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mpulsive noise consists of relatively short duration “on/off” noise 
pulses, caused by a variety of sources, such as switching noise, adverse 
channel environments in a communication system, dropouts or surface 

degradation of audio recordings, clicks from computer keyboards, etc. An 
impulsive noise filter can be used for enhancing the quality and 
intelligibility of noisy signals, and for achieving robustness in pattern 
recognition and adaptive control systems. This chapter begins with a study 
of the frequency/time characteristics of impulsive noise, and then proceeds 
to consider several methods for statistical modelling of an impulsive noise 
process. The classical method for removal of impulsive noise is the median 
filter. However, the median filter often results in some signal degradation. 
For optimal performance, an impulsive noise removal system should utilise 
(a) the distinct features of the noise and the signal in the time and/or 
frequency domains, (b) the statistics of the signal and the noise processes, 
and (c) a model of the physiology of the signal and noise generation. We 
describe a model-based system that detects each impulsive noise, and then 
proceeds to replace the samples obliterated by an impulse. We also consider 
some methods for introducing robustness to impulsive noise in parameter 
estimation.  
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12.1 Impulsive Noise 
 
In this section, first the mathematical concepts of an analog and a digital 
impulse are introduced, and then the various forms of real impulsive noise 
in communication systems are considered.  
 The mathematical concept of an analog impulse is illustrated in Figure 
12.1. Consider the unit-area pulse p(t) shown in Figure 12.1(a). As the pulse 
width ∆ tends to zero, the pulse tends to an impulse. The impulse function 
shown in Figure 12.1(b) is defined as a pulse with an infinitesimal time 
width as 







>

≤
==

→ 2/,0

2/,/1
)(limit)(

0 �t

�t�

tpt
û

δ         (12.1) 

 
The integral of the impulse function is given by 
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The Fourier transform of the impulse function is obtained as 
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where f is the frequency variable. The impulse function is used as a test 
function to obtain the impulse response of a system. This is because as 
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Figure 12.1 (a) A unit-area pulse, (b) The pulse becomes an impulse as 0→û , 

(c) The spectrum of the impulse function. 
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shown in Figure 12.1(c), an impulse is a spectrally rich signal containing all 
frequencies in equal amounts. 
 A digital impulse )(mδ , shown Figure 12.2(a), is defined as a signal 
with an “on” duration of one sample, and is expressed as: 
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where the variable m designates the discrete-time index. Using the Fourier 
transform relation, the frequency spectrum of a digital impulse is given by  
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In communication systems, real impulsive-type noise has a duration that is 
normally more than one sample long. For example, in the context of audio 
signals, short-duration, sharp pulses, of up to 3 milliseconds (60 samples at 
a 20 kHz sampling rate) may be considered as impulsive-type noise. Figures 
12.1(b) and 12.1(c) illustrate two examples of short-duration pulses and 
their respective spectra.   
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Figure 12.2 Time and frequency sketches of (a) an ideal impulse, and (b) and (c) 

short-duration pulses. 
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In a communication system, an impulsive noise originates at some 
point in time and space, and then propagates through the channel to the 
receiver. The received noise is shaped by the channel, and can be 
considered as the channel impulse response. In general, the characteristics 
of a communication channel may be linear or non-linear, stationary or time 
varying. Furthermore, many communication systems, in response to a 
large-amplitude impulse, exhibit a nonlinear characteristic.  

Figure 12.3 illustrates some examples of impulsive noise, typical of 
those observed on an old gramophone recording. In this case, the 
communication channel is the playback system, and may be assumed time-
invariant. The figure also shows some variations of the channel 
characteristics with the amplitude of impulsive noise. These variations may 
be attributed to the non-linear characteristics of the playback mechanism.  

