.29) the 
term wTRyyw is the variance of the Wiener filter output ˆ x (m) : 
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Therefore Equation (6.29) may be written as 
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where )]([and)](ˆ[)],([ 2222
ˆ

22 memxmx exx EEE === σσσ  are the variances 
of the desired signal, the filter estimate of the desired signal and the error 
signal respectively. In general, the filter input y(m) is composed of a signal 
component xc(m) and a random noise n(m): 
 

)()()( mnmxmy c +=                 (6.32) 
 

where the signal xc(m)  is the part of the observation that is correlated with 
the desired signal x(m), and it is this part of the input signal that may be 
transformable through a Wiener filter to the desired signal. Using Equation 
(6.32) the Wiener filter error may be decomposed into two distinct 
components: 
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or 
)()()( mememe nx +=                 (6.34) 

 
where ex(m) is the difference between the desired signal x(m) and the output 
of the filter in response to the input signal component xc(m), i.e. 
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             (6.35) 

 
and en(m) is the error in the output due to the presence of noise n(m) in the 
input signal: 
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The variance of filter error can be rewritten as  
 

222
nx eee σσσ +=                  (6.37) 
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Note that in Equation (6.34), ex(m) is that part of the signal that cannot be 
recovered by the Wiener filter, and represents distortion in the signal 
output, and en(m) is that part of the noise that cannot be blocked by the 
Wiener filter. Ideally, ex(m)=0 and en(m)=0, but this ideal situation is 
possible only if the following conditions are satisfied:  
 

(a) The spectra of the signal and the noise are separable by a linear 
filter. 

(b) The signal component of the input, that is xc(m), is linearly 
transformable to x(m). 

(c) The filter length P is sufficiently large. The issue of signal and noise 
separability is addressed in Section 6.6. 

  
 
6.5 Formulation of Wiener Filters in the Frequency Domain  
 
In the frequency domain, the Wiener filter output ˆ X ( f ) is the product of the 
input signal Y(f) and the filter frequency response W(f):  
 

)()()(ˆ fYfWfX =                (6.38) 
 
The estimation error signal E(f) is defined as the difference between the 
desired signal X(f) and the filter output ˆ X ( f ), 
 

)()()(
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            (6.39) 

 
and the mean square error at a frequency f is given by 
 

( ) ( )[ ])()()()()()()(
2

fYfWfXfYfWfXfE * −−=



 EE     (6.40) 

 
where E[· ] is the expectation function, and the symbol * denotes the 
complex conjugate. Note from Parseval’s theorem that the mean square 
error in time and frequency domains are related by  
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To obtain the least mean square error filter we set the complex derivative of 
Equation (6.40) with respect to filter W(f) to zero 
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where PYY(f)=E[Y(f)Y*(f)] and PXY(f)=E[X(f)Y*(f)] are the power spectrum 
of Y(f), and the cross-power spectrum of Y(f) and X(f) respectively. From 
Equation (6.42), the least mean square error Wiener filter in the frequency 
domain is given as 
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fP
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=fW
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XY                   (6.43) 

 
Alternatively, the frequency-domain Wiener filter Equation (6.43) can be 
obtained from the Fourier transform of the time-domain Wiener Equation 
(6.9): 
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From the Wiener–Khinchine relation, the correlation and power-spectral 
functions are Fourier transform pairs. Using this relation, and the Fourier 
transform property that convolution in time is equivalent to multiplication 
in frequency, it is easy to show that the Wiener filter is given by Equation 
(6.43). 
 
 
6.6 Some Applications of Wiener Filters 
 
In this section, we consider some applications of the Wiener filter in 
reducing broadband additive noise, in time-alignment of signals in multi-
channel or multisensor systems, and in channel equalisation. 
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6.6.1 Wiener Filter for Additive Noise Reduction 
 
Consider a signal x(m) observed in a broadband additive noise n(m)., and 
model as 

y(m) = x(m) + n(m)                (6.45) 
 
Assuming that the signal and the noise are uncorrelated, it follows that the 
autocorrelation matrix of the noisy signal is the sum of the autocorrelation 
matrix of the signal x(m) and the noise n(m): 
 

