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pectral subtraction is a method for restoration of the power spectrum 
or the magnitude spectrum of a signal observed in additive noise, 
through subtraction of an estimate of the average noise spectrum from 

the noisy signal spectrum. The noise spectrum is usually estimated, and 
updated, from the periods when the signal is absent and only the noise is 
present. The assumption is that the noise is a stationary or a slowly varying 
process, and that the noise spectrum does not change significantly in-
between the update periods. For restoration of time-domain signals, an 
estimate of the instantaneous magnitude spectrum is combined with the 
phase of the noisy signal, and then transformed via an inverse discrete 
Fourier transform to the time domain. In terms of computational 
complexity, spectral subtraction is relatively inexpensive. However, owing 
to random variations of noise, spectral subtraction can result in negative 
estimates of the short-time magnitude or power spectrum. The magnitude 
and power spectrum are non-negative variables, and any negative estimates 
of these variables should be mapped into non-negative values. This non-
linear rectification process distorts the distribution of the restored signal. 
The processing distortion becomes more noticeable as the signal-to-noise 
ratio decreases. In this chapter, we study spectral subtraction, and the 
different methods of reducing and removing the processing distortions. 
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11.1 Spectral Subtraction  
                                  

 In applications where, in addition to the noisy signal, the noise is accessible 
on a separate channel, it may be possible to retrieve the signal by subtracting 
an estimate of the noise from the noisy signal. For example, the adaptive 
noise canceller of Section 1.3.1 takes as the inputs the noise and the noisy 
signal, and outputs an estimate of the clean signal. However, in many 
applications, such as at the receiver of a noisy communication channel, the 
only signal that is available is the noisy signal. In these situations, it is not 
possible to cancel out the random noise, but it may be possible to reduce the 
average effects of the noise on the signal spectrum. The effect of additive 
noise on the magnitude spectrum of a signal is to increase the mean and the 
variance of the spectrum as illustrated in Figure 11.1. The increase in the 
variance of the signal spectrum results from the random fluctuations of the 
noise, and cannot be cancelled out. The increase in the mean of the signal 
spectrum can be removed by subtraction of an estimate of the mean of the 
noise spectrum from the noisy signal spectrum. The noisy signal model in 
the time domain is given by 
 

y(m)= x(m) +n(m)     (11.1) 
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Figure 11.1 Illustrations of the effect of noise on a signal in the time and the 
frequency domains. 
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where y(m), x(m) and n(m) are the signal, the additive noise and the noisy 
signal respectively, and m is the discrete time index. In the frequency 
domain, the noisy signal model of Equation (11.1) is expressed as 
 

Y ( f )= X( f )+ N( f )       (11.2) 
 
where Y(f), X(f) and N(f) are the Fourier transforms of the noisy signal y(m), 
the original signal x(m) and the noise n(m) respectively, and f is the 
frequency variable. In spectral subtraction, the incoming signal x(m) is 
buffered and divided into segments of N samples length. Each segment is 
windowed, using a Hanning or a Hamming window, and then transformed 
via discrete Fourier transform (DFT) to N spectral samples. The windows 
alleviate the effects of the discontinuities at the endpoints of each segment. 
The windowed signal is given by 
 

yw(m) =  w(m)y(m)

= w(m)[x(m)+ n(m)]

= xw(m)+nw(m)

       (11.3) 

 
The windowing operation can be expressed in the frequency domain as  
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where the operator * denotes convolution. Throughout this chapter, it is 
assumed that the signals are windowed, and hence for simplicity we drop 
the use of the subscript w for windowed signals.  
Figure 11.2 illustrates a block diagram configuration of the spectral 
subtraction method. A more detailed implementation is described in Section 
11.4. The equation describing spectral subtraction may be expressed as 
 

bbb
fNfYfX )()()(ˆ α−=        (11.5)  

