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ransient noise pulses differ from the short-duration impulsive noise 
studied in the previous chapter, in that they have a longer duration 
and a relatively higher proportion of low-frequency energy content, 

and usually occur less frequently than impulsive noise. The sources of 
transient noise pulses are varied, and may be electromagnetic, acoustic or 
due to physical defects in the recording medium. Examples of transient 
noise pulses include switching noise in telephony, noise pulses due to 
adverse radio transmission environments, noise pulses due to on/off 
switching of nearby electric devices, scratches and defects on damaged 
records, click sounds from a computer keyboard, etc. The noise pulse 
removal methods considered in this chapter are based on the observation 
that transient noise pulses can be regarded as the response of the 
communication channel, or the playback system, to an impulse. In this 
chapter, we study the characteristics of transient noise pulses and consider 
a template-based method, a linear predictive model and a hidden Markov 
model for the modelling and removal of transient noise pulses. The subject 
of this chapter closely follows that of Chapter 12 on impulsive noise. 

T 
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13.1 Transient Noise Waveforms 
 
Transient noise pulses often consist of a relatively short sharp initial pulse 
followed by decaying low-frequency oscillations as shown in Figure 13.1. 
The initial pulse is usually due to some external or internal impulsive 
interference, whereas the oscillations are often due to the resonance of the 
communication channel excited by the initial pulse, and may be considered 
as the response of the channel to the initial pulse. In a telecommunication 
system, a noise pulse originates at some point in time and space, and then 
propagates through the channel to the receiver. The noise pulse is shaped 
by the channel characteristics, and may be considered as the channel pulse 
response. Thus we expect to be able to characterize the transient noise 
pulses with a similar degree of consistency to that of characterizing the 
channels through which the pulses propagate. 

As an illustration of the distribution of a transient noise pulse in time 
and frequency, consider the scratch pulses from a damaged gramophone 
record shown in Figures 13.1 and 13.2. Scratch noise pulses are acoustic 
manifestations of the response of the stylus and the associated electro-
mechanical playback system to a sharp physical discontinuity on the 
recording medium. Since scratches are essentially the impulse response of 
the playback mechanism, it is expected that for a given system, various 
scratch pulses exhibit a similar characteristics. As shown in Figure 13.1, a 
typical scratch waveform often exhibits two distinct regions:  
 

(a) the initial high-amplitude pulse response of the playback system to 
the physical discontinuity on the record medium; this is followed by  

(b) decaying oscillations that cause additive distortion.  
 
The initial pulse is relatively short and has a duration on the order of 1–5 
ms, whereas the oscillatory tail has a longer duration and may last up to 50 
ms. Note in Figure 13.1 that the frequency of the decaying oscillations 
decreases with time. This behaviour may be attributed to the nonlinear 
modes of response of the electro-mechanical playback system excited by the 
physical scratch discontinuity. Observations of many scratch waveforms 
from damaged gramophone records reveal that they have a well-defined 
profile, and can be characterised by a relatively small number of typical 
templates.  
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Figure 13.1 The profile of a transient noise pulse from a scratched gramophone 

record. 
 

 
(a) 

 

(b) 
 
Figure 13.2 An example of (a) the time-domain waveform and (b) the spectrogram 

of transient noise scratch pulses in a damaged gramophone record. 
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A similar argument can be used to describe the transient noise pulses in 
other systems as the response of the system to an impulsive noise. Figure 
13.2(a) (b) show the time-domain waveform and the spectrogram of a 
section of music and song with scratch-type noise. Note that as the scratch 
defect on the record was radial, the scratch pulses occure periodically with a 
period of 78 pulses per scratch per minute. As can be seen, there were in fact 
two scratches on the record.    
 The observation that transient noise pulses exhibit certain distinct, 
definable and consistent characteristics can be used for the modelling 
detection and removal of transient noise pulses. 
 
