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Chapter 6 

Filter Banks 

Filter  banks  are  arrangements of low pass, bandpass,  and highpass filters used 
for the  spectral decomposition and composition of signals. They play an im- 
portant role in  many  modern signal processing applications such as audio  and 
image coding. The reason for their popularity is the fact that  they easily  allow 
the  extraction of spectral components of a signal while providing very  efficient 
implementations. Since most filter banks involve various sampling rates,  they 
are also referred to  as multirate systems. To  give an example,  Figure  6.1 
shows an M-channel filter bank. The  input signal is decomposed into M so- 
called subb and signalsby applying M analysis filters with different passbands. 
Thus, each of the  subband signals carries information  on the  input signal in 
a particular frequency band.  The blocks with arrows pointing downwards in 
Figure  6.1  indicate downsampling (subsampling) by factor N, and  the blocks 
with  arrows  pointing  upwards  indicate  upsampling by N. Subsampling by N 
means that only every Nth  sample is taken.  This operation serves to  reduce 
or eliminate redundancies in the M subband signals. Upsampling by N means 
the insertion of N - 1 consecutive zeros between the samples. This allows us 
to recover the original sampling rate.  The upsamplers are followed by filters 
which replace the inserted zeros with meaningful values. In  the case M = N 
we speak of critical subsampling, because this is the maximum downsampling 
factor for  which perfect reconstruction can be achieved. Perfect reconstruction 
means that  the  output signal is a copy of the  input signal with  no further 
distortion than a time shift and  amplitude scaling. 
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Analysis filter bank 
Subband signals 

Synthesis filter bank 

I i  
Figure 6.1. M-channel  filter  bank. 

From the  mathematical point of view, a filter bank carries out a series 
expansion,  where the  subband signals are  the coefficients, and  the time-shifted 
variants gk: (n - i N ) ,  i E Z, of the synthesis filter impulse  responses gk (n) form 
the basis. The  main difference to  the block transforms is that  the lengths of the 
filter impulse  responses are usually larger than N so that  the basis sequences 
overlap. 

6.1 Basic Multirate Operations 

6.1.1 Decimation and  Interpolation 

In  this section, we derive spectral  interpretations for the decimation  and 
interpolation  operations that occur in every multirate  system. For this, we 
consider the configuration in Figure 6.2. The sequence W(.) results  from 
inserting zeros into ~ ( r n ) .  Because of the different sampling rates we obtain 
the following relationship between Y ( z )  and V ( z ) :  

Y ( P )  = V ( z ) .  (6.1) 

After downsampling and upsampling by N the values w(nN) and u(nN) 
are  still  equal, while all other samples of W(.) are zero. Using the correspon- 
dence 

- e j 2 m h / N  = { 1 for n / N  E Z, 

the relationship between W(.) and U(.) can  be  written as 

N .  2=0 
0 otherwise, 

. N - l  
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Figure 6.2. Typical  components of a filter  bank. 

The  z-transform is given  by 

cc 

V ( z )  = c w(n)zP 
n=-cc 

~ N - l  cc 

. N--1 

= - C U ( W & z ) .  
l 
N 

i=O 

The relationship between Y ( z )  and V ( z )  is concluded  from (6.1) and (6.5): 

With (6.6) and V ( z )  = H ( z ) X ( z )  we have the following relationship 
between Y ( 2 )  and X ( z ) :  

N - l  

From (6.1) and (6.7) we finally conclude 

X ( z )  = G ( z )   Y ( z N )  
. N - l  

= - X G ( z ) H ( W & z ) X ( W & z ) .  
l 

N .  a=O 
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Figure 6.3. Signal spectra for decimation and interpolation  according to  the 
structure in  Figure 6.2 (non-aliased  case). 
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Figure 6.4. Signal  spectra in the aliased  case. 

The  spectra of the signals occurring in Figure 6.2 are  illustrated in Figure 6.3 
for the case of a narrowband lowpass input signal z(n), which does  not lead 
to aliasing effects. This  means that  the  products G(z)(H(W&z)X(W&z)) in 
(6.8) are zero for i # 0. The general case with aliasing occurs when the 
spectra become overlapping. This is  shown in Figure 6.4, where the shaded 
areas  indicate  the aliasing components that occur  due to subsampling. It is 
clear that z(n) can  only  be  recovered  from y(m) if no aliasing occurs. However, 
the aliased case is the  normal  operation mode in multirate filter banks. The 
reason why such filter banks allow perfect reconstruction lies  in the fact that 
they  can  be designed in such a way that  the aliasing components  from all 
parallel branches  compensate at  the  output. 
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Figure 6.5. Type-l polyphase  decomposition for M = 3. 

6.1.2 Polyphase Decomposition 

Consider the decomposition of a sequence X(.) into sub-sequences xi(rn), as 
shown  in Figure 6.5. Interleaving all xi(rn) again yields the original X(.). 
This decomposition is  called a polyphase  decomposition, and  the xi(rn) are 
the polyphase  components of X(.). Several types of polyphase decompositions 
are known, which are briefly  discussed  below. 

Type-l. A type-l polyphase decomposition of a sequence X(.) into it4 
components is  given  by 

M-l 

X ( 2 )  = c 2-e X & M ) ,  
e=o 

where 
& ( z )  t) ze(n) = z(nM + l ) .  (6.10) 

Figure 6.5  shows an example of a type-l decomposition. 

Type-2. The decomposition into type-2 polyphase  components is  given  by 

M-l 
X ( 2 )  = c z-(M-l-l) X ; (.M) 7 (6.11) 

e=o 

where 
x;(2) t) X;(.) = z(nit4 + it4 - 1 - l) .  (6.12) 
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Thus,  the only difference between a type-l  and  a type-2  decomposition lies in 
the indexing: 

X&) = XL-,-&). (6.13) 

Type-3. A type-3  decomposition  reads 

M-l 

X(z) = c ze X&"), 
l=O 

where 
X&) t) z:e(n) = z(nM - e ) .  

The  relation to  the  type-l polyphase  components is 

(6.14) 

(6.15) 

Polyphase  decompositions are frequently used  for both signals and filters. 
In  the  latter case we use the  notation Hik(z )  for the lcth type-l polyphase 
component of filter Hi(z) .  The definitions for type-2  and  type-3  components 
are analogous. 

6.2 Two-Channel Filter Banks 

6.2.1 PR Condition 

Let us consider the two-channel filter bank in Figure 6.6. The signals are 
related  as 

Y 0 ( Z 2 )  = : [ H o b )  X(z) + Ho(-z) X(-z)l, 

Y1(z2) = ; [ H l ( Z )  X ( z )  + H1(-z) X(-z)l, (6.17) 

X ( z )  = [Yo(z2) Go(.) + Y1(z2) Gl(z)] . 
Combining  these  equations yields the  input-output relation 

X ( Z )  = ; [Ho(z) Go(.) + HI(z) Gl(z)]  X(z) 
(6.18) 

++ [Ho(-z) Go(z) + H1(-z) Gl(z)]  X(-z). 

The first term describes the transmission of the signal X ( z )  through  the 
system, while the second term describes the aliasing component at the  output 
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Figure 6.6. Two-channel  filter  bank. 

of the filter bank. Perfect reconstruction is  given if the  output signal is nothing 
but a delayed version of the  input signal. That is, the  transfer function for 
the signal component,  denoted as S ( z ) ,  must satisfy 

and  the  transfer function F ( z )  for the aliasing component  must  be zero: 

F ( z )  = Ho(-z) Go(z) + H~(-z) G ~ ( z )  = 0. (6.20) 

If (6.20) is satisfied, the  output signal contains no aliasing, but  amplitude dis- 
tortions may be  present. If both (6.19) and (6.20) are satisfied, the  amplitude 
distortions also vanish. Critically subsampled filter banks that allow perfect 
reconstruction  are also known as biorthogonal filter banks. Several methods 
for satisfying these conditions either exactly or approximately  can  be  found 
in the  literature.  The following sections give a brief  overview. 

6.2.2 Quadrature  Mirror  Filters 

Quadrature  mirror filter banks (QMF  banks)  provide  complete aliasing can- 
cellation at  the  output,  but condition (6.19) is only  approximately satisfied. 
The principle was introduced by Esteban  and  Galand in [52]. In  QMF  banks, 
Ho(z )  is  chosen as  a linear phase lowpass filter, and  the remaining filters are 
constructed as 

Go(.) = Hob) 

Hl(Z) = Ho(-z) (6.21) 

G ~ ( z )  = -H~(z). 
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Figure 6.7. QMF bank in polyphase  structure. 

As can easily be verified, independent of the filter Ho(z) ,  the condition F ( z )  = 
0 is structurally satisfied, so that one  only  has to ensure that S ( z )  = H i ( z )  + 
H:(-z) M 22-4. The  name  QMF is due to  the mirror  image  property 

IHl(,.G -q = IHo(& + q  

with  symmetry  around ~ / 2 .  