Ryy = Rxx + Rnn                   (6.46) 

and we can also write 
 rxy =  rxx                   (6.47) 

 
where Ryy, Rxx and Rnn are the autocorrelation matrices of the noisy signal, 
the noise-free signal and the noise respectively, and rxy is the cross-
correlation vector of the noisy signal and the noise-free signal. Substitution 
of Equations (6.46) and (6.47) in the Wiener filter, Equation (6.10), yields 
 

( ) xxnnxx rR+Rw 1 −=               (6.48) 
 

Equation (6.48) is the optimal linear filter for the removal of additive noise. 
In the following, a study of the frequency response of the Wiener filter 
provides useful insight into the operation of the Wiener filter. In the 
frequency domain, the noisy signal Y(f) is given by 
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Figure 6.4 Variation of the gain of Wiener filter frequency response with SNR. 
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)()()( fNfXfY +=                (6.49) 
 
where X(f) and N(f) are the signal and noise spectra. For a signal observed 
in additive random noise, the frequency-domain Wiener filter is obtained as 
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where PXX(f) and PNN(f) are the signal and noise power spectra. Dividing 
the numerator and the denominator of Equation (6.50) by the noise power 
spectra PNN(f) and substituting the variable SNR(f)=PXX(f)/PNN(f) yields 
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+
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fSNR
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fW                 (6.51) 

 
where SNR is a signal-to-noise ratio measure. Note that the variable, SNR(f) 
is expressed in terms of the power-spectral ratio, and not in the more usual 
terms of log power ratio. Therefore SNR(f)=0 corresponds to ∞−  dB.  

From Equation (6.51), the following interpretation of the Wiener filter 
frequency response W(f) in terms of the signal-to-noise ratio can be 
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Figure 6.5 Illustration of the variation of Wiener frequency response with signal 
spectrum for additive white noise. The Wiener filter response broadly follows the 

signal spectrum. 
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deduced. For additive noise, the Wiener filter frequency response is a real 
positive number in the range 1)(0 ≤≤ fW . Now consider the two limiting 
cases of (a) a noise-free signal ∞=)( fSNR  and (b) an extremely noisy 
signal SNR(f)=0. At very high SNR, 1)( ≈fW , and the filter applies little or 
no attenuation to the noise-free frequency component. At the other extreme, 
when SNR(f)=0, W(f)=0. Therefore, for additive noise, the Wiener filter 
attenuates each frequency component in proportion to an estimate of the 
signal to noise ratio. Figure 6.4 shows the variation of the Wiener filter 
response W(f), with the signal-to-noise ratio SNR(f).  
 An alternative illustration of the variations of the Wiener filter 
frequency response with SNR(f) is shown in Figure 6.5. It illustrates the 
similarity between the Wiener filter frequency response and the signal 
spectrum for the case of an additive white noise disturbance. Note that at a 
spectral peak of the signal spectrum, where the SNR(f) is relatively high, the 
Wiener filter frequency response is also high, and the filter applies little 
attenuation. At a signal trough, the signal-to-noise ratio is low, and so is the 
Wiener filter response. Hence, for additive white noise, the Wiener filter 
response broadly follows the signal spectrum. 
 
6.6.2 Wiener Filter and the Separability of Signal and Noise 
 
A signal is completely recoverable from noise if the spectra of the signal 
and the noise do not overlap. An example of a noisy signal with separable 
signal and noise spectra is shown in Figure 6.6(a). In this case, the signal 
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Figure 6.6 Illustration of separability: (a) The signal and noise spectra do not 
overlap, and the signal can be recovered by a low-pass filter; (b) the signal and 
noise spectra overlap, and the noise can be reduced but not completely removed. 
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and the noise occupy different parts of the frequency spectrum, and can be 
separated with a low-pass, or a high-pass, filter. Figure 6.6(b) illustrates a 
more common example of a signal and noise process with overlapping 
spectra. For this case, it is not possible to completely separate the signal 
from the noise. However, the effects of the noise can be reduced by using a 
Wiener filter that attenuates each noisy signal frequency in proportion to an 
estimate of the signal-to-noise ratio as described by Equation (6.51). 
 