 An important consideration in the development of a noise 
processing system is the choice of an appropriate domain (time or the 
frequency) for signal representation. The choice should depend on the 
specific objective of the system. In signal restoration, the objective is to 
separate the noise from the signal, and the representation domain must be 
the one that emphasises the distinguishing features of the signal and the 
noise. Impulsive noise is normally more distinct and detectable in the time 
domain than in the frequency domain, and it is appropriate to use time-
domain signal processing for noise detection and removal. In signal 
classification and parameter estimation, the objective may be to compensate 
for the average effects of the noise over a number of samples, and in some 
cases, it may be more appropriate to process the impulsive noise in the 
frequency domain where the effect of noise is a change in the mean of the 
power spectrum of the signal. 

mmm

(a) (b) (c)

ni1(m) ni2(m) ni3(m)

Figure 12.3 Illustration of variations of the impulse response of a non-linear 
system with increasing amplitude of the impulse. 
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12.1.1 Autocorrelation and Power Spectrum of Impulsive Noise  
 
Impulsive noise is a non-stationary, binary-state sequence of impulses with 
random amplitudes and random positions of occurrence. The non-stationary 
nature of impulsive noise can be seen by considering the power spectrum of 
a noise process with a few impulses per second: when the noise is absent 
the process has zero power, and when an impulse is present the noise power 
is the power of the impulse. Therefore the power spectrum and hence the 
autocorrelation of an impulsive noise is a binary state, time-varying process. 
An impulsive noise sequence can be modelled as an amplitude-modulated 
binary-state sequence, and expressed as 
 

)()()( mbmnmni =           (12.6) 
 
where b(m) is a binary-state random sequence of ones and zeros, and n(m) 
is a random noise process. Assuming that impulsive noise is an uncorrelated 
random process, the autocorrelation of impulsive noise may be defined as a 
binary-state process: 
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where δ(k) is the Kronecker delta function. Since it is assumed that the 
noise is an uncorrelated process, the autocorrelation is zero for 0≠k , 
therefore Equation (12.7) may be written as 
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Note that for a zero-mean noise process, rnn(0,m) is the time-varying 
binary-state noise power. The power spectrum of an impulsive noise 
sequence is obtained, by taking the Fourier transform of the autocorrelation 
function Equation (12.8), as 
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In Equation (12.8) and (12.9) the autocorrelation and power spectrum are 
expressed as binary state functions that depend on the “on/off” state of 
impulsive noise at time m.
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12.2 Statistical Models for Impulsive Noise 
 
In this section, we study a number of statistical models for the 
characterisation of an impulsive noise process. An impulsive noise 
sequence ni(m) consists of short duration pulses of a random amplitude, 
duration, and time of occurrence, and may be modelled as the output of a 
filter excited by an amplitude-modulated random binary sequence as 
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Figure 12.4 illustrates the impulsive noise model of Equation (12.10). In 
Equation (12.10) b(m) is a binary-valued random sequence model of the 
time of occurrence of impulsive noise, n(m) is a continuous-valued random 
process model of impulse amplitude, and h(m) is the impulse response of a 
filter that models the duration and shape of each impulse. Two important 
statistical processes for modelling impulsive noise as an amplitude-
modulated binary sequence are the Bernoulli-Gaussian process and the 
Poisson–Gaussian process, which are discussed next. 
 
 
12.2.1 Bernoulli–Gaussian Model of Impulsive Noise 
 
In a Bernoulli-Gaussian model of an impulsive noise process, the random 
time of occurrence of the impulses is modelled by a binary Bernoulli 
process b(m) and the amplitude of the impulses is modelled by a Gaussian 
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Amplitude modulated 
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   n(m) b(m)
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sequence nI(m)

Impulse shaping  
         filter
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sequence   n(m)
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Figure 12.4 Illustration of an impulsive noise model as the output of a filter 

excited by an amplitude-modulated binary sequence. 
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process n(m). A Bernoulli process b(m) is a binary-valued process that takes 
a value of “1” with a probability of α and a value of “0” with a probability 
of 1–α. Τhe probability mass function of a Bernoulli process is given by 
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A Bernoulli process has a mean 
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and a variance  
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A zero-mean Gaussian pdf model of the random amplitudes of impulsive 
noise is given by 
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where

 
σn

2  is the variance of the noise amplitude. In a Bernoulli–Gaussian 
model the probability density function of an impulsive noise ni(m) is given 
by 
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where ( ))(mniδ  is the Kronecker delta function. Note that the function 

( ))(mnf i
BG

N  is a mixture of a discrete probability mass function ( ))(mniδ  

and a continuous probability density function ( ))(mnf iN . 
 An alternative model for impulsive noise is a binary-state Gaussian 
process (Section 2.5.4), with a low-variance state modelling the absence of 
impulses and a relatively high-variance state modelling the amplitude of 
impulsive noise. 
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12.2.2 Poisson–Gaussian Model of Impulsive Noise 
 
