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Preface

If different people estimate spectra from the same finite number of stationary 
stochastic observations, their results will generally not be the same. The reason is 
that several subjective decisions or choices have to be made during the current 
practice of spectral analysis, which influence the final spectral estimate. This 
applies also to the analysis of unique historical data about the atmosphere and the 
climate. That might be one of the reasons that the debate about possible climate 
changes becomes confused. The contribution of statistical signal processing can be 
that the same stationary statistical data will give the same spectral estimates for 
everybody who analyses those data. That unique solution will be acceptable only if 
it is close to the best attainable accuracy for most types of stationary data. The 
purpose of this book is to describe an automatic spectral analysis method that 
fulfills that requirement. It goes without saying that the best spectral description 
and the best autocorrelation description are strongly related because the Fourier 
transform connects them. 

Three different target groups can be distinguished for this book. 

Students in signal processing who learn how the power spectral density and the 
autocorrelation function of stochastic data can be estimated and interpreted 
with time series models. Several applications are shown. The level of mathe-
matics is appropriate for students who want to apply methods of spectral 
analysis and not to develop them. They may be confident that more thorough 
mathematical derivations can be found in the referenced literature. 

Researchers in applied fields and all practical time series analysts who can 
learn that the combination of increased computer power, robust algorithms, and 
the improved quality of order selection have created a new and automatic time 
series solution for autocorrelation and spectral estimation. The increased 
computer power gives the possibility of computing enough candidate models 
such that there will always be a suitable candidate for given data. The improved 
order-selection quality always guarantees that one of the best candidates will be 
selected automatically and often the very best. The data themselves decide 
which is their best representation, and if desired, they suggest possible alter-
natives. The automatic computer program ARMAsel provides their language. 



viii Preface 

Time series scientists who will observe that the methods and algorithms that are 
used to find a good spectral estimate are not always the methods that are 
preferred in asymptotic theory. The maximum likelihood theory especially has 
very good asymptotic theoretical properties, but the theory fails to indicate 
what sample sizes are required to benefit from those properties in practice. 
Maximum likelihood estimation often fails for moving average parameters. 
Furthermore, the most popular order-selection criterion of Akaike and the 
consistent criteria perform rather poorly in extensive Monte Carlo simulations. 
Asymptotic theory is concerned primarily with the optimal estimation of a 
single time series model with the true type and the true order, which are 
considered known. It should be a challenge to develop a sound mathematical 
background for finite-sample estimation and order selection. In finite-sample 
practice, models of different types and orders have to be computed because the 
truth is not yet known. This will always include models of too low orders, of 
too high orders, and of the wrong type. A good selection criterion has to pick 
the best model from all candidates. Good practical performance of simplified 
algorithms as a robust replacement for truly nonlinear estimation problems is 
not yet always understood.  

The time series theory in this book is limited to that part of the theory that I 
consider relevant for the user of an automatic spectral analysis method. Those 
subjects are treated that have been especially important in developing the program 
required to perform estimation automatically. The theory of time series models 
presents estimated models as a description of the autocorrelation function and the 
power spectral density of stationary stochastic data. A selection is made from the 
numerous estimation algorithms for time series models. A motivation of the choice 
of the preferred algorithms is given, often supported by simulations. For the 
description of many other methods and algorithms, references to the literature are 
given. 

The theory of windowed and tapered periodograms for spectra and lagged 
products for autocorrelation is considered critically. It is shown that those methods 
are not particularly suitable for stochastic processes and certainly not for automatic 
estimation. Their merit is primarily historical. They have been the only general, 
feasible, and practical solutions for spectral analysis for a long period until about 
2002. In the last century, computers were not fast enough to compute many time 
series models, to select only one of them, and to forget the rest of the models. 
ARMAsel has become a useful time series solution for autocorrelation and spectral 
estimation by increased computer power, together with robust algorithms and 
improved order selection. 

Piet M.T. Broersen 

November 2005
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1

Introduction 

1.1 Time Series Problems 

The subject of this book is the description of the main properties of univariate 
stationary stochastic signals. A univariate signal is a single observed variable that 
varies as a function of time or position. Stochastic (or random) loosely means that 
the measured signal looks different every time an experiment is repeated. However, 
the process that generates the signal is still the same. Stationary indicates that the 
statistical properties of the signal are constant in time. The properties of a 
stochastic signal are fully described by the joint probability density function of the 
observations. This density would give all information about the signal, if it could 
be estimated from the observations. Unfortunately, that is generally not possible 
without very much additional knowledge about the process that generated the 
observations. General characteristics that can always be estimated are the power 
spectral density that describes the frequency content of a signal and the auto-
covariance function that indicates how fast a signal can change in time. Estimation 
of spectrum or autocovariance is the main purpose of time series identification. 
This knowledge is sufficient for an exact description of the joint probability density 
function of normally distributed observations. For observations with other 
densities, it is also useful information. 

A time series is a stochastic signal with chronologically ordered observations at 
regular intervals. Time series appear in physical data, in economic or financial 
data, and in environmental, meteorologic and hydrologic data. Observations are 
made every second, every hour, day, week, month, or year. In paleoclimatic data 
obtained from an ice core in Antarctica, the interval between observations can even 
be a century or 1000 years (Petit et al., 1999) for the study of long-term climate 
variations.  

An example of monthly data is given in Figure 1.1. The observations are made 
to study the El Niño effect in the Pacific Ocean (Shumway and Stoffer, 2000). At 
first sight, this series can be considered a stationary stochastic signal. Can one be 
sure that this signal is a stationary stochastic process? The answer to this question 
is definitely NO. It is not certain, it is possible, but there are at least three different 
and valid ways to look at practical data like those in Figure 1.1. 
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Figure 1.1. Monthly observations of the air pressure above the Pacific Ocean

It is a historical record of deterministic numbers that describe the average 
air pressure was on certain days in the past at certain locations. 

Application: Archives loaded with data. 

The air pressure would perhaps have been slightly different at other loca-
tions, and perhaps some inaccuracy occurs in the measurement. Therefore, 
the data are considered deterministic or stochastic true pressure levels plus 
additive noise contributions. 

Application: Filtering out the noise. 

This whole data record is considered an example of how high and low pres-
sures follow each other. The measurements are exact but they would be 
else if they had been made at other moments. Measuring from 1900 until 
1950 would have given a different signal, possibly with the same statistical 
characteristics. The signal is treated as one realisation of a stationary 
stochastic process during 40 years.  

Application: Measure the power spectral density or the auto-
correlation function and use that for a compact description of the 
statistically significant characteristics of the data. That can be used 
for prediction and for understanding the mechanisms that generate or 
cause such data. 

All three ways can be relevant for the data in Figure 1.1. The correct practical 
question to be posed is which of the three ways will give the best answer for the 
problem that has to be solved with the data. Not the measured data but the intention 
of the experimenter decides the best way to look at the data. This causes a funda-
mental problem with the application of theoretical results of time series analysis to 
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practical time series data. Most theoretical results for stationary stochastic signals 
are derived under asymptotic conditions for a sample size going to infinity; see 
Box and Jenkins (1976), Brockwell and Davis (1987), Hannan and Deistler (1988), 
Porat (1994), Priestley (1981), and Stoica and Moses (1997). The applicability of 
the theoretical results to finite samples is generally not part of the asymptotic 
theory. Nobody would believe that the data in Figure 1.1 are similar to data that 
would have been found millions of years ago. Neither it is probable that the data at 
hand will be representative of the air pressure in the future over millions of years. 
Broersen (2000) described some practical implications of spectral estimation in 
finite samples. This book will treat useful, automatic, finite-sample procedures. 
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Lung sounds during two respiration cycles

Figure 1.2. The microphone signal of the sound of healthy lungs during two cycles of the 
inspiration and the expiration phases. The amplitude during inspiration is much greater.

A second example shows the sound observed with a microphone on the chest of 
a male subject (Broersen and de Waele, 2000). This signal has been measured in a 
project that investigates the possibility of the automatic detection of lung diseases 
in the future. The sampling frequency in Figure 1.2 is 5 kHz. It is clear that this 
signal is not stationary. The first inspiration cycle starts at about 0.2 s and lasts 
until about 1.7 s. Selecting only the signal during the part of the expiration period 
between 2.2 and 3.0 s gives the possibility of considering that signal as stationary. 
Its properties can be compared to the properties at similar parts of other respiration 
cycles. 

Speech coding is an important application of time series models. The purpose 
in mobile communication is to exchange speech of good quality with a minimal bit 
rate. Figure 1.3 shows 8 s of a speech signal. It is filtered to prevent aliasing and 
afterward sampled with 8 kHz, giving 4 kHz as the highest audible frequency in the 
digital signal. A lower sampling frequency would damage the useful frequency 
content of the signal and cause serious audible distortions. Therefore, crude 
quantisation of the  speech  signal with  only a couple of  bits  per  sample  requires 
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Figure 1.3. Speech fragment sampled with 8000 Hz; this signal is not stationary 
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Figure 1.4. Three fragments of the speech fragment that can be considered stationary. Each 
fragment gets its own time series model in speech coding for mobile communications. 

more than 20,000 bps (bits per second). It is obvious that the speech signal is far 
from stationary. Nevertheless, time series analysis developed for stationary 
stochastic signals is used in low-bit speech coding. The speech signal is divided 
into segments of about 0.03 s. Figure 1.4 shows that it is not unreasonable to call 
the speech signal stationary over such a small interval. For each interval, a time 
series model with some additional parameters can be estimated. Vowels give more 
or less periodic signals and consonants have a noisy character with a characteristic 
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spectral shape for each consonant. In this way, it is possible to code speech with a 
bit rate of 4000 bps or even lower. This comes down to only one half bit per 
observation. This reduced bit rate gives the possibility of sending many different 
speech signals simultaneously over a single communication line. It is not necessary 
for efficient coding to recognize the speech. In fact, speech coding and speech 
recognition are different scientific disciplines. 
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Figure 1.5. Global temperature time series indicating that the temperature on the earth 
increases. Comparing this record with other measurements shows that almost similar 
temperature variations over a period of a few centuries have been noticed in the last 400,000 
years. However, if it continues to rise in the near future, the changes seem to be significantly 
different from what has been seen in the past. 

Figure 1.5 shows some measurements of variations in global temperature. An 
important question for this type of climatic data is whether the temperature on the 
earth will continue to rise in the near future, as in most recent years. Considering 
the data as a historical record of deterministic numbers is safe but not informative. 
Extrapolating the trend with a straight line through the data obtained after 1975 
would suggest dangerous global warming. However, extrapolating data without a 
verified model is almost never useful and always very inaccurate. This can be seen 
as treating the data as deterministic plus noise. The proposed third way to look at 
the data, as a stationary stochastic process, does not seem logical at first sight 
because there is a definite trend in this relatively short measurement interval. 
However, one should realise that there is a possibility that variations with a period 
of one or two centuries are more often found in paleoclimatic temperature data 
with a length of more than 100,000 years. In that case, the data in Figure 1.5 are 
just too short for any conclusions.  

Figure 1.6 gives data about the thickness of varves of a glacier that has been 
melted down completely already long ago. The thickness of the sedimentary 
deposits can be used as a rough indicator of the average temperature in a year 
because the receding glacier will leave more sand in a warm year. This varve signal 
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Figure 1.6. Thickness of yearly glacial deposits of sediments or varves for paleoclimatic 
temperature research. Taking the logarithm and afterward the first difference transforms the 
nonstationary signal into a time series that can be treated as stationary. 

is typically not stationary. The variation in thickness is proportional to the amount 
deposited. That first type of nonstationarity can be removed with a logarithmic 
transformation (Shumway and Stoffer, 2000). The transformed signal in the middle 
of Figure 1.6 has a constant variance, but it is not yet stationary. Therefore, a 
method often applied to economic data is used (Box and Jenkins, 1976), taking the 
first difference of the signal, where the new signal is xn – xn–1. The final differenced 
signal at the bottom is stationary but misses most interesting details that are still 
present in the two preceding figures. The first two plots in Figure 1.6 show that 
there has been a period with gradually increasing temperature between 9575 b.c. 
and 9400 b.c. That period is longer than the measurements given in Figure 1.5. 
Hence, there has been a time when the global temperature increased for more than 
a century about 11,400 years ago. However, how much the temperature increased 
then cannot be derived from the given data because the calibration between varve 
thickness and degrees Centigrade is missing. Furthermore, a sharp shorter rise 
started about 9275 b.c. That large peak is still visible in the logarithm but is no 
longer seen in the differenced lower curve.  

Hernandez (1999) warned of the “deleterious effects that the apparently 
innocent and commonly used processes of filtering, detrending, and tapering of 
data” have on spectral analysis. Transformations that improve stationarity should 
be used with care, otherwise a comparison with the results of raw data becomes 
difficult or impossible. Also the low-pass filtering operation that is often used to 
prevent aliasing in downsampling the signal should be treated with caution; 
Broersen and de Waele (2000b) showed that such filters destroy the original 
frequency content of the signal if the passband of the filter ends within half the 
resampling frequency. A higher cutoff frequency will allow some aliasing, but 
nevertheless it will often give the best spectral estimate over the reduced frequency 
range until half the resampling frequency. 
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This study of single univariate signals is not really decisive on the issue of 
global warming. An approach to explain global long-term atmospheric develop-
ment with physical or chemical modeling uses input-output modeling (Crutzen and 
Ramanathan, 2000). A problem with the explanatory force of all approaches is that 
an independent verification of the ideas is virtually impossible with long-term 
climate data. Most research started after the first signs of global warming were 
detected and lack statistical independence: the supposition of global warming in the 
last 50 or 80 years was the reason to start the investigation. Unfortunately, the 
statistical significance or justification of a posteriori explanations is rather weak. 
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Figure 1.7. Economic time series with four observations per year. The series has a strong 
seasonal component and a trend. 

Figure 1.7 shows the earnings of shareholders of the U.S. company, Johnson 
and Johnson (Shumway and Stoffer, 2000). Those data show a strong trend. 
Furthermore, the observations have been made each quarter, four times per year. 
That pattern is strongly present in the data. Modeling such data requires special 
care. Brockwell and Davis (1987) advised estimating a model for those data as the 
sum of three separate components: 

Xt = mt + st + Yt

Xt the measured observations 
mt a slowly changing function, often called the trend component, 

which can be estimated as a polynomial in time; this class of 
functions includes the mean value as a constant

st  a seasonal component; see also Shumway and Stoffer (2000) 
Yt  a stationary stochastic process. 
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Many data from economics and business show daily, weekly, monthly, or yearly 
patterns. Therefore, the data are not stationary because the properties vary exactly 
with the period of the patterns. It is mostly advisable to use a seasonal model for 
those purely periodic patterns and a time series model for the residuals remaining 
after removing the seasonal component.  

This book treats the automatic analysis of stationary stochastic signals. It is 
tacitly assumed that transformations and preprocessing of the data have been 
applied according to the rules that are specific for certain special areas of 
application. However, it should be realised that all preprocessing operations can 
deteriorate the interpretation of the results.  
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Figure 1.8. Sunspot numbers that indicate the activity in the outer spheres of the sun  

The sunspot data in Figure 1.8 show a strong quasi-periodicity with a period of 
about 11 years. A narrow peak in the power spectral density rather than one exact 
frequency characterizes those data. The seasonal treatment that is useful in econo-
mic data would fail here. The period is not exact, the measurements are not 
synchronized, and they cannot be modeled accurately as a spectral peak with a 
finite bandwidth. Therefore, modeling as a stationary stochastic process is the 
preferred signal processing in this case. At first sight, it is clear that the probability 
density of the sunspot data is not normal or Gaussian. That would, among others, 
require symmetry around a mean value. For normally distributed data, the best 
prediction is completely determined by the autocorrelation function, which is a 
second-order moment. For other distributions, higher order moments contain 
additional information. Using only the autocorrelation gives already reasonable 
predictions in the sunspot series, but better predictions should be possible by using 
a better approximation of the conditional density of the data.  

Signal processing is the intermediate in relating measured data and theoretical 
concepts. Theoretical physics gives a theoretical background and explanation for 
observed phenomena. For stochastic observations, it is always important that signal 
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Figure 1.9. Signal processing as an intermediate between real-life data acquisition and 
theoretical explanations of the world 

processing is objective without (too much) influence of the experimenter. Repre-
senting measured stochastic data by power spectral densities or autocorrelation 
functions is a good way to reduce the amount of data. When the data are a 
realisation of a normally distributed stationary stochastic process, the accuracy of 
the time series solution presented in this book will be close to the accuracy 
achievable for the spectrum and autocorrelation function of that type of data. If the 
assumptions about the normal distribution and the strict stationarity are not 
fulfilled, the time series solution is still a good starting point for further investiga-
tion.  

It is considered a great advantage for different people to estimate the same 
spectral density and the same autocorrelation function from the same stochastic 
observations. That would mean that they draw the same theoretical conclusions 
from the same measured data. This book is an attempt to present the existing signal 
processing methods for stationary stochastic data from the point of view that a 
unique estimated spectrum or autocorrelation is the best contribution that signal 
processing can give to scientific developments in other fields. Of course, the accu-
racy of the spectral density and of the autocorrelation function must also be known, 
as well as which details are statistically significant and which are not. 

Measured data 
Theory: 

Mathematical
relations 

Signal 
processing



2

Basic Concepts 

2.1 Random Variables 

The assumption is made that the reader has a basic notion about random or 
stochastic variables. A precise axiomatic definition is outside the scope of this 
book. Priestley (1981) gives an excellent introduction to statistical theory for those 
users of random theory who want to understand the principles without a deep 
interest in all detailed mathematical aspects. 

Given a random variable X, the distribution function of X, F(x), is defined by 

( )F x p x X    (2.1) 

which is the probability that the random variable X is less than or equal to the 
number x. From this, it follows that 

( ) ( )p a X b p X b p X a F b F a              (2.2) 

The probability density function f (x) is defined as the derivative of F(x), if that 
exists. Hence, for a continuous variable X

( ) ( )
x

F x f y dy              (2.3) 

and also 

( )f x dx p x X x dx    (2.4) 

By taking dx = 0, it follows that p [ X = x ] = 0, if X is a continuous random 
variable. The probability that X takes any precise given numerical value is zero. 
This can easily be understood because each small interval still contains infinitely 
many real numbers. Some properties of the probability density function are 
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( ) 0,

( ) 1

f x x

f x dx    (2.5) 

The expectation operator defines the expected value of a function g(X ) as 

( ) ( ) ( )E g X g x f x dx    (2.6) 

This defines the mean X as  

( )x x f x dx    (2.7) 

the variance X
2 as 

2 22 var ( )X X XX E X x f x dx    (2.8) 

and the rth central moment of X as

( )
r r

X XE X x f x dx    (2.9) 

This gives the moments of a random variable. Also noncentral moments can be 
defined by leaving out X in (2.9). 

A bivariate probability density function of two random variables X and Y is 
defined by 

( , ) ,f x y dxdy p x X x dx y Y y dy  (2.10) 

The definition of a multivariate or joint probability density function is 
straightforward, and it will not be given explicitly here. The covariance between 
two random variables  X and Y is defined as 

cov ( , )

( , )

X Y

X Y

X Y E X Y

x y f x y dxdy  (2.11) 

The correlation coefficient is the normalized covariance, given by  

,

cov( , )
X Y

X Y

X Y (2.12) 
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The correlation coefficient has the important property 

1X ,Y
(2.13) 

A negative correlation coefficient has a tendency for the signs of X and Y to be 
opposite; more often, positive correlation gives a pair with the same sign. Figure 
2.1 gives clouds of realisations of correlated pairs ( X,Y ), for various values of the 
correlation coefficient. 
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Figure 2.1. Pairs of correlated variables X,Y, each with mean zero and variance one, for 
various values of the correlation coefficient 

Two random variables are independent if the bivariate density function can be 
written as the product of the two individual density functions, 

( , ) ( ) ( )X Yf x y f x f y (2.14) 

In this formula, the univariate probability density functions have an index to 
indicate that they are different functions. Whenever possible without confusion, 
indexes are left out. 

The covariance of two independent variables follows from (2.11) and (2.14) as 

cov( , )

( ) ( )

0

X Y

X X Y Y

X Y E X Y

x f x dx y f y dy

 (2.15) 
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Independence implies that the correlation coefficient equals zero. The converse 
result, however, is not necessarily true. Uncorrelated variables are not necessarily 
independent. This result and much more can be found in Priestley (1981) and in 
Mood et al. (1974).  

2.2  Normal Distribution 

In probability theory, a number of probability density functions have been introdu-
ced that can be used in practical applications.  

The binomial distribution is suitable for observations if only two possible 
outcomes of an experiment exist, with probability p and 1 – p respectively.  

The uniform distribution is the first choice for the quantisation noise that is 
caused by rounding an analog observation to a digital number. Its density function 
is given by  

1
( )

0

f x a x b
b a

x a or x b (2.16) 

The Poisson distribution will often be the first choice in modeling the time 
instants if independent events occur at a constant rate, like telephone calls or the 
emission of radioactive particles. The density of a Poisson variable X with para-
meter  is given by 

( ) 0,1,2,
!

0 otherwise

xe
f x x

x
 (2.17) 

This distribution is characterized by E [X ] =  and var [X ] = .
The Gaussian or normal distribution is the most important distribution in statis-

tical theory as well as in physics. The probability density function of a normally 
distributed variable X is completely specified by its mean  and its variance 2

2

2

1
( ) exp

22

x
f x  (2.18) 

The probability that a normal variable will be in the interval  – 1.96  < x <  + 
1.96   is 95%. The normal distribution is important because it is completely 
determined by its first- and second-order moments. Also a practical reason can be 
given why many measured variables have a distribution that at least resembles the 
normal. Physical phenomena can often be considered a consequence of many 
independent  causes, e.g.,  the weather,  temperature,  pressure, or flow. The central 
limit theorem  from statistics  states  roughly that any variable generated by a  large 



 Basic Concepts 15 

4 3 2 1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Gaussian or normal density function f(x),  = 0, 2 = 1.

x

f(
x)

Figure 2.2. The Gaussian or normal probability density function with zero mean and unit 
variance  

number of independent random variables of arbitrary probability density functions 
will tend to have a normal distribution.  

Apply this result to dynamic processes, which may be considered the convolu-
tion of an impulse response with an input signal. Suppose that the input is a 
random signal with an arbitrary probability density function. The output signal, the 
weighted convolution sum of random inputs, is closer to a normal distribution than 
the input was. If the input were already normally distributed, it remains normal, 
and if it were not normal, the output result would tend to normal or Gaussian.  

The bivariate normal density for two joint normal random variables X and Y is 
given by 

2

2 2

2 22

1
( , )

2 1

21
exp

2 1

X Y XY

X XY X Y Y

X X Y YXY

f x y

x x y y   (2.19) 

The marginal density function of X can be retrieved by integrating out Y

2

2

1
( ) ( , ) exp

22
X

X
XX

x
f x f x y dy  (2.20) 

This is already given in (2.18), without index. For uncorrelated normally distribu-
ted X and Y, it follows by substituting zero for XY in (2.19) that 
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2 2

2 2

1 1
( , ) exp exp

2 22 2

( ) ( )

X Y

X YX Y

X Y

x y
f x y

f x f y   (2.21) 

This proves that for jointly normally distributed random variables, uncorrelated 
implies independence.  

The distribution function of a vector of joint normal variables is completely 
specified by the means and variances of the elements and by the covariances 
between each two elements. Define the vectors X of random variables and x of 
numbers as 

1 2

T

mX X X X

1 2

T

mx x x x

with  

X E X

T

XX X XR E X X

The joint normal density is given by  

1
1 1/ 2/ 2

1 1
( , , ) exp

22

T

m X XX Xm

XX

f x x x R x
R

  (2.22) 

This reflects the property that normally distributed variables are completely 
specified by the first- and second-order moments that are the mean values, the 
variances, and the covariances. An important consequence is that all higher dimen-
sional moments can be derived from the first- and second-order moments.  

A useful and simple practical result for a fourth-order moment of four jointly 
normally distributed zero mean random variables A, B, C, and D is

E ABCD E AB E CD E AC E BD E AD E BC   (2.23) 

A fourth-order moment can be written as a sum of the products of second-order 
moments. Likewise, all even higher order moments can be written as sums of 
second-order moments. All odd moments of that zero mean normally distributed 
variables are zero; see Papoulis (1965). With (2.23), it is easily derived that 

2 2 2 2 2cov ( , )X YE X Y X Y

The normal distribution has important properties for use in practice. The popu-
lar least-squares estimates for parameters are maximum likelihood estimates with 
very favourable properties if the distribution of measurement errors is Gaussian.  

The chi-square, or 2 distribution, is derived from the normal distribution for 
the sum of K independent, normalized, squared, normally distributed variables, 
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each with mean zero and variance one. The main property of this 2 for increasing 
K is that for K , the 2 density function becomes approximately normal with 
mean K and variance 2K. This approximation is already reasonably accurate for K
greater than 10.  

The Gumbel distribution is derived from the normal distribution to describe the 
occurrence of extreme values like the probability of the highest water levels of seas 
and rivers. 