 

where bfX |)(ˆ|  is an estimate of the original signal spectrum bfX |)(|  and 

bfN |)(|  is the time-averaged noise spectra. It is assumed that the noise is a 
wide-sense stationary random process. For magnitude spectral subtraction, 
the exponent b=1, and for power spectral subtraction, b=2. The parameter α 
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in Equation (11.5) controls the amount of noise subtracted from the noisy 
signal. For full noise subtraction, α=1 and for over-subtraction α>1. The 
time-averaged noise spectrum is obtained from the periods when the signal 
is absent and only the noise is present as 
 

∑
−

=
=

1

0

|)(|
1

|)(|
K

i

b
i

b fN
K

fN       (11.6) 

 
In Equation (11.6), |Ni(f)|  is the spectrum of the ith noise frame, and it is 
assumed that there are K frames in a noise-only period, where K is a 
variable. Alternatively, the averaged noise spectrum can be obtained as the 
output of a first order digital low-pass filter as  
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where the low-pass filter coefficient ρ is typically set between 0.85 and 
0.99. For restoration of a time-domain signal, the magnitude spectrum 
estimate |)(ˆ| fX  is combined with the phase of the noisy signal, and then 
transformed into the time domain via the inverse discrete Fourier transform 
as 
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where θY(k) is the phase of the noisy signal frequency Y(k). The signal 
restoration equation (11.8) is based on the assumption that the audible noise 
is mainly due to the distortion of the magnitude spectrum, and that the phase 
distortion is largely inaudible. Evaluations of the perceptual effects of 
simulated phase distortions validate this assumption.       
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Figure 11.2 A block diagram illustration of spectral subtraction. 
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Owing to the variations of the noise spectrum, spectral subtraction may 
result in negative estimates of the power or the magnitude spectrum. This 
outcome is more probable as the signal-to-noise ratio (SNR) decreases. To 
avoid negative magnitude estimates the spectral subtraction output is post-
processed using a mapping function T[· ]  of the form 
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For example, we may chose a rule such that if the estimate 

|)(| 01.0|)(ˆ| fYfX >  (in magnitude spectrum 0.01 is equivalent to –40 dB) 

then | ˆ X ( f )|  should be set to some function of the noisy signal fn[Y(f)]. In its 
simplest form, fn[Y(f)]=noise floor, where the noise floor is a positive 
constant. An alternative choice is fn[|Y(f)|]=β |Y(f)|. In this case,   
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Spectral subtraction may be implemented in the power or the magnitude 
spectral domains. The two methods are similar, although theoretically they 
result in somewhat different expected performance.  
 
 
11.1.1 Power Spectrum Subtraction  
 
The power spectrum subtraction, or squared-magnitude spectrum 
subtraction, is defined by the following equation: 
 

222 |)(||)(||)(ˆ| fNfYfX −=       (11.11) 
 

where it is assumed that α, the subtraction factor in Equation (11.5), is 
unity. We denote the power spectrum by ]|)([| 2fXE , the time-averaged 

power spectrum by 2)( fX  and the instantaneous  power spectrum by 
2)( fX . By expanding the instantaneous power spectrum of the noisy 
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signal 2)( fY , and grouping the appropriate terms, Equation (11.11) may be 

rewritten as  
 

����� ������ 
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Taking the expectations of both sides of Equation (11.12), and assuming 
that the signal and the noise are uncorrelated ergodic processes, we have 
 

]|)([|]|)(ˆ[| 22 fXfX EE =       (11.13) 
 
From Equation (11.13), the average of the estimate of the instantaneous 
power spectrum converges to the power spectrum of the noise-free signal. 
However, it must be noted that for non-stationary signals, such as speech, 
the objective is to recover the instantaneous or the short-time spectrum, and 
only a relatively small amount of averaging can be applied. Too much 
averaging will smear and obscure the temporal evolution of the spectral 
events. Note that in deriving Equation (11.13), we have not considered non-
linear rectification of the negative estimates of the squared magnitude 
spectrum. 
 