In a Poisson–Gaussian model the probability of occurrence of an impulsive 
noise event is modelled by a Poisson process, and the distribution of the 
random amplitude of impulsive noise is modelled by a Gaussian process. 
The Poisson process, described in Chapter 2, is a random event-counting 
process. In a Poisson model, the probability of occurrence of k impulsive 
noise in a time interval of T is given by 
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where λ is a rate function with the following properties: 
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It is assumed that no more than one impulsive noise can occur in a time 
interval ∆t. In a Poisson–Gaussian model, the pdf of an impulsive noise 
ni(m) in a small time interval of ∆t is given by 
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where ( ))(mnf iN  is the Gaussian pdf of Equation (12.14).  
 
12.2.3 A Binary-State Model of Impulsive Noise  
 
An impulsive noise process may be modelled by a binary-state model as 
shown in Figure 12.4. In this binary model, the state S0 corresponds to the 
“off” condition when impulsive noise is absent; in this state, the model 
emits zero-valued samples. The state S1 corresponds to the “on” condition; 
in this state the model emits short-duration pulses of random amplitude and 
duration. The probability of a transition from state Si to state Sj is denoted 
by aij. In its simplest form, as shown in Figure 12.5, the model is 
memoryless, and the probability of a transition to state Si is independent of 
the current state of the model. In this case, the probability that at time t+1 
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the signal is in the state S0 is independent of the state at time t, and is given 
by ( ) ( ) α−===+===+ 1)()1()()1( 1000 StsStsPStsStsP   (12.19)  
 
where st denotes the state at time t. Likewise, the probability that at time 
t+1 the model is in state S1 is given by 
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In a more general form of the binary-state model, a Markovian state-
transition can model the dependencies in the noise process. The model then 
becomes a 2-state hidden Markov model considered in Chapter 5. 
In one of its simplest forms, the state S1 emits samples from a zero-mean 
Gaussian random process. The impulsive noise model in state S1 can be 
configured to accommodate a variety of impulsive noise of different shapes, 
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Figure 12.5 A binary-state model of an impulsive noise generator. 
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Figure 12.6 A 3-state model of impulsive noise and the decaying oscillations 

that often follow the impulses. 
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durations and pdfs. A practical method for modelling a variety of impulsive 
noise is to use a code book of M prototype impulsive noises, and their 
associated probabilities [(ni1, pi1), (ni2 , pi2), ..., (niM , piM)], where pj 

denotes the probability of impulsive noise of the type nj. The impulsive 
noise code book may be designed by classification of a large number of 
“training” impulsive noises into a relatively small number of clusters. For 
each cluster, the average impulsive noise is chosen as the representative of 
the cluster. The number of impulses in the cluster of type j divided by the 
total number of impulses in all clusters gives pj, the probability of an 
impulse of type j.  
 Figure 12.6 shows a three-state model of the impulsive noise and the 
decaying oscillations that might follow the noise. In this model, the state S0 
models the absence of impulsive noise, the state S1 models the impulsive 
noise and the state S2 models any oscillations that may follow a noise pulse. 
 
12.2.4 Signal to Impulsive Noise Ratio 
 
For impulsive noise the average signal to impulsive noise ratio, averaged 
over an entire noise sequence including the time instances when the 
impulses are absent, depends on two parameters: (a) the average power of 
each impulsive noise, and (b) the rate of occurrence of impulsive noise. Let 
Pimpulse denote the average power of each impulse, and Psignal the signal 
power. We may define a “local” time-varying signal to impulsive noise 
ratio as 
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The average signal to impulsive noise ratio, assuming that the parameter 
α is the fraction of signal samples contaminated by impulsive noise, can be 
defined as 
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Note that from Equation (12.22), for a given signal power, there are many 
pair of values of α and PImpulse that can yield the same average SINR. 
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Sliding Winow of 
 Length 3 Samples

Impulsive noise removed

Noise-free samples distorted by the median filter   
 
Figure 12.7 Input and output of a median filter. Note that in addition to suppressing 

the impulsive outlier, the filter also distorts some genuine signal components. 
 