 
13.2  Transient Noise Pulse Models 
 
To a first approximation, a transient noise pulse n(m) can be modelled as 
the impulse response of a linear time-invariant filter model of the channel 
as 
 

m
k

k hAkmAhmn =−=∑ )()( δ       (13.1) 

 
where A is the amplitude of the driving impulse and hk is the channel 
impulse response. A burst of overlapping, or closely spaced, noise pulses 
can be modelled as the response of a channel to a sequence of impulses as 
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where it is assumed that the jth transient pulse is due to an impulse of 
amplitude Aj  at time Tj. In practice, a noise model should be able to deal 
with the statistical variations of a variety of noise and channel types. In this 
section, we consider three methods for modelling the temporal, spectral 
and durational characteristics of a transient noise pulse process:  
 

(a) a template-based model; 
(b) a linear-predictive model;  
(c) a hidden Markov model.  
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13.2.1  Noise Pulse Templates 
 
A widely used method for modelling the space of a random process is to 
model the process as a collection of signal clusters, and to design a code 
book of templates containing the “centroids” of the clusters. The centroids 
represent various typical forms of the process. To obtain the centroids, the 
signal space is partitioned into a number of regions or clusters, and the 
“centre” of the space within each cluster is taken as a centroid of the signal 
process.  
 Similarly, a code book of transient noise pulses can be designed by 
collecting a large number of training examples of the noise, and then using 
a clustering technique to group, or partition, the noise database into a 
number of clusters of noise pulses. The centre of each cluster is taken as a 
centroid of the noise space. Clustering techniques can be used to obtain a 
number of prototype templates for the characterisation of a set of transient 
noise pulses. The clustering of a noise process is based on a set of noise 
features that best characterise the noise. Features derived from the 
magnitude spectrum are commonly used for the characterisation of many 
random processes. For transient noise pulses, the most important features 
are the pulse shape, the temporal–spectral characteristics of the pulse, the 
pulse duration and the pulse energy profile. Figure 13.3 shows a number of 
typical noise pulses. The design of a code book of signal templates is 
described in Chapter 4.  
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Figure 13.3 A number of prototype transient pulses. 
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13.2.2  Autoregressive Model of Transient Noise Pulses  
 
Model-based methods have the advantage over template-based methods 
that overlapped noise pulses can be modelled as the response of the model 
to a number of closely spaced impulsive inputs. In this section, we consider 
an autoregressive (AR)  model of transient noise pulses. The AR model for 
a single noise pulse n(m) can be described as 
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where ck are the AR model coefficients, and the excitation is an impulse 
function δ(m) of amplitude A. A number of closely spaced and overlapping 
transient noise pulses can be modelled as the response of the AR model to 
a sequence of impulses: 
 

∑ ∑
=

−+−=
P

k

M

j
jjk TmAkmncmn

1

)()()( δ     (13.4) 

 
where it is assumed that Tj is the start of the jth pulse in a burst of M 
excitation pulses.  
 An improved AR model for transient noise, proposed by Godsill, is 
driven by a two-state excitation: in the state S0, the excitation is a zero-
mean Gaussian process of small variance σ0

2 , and in the state S1, the 
excitation is a zero-mean Gaussian process of relatively larger variance 
σ1

2 >>σ0
2 . In the state S1 a short-duration, and relatively large-amplitude, 

excitation generates a linear model of the transient noise pulse. In the state 
S0 the model generates a low-amplitude excitation that partially models the 
inaccuracies of approximating a transient noise pulse by a linear predictive 
model. The binary-state excitation signal can be expressed as 
 

[ ] )()()()( 01 mumbmbmen σσ +=       (13.5) 
 
where u(m) is an uncorrelated zero-mean unit-variance Gaussian process, 
and b(m) indicates the state of the excitation signal: b(m)=1 indicates that 
the excitation has a variance of σ1

2 , and b(m)=0 (or its binary complement 
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1)( =mb ) indicates the excitation has a smaller variance of 2
0σ . The time-

varying variance of en(m) can be expressed as 
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Assuming that the excitation pattern b(m) is given, and that the excitation 
amplitude is Gaussian, the pdf of an N-sample long noise pulse n  is given 
by 
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where C is a matrix of coefficients of the AR model of the noise (as 
described in Section 8.4), and Λ enen

 is the diagonal covariance matrix of 

the input to the noise model. The diagonal elements of Λ enen
 are given by 

Equation (13.6). 
 

 
13.2.3  Hidden Markov Model of a Noise Pulse Process  
 
A hidden Markov model (HMM), described in Chapter 5, is a finite state 
statistical model for non-stationary random processes such as speech or 
transient noise pulses. In general, we may identify three distinct states for a 
transient noise pulse process:  
 

(a) the periods during which there are no noise pulses; 
(b) the initial, and often short and sharp, pulse of a transient noise; 
(c) the decaying oscillatory tail of a transient pulse.  
 