QMF  bank  prototypes  with  good  coding  properties  have for instance  been 
designed by Johnston [78]. 

One important  property of the  QMF banks is their efficient implementa- 
tion  due to  the modulated  structure, where the highpass and lowpass filters are 
related  as H l ( z )  = Ho(-z).  For the polyphase  components this means that 
Hlo(z)  = Hoo(z) and H l l ( z )  = -Hol(z).  The resulting efficient polyphase 
realization is depicted in Figure 6.7. 

6.2.3 General  Perfect Reconstruction Two-Channel 
Filter Banks 

A method for the  construction of PR filter banks is to choose 

Is is easily verified that (6.20) is satisfied. Inserting 
into (6.19) yields 

(6.22) 

the above relationships 

Using the  abbreviation 
T ( z )  = Go(2) Ho(z) ,  (6.24) 
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Figure 6.8. Examples of Nyquist filters T ( z ) ;  (a) linear-phase; (b) short  overall 
delay. 

this becomes 
22-4 = T ( z )  + (-1)"l T ( - z ) .  (6.25) 

Note that i [ T ( z )  + T ( - z ) ]  is the  z-transform of a  sequence that only  has 
non-zero even taps, while i [ T ( z )  - T ( - z ) ]  is the  z-transform of a sequence 
that only  has  non-zero  odd taps. Altogether we can  say that in order to satisfy 
(6.25), the system T ( z )  has to satisfy 

n = q  
n = q + 2 1 , l # O  e a  (6.26) 

arbitrary n = q + 21 + 1. 

In  communications, condition (6.26) is  known as  the first  Nyquist  condition. 
Examples of impulse  responses t(n) satisfying the first Nyquist condition are 
depicted in Figure 6.8. The  arbitrary  taps  are  the free  design parameters, 
which  may be chosen in order to achieve good filter properties.  Thus, filters 
can easily be designed  by choosing a filter T ( z )  and factoring it  into Ho(z)  and 
Go(z).  This  can  be  done by computing  the  roots of T ( z )  and dividing them 
into two  groups, which form the zeros of Ho(z)  and Go(z).  The remaining 
filters are  then chosen according to (6.24) in order to yield a PR filter bank. 
This design method is  known as spectral  factorization. 

6.2.4 Matrix  Representations 

Matrix  representations  are a convenient  and  compact way of describing and 
characterizing filter banks.  In the following we will  give a brief  overview of 
the most important matrices and  their relation to  the analysis and synthesis 
filters. 
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Modulation Matrix. The  input-output relations of the two-channel filter 
bank  may  also  be  written  in  matrix  form. For this, we introduce the vectors 

1 

and  the so-called modulation  matrix or alias  component (AC) matrax 

(6.27) 

(6.28) 

(6.29) 

which contains the filters Ho(z)  and H I ( z )  and  their  modulated versions 
Ho(-z)  and Hl(-z ) .  We get 

Polyphase Representation of the Analysis Filter Bank. Let  us 
consider the analysis  filter  bank in Figure 6.9(a). The signals yo(m) and y1 (m) 
may be  written  as 

and 

y1(m) = C h 1 ( n )  x ( 2 m  - n) 
~ 

n (6.33) 
= C h l O ( k )  zo(m - Ic) + C h l l ( k )  z1(m - L), 

k k 
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1 

Figure 6.9. Analysis  filter  bank. (a) direct  implementation; (b) polyphase  realiza- 
tion. 

where we used the following polyphase  components: 

boo@) = h o w ) ,  

hOl(k) = ho(2k + 11, 

hlO(k) = h1(2k), 

hll(k) = + 11, 

SO(k) = 2(2k), 

51(k) = 2(2k - 1). 

The  last rows of (6.32),  and (6.33) respectively, show that  the complete 
analysis filter bank  can  be realized  by operating solely with the polyphase 
components, as depicted in  Figure 6.9(b).  The advantage of the polyphase 
realization compared to  the direct implementation in Figure  6.9(a) is that 
only the required output values are computed.  When looking at  the first 
rows of (6.32) and (6.33) this sounds  trivial, because these  equations are 
easily implemented and  do  not  produce unneeded values. Thus, unlike in 
the  QMF bank case, the polyphase realization does not necessarily lead to 
computational savings compared to  a proper  direct  implementation of the 
analysis equations. However, it allows simple filter design, gives more insight 
into  the properties of a filter bank,  and leads to efficient implementations 
based on lattice  structures; see Sections 6.2.6 and 6.2.7. 

It is  convenient to describe (6.32) and (6.33) in  the z-domain using matrix 
notation: 

2 / P ( Z )  = E ( z )  % ( z ) ,  (6.34) 

(6.35) 

(6.36) 
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Matrix E ( z )  is called the polyphase matrix of the analysis filter bank. As can 
easily be  seen by inspection, it is related to  the modulation  matrix  as follows: 

with 

W = [ ’  1  -1 1 1  ’ 

(6.37) 

(6.38) 

and 

= [ z- l ]  (6.39) 

Here, W is understood  as  the  2x2-DFT  matrix.  In view of the general M -  
channel case, we use the  notation W-’ = ;WH for the inverse. 

Polyphase Representation of the Synthesis Filter Bank. We consider 
the synthesis filter bank in Figure 6.10(a).  The filters Go(z) and Gl(z) can 
be  written in terms of their  type-2  polyphase  components as 

and 
Gl(z) = z-’G:O(Z’) + G:,(Z’). (6.41) 

This gives rise to  the following z-domain matrix  representation: 

The corresponding  polyphase realization is depicted in Figure 6.10. Perfect 
reconstruction  up to  an overall delay of Q = 2mo + 1 samples is achieved if 

R ( z ) E ( z )  = 2-0 I .  (6.43) 

The  PR condition for an even overall delay of Q = 2mo samples is 

(6.44) 
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( 4  (b) 
Figure 6.10. Synthesis filter  bank. (a) direct implementation; (b) polyphase 
realization. 

6.2.5 Paraunitary  Two-Channel Filter Banks 

The inverse of a unitary  matrix is  given  by the Hermitian  transpose. A similar 
property  can  be  stated for polyphase  matrices as follows: 

E-yz) = E ( z ) ,  (6.45) 

where 
k ( z )  = ( E ( z ) y ,  121 = 1, 

E ( z )  k ( z )  = k ( z )  E ( z )  = I .  
such that 

(6.46) 

(6.47) 

Analogous to ordinary  matrices, ( E ( z ) ) ~  stands for transposing  the  matrix 
and  simultaneously  conjugating the elements: 

In  the case of real-valued filter coefficients we have f i i k ( z )  = Hik(z-l), such 
that B ( z )  = ET(zP1) and 

E ( z )  ET(z-1) = ET(z-1) E ( z )  = I .  (6.48) 

Since E ( z )  is dependent  on z ,  and since the  operation (6.46) has to be carried 
out on the  unit circle, and  not at some arbitrary point in the z plane, a  matrix 
E ( z )  satisfying (6.47) is said to be  paraunitary. 

Modulation Matrices. As can  be seen from (6.37) and  (6.47), we have 

H m ( z ) R m ( z )  = R m ( z ) H m ( z )  = 2 I (6.49) 

for the  modulation matrices of paraunitary two-channel filter banks. 

Matched Filter Condition. From (6.49) we may conclude that  the analysis 
and synthesis filters in a  paraunitary two-channel filter bank are  related as 

G ~ ( z )  = f i k ( ~ )  t) gk(n) = hi(-n),  L = 0 , l .  (6.50) 
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This means that  an analysis filter and  its corresponding synthesis filter 
together yield a Nyquist filter (cf. (6.24)) whose impulse  response is equivalent 
to  the autocorrelation  sequence of the filters in question: 

(6.51) 

Here we find parallels to  data transmission, where the receiver input filter is 
matched to  the  output filter of the  transmitter such that  the overall result 
is the  autocorrelation sequence of the filter. This is  known as the matched- 
filter  condition. The reason for choosing this special input filter is that  it 
yields a maximum signal-to-noise ratio if additive  white noise interferes on 
the transmission channel. 

Power-Complementary Filters. From (6.49) we conclude 

2 = Ho(z)fio(z) + Ho(-z)fio(-z), (6.52) 

which  for z = eJ" implies the requirement 

2 = IHO(ej")l2 + IHo(e j ( W  + 4 )  12. (6.53) 

We observe that  the filters Ho(ejW) and Ho(ej(w+")) must  be power- 
complementary to one  another. For constructing  paraunitary filter banks we 
therefore have to find a Nyquist filter T ( z )  which can  be  factored  into 

T(2)  = Ho(z)  f i O ( 2 ) .  (6.54) 

Note that a factorization is possible only if T(ej")  is real and positive. A 
filter that satisfies this condition is said to be valid. Since T ( e J W )  has  symmetry 
around W = 7r/2 such a filter is also called a valid  halfband  filter. This  approach 
was introduced by Smith  and  Barnwell in  [135]. 