 
12.3 Median Filters 
 
The classical approach to removal of impulsive noise is the median filter. 
The median of a set of samples {x(m)} is a member of the set xmed(m) such 
that; half the population of the set are larger than xmed(m) and half are 
smaller than xmed(m). Hence the median of a set of samples is obtained by 
sorting the samples in the ascending or descending order, and then selecting 
the mid-value. In median filtering, a window of predetermined length slides 
sequentially over the signal, and the mid-sample within the window is 
replaced by the median of all the samples that are inside the window, as 
illustrated in Figure 12.7.  
 The output ˆ x (m)  of a median filter with input y(m) and a median 
window of length 2K+1 samples is given by 
 

[ ])(,),(,),(median

)()(ˆ med

KmymyKmy

mymx

+−=
=

��

    (12.23)

 
 The median of a set of numbers is a non-linear statistics of the set, with 
the useful property that it is insensitive to the presence of a sample with an 
unusually large value, a so-called outlier, in the set. In contrast, the mean, 
and in particular the variance, of a set of numbers are sensitive to the 
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presence of impulsive-type noise. An important property of median filters, 
particularly useful in image processing, is that they preserves edges or 
stepwise discontinuities in the signal. Median filters can be used for 
removing impulses in an image without smearing the edge information; this 
is of significant importance in image processing. However, experiments 
with median filters, for removal of impulsive noise from audio signals, 
demonstrate that median filters are unable to produce high-quality audio 
restoration. The median filters cannot deal with “real” impulsive noise, 
which are often more than one or two samples long. Furthermore, median 
filters introduce a great deal of processing distortion by modifying genuine 
signal samples that are mistaken for impulsive noise. The performance of 
median filters may be improved by employing an adaptive threshold, so that 
a sample is replaced by the median only if the difference between the 
sample and the median is above the threshold: 
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where θ(m) is an adaptive threshold that may be related to a robust estimate 
of the average of )()( med mymy − , and k is a tuning parameter. Median 
filters are not optimal, because they do not make efficient use of prior 
knowledge of the physiology of signal generation, or a model of the signal 
and noise statistical distributions. In the following section we describe a 
autoregressive model-based impulsive removal system, capable of 
producing high-quality audio restoration.  
 
 
12.4 Impulsive Noise Removal Using Linear Prediction Models 
  
In this section, we study a model-based impulsive noise removal system. 
Impulsive disturbances usually contaminate a relatively small fraction α of 
the total samples. Since a large fraction, 1–α, of samples remain unaffected 
by impulsive noise, it is advantageous to locate individual noise pulses, and 
correct only those samples that are distorted. This strategy avoids the 
unnecessary processing and compromise in the quality of the relatively 
large fraction of samples that are not disturbed by impulsive noise. The 
impulsive noise removal system shown in Figure 12.8 consists of two 
subsystems: a detector and an interpolator. The detector locates the position 
of each noise pulse, and the interpolator replaces the distorted samples 
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using the samples on both sides of the impulsive noise. The detector is 
composed of a linear prediction analysis system, a matched filter and a 
threshold detector. The output of the detector is a binary switch and controls 
the interpolator. A detector output of “0” signals the absence of impulsive 
noise and the interpolator is bypassed. A detector output of “1” signals the 
presence of impulsive noise, and the interpolator is activated to replace the 
samples obliterated by noise.  
 
 
12.4.1 Impulsive Noise Detection 
 
A simple method for detection of impulsive noise is to employ an amplitude 
threshold, and classify those samples with an amplitude above the threshold 
as noise. This method works fairly well for relatively large-amplitude 
impulses, but fails when the noise amplitude falls below the signal. 
Detection can be improved by utilising the characteristic differences 
between the impulsive noise and the signal. An impulsive noise, or a short-
duration pulse, introduces uncharacteristic discontinuity in a correlated 
signal. The discontinuity becomes more detectable when the signal is 