 
6.6.3 The Square-Root Wiener Filter 
 
In the frequency domain, the Wiener filter output ˆ X ( f ) is the product of the 
input frequency X(f) and the filter response W(f) as expressed in Equation 
(6.38). Taking the expectation of the squared magnitude of both sides of 
Equation (6.38) yields the power spectrum of the filtered signal as 
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Substitution of W(f) from Equation (6.43) in Equation (6.52) yields 
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Now, for a signal observed in an uncorrelated additive noise we have 
 

)()()( fPfPfP NNXXYY +=              (6.54) 
and 

)()( fPfP XXXY =                 (6.55) 
 
Substitution of Equations (6.54) and (6.55) in Equation (6.53) yields 
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Now, in Equation (6.38) if instead of the Wiener filter, the square root of 
the Wiener filter magnitude frequency response is used, the result is 
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)()()(ˆ 2/1 fYfWfX =                (6.57) 
 
and the power spectrum of the signal, filtered by the square-root Wiener 
filter, is given by 
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  (6.58)  

 
Now, for uncorrelated signal and noise Equation (6.58) becomes 
 

)(]|)(ˆ[| 2 fPfX XX=E                (6.59) 
 

Thus, for additive noise the power spectrum of the output of the square-root 
Wiener filter is the same as the power spectrum of the desired signal. 
 
 
6.6.4 Wiener Channel Equaliser 
 
Communication channel distortions may be modelled by a combination of a 
linear filter and an additive random noise source as shown in Figure 6.7. 
The input/output signals of a linear time invariant channel can be modelled 
as 

∑
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k mnkmxhmy             (6.60) 

 
where x(m) and y(m) are the transmitted and received signals, [hk] is the 
impulse response of a linear filter model of the channel, and n(m) models 
the channel noise. In the frequency domain Equation (6.60) becomes 
 

)()()()( fNfHfXfY +=              (6.61) 
 
where X(f), Y(f), H(f) and N(f) are the signal, noisy signal, channel and noise 
spectra respectively. To remove the channel distortions, the receiver is 
followed by an equaliser. The equaliser input is the distorted channel 
output, and the desired signal is the channel input. Using Equation (6.43) it 
is easy to show that the Wiener equaliser in the frequency domain is given 
by  
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where it is assumed that the channel noise and the signal are uncorrelated. 
In the absence of channel noise, PNN(f)=0, and the Wiener filter is simply 
the inverse of the channel filter model W(f)=H–1(f). The equalisation 
problem is treated in detail in Chapter 15. 
 
 
6.6.5 Time-Alignment of Signals in Multichannel/Multisensor 

Systems 
 
In multichannel/multisensor signal processing there are a number of noisy 
and distorted versions of a signal x(m), and the objective is to use all the 
observations in estimating x(m), as illustrated in Figure 6.8, where the phase 
and frequency characteristics of each channel is modelled by a linear filter. 
As a simple example, consider the problem of time-alignment of two noisy 
records of a signal given as 
  

)()()( 11 mnmxmy +=                 (6.63) 
 

)()()( 22 mnDmxAmy +−=             (6.64) 
 
where y1(m) and y2(m) are the noisy observations from channels 1 and 2, 
n1(m)  and n2(m) are uncorrelated noise in each channel, D is the time delay 
of arrival of the two signals, and A is an amplitude scaling factor. Now 
assume that y1(m) is used as the input to a Wiener filter and that, in the 
absence of the signal x(m), y2(m) is used as the “desired” signal. The error 
signal is given by 

noise  n(m)

y(m)x(m) x(m)^Distortion
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Equaliser
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f

H (f)

 
 

Figure 6.7 Illustration of a channel model followed by an equaliser. 
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The Wiener filter strives to minimise the terms shown inside the square 
brackets in Equation (6.65). Using the Wiener filter Equation (6.10), we 
have 
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where rxx(D)=E [x(PD)x(m)]. The frequency-domain equivalent of 
Equation (6.65) can be derived as 
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Note that in the absence of noise, the Wiener filter becomes a pure phase (or 
a pure delay) filter with a flat magnitude response.  
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Figure 6.8 Illustration of a multichannel system where Wiener filters are used to 
time-align the signals from different channels. 
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6.6.6 Implementation of Wiener Filters 
 