Given Prototype. Given an FIR prototype H ( z )  that satisfies condition 
(6.53), the required analysis and synthesis filters can  be derived as 

(6.55) 

Here, L is the number of coefficients of the  prototype. 



6.2. Two-Channel Filter  Banks 157 

Number of Coefficients. Prototypes for paraunitary two-channel filter 
banks  have even length.  This is  seen  by formulating (6.52) in the  time domain 
and  assuming an  FIR filter with coefficients ho(O), . . . , ho(25): 

2 k  

se0 = c h0(n)h;;(n - 2 4 .  (6.56) 
n=O 

For C = k ,  n = 25, 5 # 0, this yields the requirement 0 = h0(25)h:(O), which 
for ho(0) # 0 can only be satisfied by ho(2k) = 0. This  means that  the filter 
has to have even length. 

Filter Energies. It is easily verified that all filters in a paraunitary filter 
bank have energy one: 

l l ho l l ez  = llhll le, = llgoIle, = l lg l l lez  = 1. 
2 2 2 2 (6.57) 

Non-Linear Phase Property. We  will  show that  paraunitary two-channel 
filter banks are non-linear phase  with  one exception. The following  proof  is 
based  on  Vaidyanathan [145]. We assume that two filters H ( z )  and G ( z )  are 
power-complementary  and linear-phase: 

c2 = H ( z ) f i ( z )  + G ( z ) G ( z )  

B ( z )  = eja z L  ~ ( z ) ,  

G ( z )  = ejp z L  G ( z ) ,  p E R 1 (6.58) 
(linear-phase property). 

We conclude 

(H(z)ejal'  + jG(z)ejp/')  (H(z)ej"/'  - jG(z)ejp/ ')  = c2 z - ~ .  (6.59) 

Both  factors  on  the left are FIR filters, so that 

Adding  and subtracting  both  equations shows that H ( z )  and G ( z )  must  have 
the form 

(6.61) 

in order to be both power-complementary  and linear-phase. In  other  words, 
power-complementary linear-phase filters cannot  have  more  than two  coeffi- 
cients. 
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6.2.6 Paraunitary Filter Banks  in  Lattice  Structure 

Paraunitary filter banks  can  be efficiently implemented in a  lattice  structure 
[53], [147]. For this, we decompose the polyphase matrix E ( z )  as follows: 

Here, the  matrices B k ,  k = 0,.  . . , N - 1 are  rotation matrices: 

and D ( z )  is the delay matrix 

D =  [; zl l l ]  

It can  be shown that such a decomposition is always possible [146]. 

Provided cos,& # 0, k = (),l,. . . , N - 1, we can also write 

with 
N - l  1 

k=O 

(6.62) 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

This basically allows  us to reduce the  total number of multiplications. The 
realization of the filter bank by means of the decomposed  polyphase matrix 
is pictured in Figure  6.11(a). Given a k ,  k = 0,. . . , N - 1, we obtain filters of 
length L = 2N.  

Since this  lattice  structure leads to a  paraunitary filter bank for arbitrary 
a k ,  we can  thus achieve perfect reconstruction even if the coefficients must  be 
quantized  due to finite precision. In  addition,  this  structure  may  be used  for 
optimizing the filters. For this, we excite the filter bank  with zeuen(n) = dn0 

and ~ , d d ( n )  = dnl and observe the polyphase  components of Ho(z)  and H l ( z )  
at the  output. 

The polyphase matrix of the synthesis filter bank  has  the following 
factorization: 

R(2) = BTD’(2)BT . . . D‘(z)B:_, (6.67) 

with D’(.) = J D ( z ) J ,  such that D‘(z)D(z)  = zP11.  This  means that all 
rotations  are inverted and  additional delay is introduced.  The  implementation 
is shown in Figure  6.11(b). 
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Figure 6.11. Paraunitary filter  bank  in lattice structure; (a) analysis; (b) synthesis. 

6.2.7 Linear-Phase  Filter  Banks  in  Lattice Structure 

Linear-phase PR two-channel filter banks  can  be  designed and implemented 
in various ways.  Since the filters do  not have to be  power-complementary, we 
have much more design freedom than in the  paraunitary case. For example, 
any  factorization of a  Nyquist filter into  two linear-phase filters is possible. A 
Nyquist filter with P = 6  zeros can for instance  be factored into two linear- 
phase filters each of which has  three zeros, or into one filter with four and 
one filter with two zeros. However, realizing the filters in lattice  structure,  as 
will be discussed in the following,  involves the  restriction  that  the number of 
coefficients must  be even and  equal for all filters. 

The following factorization of E ( z )  is  used  [146]: 

E(2)  = LN-lD(2)LN-2 . . . D(2)LO (6.68) 

with 

It  results in a linear-phase PR filter bank.  The realization of the filter bank 
with the decomposed  polyphase matrix is depicted in Figure 6.12. As in 
the case of paraunitary filter banks in Section 6.2.6, we can achieve PR if 
the coefficients must  be  quantized  because of finite-precision arithmetic.  In 
addition,  the  structure is suitable for optimizing filter banks  with respect to 
given criteria while conditions such as linear-phase and PR  are  structurally 
guaranteed.  The  number of filter coefficients  is L = 2(N + 1)  and  thus even 
in any case. 
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Figure 6.12. Linear-phase  filter  bank  in  lattice structure; (a) analysis; (b) synthesis. 

6.2.8 Lifting Structures 

Lifting structures have  been suggested  in [71, 1411 for the design of biorthog- 
onal wavelets. In  order to explain the discrete-time filter bank concept behind 
lifting, we consider the two-channel filter bank in Figure  6.13(a).  The  structure 
obviously yields perfect reconstruction  with a delay of one sample. Now  we 
incorporate a system A ( z )  and a delay z - ~ ,  a 2 0 in the polyphase  domain 
as shown in  Figure  6.13(b). Clearly, the overall structure still gives PR, while 
the new subband  signal yo(rn) is different from the one  in  Figure  6.13(a).  In 
fact,  the new yo(rn) results  from  filtering X(.) with the filter 

and subsampling. The overall delay has  increased by 2a. In the next  step  in 
Figure 6.13(c), we use a dual lifting step  that allows us to construct  a new 
(longer) filter HI (2) as 

H~(z) = z - ~ ~ - ~  + z-~”B(z’) + z-~A(z’)B(z’). 

Now the overall delay is 2a + 2b + 1 with a, b 2 0. Note that, although we 
may  already have relatively long filters Ho(z) and H l ( z ) ,  the delay may be 
unchanged if  we have  chosen a = b = 0. This  technique allows us to design 
PR filter  banks  with high stopband  attenuation  and low overall delay. Such 
filters are for example very attractive for real-time  communications  systems, 
where the overall delay has to be kept below a given threshold. 
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Figure 6.13. Two-channel  filter banks  in  lifting  structure. 

Figure 6.14. Lifting  implementation of the 9-7  filters  from  [5]  according to [37]. 
The parameters  are a = -1.586134342, p = -0.05298011854, y = 0.8829110762, 
6 = 0.4435068522, 6 = 1.149604398. 

In general, the filters constructed via lifting are non-linear phase. However, 
the lifting steps can easily be chosen to  yield linear-phase filters. 

Both  lattice  and lifting structures  are very attractive for the implementa- 
tion of filter banks  on  digital signal processors, because coefficient quantization 
does not affect the PR property. Moreover, due to  the joint realization of 
Ho(z) and H l ( z ) ,  the  total number of operations is  lower than for the direct 
polyphase  implementation of the same filters. To give an example, Figure 6.14 
shows the lifting implementation of the 9-7 filters from [ 5 ] ,  which are very 
popular in image compression. 
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An important result is that any  two-channel filter bank  can  be  factored 
into a finite number of lifting steps [37]. The proof  is based  on the Euclidean 
algorithm [g]. The decomposition of a given filter bank into lifting steps is not 
unique, so that many  implementations for the same filter bank  can  be found. 
Unfortunately, one  cannot  say a priori which implementation will perform 
best if the coefficients have to be  quantized to a given number of bits. 

6.3 Tree-Structured Filter Banks 

In  most  applications  one  needs a signal decomposition into more than two, 
say M ,  frequency  bands. A simple way of designing the required filters is to 
build cascades of two-channel filter banks.  Figure 6.15 shows two  examples, 
(a)  a regular tree  structure  and  (b)  an octave-band tree  structure.  Further 
structures  are easily found,  and also signal-adaptive concepts  have  been 
developed,  where the  tree is  chosen such that it is best matched to  the problem. 
In all cases, PR is easily obtained if the two-channel filter banks, which are 
used as  the basic building blocks, provide PR. 

In  order to describe the system functions of cascaded filters with  sampling 
rate changes, we consider the two  systems in Figure 6.16. It is easily seen that 
both systems are equivalent. Their  system function is 

For the system B2(z2) we have 

With  this  result,  the system functions of arbitrary cascades of two-channel 
filter banks  are easily obtained. 