The true distribution function is often unknown if measurement noise or 
physical fluctuations cause the stochastic character of the observations. For that 
reason, stochastic measurements are often characterized by some simple charac-
teristics of the probability density function of the observations. The three most 
important are 

mean 
variance 
covariance matrix 

Those characteristics are all there is to know for normally distributed variables. 
Furthermore, they are also the most important simply obtainable characteristics for 
unknown distributions. 

2.3  Conditional Densities 

The conditional density fX|Y (x|y) is the probability density function of X, given that 
the variable Y takes the specific value y. With the general definition of the 
conditional density function, the joint probability density function of N arbitrarily 

distributed variables 1 2

T

mX X X X  can be written as (Mood et al., 1974) 

1 1

1

, , | , , 1 1

, , 1

( ) ( , , | , , )

( , , )
k N k

k

X X X X X k N k

X X k

f x f x x x x

f x x   (2.24) 

In particular, it follows that  

1 2

1 1 1 1

, , , 1 2

| , , 1 1 , , 1 1

( , , , )

( | , , ) ( , , )
k

k k k

X X X k

X X X k k X X k

f x x x

f x x x f x x    (2.25) 

With those results for the intermediate index k, the joint density fX (x) for arbitrary 
distributions can be written as a product of the probability density function of the 
first observation with conditional density functions 

1 1 1| , , 1 1 1
2

( ) ( | , , ) ( )
k k

N

X X X X k k X
k

f x f x x x f x       (2.26) 
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2.4  Functions of Random Variables 

It is sometimes possible to derive the probability density of a function of stochastic 
variables theoretically, like for the sum of variables (Mood et al., 1974). Some-
times also the distribution of a nonlinear function of a stochastic variable can be 
determined exactly, but computationally this solution is often not very attractive, 
albeit the most accurate. The expectation of the mean and of the variance of a non-
linear function of a stochastic variable can be approximated much more easily with 
a Taylor expansion. The Taylor approximations are accurate only if the variations 
around the mean are small in comparison to the mean itself. For a single stochastic 
variable, the expansion of a function g ( X ) becomes 

2
2

2
( ) ( )

1
( ) ( )

2
X X

X X X
X X

g g
g X g X X

X X
  (2.27) 

This can be used to find an asymptotic approximation for the mean,  

22

2

( )

( ) ( )
2

X

X
X

X

g
E g X g

X
(2.28) 

Sometimes, only the first term is used as an approximation, but the second term 
can significantly improve the accuracy. The variance can be approximated with 

2

2

2

( )

var ( ) ( ) ( )

X

X
X

g X E g X E g X

g

X
(2.29) 

Hence, the variance of the linear relation g( X ) = aX becomes 2 2
xa .

The Taylor expansion formula for two stochastic variables becomes 

( )( ) ( )( )

2 2
2 2

2 2

( )( ) ( )( )

2

,

( , ) ( , )

1 1

2 2

.

X Y X Y

X Y X Y

X Y

X Y

X Y
X Y X Y

X Y

X Y X Y

X Y

X Y

g X Y g

g g
X Y

X Y

g g
X Y

X Y

g
X Y

X Y
     (2.30) 

An asymptotic approximation for the expectation of the mean follows as  
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2 2 2
2 2

2 2

1 1
( , ) ( , ) cov( , )

2 2X Y X Y

g g g
E g X Y g X Y

X Y X Y
 (2.31) 

The variance can be approximated with the definition 

2
var ( , ) ( , ) ( , )g X Y E g X Y E g X Y .

Substitution of (2.31) in (2.30) gives 

2

( )( ) ( )( )

2 2

( )( ) ( )( )

( )( ) ( )( )

2 2
2 2

var ( , )

var var

2 cov ,

2cov

X Y X Y

X Y X Y

X Y X Y

x y
X Y X Y

X Y X Y

X Y X Y

X Y

g g
g X Y E X Y

X Y

g g
X Y

X Y

g g
X Y

X Y

g g

X Y
( , )

g g
X Y

X Y
 (2.32) 

The use of those formulas is illustrated with an example: g( X,Y ) = X / Y. The 
first and second derivatives are given by 

2

1g

X Y
g X

Y Y
2

2

2

2 4

2

2

0

2

1

g

X

g XY

Y Y

g

X Y Y

Substituting these derivatives in the approximate formulas for the expectation 
yields 

2
3 2

1
cov ,X X

Y
Y Y Y

X
E X Y

Y
 (2.33) 

and the variance becomes 

2
2 2

2 4 3

1
var 2 cov ,X X

X Y
Y Y Y

X
X Y

Y
(2.34) 
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2.5  Linear Regression 

A simple example of linear regression is the estimation of the slope of a straight 
line through a number of measured points. A mathematical description uses the 
couples of variables ( xi ,yi ). The regressor or independent variable xi is a deter-
ministic variable that has been adjusted to a specified value for which the stochas-
tic response variable yi is measured. The response is also denoted the dependent 
variable. The true relation for a straight line is given by 

0 1i i iy x  (2.35) 

where i is a stochastic measurement error. Suppose that N pairs of the dependent 
and the independent variable have been observed. The parameters of a straight line 
can be estimated by minimizing the sum of squares of the residuals RSS defined as 

2

0 1
1

ˆ ˆRSS
N

i i
i

y b b x (2.36) 

The regressor variable for the parameter 0b̂  is the constant one, the same value 

for every index i. Hats are often used to denote estimates of the unknown 
parameter value. It is obvious that the sequence of the indexes of the variables 
(xi ,yi) has no influence on the minimum of the sum of squares. Also the estimated 
parameters are independent of the sequence of the variables in linear regression. 
The least-squares solution in (2.36) is a computationally and attractive method for 

estimating the parameters 0b̂  and 1b̂  if the i are statistically independent. It is also 

the best possible solution if the measurement errors i are normally distributed.  
Priestley (1981) gives a survey of estimation methods. In general, the most 

powerful method is the maximum likelihood method. That method uses the joint 
probability density function of the measurement errors i to determine the most 
plausible values of the parameters, given the observations and the model (2.35). It 
can be proved that the maximum likelihood solution is obtained precisely with 
least squares if the errors i are normally distributed. This is another reason to 
assume a normal distribution for errors. The simple least-squares estimator has 
some desirable properties then. 

It is important that the observed input independent variables are considered to 
be known exactly, without observational errors and that all deviations from the 
relation between x and y are considered independent measurement errors in y.
Linear regression analysis treats the theory of observation errors that are linear in 
the parameters, as in the example of the straight line. Extending that example to a 
polynomial, 

2
0 1 2

p
i i i p i iy x x x (2.37) 
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conserves the property that the error is linear in the parameters. Now, the 
polynomial regressors are nonlinear functions of the independent variable xi, but 
the error is still a linear function of the parameters. The solution for the parameters 
is found by minimising 

2
2

0 1 2
1

ˆ ˆ ˆ ˆRSS
N

p
i i i p i

i

y b b x b x b x (2.38) 

Minimization of the RSS is the optimal estimation method if the errors are 
normally distributed. However, often the distribution function of the errors is not 
known. Then, it is not possible to derive the optimal estimation method for the 
parameters in (2.35) or (2.37). Nevertheless, an important property of the least-
squares solution which minimises (2.38) remains that minimising the RSS gives a 
fairly good solution for the parameters in most practical cases, e.g., if the errors are 
not normally distributed but still independent. 

With a slight change of notation, general regression equations are formulated in 
matrix notation. In this part, the index of the observations is given between 
brackets. The following vectors and matrices are defined: 

N  K matrix X of deterministic regressors or independent variables 
x1(i),…, xK (i), with i =1,…, N.
N  1 vector y which contains the observed dependent variables y(i),
i=1,…, N.
N  1 error vector   which are i.i.d. (independent identically distributed) 
random variables, zero mean, and variance 2.
K  1 vector  of the true regression coefficients with the K  1 
vector b̂  as an estimate.  

With those definitions, the individual observed variables can be written as 

1 1 2 2( ) ( ) ( ) ( ) ( )K Ky i x i x i x i i (2.39) 

In matrix notation, this can be written concisely as 

y X

Estimates b̂  are found by minimizing the sum of squared errors 

RSS ˆ ˆT
y Xb y Xb (2.40) 

where XT is the transpose of X. The solution of the parameters can be written 
explicitly as 

1ˆ ( )T Tb X X X y (2.41) 
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if (XTX)–1 exists. It has to be stressed that (2.41) is an explicit notation for the 
solution, not an indication of how the parameters are calculated. No numerically 
efficient computation method involves inversion of the (XTX) matrix. Efficient 
solutions of linear equations can be found in many texts (Marple, 1987). 

The variance of the estimated parameters is for jointly normally distributed 
independent errors   with variance 2 given by the K  K covariance matrix: 

2 1ˆ ˆ ˆ ˆcov( , ) ( )( ) ( )T Tb b E b b X X (2.42) 

The diagonal elements are the variances of the estimated parameters and the off-
diagonal elements represent the covariance between two parameters. The regress-
ion equations have been derived under the assumption that the residuals are 
uncorrelated.  

Otherwise, with correlated errors , the best linear unbiased estimate is 
computed with weighted least squares (WLS). If the errors are correlated with 
the N  N  covariance matrix V, with the elements 

ij i jv E , the WLS 

equations become 

RSS 1
T

y Xb V y Xbˆ ˆ

with solution 

1 1 1ˆ ( )T Tb X V X X V y  (2.43) 

The residual covariance matrix now influences the accuracy of the parameters in 

1 1ˆ ˆcov( , ) ( )Tb b X V X  (2.44) 

The variance of the parameters is made smaller by using the weighting matrix with 
the covariance of the . Equations (2.41) and (2.42) with independent identically 
distributed residuals can be considered as weighted with the unit diagonal 
covariance matrix for the , multiplied by the variance of the residuals. This 
variance is incorporated in the covariance matrix V in the weighted least-squares 
expression. 

In nonlinear regression, the parameters belong to nonlinear functions of the 
regressors  

1 2 1 2( ) ( ), ( ), , ( ), , , ( )K Ly i g x i x i x i i  (2.45) 

For this type of equations, no simple explicit analytical expression for the solution 
is possible. The least-squares solution is found by minimising 

2

1 2 1 2
1

ˆ ˆ ˆRSS ( ) ( ), ( ), , ( ), , ,
N

K L
i

y i g x i x i x i b b b (2.46) 
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Numerical optimisation algorithms can be used to find a solution, but that takes 
generally much longer computation time, convergence is not guaranteed, and 
starting values are necessary.  

2.6  General Estimation Theory 

Priestley (1981) gives a good introduction to the theory of estimation. Some main 
definitions and concepts will be given here briefly. 

Observed random data may contain information that can be used to estimate 
unknown quantities, such as the mean, the variance, and the correlation between 
two variables. We will call the quantity that we want to know . For convenience 
in notation, is only a single unknown parameter, but the estimation of more 
parameters follows the same principle. Suppose that N observations are given. 
They are just a series of observed numbers, as in Figure 1.1. Call the numbers x1,
x2, x3, , xN-1, xN. They are considered a realisation of N stochastic variables X1, X2,
X3, , XN-1, XN. The mathematical form of the joint probability distribution of the 
variables and the parameter is supposed to be known. In practice, often the normal 
distribution is assumed or even taken without notice. The joint probability 
distribution is written as  

1 2 1( , , , , , )N Nf x x x x  (2.47) 

where is unknown and where the xi are the given observations. The question 
what the measured data can tell about , is known as statistical inference. 

Statistical inference can be seen as the inverse of probability theory. There, the 
parameters, say the mean and the variance are assumed to be known. Those values 
are used to determine which values xi can be found as probable realisations for the 
stochastic variables Xi. In inference, we are given the values of X1, X2, X3, , XN-1,
XN which actually occurred, and we use the function (2.47) to tell us something 
about the possible value of . There is some duality between statistical inference 
and probability theory. The data are considered random variables; the parameter is 
not random but unknown. The data can give us some idea about the values the 
parameter could have. 

In estimation, no a priori information about the value of the parameter is 
given. The measured data are used to find either the most plausible value for the 
parameter as a point estimate or a plausible range of values, which is called interval 
estimation.  

Hypothesis testing is a related problem. A hypothesis specifies a value for the 
parameter . Then, (2.47) is used to find out whether the given realised data agree 
with the specified value of .

An estimator is a prescription for using the data to find a value for the para-
meter. An estimator for the mean is defined as  
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1

1 N

i
i

X X
N

             (2.48) 

The estimator is defined with random variables and is itself a random variable. 
Substitution of the realisation gives the estimate

1

1 N

i
i

x x
N

(2.49) 

which is simply a number. This number x  may be close to the real true value, say 
, or further away. The estimator X  as a random variable has a distribution 

function that describes the probability that certain values of x  will be the result in 
a realisation. The distribution function of X  is called the sampling distribution. 

More general with less mathematical precision, an estimator for a parameter ˆ

is defined as 

1 2
ˆ ˆ , , , NX X X (2.50) 

A particular estimate is found by substituting the realisation of the data in (2.50). It 
is also usual to call the estimate ˆ , as long as confusion is avoided. Suppose that 

the true value of ˆ  is . It would be nice if the estimator would converge to the 
true value for increasing N, if more and more observations are available. 

An estimator ˆ  is called unbiased if the average value of ˆ  over all possible 
realisations is equal to the true value . The bias is defined as 

ˆ ˆbias( ) ( )E (2.51) 

The bias will sometimes depend on N. If the bias disappears only for N , the 
estimator ˆ  is called asymptotically unbiased. In most cases, being unbiased is a 
desirable property of an estimator. If two different unbiased estimators exist, 
preference is given to the unbiased estimator with the smallest estimation variance. 

If biased estimators are compared, it is necessary to combine the bias and the 
variance of the estimators in a single accuracy measure. That is the mean square 
error MSE( ˆ ), defined as 

2

2

ˆ ˆMSE( )

ˆ ˆbias ( ) var( ) .

E

(2.52) 

Another desirable property of an estimator is that it gets better if the number of 
data grows. This property is called consistency, which can be defined in many 
subtle mathematical ways. Here, an estimator is called consistent if 
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2ˆ 0 , asE N     (2.53) 

Together with (2.51), it follows that both the bias and the variance of consistent 
estimators vanish for N going to infinity. 

It was very easy to guess a good estimator for the mean in (2.48). Another 
unbiased estimator for the mean value would have been to average the largest and 
the smallest of all observations. However, the variance of (2.48) will be smaller 
than the variance of this two-point estimator for almost all distributions. Therefore, 
(2.48) is a better estimator. The question is how a good estimator for ˆ  can be 
found in general. 

For many quantities , a simple estimator can be formulated. That is the 
maximum likelihood estimator, which is the most general and powerful method of 
estimation. It requires knowledge of the joint probability distribution function of 
the data as a function of , as given in (2.47). For unknown distributions, it is quite 
common to use or to assume the normal distribution and still to call the result a 
maximum likelihood estimator, although that is not mathematically sound. For a 
given value of , 1 2 1( , , , , , )N Nf x x x x  describes the probability that a certain 

realisation of the data will appear for that specific value of . If the resulting value 
of the joint distribution is higher for a different realisation, that realisation is more 
plausible for the given value of . However, in estimation problems we observe the 
data and want to say something about . That means that 1 2 1( , , , , , )N Nf x x x x  is 

considered a function of . Then, it is called the likelihood function of . If  

1 2 1 1 1 2 1 2( , , , , , ) ( , , , , , )N N N Nf x x x x f x x x x , (2.54) 

we may say that 1 is a more plausible value than 2. The method of maximum 
likelihood is based on the principle that the best estimator for  is the value that 
maximises the plausibility 1 2 1( , , , , , )N Nf x x x x  of . Generally, the natural 

logarithm of the likelihood function is used that is defined as 

1 2 1 1 2 1( , , , , , ) ln ( , , , , , )N N N NL L x x x x f x x x x   (2.55) 

and is called the log-likelihood function. 
With the definition of the log-likelihood, a very important result can be 

formulated for unbiased estimators. If ˆ  is an unbiased estimator of , the Cramér-
Rao inequality says that 

2

1 2 1

1ˆvar( )
( , , , , , ) /N NE L X X X X

(2.56) 

This can be interpreted as follows. Any unbiased estimator that tries to estimate 
has a variance. The minimum bound for that variance is given by the Cramér-Rao 
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lower bound, which is the right-hand side of (2.56). An estimator whose variance is 
equal to the right-hand side is called efficient. 

In many texts, use is made of a general property of the log-likelihood function  

2 2
1 2 1 1 2 1

2

( , , , , , ) ( , , , , , )N N N NL X X X X L X X X X
E E   (2.57) 

This is equal to the inverse of the minimum of the variance in (2.56). The smaller 
the variance, the better the estimator. If the quantity in (2.57) is high, it may be 
possible to obtain estimates with a small variance. The quantity is often called the 
Fisher information on , given by the observations. 

Maximum likelihood estimation looks for the parameter that maximises the 
likelihood of (2.55). It has been proved that the maximum likelihood (ML) 
estimators have the following properties: 

ML is asymptotically unbiased 
ML is asymptotically efficient 

Furthermore, it has been shown by Zacks (1971) that under rather mild mathema-
tical conditions the invariance property of maximum likelihood can be applied 

the maximum likelihood estimator of a function of a parameter 
is equal to 

the function of the maximum likelihood estimator of the parameter 

This invariance property will play a key role in the estimation of spectra and 
autocorrelation functions. By expressing them as functions of a small number of 
parameters, efficient estimates for the functions can be determined as functions of 
efficient parameter estimates. 

2.7  Exercises 

2.1 A random variable X has a uniform distribution between the boundaries a
and b. Find an expression for the expectation and for the variance of X.

2.2 A random variable X has a normal distribution with mean   and variance   
2. Find an expression for the expectation of  X 2, X 3 and X 4.

2.3 Give an example of two stochastic variables that are completely dependent 
and have zero correlation at the same time. 

2.4 A random variable X  has a normal distribution with mean zero and variance 
2. Find an approximate expression for the expectation and for the variance 

of ln (  X 2 ). Use a Taylor expansion of ln (  X 2 ) around ln ( 2 ).
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2.5 The acceleration of gravity is estimated in a pendulum experiment. The 
pendulum formula is 2T L / g . The length of the pendulum is 

measured repeatedly with an average result of 1.274 m with a standard 
deviation of 3 mm. The measured oscillation time averaged 2.247 s with a 
standard deviation of 0.008 s. Calculate the expectation and the variance of 
g from those experimental results. 

2.6 Is it possible that the standard deviation of the sum of two stochastic 
variables is the sum of their individual standard deviations. What is the 
condition? 

2.7 Is it possible that the variance of the sum of two stochastic variables is the 
sum of their individual variances. What is the condition? 

2.8 N  independent random variables X1, X2, …, XN   all have a normal 
distribution with the same mean zero and variance 2. Derive the maximum 
likelihood estimator for the mean of the variables. Derive the maximum 
likelihood estimator for the variance of the variables. 

2.9 How many independent observations of a random variable with a uniform 
distribution between one and two are required to determine the mean of 
those observations with a standard deviation that is less than 1% of the true 
mean. 

2.10 A careless physicist repeats a measurement of a random variable 15 times. 
Unfortunately, he loses five results. He determines the average and the 
standard deviation of the remaining 10 measurements and throws them 
away. Afterward, he finds the other five results. Can he still determine the 
average and the standard deviation of all 15 measurements? Did he lose 
some accuracy for the mean and the standard deviation with his 
carelessness? 

2.11 A star has an unknown temperature X. Experiments in the past have yielded 
  as average for the temperature, with an estimation variance .  New 

experiments with a satellite give N unbiased observations 

1i iY X W , i , ,N

The measurement errors Wi are independent stochastic variables with  
variance 2. Determine the optimal unbiased estimate for X and the 
variance of that unbiased estimator. 
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Periodogram and Lagged Product Autocorrelation 

3.1 Stochastic Process 

A distinction is made between the stochastic or random variables in Chapter 2 and 
stochastic processes. A process or signal can be viewed as a carrier of information. 
A random or stochastic process X(n) is a chronologically ordered family of random 
variables indexed by n, with n = 0,  1,  2, … . Signals may be ordered in time or 
in place. Priestley (1981) gives a good introduction for users of random processes. 
Suppose that X(n) arises from an experiment which may be repeated under 
identical conditions. The first time, the experiment produces a record of the 
observed variable X(n) as a function of n. Due to the random character of X(n), the 
next  time the experiment  will  produce a different  record of observed  values.  An 
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Figure 3.1.  Six possible realisations of a stochastic process, which is an ensemble of all 
possible realisations with different  that could have been observed. In practice, the argu-
ment  is suppressed, whenever possible, because a single realisation is all that is available. 
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observed record of a random or stochastic process is merely one of a whole 
collection of records that could have been observed. The collection of all possible 
records is called the ensemble and an individual record is a realisation of the 
process. One experiment gives a single realisation that can be indexed with .
Various realisations are X(n, 1), X(n, 2), …, but the fact that generally only a 
single realisation is available gives the possibility of dropping the argument .
Figure 3.1 shows six records of an ensemble with   = 0, 1, 2, 3, 4, 5.

According to the definition, the stochastic process for every n could be charac-
terized by a different type of stochastic variable with a different probability density 
function fn(x). The mean at index n is given by 

( ) ( ) ( )nn E X n x f x dx (3.1)

and the variance is given by 

2 22 ( ) ( ) ( ) ( ) ( )nn E X n n x n f x dx    (3.2) 

In principle, the mean and the variance can vary with n. Here, only random 
processes are considered where the marginal probability density function fn(x) is 
the same for all values of n. They are called stationary. 

The joint probability distribution at two arbitrary time indexes n1 and n2 cannot 
be derived from the marginal distributions at n1 and n2; see the bivariate normal 
(2.19) where the two-dimensional distribution requires a correlation coefficient that 
is not present in the marginal densities. The complete information in a stochastic 
process of N observations is contained together in the N-variate joint probability 
density at all times. 

Random signals and stochastic processes are words that can and will be used 
for the same concepts. Sometimes signals indicate the observations, and the 
process is the ensemble of all possible realisations, but this difference is not 
maintained strictly. Only stationary stochastic processes will be treated. A loose 
definition of stationarity is that the joint statistical properties do not change over 
time; a precise definition requires care (Priestley, 1981), and it is very difficult to 
verify in practice whether a given stochastic process obeys all requirements for 
stationarity. Therefore, a limited concept of stationarity is introduced: a random 
process is stationary up to order two or wide sense stationary if 

[ ( )] ( ) ,nE X n x f x dx n

2 2 2( ) ( ) ( ) ( ) ,nE X n n x n f x d n

[ ( ) ( )] function only of ( ) , ,E X n X m n m n m
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In words, a process is said to be stationary up to order two or wide sense stationary 
if 

the mean is constant over all time indexes n
the variance is constant over all time indexes n
the covariance between two arbitrary time indexes n and m depends only 
on the difference n – m and not on the values of  n  and  m  themselves. 

All signals in this book are defined only for discrete equidistant values of the 
time index, unless specified otherwise. A new notation xn is introduced for this 
class of processes that are stationary up to order two. Jointly normally distributed 
variables, however, are completely stationary if they are stationary up to order two. 
Unless stated otherwise, the mean value of all variables is taken to be zero. In 
practice, this is reached by subtracting the average of signals before further 
processing.  

If the properties of a process do not depend on time, it implies that the duration 
of a stationary stochastic process cannot be limited. Each possible realisation in 
Figure 3.1 has to be infinitely long. Otherwise, the first observations would have a 
statistical relation to their neighbours different from the observations in the middle. 
If a measured time series is considered as a stationary stochastic process, it means 
that the observations are supposed to be a finite part of a single infinitely long 
realisation of a stationary stochastic process. 

3.2  Autocorrelation Function 

The covariance between two observations xn and xn+k of a stationary stochastic 
process is defined in (2.11) as 

( ) cov( , ) ( )( )n n k n n kr k x x E x x (3.3)

Only covariances in stationary processes are considered. The quantity r (k) is 
defined for all integral values of k, and together it is called the autocovariance 
function of xn. It measures the covariance between pairs at a distance or lag k, for 
all different values of k. This makes it a function of lag k. A long autocovariance 
function indicates that the data vary slowly. A short autocovariance function 
indicates that the data at short distances are not related or correlated.  

The autocovariance function represents all there is to know about a normally 
distributed stochastic process because together with the mean, it completely 
specifies the joint probability distribution function of the data. Other properties 
may be interesting, but they are limited to the single realisation of the stochastic 
signal or process at hand. If the process is approximately normally distributed, the 
autocovariance function will describe most of the information that can be gathered 
about the process. Only if the distribution is far from normal, might it become 
interesting to study higher order moments or other characteristics of the process. 
That is outside the scope of this book. 
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Figure 3.2. Autocorrelation function of example process. The dots represent the auto-
correlation function, and the connecting lines are drawn only to create a nicer picture. The 
autocorrelation is symmetrical around zero, but generally only the part with positive lags is 
shown.  