Figure 13.4 illustrates a three-state HMM of transient noise pulses. The 
state S0 models the periods when the noise pulses are absent. In this state, 
the noise process may be zero-valued. This state can also be used to model 
a different noise process such as a white noise process. The state S1 models 
the relatively sharp pulse that forms the initial part of many transient noise 
pulses. The state S2 models the decaying oscillatory part of a noise pulse 
that usually follows the initial pulse of a transient noise. A code book of 
waveforms in states S1 and S2 can model a variety of different noise pulses. 
Note that in the HMM model of Figure 13.4, the self-loop transition 
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provides a mechanism for the modelling of the variations in the duration of 
each noise pulse segment. The skip-state transitions provide a mechanism 
for the modelling of those noise pulses that do not exhibit either the initial 
non-linear pulse or the decaying oscillatory part. 
 A hidden Markov model of noise can be employed for both the 
detection and the removal of transient noise pulses. As described in Section 
13.3.3, the maximum-likelihood state-sequence of the noise HMM 
provides an estimate of the state of the noise at each time instant. The 
estimates of the states of the signal and the noise can be used for the 
implementation of an optimal state-dependent signal restoration algorithm. 
 

 
13.3 Detection of Noise Pulses 
 
For the detection of a pulse process n(m) observed in an additive signal 
x(m), the signal and the pulse can be modelled as 
 

y(m)=b(m)n(m)+ x(m)       (13.8) 
 
where b(m) is a binary “indicator” process that signals the presence or 
absence of a noise pulse. Using the model of Equation (13.8), the detection 
of a noise pulse process can be considered as the estimation of the 
underlying binary-state noise-indicator process b(m). In this section, we 
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Figure 13.4 A three-state model of a transient noise pulse process. 
 

 



386 Transient Noise Pulses 

 
consider three different methods for detection of transient noise pulses, 
using the noise template model within a matched filter, the linear predictive 
model of noise, and the hidden Markov model described in Section 13.2.  
 
 
13.3.1  Matched Filter for Noise Pulse Detection 
 
The inner product of two signal vectors provides a measure of the 
similarity of the signals. Since filtering is basically an inner product 
operation, it follows that the output of a filter should provide a measure of 
similarity of the filter input and the filter impulse response. The classical 
method for detection of a signal is to use a filter whose impulse response is 
matched to the shape of the signal to be detected. The derivation of a 
matched filter for the detection of a pulse n(m) is based on maximisation of 
the amplitude of the filter output when the input contains the pulse n(m). 
The matched filter for the detection of a pulse n(m) observed in a 
“background” signal x(m) is defined as 
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where PXX(f) is the power spectrum of x(m) and N*(f) is the complex 
conjugate of the spectrum of the noise pulse. When the “background” 
signal process x(m) is a zero mean uncorrelated signal with variance σ x

2 , 
the matched filter for detection of the transient noise pulse n(m) becomes  
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The impulse response of the matched filter corresponding to Equation 
(13.10) is given by 

)()( mnCmh −=        (13.11) 
 
where the scaling factor C is given by C = K σx

2 . Let z(m) denote the 
output of the matched filter. In response to an input noise pulse, the filter 
output is given by the convolution relation 
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where the asterisk * denotes convolution. In the frequency domain 
Equation (13.12) becomes 
 

2
)()()()( fNCfHfNfZ ==      (13.13) 

 
The matched filter output z(m) is passed through a non-linearity and a 
decision is made on the presence or the absence of a noise pulse as 
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In Equation (13.14), when the matched filter output exceeds a threshold, 
the detector flags the presence of the signal at the input. Figure 13.5 shows 
a noise pulse detector composed of a bank of M different matched filters. 
The detector signals the presence or the absence of a noise pulse. If a pulse 
is present then additional information provide the type of the pulse, the 
maximum cross-correlation of the input and the noise pulse template, and a 
time delay that can be used to align the input noise and the noise template. 
This information can be used for subtraction of the noise pulse from the 
noisy signal as described in Section 13.4.1. 
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Figure 13.5 A bank of matched filters for detection of transient noise pulses. 
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13.3.2  Noise Detection Based on Inverse Filtering  
 
The initial part of a transient noise pulse is often a relatively short and 
sharp impulsive-type event, which can be used as a distinctive feature for 
the detection of the noise pulses. The detectibility of a sharp noise pulse 
n(m), observed in a correlated “background” signal y(m), can often be 
improved by using a differencing operation, which has the effect of 
enhancing the relative amplitude of the impulsive-type noise. The 
differencing operation can be accomplished by an inverse linear predictor 
model of the background signal y(m). An alternative interpretation is that 
the inverse filtering is equivalent to a spectral whitening operation: it 
affects the energy of the signal spectrum whereas the theoretically flat 
spectrum of the impulsive noise is largely unaffected. The use of an inverse 
linear predictor for the detection of an impulsive-type event was considered 
in detail in Section 12.4. Note that the inverse filtering operation reduces 
the detection problem to that of detecting a pulse in additive white noise. 
 