An example of the frequency  responses of non-ideal octave-band filter 
banks in tree  structure is  shown in Figure 6.17.  An effect, which results  from 
the overlap of the lowpass and highpass  frequency responses, is the occurrence 
of relatively large side lobes. 
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Figure 6.15. Tree-structured  filter  banks; (a) regular tree structure; (b) octave- 
band tree structure. 
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Figure 6.16. Equivalent  systems. 
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Figure 6.17. Frequency  responses  in  tree-structured  filter  banks; (a) two-channel 
filter  bank; (b) octave-band  filter  bank. 

6.4 Uniform  M-Channel Filter Banks 

This section addresses uniform M-channel filter banks for  which the sampling 
rate is reduced by N in all subbands.  Figure 6.1 shows such a filter bank,  and 
Figure 6.18 shows some  frequency responses. In  order to obtain general results 
for uniform M-channel filter banks, we start by assuming N 5 M ,  where M 
is the number of subbands. 

6.4.1 Input-Output Relations 

We consider the  multirate filter bank  depicted in Figure 6.1. From equations 
(6.7) and (6.8) we obtain 
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Figure 6.18. Frequency  responses of the analysis  filters  in a uniform  M-channel 
filter  bank; (a) cosine-modulated  filter  bank; (b) DFT filter  bank. 

1 N-l 
Yj(z) = - C H k ( W h z k )  X(W&zk), k = 0 , .   . . , M  - 1, (6.69) 

N 
i = O  

and 
_I M-lN-l  

X ( Z )  = C C Gk(z)Hk(W&z)X(W&z). 
k=O i=o 

(6.70) 

In  order to achieve perfect reconstruction,  suitable filters H k ( z )  and 
GI, ( z ) ,  k = 0, . . . , M - 1, and  parameters N and M must  be chosen. We 
obtain  the PR requirement by first changing the  order of the  summation in 
(6.70): 

1 N-l 
M - ]  

X ( Z )  = - C X(W&Z) C G~(z)H~(W&Z). (6.71) 
i=o k=O 

Equation (6.71) shows that X ( z )  = 2 - 4  X(z) holds if the filters satisfy 

M-l 

C Gk(z)Hk(W&z) = N z - ~  &o, 0 < i < N - 1. (6.72) 
k=O 
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H m ( z )  = 

and 

z m ( z )  = [ X ( Z ) , X ( Z W N ) ,  . . . , X ( z W p ) ] T ,  (6.75) 

the  input-output  relations may also be  written as 

1 
X ( z )  = g T ( z )   H ; ( z )  z,(z). (6.76) 

Thus, PR requires that 

1 
N 
- g T ( z )  H Z ( z )  = 2-9 [1,0,. . . , O ]  . (6.77) 

6.4.2 The  Polyphase  Representation 

In Section 6.2 we explained the polyphase  representation of two-channel filter 
banks.  The generalization to M channels  with  subsampling by N is outlined 
below. The  implementation of such  a filter bank is depicted in Figure 6.19. 

Analysis. The analysis filter bank is described by 

!h(.) = E ( z )  Z P k ) ,  (6.78) 

where 

E(z )  = (6.81) 
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Figure 6.19. Filter  bank  in  polyphase structure. 

Synthesis. Synthesis may be described in a similar way: 

with 

R(z)  = 

Z -1 

Z -1 

(6.82) 

(6.83) 

Perfect Reconstruction. From (6.78) and (6.82) we conclude the  PR 
requirement 

R ( z )  E ( z )  = 2-40 I ,  (6.84) 

which results  in an overall  delay of Mqo + M - 1 samples. The generalization 
to any arbitrary delay of Mqo + r + M - 1 samples is 

where 0 < r < M - 1 [146]. 

FIR Filter Banks. Let us write (6.84) as 

(6.85) 

(6.86) 

and let us assume that all elements of E ( z )  are  FIR. We see that  the elements 
of R ( z )  are also FIR if det{E(z)} is a monomial in z .  The same arguments hold 
for the more general PR condition (6.85). Thus,  FIR solutions for both  the 
analysis and synthesis filters of a PR filter bank  require that  the  determinants 
of the polyphase  matrices are  just delays. 
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6.4.3 Paraunitary  Filter Banks 

The  paraunitary case is characterized by the  fact  that  the  sum of the energies 
of all subband signals is equal to  the energy of the  input signal. This may be 
expressed as llypll = l l z p l l  V xp with llxpll < CO, where x p ( z )  is the polyphase 
vector of a finite-energy input signal and yp(z) = E ( z )  xp(z) is the vector of 
subband signals. It can easily be verified that filter banks  (oversampled  and 
critically sampled)  are  paraunitary if the following condition holds: 

k ( z )  E ( z )  = I .  (6.87) 

This also implies that 

hk(n) = g;(-n) t) HI , ( z )  = G k ( z ) ,  k = 0, .  . . , M  - 1.  (6.88) 

Especially in the critically subsampled case where N = M ,  the impulse 
responses hk(n-mM)  andgk(n-mM), 5 = 0 , .  . . , M-l ,  m E Z, respectively, 
form  orthonormal bases: 

(6.89) 

6.4.4 Design of Critically  Subsampled  M-Channel  FIR 
Filter  Banks 

Analogous to  the  lattice  structures  introduced in Sections 6.2.6 and 6.2.7, we 
consider the following factorization of E ( z ) :  

where 

= [ 0 .ol] * 
IM-l (6.92) 

The  matrices A k ,  k = 0,1, .  . . , K  are  arbitrary non-singular matrices. The 
elements of these  matrices  are  the free design parameters, which can  be chosen 
in order to obtain some desired filter properties. To achieve this, a useful 
objective function has to be defined and  the free parameters have to be  found 
via non-linear optimization. Typically, one  tries to minimize the  stopband 
energy of the filters. 
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The corresponding synthesis polyphase matrix can  be designed as 

R(z)  = AilI'(z)ATII'(z)  ...I'(Z)A;', (6.93) 

(6.94) 

Clearly, both E ( z )  and R ( z )  contain FIR filters. The overall transfer matrix 
is 

R ( z ) E ( z )  = C K I .  (6.95) 

Figure 6.20 illustrates  the implementation of the filter bank according to  the 
above factorizations. A simple parameterization for the matrices AI, that 
guarantees the existence of A i l  is to  use triangular matrices  with ones 
on the main diagonal. The inverses then  are also triangular, so that  the 
implementation cost is  somehow reduced. Examples are given in [146]. 

Paraunitary FIR Filter Banks  based on Rotations. Paraunitary filter 
banks are easily derived from the above scheme  by restricting  the matrices AI, 
to be  unitary. Interestingly, not all matrices have to  be fully parameterized 
rotation matrices  in  order to cover all possible unitary filter banks [41]. The 
matrices Ao, . . . , A K - ~  only have to  belong to  the subset of all possible M X M 
unitary matrices which can  be written  as a sequence of M - 1 Givens rotations 
performed successively on the elements Ic, L + 1 for Ic = 0,1, .  . . , M  - 2. 

- cos&) sin4p) 
- sin 4r) cos 4r) 

- -1 - 

AI, = 1 . . .  1 
COS 4K-l sin 4K-l (k)  (k) 

(k) 

(6.96) 
The  last  matrix AK has  to  be a general rotation  matrix.  Filter design can 
be carried out by  defining an objective  function  and optimizing the  rotation 
angles. 

- 1- - - sin 6 K - 1  (k) cos 6 K - 1 -  

Paraunitary  FIR Filter Banks  based on Reflections. A second  way 
of parameterizing paraunitary filter banks was proposed in [148]. Here, the 
polyphase matrix is written  as follows: 

E ( z )  = VK(Z)VK-l(Z) * * V,(z )U.  (6.97) 

The matrices V I , ( Z )  are reflection-like matrices of the  type 

VI, = I - VI,.: + z-1vI,v:, (6.98) 
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Figure 6.20. M-channel  filter bank with FIR filters; (a) analysis; (b) synthesis. 

where vk: is an M X 1 vector with l lvkl l  = vTv = 1.  It is easily proven 
that V r ( ~ - ~ ) V k ( z )  = I ,  so that  the  matrices can  indeed  be used  for 
parameterization.  The  matrix U has to be a general unitary  matrix.  The 
parameterization (6.97) directly leads to  an efficient implementation, which 
is similar to  the one discussed in Section 3.4.4 for the implementation of 
Householder reflections: instead of multiplying an  input vector z ( z )  with an 
entire  matrix V k ( z ) ,  one  computes z ( z )  - vk[l - K'] [vTz(z)] in order to 
obtain Vk:(z)z(.z). 

In  addition to  the above  parameterizations, which generally yield non- 
linear phase filters, methods for designing linear-phase paraunitary filter banks 
have also been  developed. For this special class the reader is referred to [137]. 