The implementation of a Wiener filter for additive noise reduction, using 
Equations (6.48)–(6.50), requires the autocorrelation functions, or 
equivalently the power spectra, of the signal and noise. The noise power 
spectrum can be obtained from the signal-inactive, noise-only, periods. The 
assumption is that the noise is quasi-stationary, and that its power spectra 
remains relatively stationary between the update periods. This is a 
reasonable assumption for many noisy environments such as the noise 
inside a car emanating from the engine, aircraft noise, office noise from 
computer machines, etc. The main practical problem in the implementation 
of a Wiener filter is that the desired signal is often observed in noise, and 
that the autocorrelation or power spectra of the desired signal are not readily 
available. Figure 6.9 illustrates the block-diagram configuration of a system 
for implementation of a Wiener filter for additive noise reduction. An 
estimate of the desired signal power spectra is obtained by subtracting an 
estimate of the noise spectra from that of the noisy signal. A filter bank 
implementation of the Wiener filter is shown in Figure 6.10, where the 
incoming signal is divided into N bands of frequencies. A first-order 
integrator, placed at the output of each band-pass filter, gives an estimate of 
the power spectra of the noisy signal. The power spectrum of the original 
signal is obtained by subtracting an estimate of the noise power spectrum 
from the noisy signal. In a Bayesian implementation of the Wiener filter, 
prior models of speech and noise, such as hidden Markov models, are used 
to obtain the power spectra of speech and noise required for calculation of 
the filter coefficients. 

Noisy  signal

Y(f)

Noise spectrum 
estimator

Silence 
Detector

Noisy  signal 
spectrum estimator

X(f)=Y(f)–N(f)

W( f ) = 

Wiener 
coefficient  
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X(f) 

Y(f) 

 
 

Figure 6.9 Configuration of a system for estimation of frequency Wiener filter. 
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6.7 The Choice of Wiener Filter Order 
 
The choice of Wiener filter order affects:  
 

(a) the ability of the filter to remove distortions and reduce the noise; 
(b) the computational complexity of the filter; and  
(c) the numerical stability of the of the Wiener solution, Equation 

(6.10).  
 

The choice of the filter length also depends on the application and the 
method of implementation of the Wiener filter. For example, in a filter-bank 
implementation of the Wiener filter for additive noise reduction, the number 
of filter coefficients is equal to the number of filter banks, and typically the 
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Figure 6.10 A filter-bank implementation of a Wiener filter. 
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number of filter banks is between 16 to 64. On the other hand for many 
applications, a direct implementation of the time-domain Wiener filter 
requires a larger filter length say between 64 and 256 taps.  
 A reduction in the required length of a time-domain Wiener filter can 
be achieved by dividing the time domain signal into N sub-band signals. 
Each sub-band signal can then be decimated by a factor of N. The 
decimation results in a reduction, by a factor of N, in the required length of 
each sub-band Wiener filter. In Chapter 14, a subband echo canceller is 
described. 
 
 
6.8 Summary 
 
A Wiener filter is formulated to map an input signal to an output that is as 
close to a desired signal as possible. This chapter began with the derivation 
of the least square error Wiener filter. In Section 6.2, we derived the block-
data least square error Wiener filter for applications where only finite-
length realisations of the input and the desired signals are available. In such 
cases, the filter is obtained by minimising a time-averaged squared error 
function. In Section 6.3, we considered a vector space interpretation of the 
Wiener filters as the perpendicular projection of the desired signal onto the 
space of the input signal.  
 In Section 6.4, the least mean square error signal was analysed. The 
mean square error is zero only if the input signal is related to the desired 
signal through a linear and invertible filter. For most cases, owing to noise 
and/or nonlinear distortions of the input signal, the minimum mean square 
error would be non-zero. In Section 6.5, we derived the Wiener filter in the 
frequency domain, and considered the issue of separability of signal and 
noise using a linear filter. Finally in Section 6.6, we considered some 
applications of Wiener filters in noise reduction, time-delay estimation and 
channel equalisation. 
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