From (3.3), it follows that 

2 2(0) ( )n xr E x (3.4)

Like the covariance between two variables, the autocovariance function r(k) also 
can be normalized to give the autocorrelation function (k)

2

( ) ( )
( )

(0) x

r k r k
k

r
(3.5)

The value for the autocorrelation at lag 0 is 1. It follows from (2.13) that | (k) |
1, and it can be seen in (3.3) that (k)= (– k). This property also follows from 
the definition of stationarity where the correlation should be only a function of the 
time lag between two observations; the lags – k and k are equal in that respect. 
Thus, the autocorrelation function is symmetrical about the origin where it attains 
its maximum value of one.  

Figure 3.2 gives an example of an autocorrelation function. Usually, only the 
part with positive lags is represented in plots, because the symmetrical negative 
part gives no additional information. This example autocorrelation has a finite 
length: it is zero for all lags greater than 13. Most physical processes have an 
autocorrelation function that damps out for greater lags. This means that the 
relationship at a short distance in time is greater than the relation over longer 
distances. A damping power series is a common autocorrelation function that 
decreases gradually and has an infinite length theoretically. If the autocorrelation 
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function equals precisely one at lag K, it will also be one at all lags nK that are 
multiples of K and the signal has to be periodic, with period K.

The p  p dimensional autocovariance matrix Rp is defined as 

1

1 1

1

n

n

p n n n p

n p

x

x

R E x x x

x

    (3.6) 

which can be expressed in the individual autocovariances: 

(0) (1) ( 1)

(1) (0)

(1)

( 1) (1) (0)

p

r r r p

r r
R

r

r p r r

    (3.7) 

The symmetry property of the autocovariances and of stationarity has been used. 
This matrix is positive-semidefinite (Priestley, 1981), which is a prerequisite for a 
valid autocovariance matrix. This result seems like an innocent property. However, 
most symmetrical functions do not fulfill this requirement. It is very demanding for 
a function to be a possible autocovariance function. 

3.3  Spectral Density Function 

The Fourier transform of the autocovariance function is the power spectral density 
function h( ), also called the spectrum. The Wiener-Khintchine theorem (Wiener, 
1930; Khintchine, 1934) defines conditions for valid autocovariances to have a 
transform that is nonnegative everywhere; see also Priestley (1981).  

1
( ) ( ) ,

2

( ) ( ) , 0, 1, 2,

j k

k

j k

h r k e

r k h e d k    (3.8) 

The name power spectral density function is made clear by looking at the integral 
for the value k = 0: 

2( ) (0) xh d r .     (3.9) 
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The variance is the total power in the signal. The power spectral density gives the 
distribution of the total power over the frequency range. Moreover, h( ) d   is the 
infinitesimal power in the frequency band from   until  + d . The discrete time 
Fourier transform in (3.8) is an infinite summation. Therefore, finite fast Fourier 
transform (FFT) algorithms cannot exactly represent those equalities; they 
transform N input numbers to N other numbers. Generally, the finite FFT can only 
compute approximations for infinite summations. Some properties of the spectral 
density are 

( ) 0 ,h (3.10) 

and 
( ) ( )h h (3.11) 

The fact that h( ) is nonnegative everywhere is a consequence of the positive-
semidefinite requirement of the autocovariance function. The symmetry property 
simply follows with elementary Fourier theory, because h( ) is the Fourier trans-
form of the real symmetrical autocorrelation function r(k).
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Figure 3.3.  Power spectral density function of the process of Figure 3.2, represented in a 
linear and a logarithmic plot. The linear representation does not show the details with less 
power. This example has a large spectral variation and logarithmic representations are 
important for the details. The spectrum is symmetrical around zero frequency. Generally, 
only the part for positive frequencies is shown without loss of information. 

Figure 3.3 gives an example of a power spectral density function. It is shown in 
two representations, linear and logarithmic. If the spectral density is rather flat over 
the frequency range, say the highest and lowest value differ by less than a factor of 
100, it is not very important which representation is chosen; both show the 
important details. If the dynamic range in the spectrum is greater, logarithmic plots 
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show more details. Generally, logarithmic plots are preferable. In the example of 
Figure 3.3, linear plots are preferable if only the frequency range between 0.15 and 
0.25 is of interest. Details can be seen more easily in that range because it is 
elongated in the linear plot. For all other cases, the logarithmic plot gives more 
visible information, especially in the large part of the frequency range where the 
linear plot touches the bottom axis. There, no visible information is available about 
possible slopes in the spectrum. 

The frequency range from 0 - 0.5 Hz is the range between zero and half the 
sampling frequency, which standard is chosen as one. If the sampling distance is T,
the frequency range is from zero to 1/2T. If the frequency   is expressed in rad/s, 
the range is from 0 < <  /T. In evaluating the information in the autocorrelation 
function of Figure 3.2 and in the spectrum of Figure 3.3, it should be realised that 
they contain the same amount of information about the process because they are a 
Fourier transform pair. In Figure 3.2, a period of around five lags is visible. This 
agrees with the frequency of about 0.2 for which the spectrum has a maximum. 

The normalized autocorrelation function (k) and the normalized power spec-
tral density ( ) are found by dividing (3.8) by the variance of the signal 

1
( ) ( ) ,

2

( ) ( ) , 0, 1, 2,

j k

k

j k

k e

k e d k (3.12) 

The formulas describe relations between true theoretical autocorrelations and true
spectral densities. They certainly do not always describe the relations between 
arbitrary estimates. Estimated autocorrelations should be positive-semi-definite. 

Often, a normalized frequency f is used, with – 0.5 f  0.5. This frequency is 
equal to  / 2 T, where T is the sampling frequency, by default taken as one. The 
integral  

0.5 2

0.5
( ) (0) xh f d f r (3.13) 

remains the same with the substitution  

( ) 2 ( ) , 2h f h f (3.14) 

This explains the absence of the often appearing factor 2   in many computational 
programs, and it does not create confusion in visual representations if the spectrum 
is given for f  between – 0.5 and + 0.5, or between 0 and 0.5 for real data with the 
implicit convention that the mirrored image at negative frequencies gives no extra 
information and is left in the display. This type of transform, leaving the integral a 
constant, is also used in frequency scaling where T  1. If the sampling distance is 
T and the spectrum h*( ) has been computed without this information, using the 
default value 1 for T, the spectrum with the proper frequency scale is then given by 
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( ) *( ), /h T h T T  (3.15) 

Another valid definition for a spectrum can be given that is equivalent to the 
previous definition with mild mathematical restrictions: 

2

1

1
( ) lim ,

2

N
j n

n
N

n

h E x e
N

(3.16) 

The sequence of taking the Fourier transform, the square of the absolute value, the 
expectation, and the limit is essential in this definition. Only in this specific way is 
strict equivalence with the definition of the spectral density in (3.8) possible. A 
necessary condition for this equivalence is 

1
lim ( ) 0

2

N

N
k N

k r k
N

      (3.17) 

With this disappearing limit it can be derived that 
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1 1

1

( 1)

1
( ) lim

2

1
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2

1
( )

2
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j n
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j n j m

n m n
N

n m

N
j k

N
k N

j k

k

h E x e
N

E x x e x e
N

N k r k e
N

r k e (3.18) 

The first line proves that the spectral density h( ) is nonnegative-definite because 
the square cannot be less than zero. The last line of this derivation uses the limit for 
N in (3.17). That term represents a bias that disappears only asymptotically. 
Therefore, it is interesting to see the influence of the triangular bias on finite N in 
the third line of (3.18). Figure 3.4 gives the result for the example process of this 
section. Instead of transforming the true autocovariance function r (k) to determine 
the spectrum, the biased (1 – |k|/N ) r(k) has been transformed to show the 
influence of the bias on the expectation of the spectrum.  

The large variations in the spectral density of this example cause considerable 
bias for a finite number of observations. That would be much less if an example 
were chosen where the difference between highest and lowest spectral values is 
less than a factor of 100. Figure 3.4 shows once more the advantage of a 
logarithmic scale in spectral representations. The linear plot indicates that the 
triangular bias is negligible. That would also seem to be the case in the 
autocorrelation function of Figure 3.2, which is the Fourier transform of this 
spectral density. The bias would be less than the line thickness.  
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Figure 3.4.  The influence of triangular bias in the autocorrelation function on the power 
spectral density function of the example process of Figure 3.2, represented in linear and 
logarithmic plots. The triangular bias is demonstrated by transforming (1– k/N) r (k) for N =
103, 106, and 109. The linear representation of the power spectral density (PSD) does not 
show the bias that is very much present in the logarithmic plot of the spectrum. The bias 
would hardly be visible in the autocorrelation function of Figure 3.2. Small deviations in the 
autocorrelation can give large deviations in the spectrum. 

The disappearance of the visual effect of the triangular bias occurs in both the 
linear spectral representations and in autocovariance or autocorrelation functions. 
That follows from Parseval’s theorem (Priestley, 1981). This states roughly that the 
sums of squares are the same in both the time and the frequency domains. This can 
be applied to the difference signal between the true and the biased autocorrelation 
function and the difference between true and biased spectra. The fact that some 
differences are obvious in one type of plot and seem negligible in another 
representation is a strong reason to be careful with accuracy measures for 
autocorrelation and spectral estimates. It is obvious in Figure 3.4 that large 
differences in the logarithm of the spectrum can have an invisible influence on the 
linear spectrum. 

Asymptotic theory may be of limited use in finite-sample practice. It is clear 
from Figure 3.4 that the property of the triangular bias to disappear asymptotically 
in (3.17) and (3.18) has not given a negligible bias in this finite- sample example. 
The bias, however, would disappear almost completely in rather flat spectra, with 
variations less than a factor of 100 over the frequency range. This example is an 
incentive to avoid relying on asymptotic properties in practice. Only after it has 
been verified that the sample size is large enough, may asymptotic theory be 
applicable. Of course, most relations have to be without asymptotic bias as a 
necessary condition. It really would be wrong if properties remain biased for 
increasing sample sizes. However, asymptotic properties are sometimes not suffi-
cient in practice, if they are not applicable with any accuracy to finite sample sizes. 
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3.4  Estimation of Mean and Variance 

Estimators for the mean value and the variance of stochastic processes are straight-
forward, as for stochastic variables without a chronological order. The estimator 
for the mean is given already in (2.48). The estimators for mean and variance are 

1

1
ˆ

N

x n
n

X
N

(3.19) 

22

1

1
ˆ ˆ

1

N

x n x
n

X
N

(3.20) 

All equations following will deal with zero mean signals. If observations have an 
average value that differs from zero, the estimated mean is subtracted before 
further signal processing. and the newly obtained signal is called xn. It is not 
advisable to leave the mean and to study the behaviour of the power spectral 
density at zero frequency as an indication of the behaviour of the mean. If the mean 
is interesting, it should be studied separately and not as a periodic signal that 
happens to have the spectral peak at zero frequency. Afterward, the mean can be 
added again to the signal if that is desirable. More general, higher-order trends and 
other deviations from a stationary appearance can be removed before the signal 
may be treated as stationary stochastic. In econometric data, it is often necessary to 
apply some seasonal adjustment and trend correction before the measured data can 
reasonably be considered a realisation of a stationary stochastic process. However, 
the differencing operation that is common practice in the treatment of economic 
data cannot be reversed afterward. 

The best estimator for the mean value of different estimates of the same 
stochastic variable is not always the simple average defined in (3.19). Suppose that 
every estimator of the stochastic variable Yi has as expectation the same value 
with some unknown errors i, which are possibly correlated and may have different 
variances. It is much better to formulate this problem as the estimation of an 
unknown constant with the regression equation (2.35) where the linear term is 
omitted, as  

.i iY  (3.21) 

The general solution for this estimation problem is obtained with (2.43) if the 
measurement errors i are correlated and/or have different variances. The 
covariance matrix of the errors i is used as a weighting matrix. Taking just the 
average of the measured yi as in (3.19) is a good choice only if the errors i are 
known to be uncorrelated and all errors have the same variance. In other 
circumstances, the weighted least-squares solution of (2.43) might be a better 
choice. 

It is an instructive exercise to derive the variance of the estimator of the mean 
of a correlated stochastic signal. It is given here, for its own sake as well as an 
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example of how the variance of autocorrelation and periodogram estimators can be 
derived with simple principles and a lot of index manipulations. As in (2.50), the 
properties of an estimator are derived from the properties of stochastic variables 
and not from the given observations in the realisation that provides the estimate as 
a number. The expectation of the estimated mean is given by 

1 1

1

1 1
ˆ

1

N N

x n n
n n

N

n

E E X E X
N N

N
 (3.22) 

The derivation of (3.22) shows that the estimator for the mean (3.19) is unbiased. 
With the level of mathematical rigor used here, summations, expectations, limits, 
and integrals may be interchanged in sequence “as long as all intermediate 
expressions remain properly defined.” The definition of (3.16) is an example where 
the sequence of operations may not be changed because the Fourier transform of a 
stationary stochastic signal does not exist. That is because the infinite sum of 
absolute values of a stochastic signal is not finite for N increasing to infinity. The 
limit of the sum itself does not exist. It exists only after the expectation has been 
taken. 

The derivation of the variance of the estimator of the mean requires exact 
knowledge of the true autocovariance function r(k) of the signal. The properties of 
an estimator for the first-order moment of a signal require knowledge of the 
second-order moments. The variance of the mean is derived from the definition of 
the variance: 

2ˆ ˆvar x xE (3.23) 

where (3.22) has been used for the expectation of the estimator. Substitution of 
(3.19) gives 
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E X
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E X X
N

(3.24) 

This  expression  can be simplified by  writing  the  products as  autocovariances 
r ( j – n) and noting how many times the constant values j – n = 0, 1,… are found. 
Limits for j – n are N – 1 and – (N – 1) which appear only once. The zero diffe-
rence between the indexes appears precisely N times. Hence, it follows with some 
manipulation that 
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This formula is often given in an asymptotic approximation, as a limit for N .
The triangle in the summations is left out then. As in (3.17), it is assumed that 
either k/N or r(k) is very small. Therefore, their product is always small. For large 
lags, the autocovariance r(k) is negligible and the triangle has almost no influence 
for small lags. The limiting expression for the variance of the estimated mean value 
becomes 

1
ˆvar ( )

2
(0)

x
k

r k
N

h
N

(3.26) 

The last step follows from the definition of (3.8). The variance of the estimated 
mean is the sum of all true autocovariances, divided by the number of 
observations. Broersen (1998b) showed that it is generally not allowed or very 
inaccurate to use estimated lagged product autocovariances to approximate 
summations like that in (3.26).  

The bias of the mean is zero for all N and the variance disappears for N .
Therefore, (3.19) is a consistent estimator for the mean and also for correlated 
observations. It will also be efficient for stationary error processes because then the 
variances of all i in (3.21) are the same. However, if the error process has a time-
dependent variance for i, or if some of the i are correlated, the weighted least-
squares estimator for the mean would have a smaller variance. The estimator (3.19) 
would still be consistent, but not efficient because another estimator with a smaller 
variance would exist. This extensive and critical treatment of the estimation of the 
average is a preparation for the study of the estimation of an autocorrelation 
function.  

3.5  Autocorrelation Estimation 

The estimation of the autocovariance function requires some care because a true 
autocovariance function should be positive-semidefinite (Priestley, 1981). That is a 
prerequisite for a positive Fourier transform at all frequencies. Because that Fourier 
transform should represent the power spectral density, it is necessary that it is not 
negative for any frequency. If a function is not positive-definite, it cannot be an 
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autocovariance function. Just taking estimates at different lags and combining them 
into a function can be a problem for the positive-semidefinite property.  

Nevertheless, the estimator that has been used mostly for computations is based 
on the definition (2.11) of the covariance between two stochastic variables, applied 
to each lag individually. By taking the average covariance, as in definition (3.3), 
between the two stochastic variables xn and xn+k for different values of index n, an 
estimate for r(k) is found. This estimator is often called the “sample autoco-
variance” or the “lagged product autocovariance.” Combining all individual 
estimates for different values of k gives the estimated autocovariance function. It is 
regrettable that the concept that the estimates together should be a positive-semi-
definite function does not lead to an estimator for the autocovariance function as a 
whole.  

In principle, a maximum likelihood estimator can be formulated if the joint 
probability density function can be given of the observations and the function that 
has to be estimated. For the autocovariance function of normally distributed 
variables, (2.22) gives the probability density function that contains just 
observations and their autocovariance matrix. Unfortunately, that autocorrelation 
matrix has the size N N with N 2 elements. This can be reduced to N elements by 
using the knowledge that the signal is stationary. But it cannot be expected that an 
estimator that transforms N observations into N estimated autocorrelation lags can 
be very accurate. Therefore, this maximum likelihood principle can be applied only 
if a more efficient way to express the autocorrelation function of a signal in only a 
couple of parameters can be found. For example, if it were known that the true 
autocorrelation function is a power series with r(k) = a|k|, estimation of the single 
parameter a would provide an estimation for the whole autocorrelation function for 
all lags k = 0 until .

An estimator for the autocovariance function follows from the definition of 
stochastic processes as the estimator over different realisations as in Figure 3.5. 
The estimator for a single autocovariance lag k at time m would become 

ensemble
1

1
ˆ ( ) ( )

K

m m kr k x x
K

(3.27) 

where xm( ) denotes xm in the realisation . Each product in (3.27) has the 
expectation r(k) and all contributions are independent. Therefore, the average in 
(3.27) is an efficient estimator for the autocovariance of lag k at time m from the 
ensemble. However, in practice, only one single, finite realisation of a stochastic 
process will be available for an estimator of the autocovariance function. 
In practice, only one realisation i of N observations x1 until xN is given, and the 
index i can be dropped without possible confusion. The autocovariance function 
has to be estimated from that single time series. Each product xn xn+k in that 
realisation has the true value r(k) as expectation. With N observations, only N–k
products are available for the shifted product at lag k, starting with x1 xk+1 and 
ending with xN–-k xN . Taking the unweighted mean value of the lagged products, as 
in (3.19), gives an unbiased estimator: 
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 (3.28) 

Taking the average of a number of individual estimates xn xn+k each of which has 
the desired expectation is not always a sound method from estimation theory. Such 
a naïve unbiased estimator is not necessarily efficient nor even useful. In this case, 
no statistical reasons have been given in the literature why this type of estimator is 
suitable. Therefore, care is required. No maximum likelihood expression leads to 
the estimator (3.28). To be more specific, the autocovariance estimator (3.28) has 
no general derivation from a sound statistical principle. The only justification is 
that any single contribution to the summations has the desired expectation r(k), like 
the mean in (3.21). For a relation Vj = ijR + j, an estimator for R is found with the 
least-squares solution of (2.41) or (2.43), depending on the properties of j. It is not 
found as the average of the individual estimates Vj /ij, although each contribution 
would have the correct expectation for the autocovariance, as in (3.28). It is clear 
that observations with a small value of ij would have too much influence on the 
average of Vj /ij, for nonzero j.

Suppose that r(1) has to be estimated from a normally distributed signal. The 
first two contributions in the sum of (3.28) are the products x1x2 and x2x3. Then, 

1 2 2 3

2
1 2 2 3 1 2 2 3

2

(1) (1) , (1) (2)

[ (1) (2)] (1) (1) (1)

[ (1) (2)] (1) (0) (2)

x x r x x r

E E x x r x x r E x x x x r

E r r r   (3.29) 
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where (2.23) has been used to evaluate the joint fourth-order expectation. The same 
type of calculation can be made to find the complete covariance matrix of errors i.
This proves that the successive errors in the product in (3.28) are not independent 
and the statistically based estimator should be a weighted least-squares estimate of 
the unknown constant r(k) based on the simple regression equation (3.21). The 
estimator (3.28) is unbiased but not necessarily efficient. Using the covariance 
matrix of errors i, it might be possible to find a better estimator with a smaller 
variance of the estimated autocorrelation than with (3.28). Unfortunately, no better 
practical estimator can be based on this reasoning. One should know the true 
autocovariance function of the process in advance to construct the weighting 
matrix for the errors. The reasoning shows only that the estimator (3.28) is not 
necessarily statistically efficient. 

The estimator (3.28) does not look for an autocovariance function, but only for 
estimates at individual lags. Despite the lack of statistical foundation, the lagged 
product estimator is considered more or less a definition of the autocovariance, 
which is a historical misconception. It will be shown later that for most signals and 
for most values of k, the efficiency of lagged product estimators is at best the same 
but generally less than what can be obtained with a completely different type of 
estimator. That type is defined in parametric time series analysis. Time series 
models represent parametric estimators for the autocorrelation function and for the 
power spectral density function, and those estimators can be derived from the 
maximum likelihood principle. 

The estimator (3.28) is not positive-semidefinite, when combined with a 
function of the lag k. This can be demonstrated by a simple example. Suppose that 
three observations are available 

x1 = 1, x2 = 0, x3 = -1

With (3.28), this would give the estimates unbiasedr̂ k = 2/3 , 0 and –1 for the lags k

= 0, 1, and 2, respectively. The absolute value at lag 2 is larger than that at lag 0, 
which is not allowed in a positive-semidefinite function. The Fourier transform 
would become negative for some frequencies and hence the estimated 
autocovariance is not related to a possible spectral estimate. For that reason, the 
unbiased estimator (3.28) is not often used. Its performance as a function is not 
always that of an autocovariance function. 

To guarantee the property of positive-definite that an autocovariance function 
must have, the improved estimator becomes 

1

1
ˆ

N k

n n k
n

r k x x
N

(3.30) 

Dividing the sum of the N – k products by N is the same as multiplying the 
unbiased estimator (3.28) by a triangular window 1 – k/N. The same bias also plays 
a role in (3.17) and in (3.18). The example of three observations 1, 0, and –1 would 
give the values r̂ k = 2/3, 0, and –1/3 for the first three lags k of this biased 

estimator. It can be proved that this estimator is positive-semidefinite (Priestley, 
1981).  
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Instead of the autocovariance, the autocorrelation function also is often used, 
which is the normalized autocovariance. It is estimated as 

2

1 1

ˆ( )1 1
ˆ

ˆ(0)

N k N

n n k n
n n

r k
k x x x

N N r
 (3.31) 

In the literature, this estimator is very popular. It is often called the lagged product 
estimator and also the nonparametric estimator for the autocovariance. Generally, 
(3.31) might be the only estimator that is considered for the autocorrelation. Its 
biased expectation is often approximated by (Priestley, 1981) 

ˆ 1 ( )
k

E k k
N

(3.32) 

However, this expression omits the second-order contributions that appear in the 
expectation of the quotient of two stochastic variables in (2.31). Using (2.33), a 
better expression for the biased expectation is given by 

3 2

ˆ ˆcov ( ), (0)( )
ˆ ˆ1 ( ) var (0)

(0) (0)

r k rk r k
E k k r

N r r
 (3.33) 

The two additional contributions are of order 1/N and they are generally not small 
in comparison with k/N. The literature often refers to (3.30) as “the asymptotically 
unbiased estimator for the autocovariance function,” without mentioning any of the 
problems or questions that arise in the derivation of this estimator in (3.29) or 
(3.33). The author considers those omissions historical misconceptions. 

The question is whether the lagged product estimates for the autocovariance 
provide a good estimator for the autocovariance structure of stochastic data. That 
will be studied by looking at the variance of this estimator. Bartlett has given some 
asymptotic approximations for the variance and the covariance of the lagged 
product estimator of the autocovariance function from normally stochastic data; see 
Priestley (1981). Here, only the asymptotic results are presented for normally 
distributed signals: 

4
2ˆvar ( ) ( ) ( ) ( )x

m

r k m m k m k
N

 (3.34) 

The term after the summation is a constant for each given value of k. Hence, the 
estimator (3.30) gets a smaller variance for increasing N. The approximation of the 
true autocovariance function can become very accurate if the length N of the 
observed data is much greater than the length of the true autocovariance function. 
However, for the same number of observations, it will never become as accurate as 
the time series estimator for the autocovariance that will be introduced later. 

The covariance of two estimates at different lags indicates how rough the 
estimated function will look. For a lag difference v, Priestley (1981) gives 
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Some results for specific values of the lags s and v are 
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 (3.36) 
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 (3.37) 

The reassuring property of the autocovariance is that its accuracy becomes better 
proportional with 1/N. However, for all lags s for which the true autocorrelation is 
zero, the approximation (3.37) for infinite s applies. The accuracy is the same for 
all those lags, no matter how high. At very high lags where the true autocovariance 
is completely damped out, estimates also keep the variance of (3.37). Especially for 
a larger lag s, parametric estimators for the autocovariance function will be much 
more accurate.  

Some other results for lagged product estimators are 

4
2ˆvar (1) ( ) ( 1) ( 1)x

m

r m m m
N

 (3.38) 

42
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m

r r m m
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(3.39) 

Using the Taylor approximation (2.30) for nonlinear functions of stochastic varia-
bles, an approximate variance expression can also be derived for the autocor-
relation function as the quotient of two random variables in (3.31): 

2 2( ) 1 2 ( )
1

ˆvar{ ( )} ( ) ( )

4 ( ) ( ) ( )m

m k

k m k m k
N

k m m k

(3.40) 

These accuracy measures will be used later to compare the quality of lagged 
product estimators with parametric time series estimators for autocorrelations. 