 
11.1.2 Magnitude Spectrum Subtraction 
 
The magnitude spectrum subtraction is defined as 
 

|)(||)(||)(ˆ| fNfYfX −=       (11.14) 
 

where )( fN  is the time-averaged magnitude spectrum of the noise. 

Taking the expectation of Equation (11.14), we have  
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For signal restoration the magnitude estimate is combined with the phase of 
the noisy signal and then transformed into the time domain using Equation 
(11.8). 
 
 
11.1.3 Spectral Subtraction Filter: Relation to Wiener Filters 
 
The spectral subtraction equation can be expressed as the product of the 
noisy signal spectrum and the frequency response of a spectral subtraction 
filter as 

2
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where H(f), the frequency response of the spectral subtraction filter, is 
defined as 
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     (11.17) 

 
The spectral subtraction filter H(f) is a zero-phase filter, with its magnitude 
response in the range 1)(0 ≥≥ fH . The filter acts as a SNR-dependent 
attenuator. The attenuation at each frequency increases with the decreasing 
SNR, and conversely decreases with the increasing SNR.  

The least mean square error linear filter for noise removal is the Wiener 
filter covered in chapter 6. Implementation of a Wiener filter requires the 
power spectra (or equivalently the correlation functions) of the signal and 
the noise process, as discussed in Chapter 6. Spectral subtraction is used as a 
substitute for the Wiener filter when the signal power spectrum is not 
available. In this section, we discuss the close relation between the Wiener 
filter and spectral subtraction. For restoration of a signal observed in 
uncorrelated additive noise, the equation describing the frequency response 
of the Wiener filter was derived in Chapter 6 as 
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A comparison of W(f) and H(f), from Equations (11.18) and (11.17), shows 
that the Wiener filter is based on the ensemble-average spectra of the signal 
and the noise, whereas the spectral subtraction filter uses the instantaneous 
spectra of the noisy signal and the time-averaged spectra of the noise. In 
spectral subtraction, we only have access to a single realisation of the 
process. However, assuming that the signal and noise are wide-sense 
stationary ergodic processes, we may replace the instantaneous noisy signal 
spectrum 2|)(| fY  in the spectral subtraction equation (11.18) with the time-

averaged spectrum 2|)(| fY , to obtain 
 

2

22

|)(|

|)(||)(|
)(

fY

fNfY
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=       (11.19) 

 
For an ergodic process, as the length of the time over which the signals are 
averaged increases, the time-averaged spectrum approaches the ensemble-
averaged spectrum, and in the limit, the spectral subtraction filter of 
Equation (11.19) approaches the Wiener filter equation (11.18). In practice, 
many signals, such as speech and music, are non-stationary, and only a 
limited degree of beneficial time-averaging of the spectral parameters can be 
expected. 
 
 
11.2 Processing Distortions 
 
The main problem in spectral subtraction is the non-linear processing 
distortions caused by the random variations of the noise spectrum. From 
Equation (11.12) and the constraint that the magnitude spectrum must have 
a non-negative value, we may identify three sources of distortions of the 
instantaneous estimate of the magnitude or power spectrum as: 
 

(a) the variations of the instantaneous noise power spectrum about the 
mean; 

(b) the signal and noise cross-product terms; 
(c) the non-linear mapping of the spectral estimates that fall below a 

threshold. 
 

The same sources of distortions appear in both the magnitude and the power 
spectrum subtraction methods. Of the three sources of distortions listed 



Processing Distortions 341 

 

 

above, the dominant distortion is often due to the non-linear mapping of the 
negative, or small-valued, spectral estimates. This distortion produces a 
metallic sounding noise, known as “musical tone noise” due to their narrow-
band spectrum and the tin-like sound. The success of spectral subtraction 
depends on the ability of the algorithm to reduce the noise variations and to 
remove the processing distortions. In its worst, and not uncommon, case the 
residual noise can have the following two forms: 
 

(a) a sharp trough or peak in the signal spectra; 
(b) isolated narrow bands of frequencies. 