SignalSignal + impulsive noise

1 : Impulse present

0 : Noiseless signal

Interpolator

Linear  
prediction 
analysis

Predictor coefficients

Noisy  excitation

Robust power estimator

Matched filter
Threshold
detector

Inverse filter

Detector subsystem
 

 
Figure 12.8 Configuration of an impulsive noise removal system incorporating a 

detector and interpolator subsystems. 
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differentiated. The differentiation (or, for digital signals, the differencing) 
operation is equivalent to decorrelation or spectral whitening. In this 
section, we describe a model-based decorrelation method for improving 
impulsive noise detectability. The correlation structure of the signal is 
modelled by a linear predictor, and the process of decorrelation is achieved 
by inverse filtering. Linear prediction and inverse filtering are covered in 
Chapter 8. Figure 12.9 shows a model for a noisy signal. The noise-free 
signal x(m) is described by a linear prediction model as 
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where a=[a1, a2, ...,aP]T is the coefficient vector of a linear predictor of 
order P, and the excitation e(m) is either a noise-like signal or a mixture of a 
random noise and a quasi-periodic train of pulses as illustrated in Figure 
12.9. The impulsive noise detector is based on the observation that linear 
predictors are a good model of the correlated signals but not the 
uncorrelated binary-state impulsive-type noise. Transforming the noisy 
signal y(m) to the excitation signal of the predictor has the following 
effects: 
 

(a) The scale of the signal amplitude is reduced to almost that of the 
original excitation signal, whereas the scale of the noise amplitude 
remains unchanged or increases. 

(b) The signal is decorrelated, whereas the impulsive noise is smeared 
and transformed to a scaled version of the impulse response of the 
inverse filter. 
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Figure 12.9 Noisy speech model. The signal is modelled by a linear predictor. 
Impulsive noise is modelled as an amplitude-modulated binary-state process. 
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Both effects improve noise delectability. Speech or music is composed of 
random excitations spectrally shaped and amplified by the resonances of 
vocal tract or the musical instruments. The excitation is more random than 
the speech, and often has a much smaller amplitude range. The 
improvement in noise pulse detectability obtained by inverse filtering can 
be substantial and depends on the time-varying correlation structure of the 
signal. Note that this method effectively reduces the impulsive noise 
detection to the problem of separation of outliers from a random noise 
excitation signal using some optimal thresholding device.  
 
 
12.4.2 Analysis of Improvement in Noise Detectability 
 
In the following, the improvement in noise detectability that results from 
inverse filtering is analysed. Using Equation (12.25), we can rewrite a noisy 
signal model as 
 

y(m) = x(m) +ni (m) 

= ak x(m − k)+e(m)
k=1

P

∑ +ni (m)
     (12.26) 

 
where y(m), x(m) and ni(m) are the noisy signal, the signal and the noise 
respectively. Using an estimate ˆ a  of the predictor coefficient vector a, the 
noisy signal y(m) can be inverse-filtered and transformed to the noisy 
excitation signal v(m) as 
 

v(m) =y(m) − ˆ a k y(m − k)
k=1

P

∑

 = x(m ) +ni(m)− (ak − ˜ a k )[x(m − k) +ni (m − k)]
k=1

P
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where ˜ a k  is the error in the estimate of the predictor coefficient. Using 
Equation (12.25) Equation (12.27) can be rewritten in the following form: 
 

v(m) =e(m) +ni(m) + ˜ a k x(m − k)
k =1
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From Equation (12.28) there are essentially three terms that contribute to 
the noise in the excitation sequence:  
 

(a)  the impulsive disturbance ni(m) which is usually the dominant term;  
(b) the effect of the past P noise samples, smeared to the present time by   

the action of the inverse filtering, ˆ a kni (m − k)∑ ;  

(c)  the increase in the variance of the excitation signal, caused by the 
error in the parameter vector estimate, and expressed by the term 

˜ a k∑ x(m − k).  

 
The improvement resulting from the inverse filter can be formulated as 
follows. The impulsive noise to signal ratio for the noisy signal is given by 
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where E[· ] is the expectation operator. Note that in impulsive noise 
detection, the signal of interest is the impulsive noise to be detected from 
the accompanying signal. Assuming that the dominant noise term in the 
noisy excitation signal v(m) is the impulse ni(m), the impulsive noise to 
excitation signal ratio is given by 
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The overall gain in impulsive noise to signal ratio is obtained, by dividing 
Equations (12.29) and (12.30), as 
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This simple analysis demonstrates that the improvement in impulsive noise 
detectability depends on the power amplification characteristics, due to 
resonances, of the linear predictor model. For speech signals, the scale of 
the amplitude of the noiseless speech excitation is on the order of 10–1 to 
10–4 of that of the speech itself; therefore substantial improvement in 
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impulsive noise detectability can be expected through inverse filtering of 
the noisy speech signals. 
Figure 12.10 illustrates the effect of inverse filtering in improving the 
detectability of impulsive noise. The inverse filtering has the effect that the 
signal x(m) is transformed to an uncorrelated excitation signal e(m), 
whereas the impulsive noise is smeared to a scaled version of the inverse 
filter impulse response [1, -a1, ...,-aP], as indicated by the term 