Figure 3.6 shows a true autocorrelation function and the estimates obtained 
from a realisation of 100 and one of 10,000 observations. It is clear that the 
accuracy increases for more observations. That is a consequence of the factor 1/N
in (3.34). The covariance (3.35) between neighbouring points is the reason that 
estimates quite far away from their expectation still show a rather smooth function. 
As an example, the estimates for N equal to 100 in Figure 3.6 are all much below 
their  expectation for lags between 25 and 36, and for lags between 38 and 48, they  
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Figure 3.6.  Estimation of the autocorrelation function with lagged products (LP), from 100 
and from 10,000 observations. The errors in the estimates are strongly covariant and give 
estimated autocorrelation functions a smooth appearance. 

are above. Although the individual estimates are rather poor, the complete function 
constructed with those estimates shows a deceptive smoothness. This often gives 
too much confidence in estimates, if no reliable statistical analysis is carried out. 
One important problem with such a statistical analysis of the accuracy is that 
substitution of the measured autocovariances of lagged product estimators in the 
asymptotic accuracy measures from (3.34) - (3.40) does not give a reliable answer. 
Even for large N, this substitution is not very useful. In other words, it is difficult to 
establish practical accuracy boundaries for estimated lagged product autocor-
relation functions. 

A rule of thumb for accuracy can be based on (3.37). The variance is equal for 
all estimates at lags where the true autocovariance is zero. Looking at Figure 3.6, 
this would indicate for N = 100 that the estimated autocorrelation wiggles between 
– 0.2 and + 0.2 at lags until half the sample size. Now suppose that the true 
autocorrelation is zero in the region with higher lags. As a consequence, all 
estimated values of the autocovariance between – 0.2 and + 0.2 are considered 
unreliable and probably only different from zero due the estimation variance. Only 
the estimates at the first lags below seven may be reliable according to this rule of 
thumb.  

For N = 10.000, all estimates for lags above five are smaller than the true 
expectation. This illustrates the deceptive smoothness of inaccurate lagged product 
estimates. The rule of thumb replaces a more thorough investigation that is 
hampered because the estimated lagged product autocovariances may not be 
substituted in the asymptotic accuracy equations like (3.36). At least, it shows that 
taking more observations improves the accuracy of the estimated biased 
autocorrelation function. Furthermore, the accuracy can be as good as desired by 
increasing N.
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Figure 3.7.  Estimate of a biased autocorrelation function with lagged products from 250 
observations. The true autocorrelation is also shown in Figure 3.2. 

Figure 3.7 gives the autocorrelation of an example for which the spectrum is 
sensitive to triangular bias, as shown in Figure 3.4. The theoretical triangular bias 
at lag 5 is only 0.008 for N = 250, much less than the statistical deviations in the 
estimate. No accuracy analysis can be given that can be applied convincingly to 
estimated autocorrelations without knowledge of the true autocorrelation function. 

A general but inaccurate method to get a rough idea of the autocorrelation 
estimates with lagged product estimates for measured data is dividing the data into 
two halves and estimating the autocorrelation  functions  separately for the first and  
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second half of the data. If differences in the estimated autocorrelation functions are 
small, this may give some confidence. An example is given for measurements of 
the amount of fish in the Pacific Ocean. Figure 3.8 presents the data, measured 
once per month between the years 1950 and 1987 and also analysed by Shumway 
and Stoffer (2000). It is always possible to estimate the autocorrelation from the 
first and from the second half of the data separately. If the process is stationary, it 
might be expected that those two estimated autocorrelation functions would look 
similar because they are two independent realisations of the same stochastic 
process. If the estimates are similar, no definite conclusion can be drawn, but it 
becomes very probable that the two similar autocorrelation functions are reliable 
representations of the true autocorrelation function. This will occur in the example 
of Figure 3.6 if more than 10,000 observations are available. The same figure 
shows that two independent estimates from 100 observations may diverge a lot. If 
the estimates from the two halves diverge, an indication is obtained as to which 
correlation details are not reliable. 
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Figure 3.9.  Estimation of the autocorrelation function of practical data about the amount of 
fish in the Pacific Ocean. The number of observations was 445. The lagged product 
estimates are obtained from the first 222 observations, from the last 223 observations, and 
from all observations together.  

The results for the first and for the second half of the fish data in Figure 3.9 are 
similar for lags until 25 and rather different for greater lags. All three estimated 
autocorrelation functions show a period of about 12 months in Figure 3.9. That 
yearly variation may be a plausible result for data from nature, but it is only found 
for those lags where the first and the second half of the data produce completely 
different estimates. Therefore, it is not statistically significant from the given 
observations. A rule of thumb would say that all estimates between – 0.3 and + 0.3 
are totally unreliable. That includes all visible yearly periods. The estimated valley 
for the lags around 20 may have no meaning, although it appears in both estimates: 
it can just incidentally be a part where both estimates coincide, like the lags 
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between 80 and 100. The fact that estimates for neighbouring lags are strongly 
covariant because of (3.35) will often lead to rather regular but insignificant 
patterns in estimated lagged product correlation functions. It is not impossible that 
this effect causes a seeming periodicity as in Figure 3.9. The same example will be 
treated extensively in Section 10.1, where time series estimators will be applied to 
the same fish data.  

It is evident that the autocorrelation function estimated from all observations 
together is not exactly the average of the two partial estimates in Figure 3.9. The 
difference is caused by the omission of lagged products around the middle of the 
observation interval. If one observation is in the first interval and the other in the 
second, the product contributes to the full length estimate and not to the two 
halves. 

Dividing the observations into two halves and estimating two separate auto-
correlation functions has been applied to many practical data as well as to simu-
lated data where the true autocorrelation function is known. In many examples, the 
difference between the two halves is disappointingly great. That can be expected, 
given the inaccuracies in Figure 3.6. The differences (or the similarity) are for 
many reasons. It can be caused by a nonstationary signal, it can be the statistical 
inaccuracy given by (3.37), or there may be an outlier in the real-life data. Of 
course, taking more observations will improve the accuracy and also the similarity 
between estimates from two halves of the data. 

3.6  Periodogram Estimation 

It is attractive to base an estimator of the power spectral density function on the 
definition (3.18) of h( ):
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1 1
( ) lim ( )
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nN
n k

h E x e r k e
N

 (3.41) 

The sequence of taking the Fourier transform, the square, the average over N, the 
expectation, and the limit was essential. A fundamental problem in estimating 
spectra of stationary stochastic signals, however, is that the Fourier transform of a 
stationary stochastic process does not exist, at least not in the domain of ordinary 
mathematical functions (Priestley, 1981). This means that 

lim
N

k
N

k N

x (3.42) 

fails to converge to any finite value.  
Priestley (1981) introduced the subject of the spectral analysis of random 

signals with the treatment of periodic signals. It is quite logical to use the discrete 
Fourier transform as a basis for spectral analysis for those periodic signals. It has 



50 Automatic Autocorrelation and Spectral Analysis 

excellent properties if the periodicity of the signal fits exactly in the observation 
interval.  

Without a proper statistical derivation, the periodogram S( ) is also defined as 
a basic estimator for the spectrum of stationary stochastic processes: 
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n

S x e
N

(3.43) 

With a derivation similar to that in (3.18), it follows that exactly the same result 
S( ) can be found by transforming the biased estimate of the lagged product 
autocovariance estimate of the process: 
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Note that this transform uses 2N – 1 estimated autocovariances, obtained from N
observations. The relation of the periodogram with the lagged product estimator to 
the autocovariance is a reason to call the periodogram a nonparametric spectral 
estimate. The periodogram is a continuous function of , defined for all frequen-
cies. With FFT algorithms on the computer, however, the periodogram is often 
calculated only for N equidistant points in the frequency domain from zero until 
(N–1)/N  Hz: 
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The inverse Fourier transform of this N point periodogram  
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also has length N and cannot contain the full two-sided covariance of length 2N –1. 
It has an aliased combined value, consisting of two terms as defined in (3.30): 

ˆ ˆ( ) ( ) ( )r k r k r N k (3.47) 

If the autocovariance function were shorter than N/2, this could be an acceptable 
estimate for the autocovariance function because the two contributions on the right-
hand side do not overlap. However, many processes have an infinitely long 
autocovariance function, like a declining power series, and the inverse transform of 
the periodogram will already be aliased with the nonzero true autocovariance at 
lags greater than N. Moreover, due to estimation variance, the estimated covariance 
r̂ k  for lags k between N/2 and N will not have estimates equal to zero, even if the 
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true expectation of the autocovariance function were zero there. That is a conse-
quence of the variance in (3.37) that does not vanish at high lags. The inverse 
transform (3.46) will contain only r̂ k  at lag k if the periodogram of N observed 

data points is computed for 2N – 1 or more frequencies by adding at least N – 1 
zeros to the observations prior to the Fourier transform. In that case, the inverse 
transform is long enough to contain the whole two-sided autocovariance estimate; 
for details, see Priestley (1981).  
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Figure 3.10.  Estimation of the periodogram of N = 100 pure sinusoidal data without noise. 
In the left-hand figure, the measurement interval contains exactly a whole number of periods 
for both components of the signal; in the right-hand figure, the number of periods for the 
highest frequency is 30.5. 

The first example of a periodogram is given in Figure 3.10 for periodic 
functions for which the fast Fourier transform is a powerful computational tool. 
The periodogram from 100 observations is standard computed for 100 equidistant 
frequencies, from 0.00 – 0.99 with steps of 0.01. Taking higher frequencies gives a 
periodic continuation; at f = 1, the result for f = 0 returns. Furthermore, the result is 
symmetrical around f = 0.5. Therefore, only the part with frequencies between 0 
and 0.5 is shown; it can be mirrored to negative frequencies or also to higher 
frequencies. The plot shows connecting lines, but only 51 points in this figure 
follow from the computation. The left-hand figure gives the results for a sum of 
two sinusoids that fit exactly in the interval with a number of complete periods. 
The right-hand side has 30.5 periods of the stronger sine in the observation interval 
as well as the same weaker component. The triangular bias of the periodogram 
prevents the detection of the weak sine then.  

Many tricks and procedures have been described to improve this behaviour for 
periodic processes or for stochastic processes. That includes a data taper, which 
multiplies the measured signal by some symmetrical bell-shaped function before it 
is transformed. Another method is to truncate the autocorrelation function and to 
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multiply it by a lag window. The same result can be obtained with a spectral 
window convolved with the periodogram. Harris (1978) gives an extensive survey 
of periodic processes. More details are found in many places; see Priestley (1981), 
Kay (1988), Marple (1987), Kay and Marple (1981) and references therein. They 
are not treated here in any detail because time series methods give a better solution 
for most practical random data. 

For the application of a raw periodogram to random data, the statistical proper-
ties are given here. The expectation and the variance of the periodogram can be 
derived from basic principles. A good treatment is given in Priestley (1981). The 
results are approximately 

1

( 1)

( ) (1 ) ( )
N

j k

k N

k
E S r k e

N
 (3.48) 

2
var ( ) ( )S E S  (3.49) 

The variances at the frequencies 0 and  differ from (3.49). Also the approximation 
for other than normally distributed signals is somewhat different with contributions 
from higher order moments. The expectation of S( ) contains the transform of a 
triangular autocorrelation bias that will vanish asymptotically. Moreover, it will be 
negligible compared to the variance contribution in many situations. The standard 
deviation of the periodogram is S( ), equal to the expectation. It does not depend 
on the sample size N; therefore, it will not become smaller for increasing sample 
sizes. Another important property is that the estimates at neighbouring frequencies 
q/N and (q+1)/N are almost completely independent. If the periodogram is 
computed at more than N frequencies, the range between the frequency points at 
q/N and (q+1)/N can be considered an interpolation between those independent 
points; see Priestley (1981). 

Figure 3.11 shows the estimated periodogram for 50 and 500 observations, on 
linear and logarithmic scales. Positive estimates for which the standard deviation is 
equal to the expectation will vary from almost zero to three or four times the 
expectation. The rough estimates show that the estimates at the frequencies q/N, q
= 0, 1, 2, … are independent. Taking 10 times more observations gives 10 times 
more independent estimates, which are all equally inaccurate. From the 
periodogram, it can be concluded that there is more power in the low-frequency 
range than in the higher range. However, it is impossible to conclude something 
about spectral details. If the periodogram at two neighbouring frequency points 
differs by a factor of 100, it can just be a consequence of the estimation 
uncertainty.  

Autocovariance estimation is connected with spectral analysis by the Fourier 
transform. It is remarkable that raw periodograms have never been considered 
useful spectral estimates for random processes, whereas their Fourier transforms, 
the mean lagged products, are considered natural estimates for the autocovariance. 
The introduction of the FFT algorithm for fast Fourier transforms by Cooley and 
Tukey (1965) was a computational support for the nonparametric approach with 
periodograms  and lagged  products.  From that  moment on, the reduced  computer  
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Figure 3.11.  Estimation of the periodogram of N = 50 and 500 observations of a stationary 
stochastic process with the true spectrum h( ) = 0.8 (1.25+cos ). Taking more observations 
gives more independent estimates all of which have variances equal to the square of the 
expectation. In the logarithmic plots, the width of the inaccuracy band is a constant over the 
frequency range, which demonstrates that the standard deviation is proportional to the 
expectation. 

effort enabled the routine Fourier analysis of extensive sets of random data by the 
nonparametric method. This was the reason that analysis with tapered and 
windowed periodograms has been the main practical tool for spectral analysis and 
autocovariance estimation for a long time.  

Several improvements of this inaccurate raw periodogram of a random data 
estimate have been reported in the literature on spectral estimation; see Priestley 
(1981) and references: 

dividing the N observations in M batches, estimating the periodogram of 
each batch separately, and using the average of the M periodograms as the 
spectral estimator that contains N/M independent frequency points now. 
taking the average of M neighbouring points of the full periodogram, 
which gives the same estimate as above. This is called the Daniell window 
or rectangular spectral window. 
using only a small truncated part of the estimated autocorrelation function, 
say, less than 10% of the data length or shorter, multiply that remaining 
part by a bell-shaped lag window, and transform it to find an estimate for 
the spectrum. 
convolving the periodogram with a spectral window or smoothing it over a 
number of neighbouring frequencies. 
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The first two methods as well as the last two methods of improvements can be 
identical with proper choices. Very much is written about those improvements 
because they have been the only practical solutions for estimating the spectrum or 
the autocorrelation function for measured random data for many years. However, 
the best choice for the number of batches M or the best window length and shape 
depend on the true spectrum. No optimal choices can be deduced from observed 
data. Moreover, the best choice is still a compromise between bias and variance, 
whereas time series models can provide accurate unbiased spectral estimates. 
Therefore, improvements of estimated periodograms are not discussed further here. 
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Figure 3.12.  Estimation of the periodogram of the same 1000 observations that have been 
used to estimate the autocorrelation function in Figure 3.7. The triangular bias of Figure 3.4 
is also found in the estimated periodogram. 

Figure 3.12 shows the estimated periodogram from 250 observations of the 
process for which the autocorrelation function of Figure 3.7 has been estimated. 
The triangular bias that is present in the transform of the true correlation in Figure 
3.4 is also present in the estimated spectrum. A remarkable feature in this figure is 
that the variance at high frequencies is almost invisible in the periodogram that 
looks smooth there. Above f = 0.4, the variance in the logarithmic plot is much 
smaller than the variance for lower frequencies, because the bias error is dominant. 
The variance of periodogram estimates is given by (3.49) with the true value of 
E[S( )], also for those frequencies. Hence, the standard deviation is much smaller 
than the bias in this frequency area. 

One peculiar property of estimated autocovariances should be mentioned. The 
sum of all lagged product autocovariances equals the spectrum at zero frequency, 
which is identically zero if the mean of the data is subtracted. With subtraction of 
the mean, it follows that 
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Suppose that the true covariance is positive for all shifts, e.g., a power series. Then 
it is obvious that an estimate which adds up to zero must have a strange appearance 
in comparison with the true covariance function, as demonstrated in Figure 3.6.  

3.7  Summary of Nonparametric Methods 

The estimation variance of a raw periodogram is about the square of its expec-
tation. The quality does not improve if more data are available. Only the number of 
frequencies at which an independent estimate can be obtained increases 
proportionally with the sample size. Therefore, the periodogram gives only limited 
information about the true power spectral density of stochastic data. 

The periodogram has independent estimates at frequencies p/N and has a very 
irregular appearance. In contrast, the estimated autocovariance function will look 
very smooth with a high covariance between neighbouring lags. This is the reason 
that estimated lagged product autocovariance functions lead to an artificial and 
misleading confidence in completely accidental details. For stationary stochastic 
processes, the major problems in using periodograms for spectral analysis are 
easily recognized because of the rough appearance and the very irregular shape of 
estimates. The same problems should also be present in the associated lagged 
product autocovariance estimate, which is the inverse Fourier transform of the 
periodogram.  

The autocovariance estimates for large lags can be seen as the cause of many 
problems in the accuracy of periodograms. Taking more observations introduces 
more lags in the estimated lagged product autocovariance function. The total length 
is N – 1 and it increases with sample size. This increased length is also the reason 
that the estimated periodogram contains more independent frequencies for more 
observations, all of which keep the same inaccuracy. A stationary stochastic 
process is no sum of harmonics. Trying to model it like that with a periodogram is 
erroneous. 

Dividing N – k lagged covariance products by N introduces a triangular bias in 
the autocovariance estimate that is used. Dividing by N – k would produce 
unbiased autocovariance estimates which are not positive-semidefinite and could 
lead to negative spectral estimates. 

A popular practical solution to diminish this bias problem is putting a taper 
over the data before transforming them. This leaves the middle 80% of the 
observations unchanged, but it multiplies the final 10% on both sides by a function 
going from 1 to 0, e.g., a half raised cosine. This diminishes the bias at the cost of 
distorting the data. Because the finite Fourier transform treats stochastic data as 
one period of a periodic signal, the taper also removes the artifact of the apparent 
jump by treating the first and the last observations as if they were two contiguous 
observations. 
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The introduction of a multitaper approximation by Percival and Walden (1993) 
does not give a satisfactory solution. Broersen (1998) used simulations to show that 
the quality of this approach is not better than that obtained with traditional 
windows. 

Summarizing, no proper solutions have been found for estimating accurate 
spectra or autocovariance functions for stationary stochastic observations with 
periodogram analysis. Moreover, the choice of the taper and/or the window 
depends on the experimenter. It has been practice to judge results by eye because 
no firm statistical rules can be given independently of the measured data. It is very 
easy to generate data synthetically as examples where judging by eye is misleading 
and leads to wrong conclusions. Periodograms are an “easy, quick, and dirty” 
method of spectral estimation for stochastic processes. Likewise, lagged product 
autocorrelation estimates are “easy, quick, and dirty.” The popularity of periodo-
grams for spectra and lagged product estimators for the autocovariance might 
largely be that this has been the only algorithm available to evaluate practical data 
on the computer for a long time. Other solutions were not feasible for routine 
computation of spectra and correlations of stationary stochastic observations 
without further detailed knowledge about the properties of the data. 

Of course, periodograms remain an excellent solution for spectral estimation if 
the observations are periodic or if they consist of a sine wave with very little 
additive noise. The frequency content of deterministic measurements can also be 
studied with the periodogram. Furthermore, integrated periodograms over 
frequency subbands give a rough idea of the distribution of power over different 
frequency ranges. 

Finally, the variance of autocorrelations diminishes with 1/N for increasing 
sample sizes. If the process is stationary and if enough observations can be made, 
the estimate can have any desired accuracy for every individual lag. 

3.8  Exercises 

3.1 Prove that the autocorrelation function of a stationary stochastic process is 
symmetrical around zero lag. 

3.2 Prove that the power spectral density function of a stationary stochastic 
process is symmetrical around zero frequency. 

3.3 Prove the transition from the second to the third line of Equation 3.18. 

3.4 Suppose we would like to predict a single stationary time series xn with zero 
mean and autocovariance function r (k) at some future time n+k , with k > 
0. We use only the present value xn and an unknown constant . Show that 
the mean square prediction error MSE( ) = E (xn+k – xn)

2 is minimised by 
the value = (k).
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3.5 The autocovariance function r (k) of a stationary stochastic process is only 
nonzero for the lags 0, 1, and – 1. It is characterized by r (0) = 5 and r (1) = 
2. N observations of the process are available to estimate the autocovariance 
function with a positive-semidefinite lagged product estimator. 
Calculate the asymptotic approximations for the variances of the estimators  

ˆ ˆ ˆ ˆ(0), (1), (2), (10).r r r r

Calculate the asymptotic approximations for the covariances between the 
autocovariance estimators for different lags:  

ˆ ˆcov 0 , 1r r , ˆ ˆcov 0 , 2r r , ˆ ˆcov 0 , 10r r .

Calculate the asymptotic approximations for the variances of the estimators  

ˆ ˆ ˆ ˆ(0), (1), (2), (10).

3.6 Show that the autocovariance function r(k) of a stationary stochastic process 
with mean   is given by 2( ) n n kr k E x x .

3.7 Derive Equation (3.33). Why is the bias term with k / N present only in the 
first part of the expectation?  

3.8 Calculate the variance of the mean if that is estimated from N observations 
and if the autocovariance function of the data is given by  

2( ) , .k
xr k a k

3.9 Calculate the variance of the variance that can be estimated from N
observations if the autocovariance function of the data is given by  

2( ) , .k
xr k a k



4

ARMA Theory 

4.1 Time Series Models 

A major problem of nonparametric estimation of the lagged product autocova-
riance function and the periodogram is that the size of the estimated function 
increases with the number of observations. The periodogram gets more indepen-
dent estimates in the frequency region from 0 – 0.5, and the autocovariance 
function becomes longer. The nonzero part of the estimated lagged product 
autocovariance function is always equal to the sample size. The first lags of the 
estimated autocorrelation function become more accurate for increasing sample 
size. But at the high lag end, the estimates for the final lags until N – 1 are always 
very inaccurate. Furthermore, it is not clear how to cut off the autocorrelation 
function beyond an objectively chosen limit. Neither is it clear in how many 
independent batches the data should be divided to find an optimal average 
periodogram or, equivalently, how many neighbouring frequencies in the full data 
periodogram have to be averaged for an optimal result. 

It would be interesting to estimate functions from the data that become more 
accurate only if more observations are available and do not grow in length. 
Therefore, several classes of functions or models will be defined. It is the intention 
that a model from one of those classes can be assigned to every possible stationary 
stochastic process. The classes that will be defined are 

white noise 
autoregressive process, known as AR 
moving average process, known as MA 
autoregressive moving average process, known as ARMA. 

The words “process” and “model” are often used to describe more or less the same 
system. Process is generally used to describe the actual process of generating the 
data, which are also called the observations or signal. Each stationary stochastic 
data set has one generating process. The word model is more associated with the 
estimation based on given observations. Different types of models can be calcu-
lated for measured data, for which the generating process might be unknown. In the 
literature, the difference between the words process and model is not always used 
very strictly. This does not lead to much confusion because the actual meaning 
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follows from the context. This chapter describes how those models can describe the 
autocorrelation function and the power spectral density. 

4.2  White Noise 

The white noise process type is the basic element of time series analysis in 
practice. It is often called a purely random process. It is defined as a sequence of 
uncorrelated random variables. It may or may not be stationary, independent, or 
normally distributed. The observed variable xn is modeled as a sequence of 
uncorrelated random variables n with the mean and the variance as a function of n
if the process is not stationary:  

n nx .   (4.1) 

For stationary (or wide sense stationary) processes, the mean  and the variance 
2 of n and xn are constants. The autocorrelation function (k) is given by 

( ) 1, 0

0, 0

k k

k    (4.2) 

20 40 60 80 100 120 140 160 180 200

2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

 200 observations of a white noise process

  Time

connecting line
observation

Figure 4.1.  Realisation of 200 white noise observations. In many figures, connecting lines 
are drawn without warning, but all discrete time signals are defined only for t = 0, 1, 2,
The dots represent the actual observations; the lines have no significance for discrete time 
signals. 
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4.3  Moving Average Processes 

A moving average process of order q, a MA(q) process, is a weighted combination 
of q+1 shifted or lagged white noise data: 

1 1n n n q n qx b b .    (4.3) 

The first parameter b0 is generally taken as one and n is a stationary, purely 
random process with mean  and variance 2 . In a more concise way, the MA 

equation can also be written as 

( )n nx B z    (4.4) 

with  

1
1( ) 1 q

qB z b z b z    (4.5) 

and z-1 is the backward difference operator defined by 

1
1

1

n n

k
n n k

n n

z

z
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The roots of B(z) are called the zeros of the MA model. An MA process is called 
invertible if the zeros are inside the unit circle. The expression B(z) is a transform 
in the time domain with q backward shifts in this example. 