 
In the vicinity of a high amplitude signal frequency, the noise-induced 
trough or peak is often masked, and made inaudible, by the high signal 
energy. The main cause of audible degradations is the isolated frequency 
components also known as musical tones or musical noise illustrated in 
Figure 11.3. The musical noise is characterised as short-lived narrow bands 
of frequencies surrounded by relatively low-level frequency components. In 
audio signal restoration, the distortion caused by spectral subtraction can 
result in a significant deterioration of the signal quality. This is particularly 
true at low signal-to-noise ratios. The effects of a bad implementation of 
subtraction algorithm can result in a signal that is of a lower perceived 
quality, and lower information content, than the original noisy signal. 

    

|y(f)|

f

Distortion in the form of a 
sharp trough in signal spectra.

Distortions in the form of
Isolated “musical” noise.

 
Figure 11.3 Illustration of distortions that may result from spectral subtraction. 
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11.2.1 Effect of Spectral Subtraction on Signal Distribution 
 
Figure 11.4 is an illustration of the distorting effect of spectral subtraction 
on the distribution of the magnitude spectrum of a signal. In this figure, we 
have considered the simple case where the spectrum of a signal is divided 
into two parts; a low-frequency band fl and a high-frequency band fh. Each 
point in Figure 11.4 is a plot of the high-frequency spectrum versus the low-
frequency spectrum, in a two-dimensional signal space. Figure 11.4(a) 
shows an assumed distribution of the spectral samples of a signal in the two-
dimensional magnitude–frequency space. The effect of the random noise, 
shown in Figure 11.4(b), is an increase in the mean and the variance of the 
spectrum, by an amount that depends on the mean and the variance of the 
magnitude spectrum of the noise. The increase in the variance constitutes an 
irrevocable distortion. The increase in the mean of the magnitude spectrum 
can be removed through spectral subtraction. Figure 11.4(c) illustrates the 
distorting effect of spectral subtraction on the distribution of the signal 
spectrum. As shown, owing to the noise-induced increase in the variance of 
the signal spectrum, after subtraction of the average noise spectrum, a 
proportion of the signal population, particularly those with a low SNR, 
become negative and have to be mapped to non-negative values. As shown 
this process distorts the distribution of the low-SNR part of the signal 
spectrum. 
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Figure 11.4 Illustration of the distorting effect of spectral subtraction on the space of 

the magnitude spectrum of a signal. 
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11.2.2 Reducing the Noise Variance 
 
The distortions that result from spectral subtraction are due to the variations 
of the noise spectrum. In Section 9.2 we considered the methods of reducing 
the variance of the estimate of a power spectrum. For a white noise process 
with variance σn

2 , it can be shown that the variance of the DFT spectrum of 
the noise N(f) is given by 

422 )(]|)(|[Var nNN fPfN σ=≈       (11.20) 

 
and the variance of the running average of K independent spectral 
components is  
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From Equation (11.21), the noise variations can be reduced by time-
averaging of the noisy signal frequency components. The fundamental 
limitation is that the averaging process, in addition to reducing the noise 
variance, also has the undesirable effect of smearing and blurring the time 
variations of the signal spectrum. Therefore an averaging process should 
reflect a compromise between the conflicting requirements of reducing the 
noise variance and of retaining the time resolution of the non-stationary 
spectral events. This is important because time resolution plays an important 
part in both the quality and the intelligibility of audio signals.    
 In spectral subtraction, the noisy signal y(m) is segmented into blocks 
of N samples. Each signal block is then transformed via a DFT into a block 
of N spectral samples Y(f). Successive blocks of spectral samples form a 
two-dimensional frequency–time matrix denoted by Y(f,t) where the variable 
t is the segment index and denotes the time dimension. The signal Y(f,t) can 
be considered as a band-pass channel f that contains a time-varying signal 
X(f,t) plus a random noise component N(f,t). One method for reducing the 
noise variations is to low-pass filter the magnitude spectrum at each 
frequency. A simple recursive first-order digital low-pass filter is given by 
 