6.5 DFT Filter Banks 

DFT filter banks  belong to  the class of modulated filter banks,  where all 
filters are derived from  prototypes via modulation.  Modulated filter banks 
have the  great  advantage  that only  suitable  prototypes  must  be  found,  not 
the complete  set of analysis and synthesis filters. One  prototype is required 
for the analysis and one for the synthesis side, and in most cases the same 
prototypes  can  be  used for both sides. Due to  the modulated  structure very 
efficient implementations are possible. 

In  DFT  banks,  the analysis and synthesis filters, Hk:(z) and Gk:(z), are 
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In  order to explain the efficient implementation of DFT  banks, let us 
consider the critically subsampled case. The analysis equation is 

L-l 

%(m) = pk: (.) z(mM - n) 
n=O 
1,-l 

(6.100) 

n=O 

We  now substitute n = i M  + j ,  L = ML,  and rewrite (6.100) as 

Thus,  the  subband signals can  be  computed by filtering the polyphase com- 
ponents of the  input signal with the polyphase  components of the  prototype, 
followed  by an  IDFT  (without pre-factor l /M) .  On the synthesis side, the 
same principle can  be used. The complete analysis/synthesis system, which 
requires extremely low computation effort, is depicted in Figure 6.21. 

For critical  subsampling, as shown  in Figure 6.21, the  PR condition is 
easily found to be 

(6.102) 

This  means that  the polyphase  components of PR FIR  prototypes  are 
restricted to length one, and  the filtering degenerates to pointwise scalar 
multiplication. Thus, critically subsampled DFT filter banks  with PR mainly 
reduce to  the  DFT. 

If oversampling by a  factor p = E Z is considered, the  PR condition 
becomes [33, 861 

(6.103) 
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Clearly, if a filter  bank provides PR in the critically  subsampled case, it  also 
provides PR in the oversampled case, provided the  output signal is  downscaled 
by the oversampling  factor. Thus, (6.102) is  included in  (6.103).  This is most 
easily seen  from  (6.103) for p = 2: 

In  general, (6.103) means an increased design  freedom compared to (6.102). 
This freedom can  be  exploited  in  order to design FIR  prototypes P(,) and 
Q ( z )  with  good filter properties. 

The  prototypes  are typically designed to be lowpass filters. A common 
design criterion is to minimize the  stopband energy and  the  passband ripple: 

S a! (IP(ej")l- 1)zdw + p IP(ej")12 dw L min. (6.104) S passband  stopband 

At this point  it should be mentioned that all PR prototypes for M-channel 
cosine-modulated filter banks, which  will be discussed in the next  section,  also 
serve as  PR prototypes for oversampled 2M-channel DFT filter banks.  On the 
other  hand,  satisfying only (6.103) is not sufficient in the cosine-modulated 
case. Thus, oversampled DFT filter banks offer  more  design  freedom than 
cosine-modulated  ones. 

MDFT Filter Bank. Figure 6.22 shows the  MDFT filter bank  introduced by 
Fliege. Compared to  the simple DFT filter banks  described  above, this filter 
bank is modified in  such  a way that  PR is achieved with  FIR filters [55] ,  [82]. 
The key to   PR is subsampling the filter output signals by M/2, extracting the 
real and imaginary parts,  and using them  to compose the complex subband 
signals yk:(rn), L = 0, .  . . , M - 1. As can  be seen in  Figure 6.22, the extraction 
of the real and imaginary parts  takes place in adjoining  channels  in reverse 
order. 
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Figure 6.22. Modified complex  modulated filter  bank with critical  subsampling. 

DFT Polyphase  Filter  Bank with IIR Filters and  Perfect  Recon- 
struction. We consider the  DFT filter bank in Figure 6.21. Husmy and 
Ramstad proposed to construct  the polyphase  components of the  prototype 
as first-order IIR allpass filters [74]: 

Pi(2) = - i = o ,  . . .  ,A4-1 .  (6.105) 
1 ai + z - l  

m 1 + aiz-1’ 

Using the synthesis filters 

then ensures perfect reconstruction. Unfortunately, this leads to a problem 
concerning  stability: if the analysis filters are  stable,  the synthesis filters 
determined  according to (6.106) are  not.  This problem  can  be  avoided by 
filtering the  subband signals “backwards”  using the  stable analysis filters. 
Then,  the desired output signal is formed by another  temporal reversal. This 
is not a feasible strategy if  we work with  one-dimensional signals, but in image 
processing we a priori have finite-length signals so that  this  method can  be 
applied nevertheless. 

The  quality of a filter bank is not  only  dependent  on  whether it recon- 
structs perfectly or not.  The  actual  purpose of the filter bank is to separate 
different frequency  bands, for example in order to provide  a  maximal  coding 
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gain. The  stopband  attenuation of the  prototype P ( z )  composed of IIR 
allpasses is determined by the  parameters ai ,  i = 0, .  . . , M - 1, so that these 
are  the design  parameters. Husrrry and  Ramstad  state a stopband  attenuation 
of 36.4 dB for the  prototype P(,) of an eight-channel filter bank [74]. In view 
of the extremely low computational cost this is an astonishing value. 

6.6 Cosine-Modulated  Filter  Banks 

Cosine-modulated filter banks are very popular  due to their real-valued 
nature  and  their efficient implementation via polyphase structure  and fast 
DCT [116, 127, 94, 121, 87, 100, 110, 129, 681. Cosine-modulated filter 
banks  can  be  designed as pseudo  QMF  banks [127], paraunitary filter banks 
[94, 121, 87, 100, 1031, and also as biorthogonal filter banks allowing low 
reconstruction  delay [110, 129, 68, 83, 861. Perfect reconstruction is easily 
achieved by choosing an  appropriate  prototype. For example, the  MPEG  audio 
standard [l71  is based  on  cosine-modulated filter banks. 

In  the following, we will consider biorthogonal  cosine-modulated filter 
banks  where the analysis filters hk(n), Ic = 0, . . . , M - 1, are derived from 
an  FIR  prototype p ( n )  and  the synthesis filters gk(n) ,  Ic = 0 , .  . . , M - 1, from 
an  FIR  prototype q(n) according to 

h k ( l Z )  = 2p(n)cos[G ( k + i )  (v;) +qh], n=O, . . . ,  L,-1 

gk(n) = 2q(n)cos[$ ( k + i )  - 4 ,  n=O, ..., L , - l .  

The  length of the analysis prototype is L,, and  the  length of the synthesis 
prototype is L,. The variable D denotes the overall delay of the analysis- 
synthesis system. A suitable choice  for q5k is  given  by r$k = (-1)"/4 [87,95]. 

For the sake of brevity, we confine ourselves to even M ,  analysis and 
synthesis prototypes  with lengths L, = 2mM and L, = 2m'M,  m,m' E IN, 
and  an overall delay of D = 2sM + 2M - 1 samples.  Note that  the delay 
can  be chosen independently of the filter length, so that  the design of low- 
delay  banks is included here. The most common case within this framework 
is the one  where the same  prototype is  used  for analysis and synthesis. 
However, in order to demonstrate some of the design freedom, we start with 
a more general approach where  different prototypes  are used  for analysis and 
synthesis. Generalizations to all filter lengths and delays are given in [68]. 
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In  order to derive the conditions that must  be  met by the  prototypes P ( z )  
and  Q(z)  to yield perfect reconstruction, we first decompose  them  into 2M 
polyphase  components.  Note that in the case of DFT filter banks,  only M 
polyphase  components were  used to describe an  M-channel filter bank. We 
use the  type-l decomposition given  by 

m-l 

P~(z) = C p(2lM + j )  z , j = 0 , .  . . , 2 M  - 1. -e (6.107) 

e=o 

6.6.1 Critically  Subsampled Case 

In  the critically subsampled case the analysis polyphase matrix can  be  written 
as [112, 681 

(6.108) 

where 

[ T l ] k , j  = 2cos [G ( k  + ;) ( j  - p) + 4 k ]  , 
(6.109) 

k = O  ,.", M - l ,  j = o  ,.", 2 M - 1 ,  

and 

Po(z2)  = diag [P0(-z2),Pl(-z2),  . . . ,PM-l(-z2)] , 

P1(z2) = diag [PM(-~~),PM+~(-~~), . . . ,P2M-l(-z2)] . 
(6.110) 

Note that  the matrices P0(z2) and P1 ( z 2 )  contain upsampled  and  modulated 
versions of the polyphase filters. 