The expectation of xn is 
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E x E b b

E b E b E
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It is usual to assume that the mean   equals zero. The reason is that it is a good 
practice to subtract the average of random signals before further examination takes 
place. It would be quite useless to mix models for long-term average temperature 
or pressure with models for quick variations. Now, assuming  = 0, it can be 
derived that 



62 Automatic Autocorrelation and Spectral Analysis 

2

1 1 1 1

2

0

( ) ( ) [ ]

[{ }{ }]

, 0

0,

x n n k

n n q n q n k n k q n k q

q k

i i k
i

r k k E x x

E b b b b

b b k q

k q          (4.8) 

( ) ( ), 0x xr k r k k    (4.9) 

It follows elementarily that 
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The normalized autocorrelation function is given by 
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Figure 4.2.  Two realisations of 100 MA(1) observations and a white noise signal, showing 
the difference between a negative correlation above and a positive correlation below  
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The autocorrelation function is zero for k > q. Hence, the MA model is for finite 
length correlations. An example of the autocorrelation function of a MA(13) 
process has been given in Figure 3.2. With the sequence n as an input signal, a 
MA model can be seen as a filtered white noise signal with a finite impulse 
response, or FIR filter. Figure 4.2 gives some observations of MA processes. A 
negative correlation for lag 1 gives mostly an opposite sign for the next obser-
vation, whereas a positive correlation will more often give the same sign. 

4.3.1  MA(1) Processes with Zero Outside the Unit Circle 

The autocorrelation function remains the same the processes with parameter b and 
parameter 1/b. This is demonstrated by an example of a MA(1) process with 
parameter b and 1/b . The parameter b gives as autocorrelation for lag 1 

1

2 2 2

2

(0) (1 ) , (1) ( )

(1) /(1 )

n n n

x x

x

x b

r b r b

b b

The parameter 1/b gives different outcomes for the autocovariance function 
because the variance is different. However, the autocorrelation function is the 
same: 
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For a given MA(1) autocorrelation function, it is impossible to decide whether it 
belongs to an invertible process with the parameter inside the unit circle or to a 
process with a parameter greater than one. The value of (1) is limited by  0.5 for 
a MA(1) process, as can be derived from (4.12). Otherwise, the autocorrelation 
function with only zeros beyond lag 1 would not be positive-semidefinite. The 
limiting value is attained if the parameter b is equal to + 1 or – 1.  

Furthermore, it can be proved that mirroring a zero of a MA(q) process with 
respect to the unit circle leaves the complete autocorrelation function undisturbed. 
Therefore, the autocorrelation function of a MA(q) process has 2q different 
possible combinations of MA(q) models, with each zero inside or outside the unit 
circle. The invertible MA(q) model is the only one with all zeros inside the unit 
circle.

4.4  Autoregressive Processes 

In deterministic filtering, the complement of FIR filters is IIR filters with infinite 
impulse response. In difference equations, MA models have only a right-hand side 
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part. Models with only a left-hand side or with both sides can also be constructed. 
An autoregressive process of order p, or briefly an AR(p) process, is defined as  

1 1n n p n p nx a x a x (4.13) 

The first parameter a0 is generally taken as one and n is a purely random stationary 
process with mean  and variance 2 . Taking the first parameters a0 and b0 equal 

to one is no loss of generality. The scale factor is manipulated with the variance of 
the random input. This gives enough freedom because multiplying all parameters 
including a0 by a factor c and taking c2 2  as the variance of n gives exactly the 

same signal xn. More concisely, the equation can also be written as 

( ) n nA z x (4.14) 

with  

1
1( ) 1 p

pA z a z a z (4.15) 

The roots of A(z) are called the poles of the AR(p) processes. Processes are called 
stationary if all poles are within the unit circle. 

4.4.1  AR(1) Processes  

It is a good idea to start with a derivation of the properties of AR processes for an 
AR(1) process: 

1n n nx ax (4.16) 

where the index 1 for the first and only parameter a has been left out in this first-
order section. The equation can be rewritten as 

1n n nx ax (4.17) 

In this equation, we can substitute xn-1 by its AR(1) model and so on, yielding 

1

1 2
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1 2 1 0
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x a x

a ax

a a a a x (4.18) 

Using the A(z) notation of (4.14) in computations gives the same result by 
considering the AR polynomial as the sum of an infinite series 
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Now, suppose that the initial value x0 equals zero and that the signal was also zero 
for negative times. In fact, this is artificial because it is in contrast with the notion 
of stationary stochastic processes. However, this will be interpreted so that the 
difference from the present time n is so large that the initial values have been 
forgotten at time n. It is shown with (4.19) that the AR observation at time n can be 
decomposed and becomes a linear combination of all previous input variables. 

The expectation of xn becomes 
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If  = 0, then E[xn] = 0 for all n and xn is stationary up to order one. If  is not 
zero, then 

1
[ ]

1nE x
a

(4.21) 

for large n. This is mathematically denoted as xn being asymptotically stationary to 
order one. A straightforward derivation of the mean of a stationary AR(1) process 
is given by 
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(4.22) 

In this derivation, the stationary property means that the expectation of xn–i does 
not depend on the time index n and can be written as the expectation of xn. Figure 
4.3 gives some realisations of AR(1) processes with moderate and strongly positive 
and negative correlations. If the correlation is strongly positive, as in the left-hand 
figures, it is possible that the signal remains above or below the long-term average 
for a long time. Analysing a very short signal can give odd results then. Looking 
only at the observations from 15 to 45 in the lower left figure would suggest 
variations around an average of – 1.50. Therefore, a stochastic signal should be 
much longer than the correlation length to obtain a reliable impression of the 
character of the signal. 
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Figure 4.3.  Four realisations of 50 AR(1) observations for different parameter values of a

From now on, assume that  = 0 to simplify derivations. Then n is a stochas-
tic variable with mean = 0, variance 2 , and autocovariance cov( n, m) = 0 for 

m  n. The variance of the signal xn becomes 
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For | a | < 1, this can be simplified to the asymptotic expression 
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Finally, multiplying xn by xn+k and taking the expectation, one can derive the auto-
covariance function:  
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For negative k,

r (k)= r (–k)                  (4.25) 

The same result can be derived by multiplying the AR(1) equation by xn–k and 
taking the expectations. First, multiplying (4.16) by xn and xn–1 gives 
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(4.26) 

The present value of xn is a linear combination of the present value of n plus 
previous input values n–k. Moreover, the n are uncorrelated, so only multipli-
cation of n–i by itself will contribute to the expectation. The expectations in the 
equations become the true autocovariances. Hence, 

2 2 2

2 2

(1)

(1) 0

x x

x x

a

a (4.27) 

for which the solution is 

2
2

2

(1)

1x

a

a
 (4.28) 

Further, 

1

2

| |

[ ] [ ] [ ]

( ) ( 1) 0, 1

( ) ( 1) ( ) ( 2) ( ) (0) ( )

(| |) ( )

n n k n n k n n k

k k

k

E x x aE x x E x

k a k for k

k a k a k a a

k a  (4.29) 

It turns out that the autocorrelation function is a power series with its pole as the 
root of 1+az–1 = 0 or of  z + a = 0. For | a |< 1, the root is within the unit circle 
and the autocorrelation is a decaying sequence of infinite length. Figure 4.4 gives 
two decaying power series as autocorrelation functions. Where finite-order MA 
processes have a finite correlation length, the AR correlation never dies out 
completely. The single value of the AR(1) parameter defines the whole 
autocorrelation function. Autoregressive models are an important class of time 
series models. Therefore, some specific properties will be derived. 
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Figure 4.4.  Autocorrelation functions of two AR(1) processes, with positive and negative 
parameter a

4.4.2  AR(1) Processes with a Pole Outside the Unit Circle 

The question what happens with poles outside the unit circle is simple. If one tries 
to generate such a signal, the values will explode. The process is not stationary. 
Mathematically, an interesting description is possible if the direction of time is 
reversed. This will be illustrated for an AR(1) process with | a | > 1. 

1n n nx ax (4.30) 

This can be rewritten formally as 

1 1n n
n

x
x

a a
 (4.31) 

and it is easily seen that xn can be written as a convergent sum of future excitations 
with parameter 1/a

1
1 1 1 2

2

( 1)k
n n n n n k

n k

x
x

a a a a a
 (4.32) 

The variance becomes 
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2
2 4 6

2 2

2 2 2

1 1 1
var[ ]

1

1 1/ 1

nx
a a a

a a a
 (4.33) 

Hence, the variance of this signal has an expression other than (4.28) for the AR(1) 
process with parameter inside the unit circle. The autocorrelation follows as 
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(1)
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i
x n n n i

i

E x xr

a a a
E

a a a

a
a a a

a

a a a
(4.34) 

The autocorrelation function is the same as the autocorrelation of the process 
with the reciprocal root inside the unit circle. Mirroring a root with respect to the 
unit circle has influence on the variance but not on the normalized autocorrelation 
function.  

This mathematical exercise has no practical meaning, but it may assist in 
understanding why reversing the time index in a signal will have no consequences 
for the autocorrelation function, the spectrum, and the time series model that 
describe it. Reversing the time or taking backward residuals will play a role in 
several well-known AR estimation algorithms. 

4.4.3  AR(2) Processes 

An AR(2) process is given by 

1 1 2 2n n n nx a x a x  (4.35) 

The expectation is found with E[xn](1+a1+a2) =  , and it will be assumed that 
= 0; this can always be realised in practice by subtracting the sample mean from 
the data. The AR polynomial is 

1 2
1 2( ) 1A z a z a z (4.36) 

The roots of A(z) = 0 are the poles of this process.  
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1 2
1 2

1 1
1 2

(1 )

(1 )(1 )
n n

n n

x a z a z

x p z p z  (4.37) 

where p1,2 are the solutions of  

2
1 2 0z a z a  (4.38) 

Hence, the process can be written as 

1 1
1 2

1 2
1 1

1 2 1 2

1

1 1

1

1 1

n n

n

x
p z p z

p p

p p p z p z

 (4.39) 

This can be written as an infinite summation 

1 1
1 1 2 2

1 11 2

1 1
1 2

0 1 2

1
1 1

.

k k

n n
k k

k k

n k
k

x p p z p p z
p p

p p

p p
 (4.40) 

Clearly, the process is asymptotically stationary if both poles are less then one in 
absolute value, hence if the poles are located inside the unit circle. This equation 
also shows how an AR(2) process can be written explicitly as an infinite sum of 
present and previous excitations with one as coefficient for the present excitation. 
Therefore, 

0
0

, 1n i n i
i

x (4.41) 

This can be interpreted as a MA( ) process. It also follows that 

2[ ]

[ ] 0, 1
n n

n n k

E x

E x k (4.42) 

Multiplying both sides of the AR(2) equation (4.35) by xn–k  and taking expecta-
tions gives 

1 1 2 2[ ] [ ] [ ] [ ]n n k n n k n n k n n kE x x a E x x a E x x E x . (4.43) 
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This can be solved easily for k  0. Using negative values for k in this equation 
becomes more cumbersome because the right-hand side does not vanish then. 
Cross correlations are not symmetrical around zero lag. Eventually, the outcome 
should be the same, with more manipulation. For k = 0, this equation becomes 

2 2
1 21 (1) (2)x a a (4.44) 

For k = 1 and 2, 

1 2(1) (1) 0a a (4.45) 

1 2(2) (1) (0) 0a a  (4.46) 
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Figure 4.5.  Autocorrelation function of AR(2) process, complex poles p1,2 at 0.72  j 0.53  

Solving those three equations gives 

1

2
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2 1 2 1 2
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1

(1 )

(1 )(1 )(1 )x
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a
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a

a

a a a a a
(4.47) 

For k arbitrary but greater than one 

1 2( ) ( 1) ( 2) 0k a k a k  (4.48) 
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The solution is 

1 1 2 2( ) , 0k kk C p C p k (4.49) 

where p1,2 are the poles of (4.37) and C1 and C2 are constants whose values are 
determined by the boundary conditions (0) and (1). With real AR parameters, 
the poles can both be real or they can be complex conjugated. Figure 4.5 gives an 
example of an AR(2) autocorrelation function with complex poles. 

4.4.4  AR( p) Processes  

An AR( p) process is given by 

1 1n n p n p nx a x a x  (4.50) 

Multiplying both sides of the AR( p) equation by xn-k  with k 1, and taking expec-
tations gives 
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Figure 4.6.  Autocorrelation function of an AR(25) process with 3 real poles and 11 
complex pole pairs. Regularly shaped as well as quite irregular autocorrelation functions are 
possible. 

1( ) ( 1) ( ) 0pk a k a k p (4.51) 

whose solution is 

1 1 2 2( ) , 0k k k
p pk C p C p C p k  (4.52) 
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where pi are the poles and Ci are constants whose values are determined by the 
boundary conditions which are determined by (0), (1),…, (p–1). In the same 
way as for the AR(2) process, an AR( p) process can be expressed as a MA( )
process, with sums of power series of the poles as coefficients, if all poles are 
within the unit circle. The autocorrelation can then be expressed as a function of 
the autocorrelation of infinitely many MA parameters, as in a MA(q) process. The 
autocorrelation has infinite length, but it dies out when all poles are inside the unit 
circle. Finally, the pole or complex conjugated pair of poles with the largest radius 
will dominate the autocorrelation for larger time lags. Figures 4.6 and 4.7 show 
that the autocorrelation function of higher order AR processes can have a regular as 
well as a rather irregular shape. 

In terms of conditional probability density functions, (4.50) can be expressed as 

1 2 1 1 2( | , , , ) ( | , , , )n n n n n n n pf x x x x f x x x x

In words, the present observation of an AR( p) process depends only on its p
preceding observations, not on how those preceding observations originated. 

Furthermore, it can be proved that mirroring a pole of an AR process with 
respect to the unit circle leaves the complete autocorrelation function undisturbed. 
Therefore, an AR( p) process has, in principle, 2p different combinations of poles 
that would produce exactly the same autocorrelation function. A stationary AR( p)
process is a unique process with that autocorrelation function and with all poles 
inside the unit circle. The autocorrelation function is insensitive for mirroring a 
pole. The autocovariance function, however, includes the variance of the process 
and will not remain unchanged by mirroring poles or zeros with respect to the unit 
circle.
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Figure 4.7.  Regularly shaped autocorrelation function of AR(20) process, 10 complex 
conjugate pole pairs with radius 0.99  
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4.5  ARMA( p,q) Processes 

The generating equation of an ARMA( p,q) process is 

1 1 1 1n n p n p n n q n qx a x a x b b (4.53) 

with shorthand notation 

( ) ( )n nA z x B z (4.54) 

This process has p poles and q zeros. A simple method for extracting results for 
ARMA processes comes from linear filter theory. An ARMA( p,q) process is 
equivalent to a series of an AR( p) and a MA(q) process. An AR( p) process with 
white noise as input is followed by a MA(q) process. The linear combination of 
correlated variables in the MA process gives no problem in calculating the 
autocorrelation function.  

Figure 4.8.  Representation of an ARMA process as a series of an AR and a MA process 

The formulas for the representation in Figure 4.8 are  

( )

( )n n

B z
x

A z
 (4.55) 

which gives 

1

( )

( )

n n

n n

v
A z

x B z v (4.56) 

The autocovariance rv(k) of the first part with 1/A(z) is easily found with the 
standard AR theory of (4.51) because the input signal is a white noise sequence. 
The actual computation will use the recursive Levinson-Durbin algorithm descri-
bed in the next chapter. The second part has input vn, which is no longer a white 
noise input and therefore requires some care in calculating the autocovariance 
function. The autocovariance function of the signal xn is denoted r (k) without 
index. All other autocovariances are indicated with an index. The second equation 
in (4.56) can be written as 

1 1( )n n n n q n qx B z v v b v b v (4.57) 

1/A(z) B(z)
n vn xn
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For r (k),

1 1 1 1

( ) [ ]n n k

n n q n q n k n k q n k q

r k E x x

E v b v b v v b v b v   (4.58) 

This can further be written as 

1

1

1( ) ( 1) ( )

( 1) ( )
( ) 1

( ) ( 1) ( )

v v v

v v
q

qv v v

r k r k r k q

br k r k
r k b b

br k q r k q r k

  (4.59) 

or in a more compact style as 

| |
0

( ) ,
q q

v i i m
m q i

r k r k m b b k  (4.60) 

The whole autocovariance function r (k) for an interval of lag k can be computed 
conveniently as a convolution of the autoregressive autocovariance function rv(k)
with the summation of products of the MA parameters, which is a normalized 
version of the autocovariance function of the MA part in (4.8). The parameters bi

are taken as zero beyond the interval 0 i q. With this arrangement, the 
definition 

| |
0

( ) ,
q

MA i i k
i

r k b b q k q (4.61) 

can be given, and the ARMA autocovariance function can be written compactly as 

( ) ( ) , .
q

v MA
m q

r k r k m r m k (4.62) 

The ARMA autocovariance function is a convolution of the separate autocova-
riances of the AR and the MA parts. The AR part is computed with the innovation 
variance 2 , and the MA part in (4.61) uses a unit input variance. It is a simple 

method for actual computation of ARMA autocovariance functions. This autocova-
riance function also gives an expression for the variance of an ARMA process by 
taking k = 0. The autocorrelation function (k) is found by dividing (4.62) by 
r (0). Figure 4.9 gives an ARMA(1,2) autocorrelation function. The MA order two 
determines, together with the AR parameter, an initial part of length two. The 
further autocorrelation function is completely determined by the AR part. 
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Figure 4.9.  Autocorrelation function of an ARMA(1,2) process. The regular power series 
extension as in an AR(1) process is visible for k > 2. 

Another solution for describing the autocovariance function uses the long MA 
representation of the process that is given by 

0

( )
( )

( )n n n i n i
i

B z
x G z g

A z
(4.63) 

For given A(z) and B(z), the polynomial G(z) can be obtained by long polynomial 
division. The same result is obtained by multiplying B(z) by the infinitely long MA 
representation 1/A(z). A direct recursion can also be given with 

( )
( ) ( ) ( ) ( )

( )

B z
G z A z G z B z

A z
(4.64) 

The coefficients of z–m are given by the equation, 

0 1 1m m p m p ma g a g a g b (4.65) 

This gives a solution for computing the gi coefficients for increasing orders from 
A(z) and B(z):

0

1 1

1 1

0, 0, 1

, 1, ,

,

i

m m p m p m

m m p m p

g i g

g a g a g b m q

g a g a g m q (4.66) 
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The inverse problem, computing A(z) and B(z) for an ARMA( p,q) process with 
given orders p and q from the infinitely long G(z), is most conveniently solved by 
using p of the relations in (4.66) for m > q to solve the ai. For an ARMA( p,q)
process, the values of the bi coefficients are known to be zero for m > q. 
Afterward, computing bi from the first q equations is straightforward when G(z)
and ai are known. 

The cross covariance between a single input and output lag of an ARMA( p,q)
process is given by 

0

2

[ ]n k n m i n k i n m
i

m k

E x E g

g (4.67) 

This follows because the expectation in (4.67) is nonzero only for k + i = m.
Furthermore, gm–k is nonzero for nonnegative arguments, and hence for m  k in 
(4.67).  

By multiplying the ARMA( p,q) equation (4.53) by xn–k and taking expectations 
it follows that 

1 1 1 1[ ].n n k n n k p n p n k n n k n n k q n q n kE x x a x x a x x x b x b x   (4.68) 

For k  0, it can be simplified to 

1( ) ( 1) ( )p kr k a r k a r k p Q (4.69) 

2

0

, 0

0 ,

q k

k m m k
m

Q g b k q

k q (4.70) 

Of course r (– k)=r (k) for negative time shifts. This result shows that after q
disturbed terms, which also deliver the boundary conditions, only the AR 
parameters influence the further development of the autocorrelation function. 
Therefore, at lags greater than the MA order q, the autocorrelation behaves as the 
autocorrelation of an AR( p) process with Qk = 0 in (4.69). 

Finally, the long MA representation G(z) of (4.64) can be used to derive 

2

0 0 0

( ) , 0.n n k i n i m n k m i i k
i m i

r k E x x E g g g g k   (4.71) 

The autocovariance function of arbitrary ARMA( p,q) processes can also be writ-
ten as an infinite summation of lagged MA parameters. By defining gi = 0 for i < 0, 
the lower limit in the summation in (4.71) can also be taken as minus infinity and 
the limitation to positive values of k can be released. 
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Priestley (1981) defines an autocovariance generating function R(z) as  

( ) ( ) k

k

R z r k z  (4.72) 

With (4.71) and gi = 0 for i < 0, it is easily derived that 

2 2 ( )

2 1

( ) k i i k
i i k i i k

k i k i

R z g g z g z g z

G z G z   (4.73) 

G(z) follows like the definitions of A(z) and B(z) in (4.15) and (4.5). The condition 

0

i
i

i

g z  (4.74) 

implies that G(z) is analytic inside the unit circle. It follows that if the poles of A(z)
and the zeros of B(z) are less than one in absolute value, the sum in (4.74) is finite. 
Therefore, the condition (4.74) requires AR processes to be stationary and MA 
processes to be invertible. The substitution z = e j  transforms the autocorrelation 
generating function into the power spectral density. 

4.6  Harmonic Processes with Poles on the Unit Circle 

So far, only poles and zeros inside the unit circle have been considered. With 
(4.73), the same autocorrelation function is generated with poles and zeros 
mirrored with respect to the unit circle because both z and z–1 are arguments in the 
autocovariance generating function. The definition of the shift operator z in (4.6) 
shows that using both z and z–1 give a two-sided transform. Hence, 2p+q different 
combinations of poles and zeros yield the same autocovariance of an ARMA( p,q)
process.  

The model with its poles exactly on the unit circle represents a special class of 
its own: the harmonic function. This cannot be described as an ordinary AR 
process because the output variance would become infinite for a nonzero input 
signal. Taking the two complex conjugate poles, they describe the process 

Figure 4.10.  Position of two complex conjugated poles of harmonic process 

cos  + j sin

cos  - j sin

= 0=
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1 1
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1 2

1 (cos sin ) 1 (cos sin ) 0

1 2cos 0

2cos 0

n

n

n n n

x j z j z

x z z

x x x (4.75) 

and the solution is 

cos( )nx C n . (4.76) 

Hence, an AR(2) process without any input signal and with the second parameter 
equal to one represents a sinusoidal solution with a frequency determined by the 
first parameter, leaving free values of the amplitude and for the phase. It is very 
important that the input is identically zero.  

Priestley (1981) defined this sine wave solution as a stochastic variable by 
choosing a random variable for , with uniform distribution between –   and 
and with probability density function 1/(2 ) between those boundaries. If  is a 
constant, the solution xn is a deterministic variable, but it can be made random by 
taking a random variable for . The special property of the random harmonic 
process is that a complete realisation from –  to  becomes deterministic by 
choosing one specific value for . It is clear that AR processes with poles on the 
unit circle are a separate class of processes. 

For random with uniform probability density function, it is possible to 
calculate the expectation and the autocorrelation function. The expectation 
becomes 

[ ] cos( )

1
cos( ) sin( )

2 2
0

nE x E C n

C
C n d n

(4.77) 

This result is valid for all n. It just says that the expectation of a sine wave with 
known frequency but unknown phase equals zero. The autocovariance function is 
found as follows: 
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r k E x x n n k d
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n k n n k d
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n k n k d
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k d C k  (4.78) 
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The autocorrelation function found by dividing by the variance of the signal 
becomes 

( ) cos( )k k (4.79) 

The autocorrelation is infinitely wide. 
With this basic ingredient, a harmonic process is defined as 

1

cos( )
M

n i i i
i

x C n (4.80) 

The phases i are independent, uniformly distributed, random variables, each bet-
ween –   and + . As the frequencies can have arbitrary values, the process xn will 
generally not be periodic. The expectation of independent random variables is the 
sum of individual expectations, hence, 

1

[ ] cos( ) 0
2

M
i

n i i i
i

C
E x n d (4.81) 

Likewise, the autocovariance is the sum of individual covariances because of 
the independence of the phases that makes the expectation of all cross products 
zero, or 

2

1

1( ) [ ] cos( )
2

M

n n k i i
i

r k E x x C k  (4.82) 

Furthermore, it is also possible to take a random variable as the amplitude. 
All stationary AR processes and invertible MA processes have a decaying 

autocorrelation function. The power series of (4.52) decays if the radius of the 
poles is less than one and the autocovariance of MA in (4.8) is finite. Therefore, 
the harmonic process is the only stochastic model with an autocorrelation function 
that never dies out because (4.82) is a periodic function.  

4.7  Spectra of Time Series Models 

The spectral properties will be derived for the infinite representation (4.63) that 
includes all AR, MA, and ARMA models. This is an elegant way to derive 
formulas for the spectra, but it is not advisable for a practical computation due to 
the infinite length. The general time series model is given in (4.63) by 

0
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( )n n n i n i
i

B z
x G z g

A z
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The autocovariance function is given in (4.71) as 

2

0

( ) [ ] ,n n k i i k
i

r k E x x g g k

where gi = 0 for i < 0. The power spectral density is given by (3.8): 
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g e g e  (4.83) 

This can further be written as 

2 2
2

( ) ( ) ( ) ( )
2 2

j j jh G e G e G e (4.84) 

A comparison with (4.73) shows that this outcome is also found by substituting z = 
e j  in the autocovariance generating function. With (4.63), the spectrum can also 
be written as 
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j

B e
h

A e

 (4.85) 

This general ARMA spectrum immediately gives also the spectra of pure AR and 
pure MA processes by setting B(e j ) and A(e j ) equal to one, respectively. The 
figures with spectral densities will show the normalized spectrum ( f ) that is 
given by 

222

22 2
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( ) , 0.5 0.5
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j f

j f
x

B e
f f

A e

(4.86) 
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4.7.1   Some Examples 

The spectrum of white noise becomes 

2

( )
2

h (4.87) 

An AR(1) process with parameter a yields 
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2 ( )
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1

2 1 2 cos
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h
A e
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(4.88) 

For the normalized spectrum ( f ),

2

2

1
( )

1 2 cos(2 )

a
f

a f a
(4.89) 

The poles of an AR(1) process are always real. In the complex plane of Figure 
4.10, the angle of the poles is zero for negative a and   for a > 0.