|),(|)1(|)1,(||),(| tfYtfYtfY LPLP ρρ −+−=     (11.22) 
 

where the subscript LP denotes the output of the low-pass filter, and the 
smoothing coefficient ρ controls the bandwidth and the time constant of the 
low-pass filter.  
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11.2.3 Filtering Out the Processing Distortions 
 
Audio signals, such as speech and music, are composed of sequences of 
non-stationary acoustic events. The acoustic events are “born”, have a 
varying lifetime, disappear, and then reappear with a different intensity and 
spectral composition. The time–varying nature of audio signals plays an 
important role in conveying information, sensation and quality. The musical 
tone noise, introduced as an undesirable by-product of spectral subtraction, 
is also time-varying. However, there are significant differences between the 
characteristics of most audio signals and so-called musical noise. The 
characteristic differences may be used to identify and remove some of the 
more annoying distortions. Identification of musical noise may be achieved 
by examining the variations of the signal in the time and frequency domains. 
The main characteristics of musical noise are that it tends to be relatively 
short-lived random isolated bursts of narrow band signals, with relatively 
small amplitudes.  

Using a DFT block size of 128 samples, at a sampling rate of 20 kHz, 
experiments indicate that the great majority of musical noise tends to last no 
more than three frames, whereas genuine signal frequencies have a 
considerably longer duration. This observation was used as the basis of an 
effective “musical noise” suppression system. Figure 11.5 demonstrates a 
method for the identification of musical noise. Each DFT channel is 
examined to identify short-lived frequency events. If a frequency component 
has a duration shorter than a pre-selected time window, and an amplitude 
smaller than a threshold, and is not masked by signal components in the 
adjacent frequency bins, then it is classified as distortion and deleted.  

Time

Spectral magnitude

Window length
Sliding window

Threshold level

: Deleted
: Survive  

Figure 11.5 Illustration of a method for identification and filtering of “musical noise”. 
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11.3 Non-Linear Spectral Subtraction 
  
The use of spectral subtraction in its basic form of Equation (11.5) may 
cause deterioration in the quality and the information content of a signal. 
For example, in audio signal restoration, the musical noise can cause 
degradation in the perceived quality of the signal, and in speech recognition 
the basic spectral subtraction can result in deterioration of the recognition 
accuracy. In the literature, there are a number of variants of spectral 
subtraction that aim to provide consistent performance improvement across 
a range of SNRs. These methods differ in their approach to estimation of the 
noise spectrum, in their method of averaging the noisy signal spectrum, and 
in their post processing method for the removal of processing distortions.  
Non-linear spectral subtraction methods are heuristic methods that utilise 
estimates of the local SNR, and the observation that at a low SNR over-
subtraction can produce improved results. For an explanation of the 
improvement that can result from over-subtraction, consider the following 
expression of the basic spectral subtraction equation: 
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     (11.23) 

 
where VN(f) is the zero-mean random component of the noise spectrum. If 
VN(f) is well above the signal X(f) then the signal may be considered as lost 
to noise. In this case, over-subtraction, followed by non-linear processing of 
the negative estimates, results in a higher overall attenuation of the noise. 
This argument explains why subtracting more than the noise average can 
sometimes produce better results. The non-linear variants of spectral 
subtraction may be described by the following equation: 
 

( ) NLfNfSNRfYfX |)(|)(|)(|)(ˆ| α−=     (11.24) 

 

where α SNR( f )( )  is an SNR-dependent subtraction factor and NLfN |)(|  

is a non-linear estimate of the noise spectrum. The spectral estimate is 
further processed to avoid negative estimates as 
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One form of an SNR-dependent subtraction factor for Equation (11.24) is 
given by  

( ) ( )
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where the function sd(|N(f)| is the standard deviation of the noise at 

frequency f. For white noise, sd(|N(f)|=σn, where 2
nσ  is the noise variance. 