 
13.3.3  Noise Detection Based on HMM  
 
In the three-state hidden Markov model of a transient noise pulse process, 
described in Section 13.2.3, the states S0, S1 and S2 correspond to the 
noise-absent state, the initial noise pulse state, and the decaying oscillatory 
noise state respectively.  As described in Chapter 5, an HMM, denoted by 
M, is defined by a set of Markovian state transition probabilities and 
Gaussian state observation pdfs. The statistical parameters of the HMM of 
a noise pulse process can be obtained from a sufficiently large number of 
training examples of the process.  
 Given an observation vector y=[y(0), y(1), ..., y(N–1)], the maximum 
likelihood state sequence s=[s(0), s(1), ..., s(N–1)], of the HMM M is 
obtained as 
 

),|(maxarg | Msys SY
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where, for a hidden Markov model, the likelihood of an observation 
sequence fY|S(y|s,λ) can be expressed as  
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where π s(i)  is the initial state probability, as(i ),s( j)  is the probability of a 

transition from state s(i) to state s(j), and f s(i) y(i)( ) is the state observation 

pdf for the state s(i). The maximum-likelihood state sequence sML, derived 
using the Viterbi algorithm, is an estimate of the underlying states of the 
noise pulse process, and can be used as a detector of the presence or 
absence of a noise pulse. 

 
 

13.4 Removal of Noise Pulse Distortions 
 
In this section, we consider two methods for the removal of transient noise 
pulses: (a) an adaptive noise subtraction method and (b) an autoregressive 
(AR) model-based restoration method. The noise removal methods assume 
that a detector signals the presence or the absence of a noise pulse, and 
provides additional information on the timing and the underlying the states 
of the noise pulse 

 
 
13.4.1 Adaptive Subtraction of Noise Pulses  
 
The transient noise removal system shown in Figure 13.6 is composed of a 
matched filter for detection of noise pulses, a linear adaptive noise 
subtractor for cancellation of the linear transitory part of a noise pulse, and 
an interpolator for the replacement of samples irrevocably distorted by the 
initial part of each pulse. Let x(m), n(m) and y(m) denote the signal, the 
noise pulse and the noisy signal respectively; the noisy signal model is 
 

y(m)= x(m) +b(m) n(m)       (13.17) 
 

where the binary indicator sequence b(m) indicates the presence or the 
absence of a noise pulse. Assume that each noise pulse n(m) can be 
modelled as the amplitude-scaled and time-shifted version of the noise 
pulse template )(mn  so that  
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)()( Dmnwmn −≈        (13.18) 
 

where w is an amplitude scalar and the integer D denotes the relative delay 
(time shift) between the noise pulse template and the detected noise. From 
Equations (13.17) and (13.18) the noisy signal can be modelled: 

 
)()()( Dmnwmxmy −+≈       (13.19) 

 
From Equation (13.19) an estimate of the signal x(m) can be obtained by 
subtracting an estimate of the noise pulse from that of the noisy signal: 
 

)()()(ˆ Dmnwmymx −−=       (13.20) 
 

where the time delay D required for time-alignment of the noisy signal 
y(m) and the noise template )(mn  is obtained from the cross-correlation 
function CCF as 
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When a noise pulse is detected, the time lag corresponding to the 
maximum of the cross-correlation function is used to delay and time-align 
the noise pulse template with the noise pulse. The template energy is 
adaptively matched to that of the noise pulse by an adaptive scaling 
coefficient w. The scaled and time-aligned noise template is subtracted 
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Figure 13.6 Transient noise pulse removal system. 
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from the noisy signal to remove linear additive distortions. The adaptive 
scaling coefficient w is estimated as follows. The correlation of the noisy 
signal y(m) with the delayed noise pulse template )( Dmn −  gives  
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where N is the pulse template length. Since the signal x(m) and the noise 

n(m) are uncorrelated, the term Σ x(m) )( Dmn −  on the right hand side of 
Equation (13.22) is small, and we have 
 

 
(a) 

 

 
(b) 

 
Figure 13.7  (a) A signal from an old gramophone record with a scratch noise 

pulse. (b) The restored signal. 
 