Figure 4.11 gives the spectra of an AR(1) process with a positive and a negative 
parameter. The maximum of the spectrum is found at the frequency of the pole in 
Figure 4.11. 

The power spectral density of a MA(1) process becomes 

2 2
2 2( ) ( ) 1 2 cos

2 2
jh B e b b  (4.90) 

It is given in Figure 4.12 for a positive and a negative value of the MA(1) 
parameter. With those examples, it is clear how the spectrum of higher order MA 
models and ARMA models can be calculated.  

An AR(2) process has the spectrum 
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1 2 1 2
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2 2 2
2 1 1 2 2

1
( )

2 1 1
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2 1 2 1 cos 4 cos

j j j j
h
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a a a a a
  (4.91) 
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Figure 4.11.  Normalized power spectral density of the two AR(1) processes of Figure 4.4. 
The slowly varying autocorrelation has a concentration of power in the lowest frequencies. 
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Figure 4.12.  Normalized power spectral density of two MA(1) processes with real zeros at 
 = 0 and at  = , respectively. The spectra show a valley at the frequency of a zero. 

For the normalized spectrum ( f )

2 2
2 12

2 2 2
2 2 1 1 2 2

11
( )

1 1 2 1 cos 2 4 cos 2

a aa
f

a a a a a f a f
 (4.92) 

Poles are recognized as spectral peaks, when they are close to the unit circle. 
Likewise, zeros are seen as spectral valleys.  Figure 4.13 gives the power  spectrum  
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Figure 4.13.  Normalized power spectral density of the AR(2) processes of Figure 4.5. The 
angle of the poles is at  / 5 or f  0.1. 

of the AR(2) process used in Figure 4.5 for the autocorrelation function. The pole 
is at about the frequency of 0.1 Hz, corresponding to an angle of 0.2 . This belongs 
to the period 10 that is visible in the autocorrelation function in Figure 4.5.  

The influence of poles can be made visible in a simple example with two 
different AR(10) processes where all 10 poles are at equal radii. This example is 
obtained by letting all parameters be zero, except a10. This autoregressive 
polynomial can give five complex conjugated pole pairs or four complex conju-
gated  pairs and two single real poles.  The  autocorrelation function  becomes  zero  
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Figure 4.14.  Autocorrelation function and normalized power spectral density of two 
AR(10) processes with all parameters zero except a10
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for all lags that are not multiples of 10. At those lags, however, the autocorrelation 
function is a power series, as in an AR(1) process. The spectra have constant 
heights for every equidistant peak.  

Figure 4.14 shows what happens with a single positive or negative parameter 
a10 for this special AR(10) process. The positive parameter gives five complex 
conjugated pole pairs, which can be seen in the power spectrum that has five peaks 
in the interval. The negative parameter gives four complex conjugated pole pairs 
and two real poles at the frequencies of 0 and 0.5. 

There is a strong relation between the width of a single peak and its height. The 
angle of a pole determines the frequency; the distance of the pole to the unit circle 
determines the width and the height of a spectral peak. Narrow AR(2) peaks are 
also high. It will generally require an AR process with many close poles to obtain a 
spectral peak where the width of the peak and the shape of the peak do not belong 
to the natural AR(2) combination of height and width. Zeros close to the unit circle 
give deep valleys. The pole exactly on the unit circle is the limiting case, with a 
single spectral line as a peak with vanishing width. 

Figure 4.15 gives an ARMA(10,10) example where the 10 poles are the same 
as in the upper half of Figure 4.14 and the 10 zeros are located at the positions that 
were poles of the lower half. At the frequencies of the zeros, six valleys are seen; 
each has the same depth because the equidistant zeros all had the same radius. This 
chapter deals with time series theory. It describes the relation between the 
parameters, on one hand, and the autocorrelation function and the power spectral 
density on the other hand. It should be stressed that applying the relations to 
estimated models is not always allowed. Most relations for the AR theory can be 
applied to estimated parameters and autocorrelations without a problem. However, 
the MA and ARMA relations create a problem. Estimating q MA parameters from 
q autocorrelations is not efficient and produces no useful model. Conversely, 
estimating q autocorrelations from q estimated MA parameters is allowed. 
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Figure 4.15.  Autocorrelation function and normalized power spectral density of an 
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4.8  Exercises 

4.1 For a MA(1) process, show that | (1) |  0.5 for any parameter value. For 
which parameter value is (1) maximal and for which minimal. 

4.2 Find the first five parameters of the long MA representation G(z) of the 
process 

10.5 .n n nx x

4.3 Find the first five parameters of the long MA representation G(z) of the 
process 

1 1 20.5 0.9 0.5 .n n n n nx x

4.4 Derive the autocovariance function r(k), as given in Equation (4.60). 

4.5 The first parameters gi of a long MA model of an ARMA(2,2) process are:  

g0 = 1, g1 = – 1.3, g2 = – 0.03, g3 = 0.937, g4 = – 0.8223,  

Find the parameters of the ARMA(2,2) process. 

4.6 Use ARMASA to plot the autocorrelation function of an AR(1) process.  

4.7 Use ARMASA to plot the power spectral density function of an AR(1) 
process.  

4.8 Use ARMASA to plot the autocorrelation function of a MA(1) process.  

4.9 Use ARMASA to plot the power spectral density function of a MA(1) 
process.  

4.10 Compute the parameters of an AR(2) process with a spectral peak at  
 = /3. Use the complex conjugated poles at R(cos  + j sin ) and  

R(cos  – j sin ) with R < 1 to find poles within the unit circle.  

4.11 Use ARMASA to plot the autocorrelation function of an AR(2) process 
with a spectral peak at  = /3.  

4.12  Use ARMASA to plot the power spectral density function of an AR(2) 
process with a spectral peak at  = /3. Take different values of the radius 
of the complex conjugated poles. Can the width of a peak be varied 
independently of the height?    

4.13 Study the difference between logarithmic and linear amplitude scaling for 
the power spectral density of an AR(2) process if the poles are approaching 
the unit circle.  

4.14 Compute the parameters of a MA(2) process with a spectral valley at  
 = /4. Use the conjugated poles at R(cos  + j sin ) and R(cos  – j sin )

with R < 1 to find zeros within the unit circle. 
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4.15 Use ARMASA to plot the power spectral density function of a MA(2) 
process with a spectral valley at  = /4. 

4.16 Use ARMASA to plot the power spectral density function of an 
ARMA(2,2) process with a spectral peak at  = /4 and a valley at 

 = /3. 

4.17 Verify that the same AR(1) autocorrelation function is also the solution of 
(4.29) if the negative value k = – 1 is substituted for xn–k. Hence, xn is 
multiplied by xn+1. This requires the computation of a right-hand side term. 



5

Relations for Time Series Models 

5.1 Time Series Estimation 

Almost all stationary stochastic processes can be modeled by a unique, stationary, 
and invertible ARMA process. It does not matter how the observed process had 
been generated, and it is not necessary to know whether it is noise or the sum of 
many simple processes plus coloured noise. Any observed signal that can be 
modeled as a stationary stochastic process has a unique ARMA representation. 
This can be ARMA( p,q), AR( p), or MA(q). AR( ) and MA( ) are always a good 
description, but it is important in practice to find the model with the fewest 
parameters. That model can generally be estimated with good accuracy. Any 
continuous spectral density can mathematically be approximated arbitrarily closely 
with a rational model. The important conclusion, which required much mathe-
matical skill to prove, is that the ARMA models provide a complete model set for 
arbitrary stationary stochastic processes. Therefore, using a time series model is not 
equivalent to forcing a model upon the data from a limited class of candidates. 
Time series models offer a complete description without restrictions. The model 
type and the model order are generally supposed to be known in the theory. 

With a suitable computer program ARMAsel (Broersen 2000, 2002), it is 
possible now to detect automatically the best model type, AR, MA, or ARMA, and 
the best model order for a given set of observations. The selection criteria use the 
notion of parsimony: they add a penalty for each additional parameter. In this way, 
they look for an accurate model with a minimum number of parameters. 

Before treating the estimation and order-selection algorithms, some theoretical 
relations for time series models are given. 

5.2 Yule-Walker Relations and the Levinson-Durbin Recursion 

The Yule-Walker relations describe the relation between the autocovariances and 
the parameters of AR processes (Priestley, 1981). Multiplying both sides of the 
AR(p) equation (4.50) by xn and taking expectations gives 

2
1(0) (1) ( )pr a r a r p    (5.1) 
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Multiplying both sides of the AR( p) equation by xn – k  with k > 0, and taking the 
expectations gives the Yule-Walker relations 

1( ) ( 1) ( ) 0pr k a r k a r k p    (5.2) 

The variance of the innovations appears only in (5.1) with k = 0; all other equations 
with k > 0 have zero on the right-hand side. The shape of the equation is regular for 
k greater than p. If k is between 1 and p, negative indexes of the lag k – i are mostly 
replaced by the autocovariance at the positive lag because the autocorrelation 
function is symmetrical. That gives the possibility of obtaining p + 1 equations 
containing the autocovariances r (0), …, r ( p), on the one hand, and the p
parameters together with the innovation variance on the other hand. 

The normalized version of (5.2) can also be written as 

1( ) ( 1) ( )pk a k a k p    (5.3) 

This equation shows how the AR( p) autocorrelation function for the lags 1 to p is 
extrapolated for k > p.

The autocorrelation function is a measure of the degree of correlation between 
xn and xn–k , as a function of lag k. However, xn and xn–k are not only directly related, 
but also through the intermediate observations. For example, for an AR(1) process 
with parameter a, E{xnxn–2} equals a2r(0), which is exactly the extrapolation of the 
autocovariance of order one with (5.2). Box and Jenkins (1976) and Priestley 
(1981) use a partial autocorrelation function to describe the new contribution of an 
additional AR order to the autocorrelation. The partial correlation is loosely 
defined as the difference between the autocorrelation coefficient at a certain lag 
and its extrapolation from lower order correlations. For true AR( p) processes, all 
partial correlations above order p are zero, whereas the autocorrelations remain 
nonzero for any time shift. The negative of the partial correlation is often called the 
reflection coefficient. By the nature of correlations, reflection coefficients also are 
always between –1 and 1. AR( p) models can be characterized by their p nonzero 
parameters or by their p reflection coefficients. 

The first p + 1 Yule-Walker equations will be used to solve the parameters and 
the variance 2 of the innovations from the autocovariances of xn. Together, for k
= 0 until k = p, Equations (5.1) and (5.2) can be written in the matrix form 

2

1

1(0) ( 1) ( )

(1) (0) 0

( 1)

( ) (1) (0) 0p

r r r p

ar r

r

ar p r r

   (5.4) 

Here, the negative lags are still present in the matrix. Due to the symmetry of the 
autocovariance function, it is possible to replace the negative lags by their positive 
equivalents. Leaving the first equation out, the last p equations become 
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1(0) (1) ( 1) (1)

(1) (0) (2)

(1)

( 1) (1) (0) ( )p

ar r r p r

r r r

r

ar p r r r p

   (5.5) 

Without loss of information, this latter matrix formula can be divided by r (0) to 
remove the influence of the variance completely from those equations. With some 
new matrix and vector variables, the first equation of (5.4) and the matrix of (5.5) 
become 

2(0) T
p p

p p p

r r

R r
   (5.6) 

Rp is the doubly symmetrical p p Toeplitz matrix in (5.5). The parameter vector is 
defined without the first parameter a0 as 

1 2

T

p pa a a    (5.7) 

and the autocovariance vector as 

(1) (2) ( )
T

pr r r r p    (5.8) 

The solution is expressed mathematically by 

1
p p pR r  (5.9) 

Inverting the autocovariance matrix is never used to determine the solution in 
practice. Much faster and numerically more stable algorithms are available. They 
use the very special character of Rp in (5.5). That matrix is symmetrical about both 
the main diagonal and the main antidiagonal, and it is a Toeplitz matrix. Toeplitz 
means that all diagonal lines have equal elements.  

The solution of (5.9) is generally found recursively with an algorithm called the 
Levinson-Durbin algorithm or sometimes the Levinson recursion. To have a 
convenient derivation, a symbol ~ is introduced to indicate the reversed version of 
a vector, with the elements in reverse order. The reversal of the parameter vector 
(5.7) gives  

1 1

T

p p pa a a

and the reversed autocovariance vector (5.8) becomes 

( ) ( 1) (1)
T

pr r p r p r  (5.10) 



92 Automatic Autocorrelation and Spectral Analysis 

It follows elementarily by writing out the terms that 

T T
p p p p

T T
p p p p

r r

r r
 (5.11) 

The Levinson-Durbin algorithm starts with the solution of (5.9) by taking p = 1 and 
recursively determines the solutions for increasing orders.  

The individual parameters of lower order models in a recursive solution are 
given for an intermediate order K as 

[ ]
1 2

TK K K K
Ka a a  (5.12) 

The solution is based on partial autocorrelations and has very good numerical 
performance. Suppose that a solution of order K is available for Equations (5.6). 
The true variance of the innovations 2 will follow only for the true order p.
Therefore, some intermediate variance measure is introduced. The solution for the 
intermediate order K can be written symbolically as 

[ ] 2

[ ]

[ ] 1

(0) K T
K K

K
K K

K
K K

r r s

R r

R r (5.13) 

where sK
2  denotes the residual variance after calculating K parameters. The final 

line is a mathematically closed form expression for the solution, not the way the 
solution has been obtained.  

The solution for order K + 1 has to be expressed in the variables of (5.13) to 
obtain a recursive solution. The equations for order K + 1 in the notation of (5.13) 
become 

[ 1] 2
1 1

[ 1]
1 1

(0) K T
K K

K
K K

r r s

R r  (5.14) 

Now define the new parameter vector for order K + 1, that is one longer than the 
previous one, as the old parameter vector with an extra addition for each vector 
element and one new element to increase the order from K to K + 1. In a formula, 
this becomes 

[ ] [ ]
[ 1]

1

K K
K

Kk
(5.15) 

The coefficients ki are the reflection coefficients of order i. Furthermore – ki is also 
the partial correlation coefficient. The new reflection coefficient kK+1 would be 
zero if the extrapolation with (5.2) of the autocovariance function of the AR(K)
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model beyond order K were equal to r (K+1). The difference determines the value 
of kK+1.

Introduce a partitioned Toeplitz covariance matrix of order K + 1: 

1 (0)
K K

K T
K x

R r
R

r r
(5.16) 

For the matrix equation in (5.14), 

[ ] [ ]

1(0) ( 1)

K K
K K K
T

K K

R r r

r r r Kk
(5.17) 

which can be written as two separate equations 

[ ] [ ]
1

[ ] [ ]
1 (0) ( 1)

K K
K K K K

T K K
K K

R k r r

r k r r K (5.18) 

Substituting the solution for order K of (5.13) in the equation for stage K + 1 gives 

[ ]
1

[ ] [ ]
1 (0) ( 1)

K
K K K

T K T K
K K K

R k r

r r k r r K (5.19) 

The solution of the first equation is 

[ ] 1
1

[ ]
1

K
K K K

K
K

k R r

k (5.20) 

The solution for the new parameter vector (5.15) is 

[ ] [ ]
[ 1] 1

1

K K
K K

K

k

k
(5.21) 

The new parameter vector consists of the old parameter vector and as an addition, 
the reversed old parameter vector, multiplied by the additional parameter of order 
K + 1. Furthermore, the parameter of order K + 1 is equal to the reflection coeffi-
cient of that order. 

The second Equation (5.18) is used to derive the value of the reflection coeffi-
cient: 
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[ ] [ ]
1 1

[ ] [ ]
1

[ ]

1 2

(0) ( 1)

(0) ( 1)

( 1)

T K T K
K K K K

T K T K
K K K

T K
K

K
K

r r k k r r K

k r r r K r

r K r
k

s
(5.22) 

where sK
2 has been substituted from (5.13). The first line contains the product of 

two reversed vectors, which equals the product of the original vectors. Further, 
using partitioned matrices, the new residual expression in (5.14) becomes 

2 [ 1]
1 1

[ ] [ ]
1 1

[ ] [ ]
1

2 2
1 1

2 2
1

(0)

(0) ( 1)

(0) ( 1)

(1 )

K T
K K

K T K T
K K K

K T K T
K K K

K K K K

K K

s r r

r k r k r K

r r k r K r

s k k s

s k  (5.23) 

where the last line of (5.22) has been substituted. The Levinson-Durbin recursion is 
the solution to determine the AR parameters from the first p given true 
autocovariances: 

LEVINSON-DURBIN RECURSION 

     Starting values 

    for K = 1, 2, , p – 1  

[ ]

1 2

2 2 2
1 1

[ ] [ ]
[ 1] 1

1

( 1)

(1 )

T K
K

K
K

K K K

K K
K K

K

r K r
k

s

s s k

k

k
           (5.24)

2
0

[1]
1 2

0

2 2 2
1 0 1

(0)

(1)

(1 )

s r

r
k a

s

s s k
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5.3 Additional AR Representations

Each of the representations with parameters and with reflection coefficients has its 
own advantages. It is common that a relation that is simply formulated in one 
representation can be very cumbersome in an other representation. As an example, 
the successive residual variances in (5.24) are very easily given as a function of 
reflection coefficients of increasing order. However, they would look very 
complicated if expressed in the parameters. On the contrary, the definition (4.13) of 
an AR( p) process would have a complicated appearance if formulated with 
reflection coefficients. 

Several equivalent representations of AR( p) processes are known: 

p + 1 autocovariances 
p parameters and the variance of the innovations 
p reflection coefficients and the variance of the innovations 
p poles and the variance of the innovations 
p autocorrelations and the variance of the innovations 
p cepstral coefficients and the variance of the innovations (Markel and Gray, 
1976) 
In speech coding where autoregressive modeling is often called linear 
prediction, many more representations are known (Viswanathan and Makhoul, 
1975; Markel and Gray, 1976; Erkelens, 1996), e.g.,

line spectral pairs 
log area ratios 
arcsine of reflection coefficient 
immittance spectral pairs. 

An important property of reflection coefficients is that an AR model is 
stationary if all reflection coefficients are smaller than one in amplitude. Checking 
the magnitude of the reflection coefficients is the usual way to verify the 
stationarity or invertibility of AR or MA polynomials. Reflection coefficients are 
also known as the negative partial correlation coefficients of each order. Reflection 
coefficients with magnitudes less than one guarantee that 

the AR( p) process is stationary 
the poles of the AR( p) polynomial A(z) are within the unit circle 
the matrix Rp of (5.6) is positive-semidefinite. 

Stationary processes have all reflection coefficients between –1 and 1, and all 
estimated reflection coefficients have to be less than one to obtain a useful model. 

Relations for the other representations have also been given. However, their use 
is less general. Log area ratios, line spectral pairs, cepstra, and other dedicated 
transformations are typical representations in speech analysis and they are treated 
in dedicated literature; see Erkelens (1996) or Markel and Gray (1976). 
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It is an enormous advantage that the given AR relations are also useful, when 
they are applied to estimated parameters and to estimated autocorrelation functions. 
That will be an incentive to search for recurrent AR estimation methods. The main 
reason is that p estimated autocorrelations are asymptotically efficient estimates 
(Porat, 1994). They are also asymptotically sufficient (Arato, 1961) to calculate the 
parameters or the reflection coefficients or any other representation of an AR( p)
model. 

5.4 Additional AR Relations

It is often important to use the proper representation to facilitate derivations and 
expressions. Therefore, relations between autocorrelations, parameters, and reflec-
tion coefficients will be treated in some detail. 

5.4.1 The Relation Between the Variances of  xn  and of  n  for an                     
AR( p) Process 

This is rather difficult and complex if expressed in parameters, but it is simply a 
product of (1 – ki

2) when expressed in reflection coefficients. With (5.24), it 
follows that 

2 2 2

1

/ 1
p

x i
i

k (5.25) 

The reduction of the residual variance with increasing order K is given by 

2 2 2

1

1
K

K x i
i

s k (5.26) 

which yields 

2 2 , , 1,Ks K p p (5.27) 

All reflection coefficients for orders greater than the true AR order p are zero. The 
relation (5.25) can look very unattractive if any representation other than reflection 
coefficients is used. Expressions for the reduction of the residual variance as a 
function of the model order are much longer and much less informative if they are 
written in terms of parameters, although the numerical results will coincide. 

5.4.2   Parameters from Reflection Coefficients  

The Yule-Walker relations give the relation between parameters and autocor-
relations. They have been solved with the recursive Levinson-Durbin algorithm to 
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find reflection coefficients and parameters from autocovariances. The last relation 
in (5.24)  

[ ] [ ]
[ 1] 1

1

, 2, , 1
K K

K K

K

k
K p

k
 (5.28) 

is used recursively to transform reflection coefficients into parameters, starting 
with the first a [1] = k1. The final vector [p] contains the parameters of the AR( p)
process. 

5.4.3   Reflection Coefficients from Parameters 

In this case, the parameter vector with a1 , a2 , , ap is given. The start is found by 
writing the complete parameter vector in the final state that is obtained with (5.28) 
as  

1 1
[ ] ,

p

p p
p p

p
p p

a a

k a

a a

 (5.29) 

and then recursively the reflection coefficients of lower are found with 

1 1

1 1[ 1]
2

1
1 1

, , 1, , 2
1

K K
K

K
K K
KK

K

K
K K

a a

k

a a
K p p

k

k a (5.30) 

5.4.4   Autocorrelations from Reflection Coefficients  

This starts with (0) = 1, (1) = – k1 and continues with building the parameter 
vector for increasing orders and computing the next autocorrelation 

[ ] [ ]
1 1

1

( 1) , 2, , 1

( ) ( 1) ( ),

T K K
K K K

p

K k k K p

K a K a K p K p   (5.31) 

Multiplying the autocorrelations by r (0), the variance of xn, the autocovariances 
are found. 
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5.4.5 Autocorrelations from Parameters  

This starts by transforming the parameters into reflection coefficients with (5.29) 
and using (5.31) to determine the autocorrelation from those reflection coefficients. 

The reverse, parameters and reflection coefficients from autocovariances or 
autocorrelations, is carried out with the Levinson-Durbin recursion (5.24). It is 
clear that the construction of intermediate parameter vectors from reflection 
coefficients plays a role in all transformations that are given here. 

5.5 Relation for MA Parameters 

A number of convenient relations have been derived for AR models. Those 
relations for relating the true process parameters to the spectrum, autocorrelation 
function, and all other AR representations will also be important for estimation 
algorithms. The relation between MA parameters and the autocorrelation function 
that belongs to them has been given in (4.11). It is simple and straightforward to 
compute the autocorrelation function for given MA parameters.  

However, the inverse is much less simple because those relations are non-
linear. Wilson (1969) developed a nonlinear search algorithm for a solution.  

To demonstrate the problems with the relation between autocorrelation and MA 
parameters, a MA(1) process with b1 = 0.5 is treated here. With (4.11), it follows 
easily that (1) = 0.4 if b1 is given. The other way around, solving b1 from a given 
value (1) uses 

2
1 1(1) /1b b

with the solution 

1 2

1 1
1

2 (1) 4 (1)
b (5.32) 

The solutions for b1 are 0.5 and 2, which is just 1/b1 and which gives the same 
autocorrelation according to (4.12).  

Higher order processes require iterative computer calculations to find the true 
parameters from the true autocorrelations.  For a MA(1) process, (1) is  between 
– 0.5 and 0.5; these limiting values are obtained for b1 = – 1, b1 = 1, respectively. A 
real solution of (5.32) requires that – 0.5 < (1) < 0.5. That is no problem for true 
autocorrelation functions because they obey automatically the positive-semidefinite 
requirement if the zeros of the MA polynomial of (4.5) are within the unit circle. 
But it would give difficulties if it were applied to estimated lagged product 
autocorrelations. If the true autocorrelation (1) is 0.5, a slightly higher estimate 
will no longer produce a real solution with (5.32). 

This relation between q MA estimated autocorrelations and q MA parameters 
will not be treated any further because it is no longer valid or efficient for 
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estimated autocorrelation functions. Porat (1994) has shown that estimated 
autocorrelations of a MA process are not efficient. This means in practice that it is 
not statistically efficient to compute q MA parameters from q estimated 
autocorrelations. Theoretically, efficient estimates for MA parameters from 
estimated autocorrelations, with the minimum variance from the given 
observations, can be computed only from all estimated autocorrelations (Godolphin 
and de Gooijer, 1982). This property is the reason that MA and also ARMA 
estimation is much more difficult in practice than AR estimation.

5.6 Accuracy Measures for Time Series Models 

Several methods have been described for estimating parameters of time series 
models. A comparative presentation of the spectral results of Kay and Marple 
(1981) showed that different estimators may yield completely different spectra 
from the same data. Before discussing the estimation methods, an objective 
criterion will be derived to compare the quality of estimated models with the true 
process. This prevents preferring a certain estimation method as a matter of taste, 
which would be quite unacceptable in a scientific environment. Therefore, an 
objective measure for the comparison of estimated models has to be derived.  