Substitution of Equation (11.26) in Equation (11.24) yields 
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In Equation (11.27) the subtraction factor depends on the mean and the 
variance of the noise. Note that the amount over-subtracted is the standard 
deviation of the noise. This heuristic formula is appealing because at one 
extreme for deterministic noise with a zero variance, such as a sine wave, 
α(SNR(f))=1, and at the other extreme for white noise α(SNR(f))=2. In 
application of spectral subtraction to speech recognition, it is found that the 
best subtraction factor is usually between 1 and 2. 
 In the non-linear spectral subtraction method of Lockwood and Boudy, 
the spectral subtraction filter is obtained from 
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Lockwood and Boudy suggested the following function as a non-linear 
estimator of the noise spectrum: 
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The estimate of the noise spectrum is a function of the maximum value of 
noise spectrum over M frames, and the signal-to-noise ratio. One form for 
the non-linear function Φ(· )  is given by the following equation: 
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where γ is a design parameter. From Equation (11.30) as the SNR decreases 
the output of the non-linear estimator Φ(· ) approaches max(| N( f )|2 ) , and as 
the SNR increases it approaches zero. For over-subtraction, the noise 
estimate is forced to be an over-estimation by using the following limiting 
function: 
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Figure 11.6 Illustration of the effects of non-linear spectral subtraction. 
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The maximum attenuation of the spectral subtraction filter is limited to 

β≥)( fH , where usually the lower bound 01.0≥β . Figure 11.6 illustrates 
the effects of non-linear spectral subtraction and smoothing in restoration of 
the spectrum of a speech signal. 
 
 
11.4 Implementation of Spectral Subtraction 
 
Figure 11.7 is a block diagram illustration of a spectral subtraction system. 
It includes the following subsystems: 
 

(a) a silence detector for detection of the periods of signal inactivity; 
the noise spectra is updated during these periods; 

(b)  a discrete Fourier transformer (DFT) for transforming the time 
domain signal to the frequency domain; the DFT is followed by a 
magnitude operator; 

(c)  a lowpass filter (LPF) for reducing the noise variance; the purpose 
of the LPF is to reduce the processing distortions due to noise 
variations; 

(d) a post-processor for removing the processing distortions introduced 
by spectral subtraction.; 

(e) an inverse discrete Fourier transform (IDFT) for transforming the 
processed signal to the time domain.   

(f) an attenuator γ for attenuation of the noise during silent periods. 

Noisy signal  
y(m)

Y(f)=X(f)+N(f)

DFT

Noise spectrum 
estimator

|Y(f)|b

X(f)=Y(f)–αN(f)
^

Silence 
detector α

phase[Y(f)]

IDFT

γ γ y(m)

LPF PSP

^

N(f)

x(m)

+

 
Figure 11.7 Block diagram configuration of a spectral subtraction system.  

PSP = post spectral subtraction processing. 
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The DFT-based spectral subtraction is a block processing algorithm. The 
incoming audio signal is buffered and divided into overlapping blocks of N 
samples as shown in Figure 11.7. Each block is Hanning (or Hamming) 
windowed, and then transformed via a DFT to the frequency domain. After 
spectral subtraction, the magnitude spectrum is combined with the phase of 
the noisy signal, and transformed back to the time domain. Each signal 
block is then overlapped and added to the preceding and succeeding blocks 
to form the final output.  
 The choice of the block length for spectral analysis is a compromise 
between the conflicting requirements of the time resolution and the spectral 
resolution. Typically a block length of 5–50 milliseconds is used. At a 
sampling rate of say 20 kHz, this translates to a value for N in the range of 
100–1000 samples. The frequency resolution of the spectrum is directly 
proportional to the number of samples, N. A larger value of N produces a 
better estimate of the spectrum. This is particularly true for the lower part of 
the frequency spectrum, since low-frequency components vary slowly with 
the time, and require a larger window for a stable estimate. The conflicting 
requirement is that, owing to the non-stationary nature of audio signals, the 
window length should not be too large, so that short-duration events are not 
obscured. 
 The main function of the window and the overlap operations (Figure 
11.8) is to alleviate discontinuities at the endpoints of each output block. 
Although there are a number of useful windows with different 
frequency/time characteristics, in most implementations of the spectral 
subtraction, a Hanning window is used. In removing distortions introduced 
by spectral subtraction, the post-processor algorithm makes use of such 
information as the correlation of each frequency channel from one block to 
the next, and the durations of the signal events and the distortions. The 