392 Transient Noise Pulses 

 

∑

∑
−

−
≈

m

m

Dmn

Dmnmx

w
)(

)()(

2        (13.23) 

 
Note when a false detection of a noise pulse occurs, the cross-correlation 
term and hence the adaptation coefficient w could be small. This will keep 
the signal distortion resulting from false detections to a minimum. 
 Samples that are irrevocably distorted by the initial scratch pulse are 
discarded and replaced by one of the signal interpolators introduced in 
Chapter 10. When there is no noise pulse, the coefficient w is zero, the 
interpolator is bypassed and the input signal is passed through unmodified. 
Figure 13.7(b) shows the result of processing the noisy signal of Figure 
13.7(a). The linear oscillatory noise is completely removed by the adaptive 
subtraction method. For this signal 80 samples irrevocably distorted by the 
initial scratch pulse were discarded and interpolated. 
 
 
13.4.2 AR-based Restoration of Signals Distorted by Noise 

Pulses 
 
A model-based approach to noise detection/removal provides a more 
compact method for characterisation of transient noise pulses, and has the 
advantage that closely spaced pulses can be modelled as the response of the 
model to a number of closely spaced input impulses. The signal x(m) is 
modelled as the output of an AR model of order P1  as 
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Assuming that e(m) is a zero-mean uncorrelated Gaussian process with 
variance σe

2 , the pdf of a vector x of N successive signal samples of an 
autoregressive process with parameter vector a is given by 
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where the elements of the matrix A are composed of the coefficients ak of 
the linear predictor model as described in Section 8.4. In Equation (13.25), 
it is assumed that the P1 initial samples are known. The AR model for a 
single noise pulse waveform n(m) can be written as 
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where ck are the model coefficients, P2 is the model order, and the 
excitation is a assumed to be an impulse of amplitude A. A number of 
closely spaced and overlapping noise pulses can be modelled as 
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where it is assumed that Tk is the start of the kth excitation pulse in a burst 
of M pulses. A linear predictor model proposed by Godsill is driven by a 
binary-state excitation. The excitation waveform has two states: in state 
“0”, the excitation is a zero-mean Gaussian process of variance σ0

2 , and in 
state “1”, the excitation is a zero-mean Gaussian process of variance 
σ1

2 >>σ0
2 . In state “1”, the model generates a short-duration large 

amplitude excitation that largely models the transient pulse. In state “0”, 
the model generates a low excitation that partially models the inaccuracies 
of approximating a nonlinear system by an AR model. The composite 
excitation signal can be written as 
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where u(m) is an uncorrelated zero-mean Gaussian process of unit variance, 
b(m) is a binary sequence that indicates the state of the excitation, and 

)(mb  is the binary complement of b(m). When b(m)=1 the excitation 

variance is σ1
2  and when b(m)=0, the excitation variance is 2

0σ . The 
binary-state variance of en(m) can be expressed as 
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Assuming that the excitation pattern b=[b(m)] is given, the pdf of an N 
sample noise pulse x is  
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where the elements of the matrix C are composed of the coefficients ck of 
the linear predictor model as described in Section 8.4. The posterior pdf of 
the signal x given the noisy observation y, fX|Y(x|y),can be expressed, using 
Bayes’ rule, as 
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For a given observation fY(y) is a constant. Substitution of Equations 
(13.30) and (13.25) in Equation (13.31) yields 
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The MAP solution obtained by maximisation of the log posterior function 
with respect to the undistorted signal x is given by 
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13.5 Summary 
 
In this chapter, we considered the modelling, detection and removal of 
transient noise pulses. Transient noise pulses are non-stationary events 
similar to impulsive noise, but usually occur less frequently and have a 
longer duration than impulsive noise. An important observation in the 
modelling of transient noise is that the noise can be regarded as the impulse 
response of a communication channel, and hence may be modelled by one 
of a number of statistical methods used in the of modelling communication 
channels. In Section 13.2, we considered several transient noise pulse 
models including a template-based method, an AR model-based method 
and a hidden Markov model. In Sections 13.2 and 13.3, these models were 
applied to the detection and removal of noise pulses.  
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