Gray and Markel (1976) have compared different distance measures from the 
point of view of practical applications, especially speech processing. They found 
that using differences between parameters or reflection coefficients did not give 
reliable measures. Taking the logarithm of spectra was much better. Martin (2000) 
concluded also that it is not advisable to use the difference between true and 
estimated parameters as an accuracy measure. The difference between an AR(1) 
process a1 = 0.98 and a model a1 = 1.02 would be the same as the difference 
between a1 = 0.02 and a1 = – 0.02. In practice, the first difference is very important 
for a stationary process and a nonstationary model; the second difference is very 
small. The difference between a1 = 0.99 and a1 = 0.95 is also much more important 
than the difference between a1 = 0.19 and a1 = 0.15. This would follow from a 
sensible accuracy measure. Therefore, the unweighted squared difference between 
parameters is not considered a useful measure. 

5.6.1 Prediction Error 

It is possible to use basic principles to define a general accuracy measure for an 
estimated model. That measure is the squared error of the one step ahead prediction 
that can be found with the model in fresh data that have not been used to estimate 
the model. It should be realised that the fit to the observations that are used to 
estimate the model is minimised in some sense and the statistical properties of the 
estimated model depend on those observations. Above the true order, the true 
values of the parameters are zero, but estimated values will have small values that 
reduce the least-square fit to the given observations, known as the residual 
variance. Therefore, the prediction error in new and independent observations of 
the same process is the basis for an accuracy measure. 
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Suppose that an ARMA( p,q) process (4.54) gives the true description of the 
data: 

( ) ( )n nA z x B z  (5.33) 

Also suppose that an estimated model ARMA( p’,q’) is given with the estimated 
parameter polynomials ˆ ( )A z  and ˆ ( )B z . True or estimated polynomials may have 

different numbers of parameters and they may also be equal to one. Therefore, the 
prediction error of a MA model ˆ ( )B z  to an AR process A(z) is also defined by this 

definition. The model may be estimated from data that have been observed 
previously, or it may just be an arbitrary model for which one wants to know how 
close it is to the true ARMA( p,q) process. It is well known that a model with more 
parameters, estimated by the least-squares principle, always seems to fit better to 
the data from which it was estimated. Every extra estimated parameter reduces the 
residual variance. This phenomenon is also found in polynomial regression. To 
avoid this artifact in fitting properties, the quality of a model is defined as the 
output of that model applied to fresh or new data of the ARMA( p,q) process. 
Those new data may not have been used for estimating of the model because that 
would create dependence between the estimated parameters and the data. In this 
derivation, it is essential that the parameters in ˆ ( )A z  and ˆ ( )B z  are independent of 

the data xn that are used in Figure 5.1 as the input of a series of two linear filters. 

Figure 5.1.  Fresh and new data filtered by an estimated ARMA model 

Figure 5.1 gives a relation between new data xn as input signal and the output 
ˆn  that gives the prediction error or the part of xn which cannot be explained by the 

model 

ˆˆ ˆ( ) ( )n nB z A z x (5.34) 

The output is no longer the true n from (5.33) unless the estimated model and the 
true process are identical. The prediction error (PE) is defined as variance 2

ˆ  of 

ˆn  for new data as input in Figure 5.1. The squared error of one step ahead 

prediction is often called simply the prediction error (PE) or the one step ahead 
prediction error. PE is the variance of a new “product ARMA” process, which is 
found by substitution of xn from the true process Equation (5.33), 

ˆ ˆ( ) ( ) ( )
ˆ

ˆ ˆ( ) ( ) ( )
n n n

A z A z B z
x

B z A z B z
 (5.35) 

ˆ ( )A z ˆ1/ ( )B z
xn n

ˆ
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The variance 2
ˆ  of ˆn  is the integral of the power spectral density of ˆn .

Therefore, the prediction error can also be defined in the frequency domain with 
(4.85) as 

2
2

2
ˆ

ˆ ( ) ( )
PE

ˆ2 ( ) ( )

j j

j j

A e B e
 d

A e B e
(5.36) 

This can also be written as 

2
2
ˆ

( )
PE

ˆ2 ( )

h
 d  

h
 (5.37) 

because the spectral density is a real number for every frequency. It is essential in 
this last equation that both the true and the estimated spectrum in (5.37) have been 
computed with the same innovation variance 2 . The integrals in (5.36) and in 

(5.37) depend only on the true and on the estimated parameters and have no 
explicit contribution from the true or the estimated variance of the signal. All 
different estimated spectra can be normalized by the same estimate 2

xˆ . Therefore, 

a spectral quality measure should be independent of this scaling factor. 
For AR processes, the MA polynomials in (5.36) are both equal to one. Then, 

the ratio PE/ 2  is known as the likelihood ratio LR (Erkelens, l996; Gray and 

Markel, 1976)  

2ˆ1 ( )
LR

2 ( )

j

j

A e
 d  

A e
(5.38) 

That ratio, closely related to the PE, is used in speech coding as a quality measure. 
This PE formula (5.37) shows the relative character of the prediction error 

measure in the frequency domain. Without proof, it is claimed that the minimal 
obtainable value is given by 

2PE (5.39) 

which is found if the true and the estimated ARMA model are the same. The proof 
is based on properties of the monic polynomials that appear in (5.36). The situation 
in the frequency domain is then that numerator and the denominator are equal, 
which means that the spectrum of the minimal error signal is white. The minimal 
value of the integral is 2 . This can also be interpreted that the best fitting model is 
the model that gives perfect white residuals. The frequency domain formula for the 
PE shows the relative character of this measure. The best estimated model is 
equally characterized by 
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white residuals 
minimum PE 
the quotient in (5.37) equals one 

The latter property guarantees that the minimum PE is given by (5.39). 

5.6.2   Model Error 

Finally, the model error (ME) is defined for models that are estimated from N
observations (Broersen, 1998). This is a scaled version of the prediction error, 
multiplied by the number of observations N from which the models ˆ ( )A z  and 
ˆ ( )B z  have been estimated:  

' 2 2

'

2 2
ˆ

ˆ ( ) ( )
ME , ([PE ] / )

ˆ ( )( )

( / 1)

q q

pp

B z B z
N

A zA z

N (5.40) 

Akaike (1970, 1970a) has shown that the expectation of PE for efficiently 
estimated unbiased models of AR(p) models is 1 + p/N  times the variance of n,
giving the value p to the ME. Likewise, the PE for “unbiased ” ARMA( p’,q’)
models with the model orders p’  p and q’  q has a lower limit, 

E(ME) p’+ q’  (5.41) 

The minimal expectation of the model error is equal to the number of estimated 
parameters and is independent of the number of observations. It is the Cramér-Rao 
lower bound (Stoica and Moses, 1997) for achievable accuracy with unbiased 
models. The ME gives an easy measure for judging the quality of estimated models 
because its expectation has been made independent of the sample size from which 
the model was estimated.  

The numerical value of the PE, and hence of the ME, is found with the variance 
of the ARMA process, 

ˆˆ ˆ( ) ( ) ( ) ( )n nA z B z A z B z  (5.42) 

These products of AR and MA polynomials can be multiplied to single new 
ARMA polynomials to give 

' 'ˆ( ) ( )p q n p q nC z D z (5.43) 

The variance of such an ARMA process is computed by the standard theory of 
Section 4.5. That separates the computations into an AR and a MA part, with the 
AR part first: 
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Figure 5.2.  Calculation of model PE as the variance of an ARMA model 

( )
ˆ

( )n n

D z

C z
(5.44) 

By computing first the AR model as a filter and afterward the MA part as a linear 
combination, the AR and the MA process are 

1

( )

ˆ ( )

n n

n n

v
C z

D z v

The MA process written out yields 

1 1 ' 'ˆ ( )n n n n p q n p qD z v v d v d v (5.45) 

The PE, the variance of the prediction error, is found as in (4.59) with 

12
ˆ ˆ 1 '

'

1(0) (1) ( ' )

(1) (0)
(0) 1

( ' ) ( ' 1) (0)

v v v

v v
p q

p qv v v

r r r p q

dr r
r d d

dr p q r p q r

 (5.46) 

The PE is proportional to the innovation variance 2 . The model error ME follows 

with (5.40) and is made independent of this scaling factor. 

5.6.3   Power Gain 

The power gain Pg [A(z), B(z)] of an ARMA process with the AR and MA 
polynomials A(z) and B(z) is defined as the ratio of the output and input variance of 
the ARMA process:  

2

2
( ), ( ) x

gP A z B z  (5.47) 

For AR processes, it follows with (5.25) that 

1/ ( )C z ( )D z
n n

ˆvn
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2
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1
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P A z

k

 (5.48) 

This ratio is the only characteristic that is required for the ME; the absolute 
variance level plays no role in the ME. The relation between the ME and the power 
gain is 

'
' '

'

ˆ ( ) ( ) ˆˆME , ( ) ( ), ( ) ( ) 1
ˆ ( )( )

q q
g p q p q

pp

B z B z
N P A z B z A z B z

A zA z
  (5.49) 

The power gain is computed as 2 2
ˆ /  of the ARMA process (5.43). Calculation 

of the variance of an ARMA process gives the numerical value for the difference 
between two models or between the true process and an arbitrary estimated model. 

5.6.4   Spectral Distortion  

The model error is one measure in a class of strongly related relative measures (de 
Waele, 2003; Broersen, 2001). It is a scaled prediction error. Other relative 
measures are the spectral distortion (SD) defined as  

2

2

0.5 ˆSD ln ( ) ln ( )
2

0.5 ( )
ln

ˆ2 ( )

 h h d

h
 d

h
 (5.50) 

where the quantity with ^ denotes the model estimate of the spectrum, as in (5.37). 
A comparison with (5.39) shows the asymptotic equivalence of N times the SD and 
the ME. The square root of the SD is also sometimes used. Gray and Markel (1976) 
have concluded that log spectral distance measures make the best reference for a 
comparison in speech coding. 

5.6.5   More Relative Measures 

The Kullback-Leibler discrepancy is a measure that has been developed in 
information theory. De Waele (2003) showed the close relationship between the 
Kullback-Leibler discrepancy and the model error for small differences between 
model and process. It is a general property of all relative measures that they are 
close for small differences between the true and the estimated quantities.  
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Stoica and Moses (1997) defined the spectral flatness as 

1 ( )
exp ln

ˆ2 ( )
SF

1 ( )
ˆ2 ( )

h
d

h

h
d

h

(5.51) 

The integrated ratio of squared spectral densities (IRSE) is 

2ˆ0.5 ( ) ( )
IRSE

ˆ2 ( )

h h
 d

h
(5.52) 

The measures have different scaling. Because the performance of all relative 
measures is similar for small differences, a favourite measure can be chosen freely. 
The usual measure in this book will be the model error (ME) of (5.40). The 
numerical values of the different relative measures may not be the same due to 
scaling. However, in a comparison between a true process and several estimated 
models, relative measures will generally reach their minimum value for the same 
model. 

5.6.6   Absolute and Squared Measures 

Absolute accuracy measures compute the absolute value of the difference between 
spectra, 

1 ˆ( ) ( )
2

h h d (5.53) 

or the integrated square error (ISE) of the difference between the spectra 

2

2

1 ˆISE ( ) ( )
2

ˆ( ) ( )
k

 h h d

r k r k (5.54) 

Absolute measures have no firm theoretical ground. Parseval’s law applied to the 
Fourier transform pair of the spectrum and the autocovariance in (3.8) gives 
equality with the sum of squared differences of the autocovariance function in the 
ISE measure of (5.54). One problem of this measure follows from the estimation 
variance (3.37) of the autocovariance function at great lags. That has a limiting 
constant value for all lags where the true autocovariance is zero. That means that 
the estimated lagged product autocovariance is always far from the true autocova-
riance function. Actual differences between true and estimated autocorrelations are 
seen in Figure 3.6. 
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Of course, if this measure approaches zero, the estimated spectrum with ^ and 
the true spectrum are very close. However, some models with a small value for 
such a measure may be acceptable, and others with the same value may be comple-
tely wrong. A difference of 0.01 between the true and the estimated spectrum for a 
certain frequency has the same influence in absolute measures when the true 
spectrum is 0.001 as when it is one. Broersen (2001) has shown by simulations in 
an AR(1) process that the behaviour of absolute errors as a function of the model 
order of the estimated AR model is very irregular. Some high-order estimated AR 
models seemed to be the best choice because they had the smallest values of an 
absolute error measure. However, those high-order AR models are not good in any 
other useful respect. The estimated AR(1) model should be the most accurate 
model with any sensible quality measure. That is found with all relative measures 
and not with absolute measures. Therefore, absolute measures are not suitable for 
establishing the quality of time series models.  

The influence of scaling with the estimated variance of the signal has also been 
studied (Broersen, 2001). It influences the absolute and squared measures, but it 
does not lead to a better or more useful quality measure. 

The same arguments against ISE in (5.54) apply to the integral of the squared 
difference between the normalized spectra. With Parseval’s relation, this gives an 
expression in both the time and the frequency domain for the integrated mean 
square error measure (IMSE): 

2

2

1 ˆIMSE ( ) ( )
2

ˆ( ) ( )
k

 d

k k  (5.55) 

Figure 5.3 shows the behaviour of the PE and of three different accuracy 
measures, as a function of the AR order in simulations with an AR(2) process. The 
PE and the ME have clear minima at the true order. The absolute difference and 
IMSE have a minimum at order eight; order two is not even a local minimum with 
those measures. 

Absolute and squared measures pay practically no attention to weak parts of the 
spectrum. Relative measures are generally preferable. IMSE may in many 
examples show good behaviour, but not always; sometimes completely wrong 
models have the smallest IMSE. The behaviour of the ME and of the other relative 
measures is always good. On the other hand, a small value of IMSE is no guarantee 
of a good or acceptable model. Taking the true autocorrelation in Figure 3.6 and 
subtracting 0.06 from (4), leaving the rest of the true function undisturbed, gives 
a small IMSE but makes the function no longer positive-semidefinite. Its Fourier 
transform is no longer positive everywhere and is no spectral estimate. Therefore, 
the quality of this artificial example is much worse than the quality of the estimate 
in Figure 3.6 for N = 100, but the IMSE is much smaller. Good models may 
generally have good quality with low values of ISE or IMSE, but the reverse is not 
always true. Models with a small value of ISE or IMSE are not always good or 
even acceptable. 
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Figure 5.3.  PE estimated from the observations and ME, the sum of the differences of the 
absolute value, and IMSE, the sum of the squared differences between true and estimated 
spectrum, all as a function of the AR model order. Data are generated with an AR(2) process 
with A(z)=1 – 1.12 z–1 + 0.4 z–2 , N = 100. 

The relation between the ME (5.40) and the SD (5.50) is very strong. Apart 
from scaling, the SD and the ME are the sum of squared differences in the log 
spectrum, whereas the IMSE and the ISE are given by the sum of squares in the 
linear spectrum. Figure 3.3 demonstrates the difference. Large relative errors are 
important only for IMSE and ISE if they occur in the range 0.1 < f < 0.3 in that 
example. Large relative errors have hardly any influence if they occur in the range 
where the true spectrum is less than 0.01. 

5.6.7   Cepstrum as a Measure for Autocorrelation Functions 

Normally distributed variables are completely characterized by their auto-
correlation function or by their spectrum. Therefore, an accuracy measure for the 
autocorrelation function should favour the same characteristics as the spectral 
measure. That is not ISE of (5.54) or IMSE of (5.55), for the reasons given above. 
Also the argument that a small artificial error at one lag can already change the 
positive-semidefinite condition is a good reason not to use ISE and IMSE for 
autocorrelations.  

The visual appearance of autocorrelation functions can also be very misleading. 
Large relative errors in the biased spectra of Figure 3.4 are invisible in the linear 
spectrum at the left-hand side of the same figure. Hence, they are also invisible in 
the plot of the autocorrelation function. Reversing the argument, autocorrelation 
functions can look identical in a plot, but at the same time have very large 
differences in the weak parts of the spectra belonging to them. A specific small 



108 Automatic Autocorrelation and Spectral Analysis 

absolute error in the time domain can have as a consequence that the inverse 
Fourier transform of the disturbed autocorrelation function is no longer positive 
everywhere. In other words, the slightly disturbed function no longer has the 
properties of a proper autocorrelation. Adding some noise to one single lag of the 
true r (k) is often sufficient to destroy the positive-semidefinite property. A very 
small absolute error in the infinite sum of squared autocorrelation differences may 
have a large consequence. This means that no useful measure for the accuracy of 
autocorrelations has been defined yet. 

An error measure for the autocorrelation function requires special care. So far, 
the prediction error represents an accuracy measure in the time domain. No 
equivalent measure has been given for the autocorrelation function. Makhoul 
(1976), Martin (2000), Byrnes et al. (2001), and Broersen (2005b) describe a 
cepstral measure in the time domain. The cepstrum is defined as the inverse 
Fourier transform of the logarithm of the spectral density:  

( ) ln ( ) , 0, 1, 2,j kc k  e d k … (5.56) 

Erkelens and Broersen (1995) showed that summation of squared cepstral 
differences has properties similar to the spectral distortion (SD) of (5.50). 
Parseval’s relation gives the equivalence in the time and the frequency domain 
between the cepstrum and the logarithm of the normalized spectrum.  

22 1 ˆˆ( ) ( ) ln ( ) ln ( )
2k

c k c k  d  (5.57) 

A comparison with the spectral distortion (SD) of (5.50) shows that the cepstral 
distance is just the same as the SD, apart from a constant two and some variance 
normalization. Hence, the ME can also be seen as a measure of the quality of 
autocorrelation functions. The literature does not describe other useful accuracy 
measures based on the autocorrelation function itself. Spectral measures will be 
used instead. An accurate spectrum belongs to an accurate autocorrelation function 
and vice versa. 

5.7   ME and the Triangular Bias  

This book treats AR models as a parametric estimator for spectrum and 
autocorrelation. In speech processing, AR estimation is often indicated as linear 
prediction. The parameters are used for efficient coding of the speech signal. It is 
also possible to consider an AR model as an infinite impulse response filter. 
Therefore, many different descriptions in various scientific disciplines treat a 
similar theoretical problem. An example is bias propagation in linear prediction. If 
lagged product estimates for the autocorrelation function are used in the Yule-
Walker relations, the triangular bias of (3.33) plays a role.  
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Erkelens and Broersen (1997) showed that triangular bias becomes very noti-
ceable if an AR( p) process has a reflection coefficient close to the unit circle for 
an order lower than p. If only the final reflection coefficient of order p is close to 
the unit circle, this has no strong influence. Using the expectation of the unbiased 
and of the biased autocorrelation function of (3.32), the expectations of the 
parameters of the biased and of the unbiased model can be calculated with the 
Levinson-Durbin recursion (5.24). The unbiased expectations are the true AR( p)
parameters. The difference can be evaluated with the ME. It can become large if 
reflection coefficients of order lower than p are close to + 1 or – 1. It turns out that 
the ME becomes very large if one of the intermediate reflection coefficients, of an 
order lower than the true order, has a radius of about 1 – 1/N. That means that the 
ME becomes much greater than the number of estimated parameters that gives the 
expected variance contribution in (5.41) to the ME for the smallest possible 
inaccuracy of unbiased estimation.  

Table 5.1. The model error ME caused by triangular bias applied to the true autocorrelation 
function for two AR(2) processes as a function of N

N A1(z) A2(z)
100 161 175 
1,000 447 19 
10,000 147 1.9 
100,000 17 0.2 
1,000,000 1.8 0.02 

Table 5.1 gives an example of two AR(2) processes with the same values for 
the reflection coefficients but in a different sequence: 

A1(z) with k1 = 0.999    and  k2 = 0.8, poles at radius 0.8 and 0.99 
A2(z) with k1 = 0.8        and k2 = 0.999, two poles at radius 0.9995 

The high ME value for N = 100 shows that 100 observations will not be enough to 
analyse those AR processes accurately. Both examples have serious bias problems. 
The autocorrelation length is much longer than 100, and the influence of the 
triangular bias is not well predicted for finite N by the asymptotic formulas, where 
it disappears. For more observations, the ME becomes much greater for the first 
process. That shows that reflection coefficients with an absolute value close to one 
give a high bias to the reflection coefficients of higher orders; see also Erkelens 
and Broersen (1997). If only the highest order reflection coefficient is close to  1, 
such a bias will not develop. In contrast with a popular belief, this example shows 
that it is not the radius of the poles that determines the influence of triangular bias 
on the accuracy of AR models. 

A constant bias would give a constant PE and hence a ME value that is 
proportional to N. The ME decreases in Table 5.1 for increasing N, which shows 
that the influence of the bias decreases. The triangular bias will vanish asympto-
tically but can have a strong influence in finite-sample sizes. This example shows 
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that asymptotic unbiased models can still have serious bias problems in very large 
sample sizes. 

The difference between absolute and relative error measures has already been 
shown in Figure 3.4, where the influence of triangular bias was demonstrated in 
linear and logarithmic plots of the spectrum. That example had an autocorrelation 
function of length 13, which can be generated by a MA(13) process. Take the true 
and the biased true autocorrelations of (3.32) as an example to compute the 
difference between error measures. The absolute squared error in the 
autocorrelation with the triangular bias of this MA(13) process becomes with 
(5.55)  
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k
k

N N
 (5.58) 

This gives a very small number for N > 1000, which explains why absolute figures 
like the left-hand side in Figure 3.4 with a linear scale for the spectral density do 
not show this bias. The IMSE value becomes very small and the differences 
disappear within the line thickness. The difference of the logarithms is not small on 
the right-hand side of Figure 3.4. That difference defines the spectral distortion in 
(5.50). The values for the model error (ME), the spectral distortion (SD) and the 
integrated squared difference (IMSE) of (5.58) are given in Table 5.2, as a function 
of sample size N.

Table 5.2. The model error (ME), N times the spectral distortion (SD), and N times IMSE, 
caused by the triangular bias applied to the true MA(13) autocorrelation function of Figure 
3.2, as a function of N.

N   ME      SD*N      IMSE*N
103 1.2 104 1.9 104 2.5 10–2

106 1.8 106 5.7 106 2.5 10–5

109 2.8 108 7.9 108 2.5 10–8

1012 2.6 109 3.2 109 2.5 10–11

The ME is defined by multiplication by N; the spectral distortion (SD) and 
IMSE have been defined without. To facilitate a comparison, the last two measures 
have been multiplied by N in Table 5.2. The ME and the SD show a similar 
tendency. For infinitesimally small errors, they can coincide completely with 
proper scaling; for larger errors, some differences are present. The ME values for 
the triangular bias in this example are very much greater than the expectation of the 
ME due to estimation variance that will be only about 13 for all values of N. The 
absolute IMSE measure of (5.58) decreases with N 2 and has completely different 
behaviour. This example shows once more that models with a very small IMSE 
value can have a large PE or ME. 
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5.8 Computational Rules for the ME 

So far, several equivalent formulas for the model error (ME) have been given in 
(5.40) and in (5.49). The two equivalent expressions for the ME are 

'
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The last formulation especially shows that only the two products in the numerator 
and in the denominator play a role. Therefore, some rules for the ME computation 
can be derived and proved easily with the final representation in (5.59). All 
equivalent representations are found by moving the true and estimated polynomials 
in the first representation of (5.59) from the numerator on the left-hand side to the 
denominator of the right-hand side. Some equivalent ME results are  
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The variance of the ARMA process Bq(z) /Ap(z) is not the same as the variance 
of the inverse process Ap(z) /Bq(z). Interchanging the numerator and denominator in 
the ME is not allowed theoretically. However, interchanging the sequence in Pg

expressions will sometimes be a close approximation if the ME is small. That 
means that the prediction error is close to the variance of the innovations and that 
the resulting ARMA process is close to white noise or the estimated model is close 
to the true process. For accurate models, it follows approximately that 
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The first line of (5.61) changes the sequence of the arguments in the ME, which is 
the same as interchanging the numerator and the denominator in the power gain Pg.
The second line gives the difference between a MA(q’) process with q’ parameters 
on the left-hand side and an ARMA( p, p’+q) process on the left-hand side. The 
final equation compares an AR( p’) model with an ARMA( p+q’, q) process.

The Yule-Walker relations and the Levinson-Durbin recursion describe the 
relation of AR models of increasing orders with a given true autocorrelation 
function. The best lower order approximation uses the lower order reflection 
coefficients, derived from the lower order autocorrelation function. Therefore, the 
best approximating AR(m) model to a true ARMA( p+q’, q) process is the model 
with the first m AR autocorrelations equated to the first m autocorrelations of the 
ARMA( p+q’, q) process. 

The best AR(m) model is also the AR(m) model that minimises the model error 
(ME). Hence, the best AR(m) model of an arbitrary true ARMA( p,q) process can 
be written as  

( )

( )1ˆ ( ) arg min ME , ,
( )( )m

q
m

A z pm

B z
A z m

A zA z
(5.62) 

This can be solved with the Yule-Walker relations applied to the autocovariance 
generated by the right-hand side ARMA process Bq(z) / Ap(z).