For the synthesis polyphase matrix we get 

R(z )  = [z-lQ1(z2),  Qo(z2)] TT, (6.111) 

where 

[ T 2 ] k , j  = 2cos [G (L + ;) (2M - 1 - j - p) - 44  , 
(6.112) 

k = O  ,.", M - l ,  j = o  ,.", 2 M - 1 ,  

and 

Qo(z2) = diag [QM-I(-z~),  . . . ,Q1(-z2),Q~(-z2)] , 

Q1(z2) = diag [ Q ~ M - I ( - Z ~ ) ,  . . . , Q M + I ( - Z ~ ) ,  Q M ( - ~ ~ ) ]  . 
(6.113) 
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The perfect reconstruction conditions are  obtained by setting 

Using the  property [87] 

(6.114) 

this yields the conditions 

which have to be  met for k = 0, .  . . , % - 1.  The relationship between qo and 
S is 

qo = 2s + 1. (6.118) 

The condition (6.117) is satisfied for Q k ( z )  = az-PPk(z)  and Q ~ + k ( z )  = 
az-8 P ~ + k ( z )  with arbitrary a,  p, which suggests the use of the same  proto- 
type for both analysis and synthesis. Thus, with Q ( z )  = P ( z ) ,  the remaining 
condition is 

! z-' M 
2 P Z M - l - k ( Z )  Pk(Z) + P M + k ( Z )  PM-l--k(Z) = 2" k = O ,  . . . , - -  1. 
(6.119) 

The  M/2 equations in (6.119) may  be  understood as PR conditions on M/2 
non-subsampled  two-channel filter banks.  The  prototype can for instance  be 
designed by using the  quadratic-constrained least-squares (QCLS) approach, 
which  was proposed by  Nguyen [lll]. Here, we write all constraints given 
by  (6.119)  in quadratic form and optimize the  prototype using  constrained 
numerical  optimization.  The  approach  does  not inherently guarantee PR,  but 
the PR constraints  can  be satisfied with arbitrary accuracy. 

Another  approach, which guarantees PR and also leads to a very  efficient 
implementation of the filter bank, is to design the filters via lifting [129, 831. 
For this, we write  the  PR conditions as 

V ( z ) U ( z )  = I ,  
z-l(-z-z) '  

2M 
(6.120) 
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where 

z - ~ Q ~ M - ~ - ~ ( - z  ) ( - l ) s - lQz~- l - -k-~( -z  ) 2 

(-1)Sz-1Qk+~(-z2)  Qd-z2) l .  
(6.121) 

It is easily verified that (6.120) includes (6.117) and  (6.116),  but (6.120) can 
also be derived straightforwardly  from (6.114) by using the  properties of the 
cosine functions [83]. The filter design is as follows. We start with 

where the  subscript 0 indicates that  this is the  0th  iteration. We have 

z-1 
2M 

V,(z )U, (z )  = ~ I .  (6.123) 

Longer filters with the same  delay are  constructed by introducing  matrices of 
the  type 

A i l ( z )  Ai(z)  = I (6.124) 

L 

in between the  product 

(6.126) 

Note that Ui+l ( z )  and Vi+l ( z )  retain  the  structure given in (6.121). From the 
new matrices  the polyphase  components of the  prototype  are easily extracted. 
The  operation (6.126) can  be  repeated  until  the filters contained in U i ( z )  and 
V i ( z )  have the desired length. Since the overall delay  remains constant,  this 
operation is called zero-delay lifting. 

A second possibility is to introduce  matrices 



178 Chapter 6.  Filter  Banks 

and to construct  the new filters as 

Ui+l(Z) = C i ( Z ) U i ( Z ) ,  
(6.128) 

This  type of lifting is  known as maximum-delay lifting. Again, Ui+l(z) and 
Vi+l(z) have the  structure given in (6.121), and since (6.120) is satisfied, 
PR is structurally  guaranteed.  Thus, filter optimization  can  be carried out by 
optimizing the lifting coefficients in an  unrestricted way. 

Also other lifting schemes can easily be found. The  advantage of the above 
approach is that only  one lifting step with  one lifting coefficient ai or ci is 
needed in order to increase the  length of two  polyphase  components of each 
prototype. 

Implementation Issues. The  straightforward  polyphase  implementation of 
(6.108) is depicted in Figure 6.23. On the analysis side, we see that always 
those  two  systems  are fed with the same input signal which are connected 
in (6.116). In  the synthesis bank,  the  output signals of the corresponding 
synthesis polyphase filters are  added.  This  already suggests the  joint imple- 
mentation of pairs of two filters. However, a  more efficient structure can  be 
obtained by exploiting the periodicies in the  rectangular  matrices 2'1 and 
T 2  and by replacing them with M X M cosine modulation  matrices T 1  and 
T 2  = T ,  = T, [83]: 

- T  --l 

2cos [$F ( k  + +) ( j  - g) + q5k] , j = 0 , .  . . ' 2  - M 1  - 
[ T l I k , j  = 

2 ~ 0 ~ [ $ F ( k + i ) ( M + j - g ) + 4 k ] ,  j = T , . . . , M - l  
(6.129) 

for k = 0,.  . . , M - 1. This  structure is depicted in Figure 6.24. Note that  the 
following signals are needed as  input signals for the cosine transform: 

(6.130) 

Thus, all polyphase filtering operations  can  be carried out via the lifting 
scheme  described  above where four filters are realized jointly. 
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(b) 

Figure 6.23. Cosine-modulated  filter  bank  with  critical  subsampling. (a) analysis; 
(b) synthesis. 

6.6.2 Paraunitary Case 

In  the  paraunitary case with  critical  subsampling we have 

B ( z )  E ( z )  = I M ,  (6.131) 

which leads to  the following constraints  on the  prototype: 

1. The  prototype  has  to be  linear-phase, that is, p ( L  - 1 - n) = p ( n ) .  
2. The same prototype is required for both analysis and synthesis. 
3. The  prototype  has  to satisfy 

1 Pk (z)P/C (.l + h + k  ( Z ) P M + k  = z. (6.132) 
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YM-1 (m) - M-k 

(-1)S-l l i d 
M-l L; 

Figure 6.24. Cosine-modulated  filter  bank  with  critical  subsampling and efficient 
implementation structure. (a)  analysis;  (b)  synthesis. 

The filter design may for instance  be carried out by parameterizing  the 
polyphase  components  using the  lattice  structure shown in Figure 6.25 and 
choosing the  rotation angles so as to minimize an  arbitrary objective function. 
For this  method a good starting point is required,  because we have to optimize 
angles in a cascade of lattices  and  the relationships between the angles and 
the impulse  response are highly nonlinear. Alternatively, the QCLS approach 
[l111 can  be used, which typically is  less sensitive to  the  starting  point. 

As in the biorthogonal case, the polyphase filters can  be realized jointly. 
One  can use the  structure in Figure 6.23 and implement two filters at a 
time via the  lattice in Figure 6.25.  However, the more efficient structure in 
Figure 6.24 can also be used, where four filters are realized via a common 
lattice.  This was  shown in [95]  for special filter lengths. A generalization is 
given in [62]. 
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- 
pk (z) 
A A 

/ \ /  \ 

In [l031 a  method  has  been  proposed that allows the design of discrete- 
coefficient linear-phase prototypes for the  paraunitary case. The design pro- 
cedure is based  on a subspace  approach that allows  us to perform linear 
combinations of PR prototype filters in such  a way that  the resulting filter is 
also a linear-phase PR prototype.  The filter design  is carried out iteratively, 
while the  PR property is guaranteed  throughout  the design process. In  order 
to give  some  design examples,  Table  6.1 shows impulse  responses of 8-band 
prototypes  with integer coefficients and filter length L = 32. Because of 
symmetry, only the first 16  coefficients are  listed.  The frequency  responses 
of the filters #3  and #S are depicted in Figure 6.26. 

Closed Form Solutions. For filter length L = 2M  and L = 4M closed form 
solutions for PR prototypes  are  known.  The special case L = 2M is  known 
as the modulated  lapped  transform (MLT), which  was introduced by Princen 
and  Bradley [116]. In  this case the  PR condition (6.132) reduces to 

1 
Pk + PM+k = , 

which means 
1 

p 2 ( n )  + p 2 ( M  + n) = 2 ~ .  (6.133) 

An example of an impulse  response that satisfies (6.133) is 

1 
P(n) = m sin [ (n+  -)- . (6.134) 

The case L = 4M is  known as the extended  lapped  transform (ELT).  The 
ELT was introduced by Malvar, who suggested the following prototype [95]: 

1 1 1 7 r  
p(n)  = -GZ +- 2m [ 2 2M] 

cos (n + -)- (6.135) 
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0 0.1 0.2 0.3 0.4 0.5 

Normalized  Frequency 

(b) 
Figure 6.26. Frequency  responses of 8-channel  prototypes  from  Table 3.1. (a) filter 
#3; (b) filter #6. For  comparison the frequency  response of the ELT prototype is 
depicted  with dotted lines. 

Table 6.1. 
Perfect  reconstruction  prototypes for 8-band filter banks  with integer 

coefficients &(L - 1 - n)  = p ( n ) ) .  