ˆ a kni (m − k)∑  in Equation (12.28). Assuming that the excitation is a white 

noise Gaussian signal, a filter matched to the inverse filter coefficients may 
enhance the delectability of the smeared impulsive noise from the excitation 
signal. 

 

(a) 

(c) 

(b) 

t

t

t
 

 
Figure 12.10 Illustration of the effects of inverse filtering on detectability of Impulsive 
noise: (a) Impulsive noise contaminated speech with 5% impulse contamination at an 
average SINR of 10dB,  (b) Speech excitation of impulse-contaminated speech, and 

(c) Speech excitation of impulse-free speech. 
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12.4.3 Two-Sided Predictor for Impulsive Noise Detection 
 
In the previous section, it was shown that impulsive noise detectability can 
be improved by decorrelating the speech signal. The process of 
decorrelation can be taken further by the use of a two-sided linear 
prediction model. The two-sided linear prediction of a sample x(m) is based 
on the P past samples and the P future samples, and is defined by the 
equation 
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where ak are the two-sided predictor coefficients and e(m) is the excitation 
signal. All the analysis used for the case of one-sided linear predictor can be 
extended to the two-sided model. However, the variance of the excitation 
input of a two-sided model is less than that of the one-sided predictor 
because in Equation (12.32) the correlations of each sample with the future, 
as well as the past, samples are modeled. Although Equation (12.32) is a 
non-causal filter, its inverse, required in the detection subsystem, is causal. 
The use of a two-sided predictor can result in further improvement in noise 
detectability.   
 
 
12.4.4 Interpolation of Discarded Samples 
 
Samples irrevocably distorted by an impulsive noise are discarded and the 
gap thus left is interpolated. For interpolation imperfections to remain 
inaudible a high-fidelity interpolator is required. A number of interpolators 
for replacement of a sequence of missing samples are introduced in Chapter 
10. The least square autoregressive (LSAR) interpolation algorithm of 
Section 10.3.2 produces high-quality results for a relatively small number 
of missing samples left by an impulsive noise. The LSAR interpolation 
method is a two-stage process. In the first stage, the available samples on 
both sides of the noise pulse are used to estimate the parameters of a linear 
prediction model of the signal. In the second stage, the estimated model 
parameters, and the samples on both sides of the gap are used to interpolate 
the missing samples. The use of this interpolator in replacement of audio 
signals distorted by impulsive noise has produced high-quality results. 
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12.5 Robust Parameter Estimation 
 
In Figure 12.8, the threshold used for detection of impulsive noise from the 
excitation signal is derived from a nonlinear robust estimate of the 
excitation power. In this section, we consider robust estimation of a 
parameter, such as the signal power, in the presence of impulsive noise. 
 A robust estimator is one that is not over-sensitive to deviations of the 
input signal from the assumed distribution. In a robust estimator, an input 
sample with unusually large amplitude has only a limited effect on the 
estimation results. Most signal processing algorithms developed for 
adaptive filtering, speech recognition, speech coding, etc. are based on the 
assumption that the signal and the noise are Gaussian-distributed, and 
employ a mean square distance measure as the optimality criterion. The 
mean square error criterion is sensitive to non-Gaussian events such as 
impulsive noise. A large impulsive noise in a signal can substantially 
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Figure 12.11 Illustration of a number of cost of error functions and the 