 

time

 
 
Figure 11.8 Illustration of the window and overlap process in spectral subtraction. 
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correlation of the signal spectral components, along the time dimension, can 
be partially controlled by the choice of the window length and the overlap. 
The correlation of spectral components along the time domain increases 
with decreasing window length and increasing overlap. However, increasing 
the overlap can also increase the correlation of noise frequencies along the 
time dimension. 
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Figure 11.9 (a) A noisy signal. (b) Restored signal after spectral subtraction. 

(c) Noise estimate obtained by subtracting (b) from (a). 
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11.4.1 Application to Speech Restoration and Recognition  
 
In speech restoration, the objective is to estimate the instantaneous signal 
spectrum X(f). The restored magnitude spectrum is combined with the phase 
of the noisy signal to form the restored speech signal. In contrast, speech 
recognition systems are more concerned with the restoration of the envelope 
of the short-time spectrum than the detailed structure of the spectrum. 
Averaged values, such as the envelope of a spectrum, can often be estimated 
with more accuracy than the instantaneous values. However, in speech 
recognition, as in signal restoration, the processing distortion due to the 
negative spectral estimates can cause substantial deterioration in 
performance. A careful implementation of spectral subtraction can result in 
a significant improvement in the recognition performance. 
Figure 11.9 illustrates the effects of spectral subtraction in restoring a 
section of a speech signal contaminated with white noise. Figure 11.10 
illustrates the improvement that can be obtained from application of spectral 
subtraction to recognition of noisy speech contaminated by a helicopter 
noise. The recognition results were obtained for a hidden Markov model-
based spoken digit recognition. 
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Figure 11.10 The effect of spectral subtraction in improving speech recognition 

(for a spoken digit data base) in the presence of helicopter noise. 
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11.5 Summary 
 
This chapter began with an introduction to spectral subtraction and its 
relation to Wiener filters. The main attraction of spectral subtraction is its 
relative simplicity, in that it only requires an estimate of the noise power 
spectrum. However, this can also be viewed as a fundamental limitation in 
that spectral subtraction does not utilise the statistics and the distributions of 
the signal process. The main problem in spectral subtraction is the presence 
of processing distortions caused by the random variations of the noise. The 
estimates of the magnitude and power spectral variables, that owing to noise 
variations, are negative, have to be mapped into non-negative values. In 
Section 11.2, we considered the processing distortions, and illustrated the 
effects of rectification of negative estimates on the distribution of the signal 
spectrum. In Section 11.3, a number of non-linear variants of the spectral 
subtraction method were considered. In signal restoration and in 
applications of spectral subtraction to speech recognition it is found that 
over-subtraction, which is subtracting more than the average noise value, 
can lead to improved results; if a frequency component is immersed in noise 
then over-subtraction can cause further attenuation of the noise. A formula 
is proposed in which the over-subtraction factor is made dependent on the 
noise variance. As mentioned earlier, the fundamental problem with spectral 
subtraction is that it employs relatively too little prior information, and for 
this reason it is outperformed by Wiener filters and Bayesian statistical 
restoration methods.    
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