7 
8 

10 
11 
12 
13 
14 

r 1 1 2  

1 2  
1 2  
1 2  

- 
#3 - 
-1 
-1 
0 
0 
0 
0 
2 
2 
4 
4 
6 
6 
7 
7 
8 
8 

- 
#S 

-2190 
-1901 
-1681 
-426 
497 
2542 
3802 
6205 
9678 
13197 
16359 
19398 
22631 
24738 
26394 
27421 

- 

1 
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6.6.3 Oversampled  Cosine-Modulated Filter Banks 

In  the oversampled case with  oversampling by p = E Z, the polyphase 
matrices may be  written  as 

(6.136) 

and 

with 

Pe(z2’) = diag (pelv(-z2’),pe~+1(-z2’), . . . , P e l v + ( ~ - ~ ) ( - z ~ ’ ) } ,  (6.138) 

Qe(z2’) = diag{Qelv+(lv-l)(-z2’), . . . , Q ~ N + I ( - ~ ~ ’ ) ,  Qelv(-z2’)}. 
(6.139) 

The  superscript ( p )  indicates the oversampling  factor.  Requiring 

(.) &) (.) = .-P (6.140) 

for perfect reconstruction yields [86] 

(6.141) 

and 
9+elv(z )  Q~+k+elv(z) - P~+k+elv(z )  Qk+elv(z) L 0 (6.142) 

for L = 0,. . . , N - 1; l = 0,. . . , p  - 1. The delay qp) is related to S as 

qp) = 2ps + 2p - 1,  (6.143) 

and  the overall delay amounts to 

q = N - l + q t ) N .  (6.144) 

As we see, these conditions offer increased design freedom for an increasing 
oversampling rate.  This is further discussed in [86], where solutions based  on 
a nullspace approach  are presented. 
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If we restrict an oversampled  cosine-modulated filter bank to be  parauni- 
tary,  that  is, d p ) ( z )  E(p) ( z )  = I N ,  we get the following constraints  on  the 
prototype P ( z )  [85, 861: 

Interestingly, for p > 1, we still may choose different prototypes P(,) and 
Q ( z )  such that 

with 

Example. We consider a  16-band filter bank  with linear-phase prototype  and 
an overall delay of 255 samples. Figure 6.27 shows a comparison of frequency 
responses for the critically sampled and  the oversampled case. It  turns  out 
that  the  PR prototype for the oversampled filter bank  has  a much higher 
stopband  attenuation.  This  demonstrates  the increased design freedom in the 
oversampled case. 

6.6.4 Pseudo-QMF Banks 

In pseudo-QMF  banks, one  no longer seeks perfect reconstruction,  but nearly 
perfect  reconstruction. Designing a pseudo-QMF  bank is done as follows [127]. 
One ensures that  the aliasing components of adjacent  channels  compensate 
exactly. This requires power complementarity of frequency shifted versions of 
the  prototype,  as  illustrated in Figure 6.28. Furthermore,  one  tries to suppress 
the remaining aliasing components by using filters with very high stopband 
attenuation.  Through filter optimization  the linear distortions  are  kept  as 
small as possible. An  efficient  design method was proposed in [166].  Since 
the  constraints on the  prototype  are less restrictive  than in the  PR case, the 
prototypes typically have a higher stopband  attenuation  than  the PR ones. 
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Figure 6.27. Frequency  responses of 16-channel  prototypes. (a) critical  subsam- 
pling; (b) oversampling  by p = 2. 

0 ' HiM 

Figure 6.28. Design of pseudo-QMF  banks. 
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6.7 Lapped Orthogonal  Transforms 

Lapped  orthogonal  transforms  (LOTs) were introduced in [21] and have  been 
further  studied in [93, 97, 21. Unlike  block transforms,  they  have  overlapping 
basis functions, which better allow us to smooth  out blocking artifacts in 
coding  applications.  LOTs  may also be seen as a special kind of critically 
subsampled paraunitary filter banks. Typically, an overlap of one block  is 
considered, which means that  the basis functions are of length L = 2M when 
the number of channels is M. Longer transforms  have  been designed in [l181 
and  are called generalized lapped  orthogonal  transforms  (GenLOTs). More 
recently, biorthogonal  lapped  transforms have also been  proposed [96, 1441. 

Figure 6.29. Transform matrix of a  lapped  orthogonal  transform. 

Figure 6.29 illustrates  the  structure of the  transform  matrix of a  lapped 
orthogonal  transform. Like in an  M-channel filter bank  with  length-2M filters, 
2M  input samples are combined in order to form  M  transform coefficients. 
We will first consider the  constraints  on  the  M X M  submatrices PO and P I .  
From the condition of orthogonality, 

T ~ T = T T ~ = I  (6.146) 

it follows that 

P,TPo+PTP1=PoPoT+PIPT=IMxM (6.147) 

P; P1 = PO PT = OMxM. (6.148) 
and 

Now let B = PO + P I .  Note that B is orthogonal if PO and P1 satisfy 
the above conditions. Moreover, POP: and P I P :  are  orthogonal projections 
onto  two  subspaces that  are  orthogonal  to one another. Define A = POP: 
and verify that PlPT = I - A. Thus, 

PO = A B ,  P1 = [ I - A ] B .  (6.149) 
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The most general way of constructing  LOTS is to  start with two matrices 
A and B ,  where A is a projection and B is orthogonal.  The desired 
matrices PO and P1 are  then found  from  (6.149).  This  method, however, 
does  not  automatically yield linear-phase filters, which are desired in many 
applications. 

In [98], a fast linear-phase LOT based  on the  DCT was presented, which 
will be briefly explained in the following.  For this, let De and Do be  matrices 
that contain the rows of the  transposed DCT-I1 matrix with even and  odd 
symmetry, respectively. Then, 

is a  LOT  matrix  that  already satisfies the above conditions. J is the counter 
identity  matrix  with  entries Ji,k = & + - l ,  i = 0,1, . . . , N - 1.  In  an 
expression of the form X J ,  it flips the columns of X from left to right. 
Due to  the application of J in (6.150), the first M / 2  rows of Q(') have even 
and  the  last M / 2  rows have  odd  symmetry. A transform  matrix  with  better 
properties (e.g. for coding) can  be  obtained by rotating  the columns of Q(') 
such that 

Q = 2 Q('), (6.151) 

where 2 is unitary. For the fast LOT, 2 is  chosen to contain  only  three  plane 
rotations, which help to improve the performance, but  do not significantly 
increase the complexity. The  matrix Q(o) already  has  a fast implementation 
based  on the  fast  DCT. See Figure 6.30  for an  illustration of the  fast  LOT. 
The angles proposed by Malvar are O1 = 0 . 1 3 ~ ~  O2 = 0 . 1 6 ~ ~  and O3 = 0 . 1 3 ~ .  

0 
1 
2 
3 
4 
5 
6 
l 

Figure 6.30. The  fast  lapped  orthogonal  transform  for M = 8 based  on the DCT 
and three  plane  rotations. 
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6.8 Subband Coding of Images 

Two-dimensional filter  banks for the decomposition of images can  be realized 
as  separable  and  non-separable  filter  banks. For the sake of simplicity, we will 
restrict ourselves to  the separable case. Information  on  non-separable filter 
banks  and  the corresponding  filter design methods is given in [l, 1541. 

In  separable  filter  banks, the rows and columns of the input  signal  (image) 
are filtered successively. The procedure is illustrated in Figure  6.31 for an 
octave-band  decomposition  based on cascades of one-dimensional  two-channel 
filter  banks.  In  Figure 6.32 an example of such an octave-band decompo- 
sition is given. Note that  this decomposition scheme  is also known as  the 
discrete wavelet transform; see Chapter 8. In  Figure  6.32(b) we observe that 
most  information is contained  in the lower subbands. Moreover, local high- 
frequency  information is kept locally within the subbands.  These  properties 
make  such  filter  banks very attractive for image  coding applications.  In  order 
to achieve  high  compression ratios, one quantizes the decomposed image, 
either by scalar  quantization,  or using a technique known as embedded zerotree 
coding [131, 1281; see also  Section 8.9. The codewords describing the quantized 
values are usually further compressed in a lossless way  by arithmetic or 
Huffman coding [76,63].  To  demonstrate the characteristics of subband coding 
with  octave-band  filter  banks,  Figures  6.32(c) and  (d) show  coding results at 
different bit  rates. 

Fl*FI*Fl* LH HH Fl*F LH HH  LH  HH 

vertical 

. . .  

Figure 6.31. Separable  two-dimensional  octave-band  filter  bank. 
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Figure 6.32. Examples of subband  coding; (a) original  image of size  512 X 512; (b) 
ten-band  octave  decomposition;  (c)  coding at 0.2 bits per  pixel;  (d)  coding at 0.1 
bits per  pixel. 

6.9 Processing of Finite-Length  Signals 

The  term “critical  sampling”, used in the previous sections, was  used under 
the assumption of infinitely long signals. This  assumption is justified  with 
sufficient accuracy for audio  and speech coding. However, if  we want to 
decompose an image  by means of a  critically  subsampled filter bank, we see 
that  the number of subband  samples is larger than  the number of input values. 
Figure 6.33 gives an example. If  we simply truncate  the number of subband 
samples to  the number of input values - which  would be  desirable for coding 
- then PR is not possible any longer. Solutions to this problem that yield PR 
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Figure 6.33. Two-channel  decomposition of a finite-length  signal. 

with a minimum  number of subband  samples are discussed in the following. 