corresponding influence functions. 
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overshadow the influence of noise-free samples.  
 Figure 12.11 illustrates the variations of several cost of error functions 
with a parameter θ. Figure 12.11(a) shows a least square error cost function 
and its influence function. The influence function is the derivative of the 
cost function, and, as the name implies, it has a direct influence on the 
estimation results. It can be seen from the influence function of Figure 
12.11(a) that an unbounded sample has an unbounded influence on the 
estimation results. 
 A method for introducing robustness is to use a non-linear function and 
limit the influence of any one sample on the overall estimation results. The 
absolute value of error is a robust cost function, as shown by the influence 
function in Figure 12.11(b). One disadvantage of this function is that it is 
not continuous at the origin. A further drawback is that it does not allow for 
the fact that, in practice, a large proportion of the samples are not 
contaminated with impulsive noise, and may well be modelled with 
Gaussian densities.  
 Many processes may be regarded as Gaussian for the sample values 
that cluster about the mean. For such processes, it is desirable to have an 
influence function that limits the influence of outliers and at the same time 
is linear and optimal for the large number of relatively small-amplitude 
samples that may be regarded as Gaussian-distributed. One such function is 
Huber's function, defined as 
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Huber's function, shown in Figure 12.11(c), is a hybrid of the least mean 
square and the absolute value of error functions. Tukeys bi-weight function, 
which is a redescending robust objective function, is defined as 
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As shown in Figure 12.11(d), the influence function is linear for small 
signal values but introduces attenuation as the signal value exceeds some 
threshold. The threshold may be obtained from a robust median estimate of 
the signal power.
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12.6 Restoration of Archived Gramophone Records 
 
This Section describes the application of the impulsive noise removal 
system of Figure 12.8 to the restoration of archived audio records. As the 
bandwidth of archived recordings is limited to 7–8 kHz, a low-pass, anti-
aliasing filter with a cutoff frequency of 8 kHz is used to remove the out of 
band noise. Playedback signals were sampled at a rate of 20 kHz, and 
digitised to 16 bits. Figure 12.12(a) shows a 25 ms segment of noisy music 
and song from an old 78 rpm gramophone record. The impulsive 
interferences are due to faults in the record stamping process, granularities 
of the record material or physical damage. This signal is modelled by a 
predictor of order 20. The excitation signal obtained from the inverse filter 
and the matched filter output are shown in Figures 12.12(b) and (c) 
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Figure 12.12 (a) A noisy audio signal from a 78 rpm record, (b) Noisy excitation 

signal, (c) Matched filter output, (d) Restored signal. 
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respectively. Close examination of these figures show that some of the 
ambiguities between the noise pulses and the genuine signal excitation 
pulses are resolved after matched filtering.  

The amplitude threshold for detection of impulsive noise from the 
excitation signal is adapted on a block basis, and is set to kσe

2 , where σe
2  is 

a robust estimate of the excitation power. The robust estimate is obtained by 
passing the noisy excitation signal through a soft nonlinearity that rejects 
outliers. The scalar k is a tuning parameter; the choice of k reflects a trade-
off between the hit rate and the false-alarm rate of the detector. As k 
decreases, smaller noise pulses are detected but the false detection rate also 
increases. When an impulse is detected, a few samples are discarded and 
replaced by the LSAR interpolation algorithm described in Chapter 10. 
Figure 12.12(d) shows the signal with the impulses removed. The impulsive 
noise removal system of Figure 12.8 was successfully applied to restoration 
of numerous examples of archived gramophone records. The system is also 
effective in suppressing impulsive noise in examples of noisy telephone 
conversations. 
 
 
12.7 Summary 
 
The classic linear time-invariant theory on which many signal processing 
methods are based is not suitable for dealing with the non-stationary 
impulsive noise problem. In this chapter, we considered impulsive noise as 
a random on/off process and studied several stochastic models for impulsive 
noise, including the Bernoulli–Gaussian model, the Poisson–Gaussian and 
the hidden Markov model (HMM). The HMM provides a particularly 
interesting framework, because the theory of HMM studied in Chapter 5 is 
well developed, and also because the state sequence of an HMM of noise 
can be used to provide an estimate of the presence or the absence of the 
noise. By definition, an impulsive noise is a short and sharp event 
uncharacteristic of the signal that it contaminates. In general, differencing 
operation enhance the detectibility of impulsive noise. Based on this 
observation, in Section 12.4, we considered an algorithm based on a linear 
prediction model of the signal for detection of impulsive noise.  
In the next Chapter we expand the materials we considered in this chapter 
for the modelling, detection, and removal of transient noise pulses.  
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