Circular Convolution. Assuming that  the  length of the signal to be 
processed is a multiple of the number of channels, the problem  mentioned 
above  can  be solved  by circular convolution. In  this  method,  the  input signal 
is extended periodically prior to decomposition [165], which  yields periodic 
subband signals of which only  one  period  has to be  stored  or  transmitted. 
Figures 6.34(a) and 6.34(c) give an  illustration. Synthesis is performed by 
extending  the  subband signals according to their  symmetry, filtering the 
extended signals, and  extracting  the required part of the  output signal. A 
drawback of circular convolution is the occurrence of discontinuities at the 
signal boundaries, which may lead to annoying  artifacts  after  reconstruction 
from  quantized  subband signals. 

Symmetric Reflection. In  this  method,  the  input signal is extended peri- 
odically by reflection at the  boundaries as indicated in Figures 6.34(b) and 
6.34(d), [136, 16, 23, 61. Again, we get periodic subband signals, but  the period 
is twice as long as with circular convolution. However, only half a period of 
the  subband signals is required if linear-phase filters are used, because  they 
lead to symmetry in the  subbands. By comparing  Figures  6.34(a)  and (b) (or 
6.34(c) and  (d)) we see that symmetric reflection leads to smoother  transitions 
at the  boundaries  than circular convolution does. Thus, when quantizing the 
subband signals, this  has  the effect of less severe boundary  distortions. 

The exact  procedure  depends  on the filter bank in use and on the signal 
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(c) (4 
Figure 6.34. Periodic  extension of the input signal; (a) one-dimensional  circular 
convolution; (b) one-dimensional  symmetric  reflection;  (c)  two-dimensional  circular 
convolution;  (d)  two-dimensional  symmetric  reflection. 

length.  Figure  6.35(a) shows a scheme suitable for the two-band  decomposition 
of an even-length signal with linear-phase odd-length  biorthogonal filters. The 
input signal is denoted as ZO, 21, . . . ,27, and  the filter impulse  responses 
are {A, B ,  C, B ,  A}  for the lowpass and {-a, b, -a} for the highpass. The 
upper row  shows the extended  input signal, where the given input  samples 
are shown  in  solid  boxes. The lowpass and highpass  subband  samples, c, 
and d,, respectively, are computed by taking  the inner products of the 
impulse  responses in the displayed positions with the corresponding part of the 
extended  input signal. We see that only four different lowpass and highpass 
coefficients occur  and  have to be  transmitted. A second  scheme  for the same 
filters which also allows the decomposition of even-length signals into lowpass 
and  highpass  components of half the  length is depicted in Figure  6.35(b).  In 
order to distinguish between both  methods we say that  the  starting position 
in Figure  6.35(a) is  even and  the one in Figure 6.35(b) is odd,  as  indicated 
by the indices of the samples.  Combinations of both schemes can  be used to 
decompose  odd-length signals. Moreover,  these schemes can  be used  for the 
decomposition of 2-D objects  with  arbitrary  shape. We will return  to  this 
topic at  the end of this section. 

Schemes  for the decomposition of even-length signals with  even-length 
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Figure 6.35. Symmetric  reflection for even-length  signals. (a) odd-length  filters, 
segment starting at an even  position; (b) odd-length  filters,  segment starting at 
an odd position; (c )  even-length  filters,  segment starting at an even  position;  (d) 
even-length  filters,  segment starting at an odd  position. 

linear-phase filters are depicted in Figures 6.35(c) and  (d).  The filter impulse 
responses are {A, B ,   B ,  A} for the lowpass and {-a, -b, b, a }  for the highpass. 
Note that a different type of reflection is  used and that we have  other 
symmetries in the  subbands. While the scheme in Figure 6.35(c) results in 
the same  number of lowpass and highpass  samples, the one in Figure  6.35(d) 
yields an  extra lowpass value, while the corresponding  highpass value is zero. 
However, the  additional lowpass samples  can  be turned  into highpass values  by 
subtracting  them from the following  lowpass value and  storing  the differences 
in the highpass  band. 

In  object based  image coding, for instance MPEG-4 [log], it is required to 
carry  out  subband decompositions of arbitrarily  shaped  objects. Figure 6.36 
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Figure 6.36. Shape  adaptive  image  decomposition  using  symmetric  reflection  for 
odd-length  two-channel  filter  banks; (a) arbitrarily  shaped  object and horizontal 
extension  with  pixel  values  as  indicated; (b) lowpass  filter;  (c)  highpass  filter;  (d) 
and (e)  lowpass and highpass  subbands  after  horizontal  filtering; (f) and (g)  lowpass 
and highpass  decompositions of the signal  in (d); (h) and (i) lowpass and highpass 
decompositions of the signal  in  (e). 

shows a scheme  which  is suitable for this  task using  odd-length filters. 
The  arbitrarily  shaped  input signal is  shown in the marked region, and 
the extension for the first horizontal decomposition is found outside this 
region. Figures  6.36(d)  and  (e) show the  shape of the lowpass and  highpass 
band, respectively. Figures 6.36(f)-(i) finally show the  object  shapes  after  the 
vertical decomposition of the signals in Figures 6.36(d) and  (e)  based  on  the 
same reflection scheme. Such  schemes are often called shape  adaptive wavelet 
transforms.  Note that  the overall number of subband  samples is equal to  the 
number of input pixels. Moreover, the scheme  yields a  decomposition where 
the  interior region of an  object is processed as if the  object was of infinite size. 
Thus,  the  actual  object  shape only  influences the  subband samples close to 
the boundaries. The 2-D decomposition is carried out in such  a way that  the 
horizontal decomposition  introduces  minimal  distortion for the next vertical 
one  and vice versa. 
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Figure 6.37. Shape  adaptive  image  decomposition  using  symmetric  reflection  for 
even-length  two-channel  filter  banks;  see the comments to Figure 6.36 for further 
explanation. 

A scheme for the decomposition of arbitrarily  shaped 2-D objects  with 
even-length filters is depicted in Figure 6.37. Note that in this case, the 
lowpass band grows faster  than  the highpass band.  The  shaded regions in 
Figures  6.37(d) and (e) show the  shape of the lowpass and highpass  band  after 
horizontal filtering. The  brighter regions within the  object in Figure  6.37(d) 
indicate  the  extra lowpass  samples. The zero-marked fields in Figure 6.37(e) 
are positions where the highpass  samples are exactly zero. 

If the  faster growing of the lowpass  band is unwanted the  manipulation 
indicated in Figure 6.35(d) can  be applied. Then  the  subbands  obtained with 
even-length filters will have the  same  shape  as  the ones in Figure 6.36. 

In  addition to  the direct use of symmetric reflection, one  can  optimize the 
boundary  processing schemes in order to achieve better coding  properties. 
Methods for this  task have  been  proposed in [70, 69, 101, 27, 102, 39, 401. 
These include the two-band, the more general M-band,  and  the  paraunitary 
case with non-linear phase filters. 
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6.10 Transmult iplexers 

Transmultiplexers are systems that convert time-division multiplexed (TDM) 
signals into frequency-division multiplexed  (FDM) signals and vice versa [151]. 
Essentially, these  systems are filter banks as shown  in Figure 6.38. Contrary 
to  the  subband coding filter banks  considered so far,  the synthesis filter bank 
is applied first and  the analysis filter bank is then used to recover the  subband 
samples yk(m), which may  be  understood as components of a TDM signal. 
At the  output of the synthesis filter bank we have an FDM signal where  each 
data  stream yk(m) covers a different frequency  band. 

The transmission  from  input i to  output k is described by the impulse 
responses 

t i , k  (m) = q i , k  ( m M ) ,  (6.152) 

(6.153) 

In  the noise-free case, perfect reconstruction of the  input  data with a delay of 
m0 samples  can  be  obtained when the following condition holds: 

t i , k ( r n )  = dik S,,,, i , k  = 0,1, .  . . , M  - 1. (6.154) 

Using the  notation of modulation  matrices  these PR conditions may  be  written 
as 

T ( z M )  = H ; ( z )  G, (z )  = M z-,OM I ,  (6.155) 

where the overall transfer  matrix  depends  on z M .  This essentially means that 
any PR subband  coding filter bank yields a PR transmultiplexer if the overall 
delay is a multiple of M .  

Practical problems  with  transmultiplexers  mainly  occur  due to non-ideal 
transmission channels. This  means that intersymbol interference, crosstalk 
between different channels, and  additive noise  need to be  considered in the 
transmultiplexer design. An elaborate discussion of this topic is beyond the 
scope of this section. 

Figure 6.38. Transmultiplexer  filter  bank. 