It is easy and straightforward to find the best AR(m) model with arbitrary 
values of m that approximates an ARMA process. It is the AR model that is fitted 
to the first m points of the autocorrelation function. It is always stationary.  

However, it is much more difficult to find a MA(m) model that is best fitting to 
a higher order ARMA process. This has been demonstrated in (5.32), where one 
MA parameter is found from one true autocorrelation. Finding the best fitting MA 
model of arbitrary order to a process requires an extensive nonlinear search for the 
minimum of the second line in (5.61). That is not attractive. The calculation of 
those MA models is nonlinear and requires initial conditions. This is a good reason 
to formulate estimation problems, preferably looking for the best AR model by 
interchanging polynomials, as in Equation (5.61). That interchange may not be 
accurate for models with poor quality, but it is a good approximation for those 
models where the residuals are close to white noise. 

The different operations with the ME in this section will assist in finding the 
best formulation for MA and ARMA estimation. The approximate interchange of 
the sequence of the arguments in ME is especially useful in deriving estimation 
algorithms for MA and ARMA models. 
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5.9  Exercises 

5.1 Vectors in Matlab® are represented as [a b c d e …]. This notation is also 
used in the exercises. The reflection coefficients of an AR(2) process are 
given by the vector [1,  0.8,  0.5]. It is usual to include the zero-order 
parameter or reflection coefficient that should always be equal to one. 
Use ARMASA to determine the parameters of the process.  

5.2 The first two autocorrelations of a process are (1) and (2).  
What is the best AR(1) model? 

5.3 The first two reflection coefficients of a process are k1 and k2.
What is the best AR(1) model? 

5.4 The parameters of an AR(2) process are a1 and a2.

What is the best AR(1) model? 

5.5 The reflection coefficients of an AR(2) process are given by [1,  0.8,  0.5].  
Use ARMASA to determine the autocorrelation function until lag 20. 

5.6 The parameters of an AR(3) process are given by [1,  0.08,  – 0.472,  0.4].  
Use ARMASA to determine the reflection coefficients of the process. 

5.7 The parameters of an AR(3) process are given by [1,  0.08,  – 0.472,  0.4].  
Use ARMASA to determine the autocorrelation function until lag 20. 

5.8 The parameters of an AR(3) process are given by [1,  0.08,  – 0.472,  0.4].  
Use ARMASA to determine the parameters of the best AR(2) process that 
is an intermediate model in the Levinson-Durbin recursion. 

5.9 The autocovariance function of an AR process is given by 
[5,  – 4.5,  3.29,  – 1.9692,  0.9753,  – 0.4045,  0.1422,  – 0.0428,  0.024,       
– 0.0796,  0.2252]. Use ARMASA to determine the parameters of the AR 
process. 

5.10 Use ARMASA to determine the reflection coefficients of the AR process 
with the autocovariance function given in Exercise 5.6. 

5.11 Show that the second reflection coefficient of an AR(p) process is given by  

2

2 2 2

(1) (2) (0)

(0) (1)

r r r
k

r r
 . 

5.12 Use ARMASA to determine the power spectral density of the AR process 
with the autocovariance function given in Exercise 5.6. 
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5.13 Use ARMASA to determine whether the parameter vector  
[1,  – 1.5,  2,  – 0.9] 

belongs to a stationary process. Hint: Use the fact that processes are 
stationary with roots inside the unit circle if all reflection coefficients are 
not greater than one in amplitude. 

5.14 Use ARMASA to determine whether the parameter vector  
[1,  – 2.6,  2.66,  – 1.15,  0.1] 

belongs to an invertible process. Hint: Use the fact that the polynomials of 
an AR and a MA process are similar. 

5.15 The variance of an ARMA(2,2) process given by  

1 2 1 21.2 0.8 0.2 0.7n n n n n nx x x

is known to be 10. Use ARMASA to determine the variance of the 
innovations n.

5.16 The influence of triangular bias on the true autocorrelation function can be 
evaluated for a given AR(p) process by computing the true autocorrelation 
function, multiplying r (m) by 1– m/N . Then, the new parameters belonging 
to the biased autocovariance are calculated and the difference is evaluated 
with the model error. 
Find an AR(3) process where the model error caused by this bias is greater 
than 1000 for N = 1000 and a second example where the model error is less 
than 0.01. Use ARMASA to determine the model errors and the biased 
parameter values. 

5.17 Use ARMASA to verify that the model error is not symmetrical with 
respect to AR and MA parameters. 

5.18 Use ARMASA to verify that interchanging the true AR and the 
approximating MA polynomials does not influence the model error. The 
same is valid for the true MA and the approximating AR polynomial. 

5.19 Use ARMASA and trial and error to find the best approximating AR(1) 
model parameter for the AR(2) process 

1 20.8 0.6n n n nx x x

by looking for the smallest model error. Find an explanation for the 
resulting parameter value. 

5.20 Use ARMASA and trial and error to find the best approximating MA(1) 
model parameter for the MA(2) process 

1 20.8 0.6n n n nx

by looking for the smallest model error. 
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5.21 Use ARMASA and trial and error to find the best approximating AR(1) 
model parameter for the AR(3) process 

1 2 30.8 0.6 0.4n n n n nx x x x

by looking for the smallest model error. Find an explanation for the 
resulting parameter value. 

5.22 Use ARMASA and trial and error to find the best approximating MA(1) 
model parameter for the MA(3) process 

1 2 20.8 0.6 0.4n n n n nx

by looking for the smallest model error. 

5.23 Use ARMASA and trial and error to find the best approximating AR(1) 
model parameter for the MA(1) process 

10.5n n nx

by looking for the smallest model error. Find an explanation for the 
resulting parameter value. 

5.24 Use ARMASA and trial and error to find the best approximating MA(1) 
model parameter for AR(1) process 

10.4n n nx x

by looking for the smallest model error. 

5.25 Use ARMASA to verify with an example that a lower order approximating 
AR model for a higher order true AR process is the best, with the smallest 
model error, if the lower order reflection coefficients are made equal to the 
corresponding true process reflection coefficients. Verify also that the same 
result is obtained by using the only first autocorrelation lags to estimate the 
lower order model. 

5.26 The reflection coefficients of an AR(3) process are k1, k2, and  k3. Find an 
expression for the parameters of the process.



6

Estimation of Time Series Models 

6.1 Historical Remarks About Spectral Estimation 

Spectral estimation has a long history, in which the progress has been influenced 
by theoretical and by computational developments. Only the studies on stationary
stochastic processes are followed here. This seems to be a severe mathematical 
restriction for measured random data. In practice, however, the definition of 
stationarity can be treated very loosely. For example, data like speech often can be 
considered stationary enough over small intervals, and autocorrelations and spectra 
have useful interpretations for each interval. 

A clear computational influence was the use of the FFT (fast Fourier transform) 
algorithm of Cooley and Tukey (1965) for Fourier transforms. The reduced 
computer effort of the FFT algorithm enabled routine analysis of extensive sets of 
data with periodogram analysis. Therefore, nonparametric spectral analysis with 
tapered and windowed periodograms has been the main practical tool for spectral 
analysis for a long time.  

If one knew the model order and the model type, a single time series model of a 
low order could also be estimated from practical data. However, the best order and 
the best model type are almost never known for a finite number of measured 
observations. Therefore, time series models were not practical tools in the past. 

Some historical developments in spectral estimation show the combined growth 
of both parametric and nonparametric methods. More than a century ago, Schuster 
(1898) used periodogram analysis to find hidden periodicities. Yule (1927) 
published an article about autoregressive models. Throwing peas on a pendulum, 
thus giving a physical introduction to autoregressive modeling, supposedly causes 
deviations from a pure harmonic motion in a pendulum. The first description of 
real data with moving average models is attributed to Slutsky; it was translated in 
1937 but written 10 years earlier. Time and frequency domain considerations were 
united for stochastic processes by the independent contributions of Wiener (1930) 
and Khintchine (1934).  

Maximum likelihood is a reliable principle for deriving efficient estimators in 
ordinary linear regression problems. Mann and Wald (1943) proved that for large 
N, it is justified to use the same AR data both as dependent and as independent 
variables in regression theory and to apply the maximum likelihood principle. 
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Their reasoning relied heavily on the fact that the exact parameters relate the data 
xn to the exact innovations n and the properties of the true white noise signal can 
be exploited. The theoretical properties of maximum likelihood estimators are 
derived when parameters are estimated without any error, which might happen if 
the sample size is infinite. The theory itself does not give any indication how many 
observations are at least required before the theory may be applied.  

What happens for a finite value of N or what is the minimal value of N to apply 
this asymptotic theory has not been defined. This was a reason for Whittle (1953) 
to state, “it is by no means obvious that these (ML) properties are conserved when 
the sample variates are no longer independent, e.g., in the case of a time series.”

Whittle (1953) also showed that using only the first two estimated sample 
autocovariances to calculate a MA(1) model is very inefficient, although the 
expectations of all higher true autocovariances are zero.  

The invariance property of maximum likelihood estimates is very important for 
the theoretical background of spectral estimation. It states that, under rather mild 
mathematical conditions, the maximum likelihood estimator of a function of a 
stochastic variable is equal to the function of the maximum likelihood estimate of 
the variable itself (Zacks, 1971; Porat, 1994). This invariance property of 
maximum likelihood estimates is the theoretical underpinning of the use of time 
series analysis for the estimation of the autocorrelation function and the spectrum 
of measured observations. If it is possible to obtain efficient estimates for the 
parameters of a time series model, the autocorrelation is estimated efficiently with 
(4.62) as a function of those parameters, and an efficient estimate of the spectrum 
follows with (4.85). 

The spectrum of a MA(1) process, obtained from only one lagged product 
autocorrelation estimate is not efficient. The autocovariance and the spectrum can 
be estimated much more accurately from the estimated MA(1) time series model 
(Porat, 1994). Porat (1994) proved that 0 k p – q sample autocovariances are 
asymptotically efficient in an ARMA( p,q) process. Hence, lagged products are not 
generally efficient autocovariance estimates. The periodogram as an inverse 
Fourier transform of the lagged product autocovariance can be nothing but an 
inaccurate estimator of the spectral density for random signals. 

Arato (1961) showed that the first p + 1 lagged products are asymptotically a 
sufficient estimator if the data are from an AR( p) process. This is no longer true 
for other types of processes. 

Maximum likelihood estimation is a nonlinear operation for all time series 
models. That gives problems with convergence and with stationarity or invertibility 
of models, especially in small samples. Different computationally efficient 
algorithms have been derived by using approximations of the likelihood. Durbin 
(1959) introduced an algorithm for MA estimation from a long estimated AR 
model. A year later, Durbin (1960) used the long AR model to reconstruct 
estimated residuals to be used in ARMA estimation and an additional alternating 
update of the MA and the AR parameters. 

Melton and Karr (1957) used only the sign of stochastic processes for the 
detection of signals in noise with the polarity coincidence correlator. Wolff et al. 
(1962) concluded that for Gaussian processes, the polarity coincidence principle is 
inferior to lagged product correlation. Blackman and Tukey (1959) showed how a 
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few lagged product autocovariance estimates could be transformed into a valid 
spectral estimate by applying lag windows.  

Burg (1967) described a very robust AR estimator that estimates one reflection 
coefficient at a time from forward and backward residuals. Meanwhile, after the 
publication of Cooley and Tukey (1965), the FFT caused a revival of periodogram 
based spectral estimation and related lagged product autocovariance estimation. 
Box and Jenkins (1970) showed how time series models could be estimated from 
practical data. Pioneering work on order selection has been done by Akaike (1970, 
1974, 1978), who introduced the celebrated selection criterion AIC. Parzen (1974) 
discussed the relation between time series models and prediction and the physical 
and econometrical modeling of a truly AR( ) process with finite-order AR 
approximations. Priestley (1981) described parametric and non-parametric spectral 
estimators in a mathematically accessible style.  

Kay and Marple (1981) conclude after an extensive survey of different 
algorithms for time series models, that, “When the model is an accurate 
representation of the data, spectral estimates can be obtained whose performance 
exceeds that of the classical periodogram.” In other words, if the model type and 
model order are known a priori, time series models give the best solution.  

Two problems remained for the standard application of time series models:  

order selection  
the availability of  practical fast algorithms.  

Selection of the model order could give peculiar results in finite samples with a 
preference for the highest candidate orders. Ulrych and Bisshop (1975) came up 
with the approach to use sometimes the first local minimum of a selection criterion. 
The theoretical asymptotic answer of consistent criteria of Akaike (1978), Rissanen 
(1978), and Hannan and Quinn (1979) could not solve this selection problem in 
practice. It turned out that finite-sample statistics of the estimated AR reflection 
coefficients is so much different from asymptotic properties that it has to be 
incorporated in order-selection criteria (Broersen, 1985, 2000). Moreover, finite-
sample AR order selection has to be adapted to the AR estimation method 
(Broersen and Wensink, 1993).  

The second problem was the variety of estimation algorithms with similar 
asymptotic properties. No choice could be made on the basis of asymptotic theory, 
although experience taught that the statistical accuracy of algorithms may be poor 
in certain finite-sample examples. Moreover, the mathematical theory is almost 
exclusively valid for models that have the true model type and model order. This 
knowledge is not available for newly measured data. In practice, a large number of 
candidate models of the three types, AR, MA, and ARMA, and of different orders 
have to be estimated. Almost all candidates are from the wrong model type and 
model order. From all candidates, a single estimated model has to be selected that 
best represents the statistical properties of the measured data. This requires robust 
algorithms, fast computers, and reliable order-selection criteria.  

A successful and robust attempt was reported to select the model type and order 
from stochastic data with unknown characteristics by Broersen (2000). The 
increased computer speed gives the opportunity of estimating hundreds or 
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thousands of candidate models and selecting with reliable statistical criteria one of 
the best among the candidates, and often the very best. 

6.2  Are Time Series Models Generally Applicable? 

The spectral density of an ARMA process is a rational function of e j   because it is 
the quotient of polynomials in e j . Conversely, all processes with rational spectra 
can be written as ARMA models. The mathematical background follows from 
(4.85). The question has two sides: which functions can be described and how can 
the parameters for some given spectral function be determined? 

Which polynomials A(e j ) and B(e j ) can describe an arbitrary continuous 
positive symmetrical function with the quotient 
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( )

2 ( ) ( )

j j

j j

B e B e
h

A e A e
 (6.1) 

in the interval –  < ? The solution can be unique only if an additional 
requirement is used that all poles and zeros must be inside the unit circle. This is 
valid for all continuous spectra. Therefore, harmonic processes that have discrete 
spectral components are excluded.  

Mathematical arguments or simple reasoning will show that a function that is 
identically zero over some interval cannot be represented by a function like (6.1). 
Historically, this has been formulated as follows (Priestley, 1981). If 

log ( )h d  (6.2) 

then a unique one-sided G(z) exists with the sequence g0, g1, … which has all zeros 
inside the unit circle. The integral of the logarithm will become –  only if the 
power spectral density is exactly zero over an interval or over more than one 
consecutive point. The spectrum may touch zero at a single point, not at an 
interval. This is a mild requirement for spectra in practice. Therefore, almost all 
stationary stochastic processes can be modeled by a unique, stationary, and 
invertible ARMA process.  

The use of time series models for spectra does not imply more assumptions 
about the data than the use of modified periodograms.  

Only a small selection of all algorithms that have been proposed will be 
mentioned. Mainly those estimation algorithms that are used in ARMAsel will be 
described in some detail in this chapter. More information about time series 
estimation can be found in Priestley (1981), Kay (1988), Marple (1987), Kay and 
Marple (1981), Box and Jenkins (1976), Brockwell and Davis (1987), Porat (1994), 
Stoica and Moses (1997), Hamilton (1994), Makhoul (1976), Pollock (1999), and 
in many other books and journal papers. 



Estimation of Time Series Models 121 

6.3  Maximum Likelihood Estimation 

In estimation theory, maximum likelihood estimators are known to have nice 
asymptotic properties. The invariance property transfers the properties of estimated 
parameters to spectral analysis. Therefore, the first estimators that will be 
investigated are the maximum likelihood (ML) estimators for AR, MA, and 
ARMA models. As ML estimators require the knowledge of the probability density 
function of the observations, the density has to be chosen. A logical choice is the 
normal distribution, and the joint normal density (2.22) will be the basis. The 
model parameters enter in that equation because they determine the covariance 
matrix RXX. ML estimation maximises the likelihood or the probability density 
function (2.22) by seeing which parameters maximise the likelihood if the given 
observations are substituted. Often, minus the logarithm of the likelihood is 
minimised, which gives the same parameter vector as the solution. 

ML estimation requires a numerical search procedure to find the minimum. It 
turns out that often precautions are necessary to make sure that the search 
algorithm will not end with a nonstationary or a noninvertible model. An arbitrary 
monic polynomial can be expressed in reflection coefficients ki with (5.30). All 
reflection coefficients have an absolute value less than one if the roots of the 
polynomial are within the unit circle. Unfortunately, optimisation without 
constraints will often find a minimum of the log likelihood with roots outside the 
unit circle. Minimisation with constraints will give answers that depend on the 
prescribed constraints rather than on the data. By using the unconstrained 
optimisation of tangent i = tan ( /2 * ki), it can be ascertained that for each 
solution –  < i < , a solution ki is found as 2/  * arctan ( i ) with the property 
that – 1 < ki < 1.

ML estimation is a method that should be efficient asymptotically. That means 
that the asymptotically expected value for the model error (ME) is equal to the 
number of estimated parameters. That is the Cramér-Rao lower bound for 
achievable accuracy. Firstly, the quality of ML estimators is investigated and 
compared with this best attainable accuracy. Afterward, other estimation 
algorithms will be compared with the same Cramér-Rao benchmark. 

6.3.1   AR ML Estimation 

Low-order AR models are estimated without any problem by the maximum 
likelihood estimator. The theory promises favourable asymptotic properties, and 
finite-sample performance can be studied with Monte Carlo simulations. De Waele 
(2003) has given a comparison of ML estimates for 20 observations with estimates 
obtained by the method of Burg (1967). He concluded that the model error (ME) of 
ML estimates is generally some percent greater than the ME of the Burg estimates. 
But other examples have also been examined, e.g., an AR(6) process with three 
complex conjugated pole pairs at radius . De Waele (2003) found that models 
estimated from N = 20 observations are better with Burg’s method for   < 0.85 
and ML was better for   > 0.85. For   < 0.8, the accuracy of the ME was close to 
the Cramér-Rao lower bound, which is six for the AR(6) process. For higher values 
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of , the Cramér-Rao lower bound for the model error (ME) was not attained by 
any estimation method. For   = 0.95, the ME of ML estimates is about 3.5 times 
higher than the lower bound, and the ME of Burg estimates is about 6.5 times. The 
differences in ME values are always small if Burg’s method is better; they can 
become greater if all poles are at a radius greater than 1–1/N. However, that is a 
rather extreme example. 

One aspect, the required computing time, has not been considered so far. 
Without going into detail, it can be said that ML requires much more time. 
Whereas one or two ML parameters can be computed within a second, it will 
require about several hours to optimise the likelihood of an AR(30) model with the 
present computer software and hardware. Moreover, in trying to optimise AR 
models of orders still higher than 20 or 30, often numerical problems appeared that 
prevented convergence. It was not possible to compute AR models of orders higher 
than 50 on a regular basis. Often, convergence problems appear already for models 
of orders less than 20. The Burg algorithm can compute an AR(1000) model in less 
time than ML requires to estimate an AR(5) model. For those practical reasons, 
ML is not recommended as the standard solution for estimating AR models.  

6.3.2   MA ML Estimation 

Maximum likelihood estimation of MA parameters is a nonlinear problem with 
possible difficulties in convergence and invertibility of solutions. Nonlinear methods 
sometimes don’t converge to invertible models for small sample sizes N, unless the 
algorithm uses constrained minimisation or takes reciprocals of estimated non-
invertible roots. If estimated poles and zeros can be inside or outside the unit circle, 
they can also be close to it. The single realisations where invertible solutions do have 
zeros very close to the unit circle, with distance less than 1/N, dominate the 
simulation average of quality measures for estimated models. Therefore, ML 
estimation for MA models has never been popular. 

Davidson (1981) has described the many problems that occur in finite-sample 
estimation for MA(1) processes. A problem is the symmetry of the likelihood 
function with respect to the unit circle. Mirrored zeros have identical 
autocorrelation functions in Equation (4.12). The symmetry of the likelihood 
function always causes a local extreme value on the unit circle, which can be either 
a maximum or minimum. As a result, the global maximum of the likelihood 
function is often found exactly on the unit circle, even if the true process has a zero 
within. Approximations of the likelihood also suffer from the same problem. 
Godolphin and de Gooijer (1982) have studied many approximations of the exact 
likelihood, but they encountered convergence problems in some cases for simple 
MA(1) processes. It has been shown in (5.32) that no real solution for b1 exists if 
the estimated | (1) | is greater than 0.5. In practice, the estimation variance of the 
first autocorrelation coefficient will often give estimates greater than 0.5, and the 
ML solution will always be found exactly on the unit circle then.  

In simulations, de Waele (2003) determined that the local minimum on the unit 
circle is often also the global minimum. In a MA(1) example, he found the ML 
estimate in 12% of the simulation runs exactly on the unit circle, although the true 
MA(1) parameter was 0.5. Using constraints to force the estimated zeros within the 
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unit circle will often produce that imposed constraint as a solution. ML does not 
seem to be a good estimation method for MA models in finite samples. For low-
order MA models from finite samples, the average model error of the ML solution 
in simulations is never close to the Cramér-Rao lower bound. 

6.3.3   ARMA ML Estimation 

ARMA models combine the properties of poles and zeros. With respect to 
estimated MA parameters, the peculiar ML properties of pure MA models are 
found in some simulations. There is a tendency to estimate zeros exactly on the 
unit circle. For a true ARMA( p,q) process with A(z) and B(z) in (4.54), a perfectly 
fitting ARMA( p+1, q+1) model is found by multiplying the ARMA( p,q) process 
by an ARMA(1,1) process with an identical pole and zero. In estimating an over-
complete ARMA( p+1, q+1) model, all additive, canceling, pole-zero combinations 
represent the same solution. Therefore, convergence of the ML estimator will be a 
problem for overcomplete models. The same problem can also occur in the 
estimation of true ARMA( p, q) models, if a close pole-zero pair is present. That 
pair can wander over the complex plane without significant influence on the power 
spectral density of the resulting model. If parameters are rather small, poles and 
zeros are found close to the origin of the complex plane and automatically become 
close pole-zero pairs.  

Some authors (Kay, 1988) impose the restriction that the ARMA model orders 
are not greater than the true process order. That eliminates the problem of over-
complete models, but it requires a priori knowledge of the true order that is almost 
never available for practical data. De Waele (2003) determined in simulations that 
the finite-sample likelihood of overcomplete estimated models seems to be 
somewhat better than expected with the asymptotic theory, whereas the model 
error (ME) of those models was worse than expected. The explanation may be that 
freely selecting a position for a nearly canceling pole-zero pair gives an unexpected 
profit for the fit of the likelihood that is optimised for the given data and at the 
same time creates an extra loss of quality in an objective measure like the ME.  

The performance of true order ML estimation in simulated ARMA processes 
with very significant parameters was acceptable. The performance of estimated 
models above the true order was poor. The performance of ML estimates for true 
order models with moderate true parameter values has also been tested. A 
simulation experiment with an ARMA(3,2) process with all poles and zeros at a 
radius of 0.4 gives an average ME of 86 for N = 200, far above the Cramér-Rao 
lower bound that is five for this process. The same experiment with all poles and 
zeros at a radius of 0.8 gives 6.2 as the average ME value in simulations, very close 
to the Cramér-Rao bound. Small true parameter values in the AR and in the MA 
part cause problems because they have poles and zeros with small radii. It is easily 
seen that the parameter of order p in an AR( p) model equals the product of the 
radii of all poles. In other words, small final parameters belong to a small radius of 
at least one pole. 

The overall conclusion is that the performance of ML estimation in low-order 
AR models is acceptable, but the computation time is rather high. MA models 
converge too often to zeros exactly on the unit circle, and ML is not suitable for 
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MA models. Finally, the ML estimates for ARMA models are acceptable only for 
model orders that are not above the true order with the extra condition that all true 
parameters have to be very significant. Therefore, other estimators will be tried for 
all model types. The accuracy of those estimators will be compared to the Cramér-
Rao bound. Only estimators that are close to that bound for all examples will be 
accepted.

6.4  AR Estimation Methods 

The AR model type is the backbone of time series analysis in practice. In theory, it 
is a model with simple relations between the parameters and the autocorrelation 
function. Both computing parameters for a given autocorrelation function and the 
reverse problem are simple with Yule-Walker relations. Finding the parameters for 
a given MA autocorrelation function was much more difficult and is only easily 
obtained for a single MA(1) parameter with (5.32).  

If a few observations of stochastic data are available, the best AR model order 
is often greater than 0.1N, where N is the number of observations. If the model 
order is not very much smaller than the sample size N, say less than 0.1N, Broersen 
(1985) showed that deviations from asymptotic theory become important. This 
requires some care because the outcome of AR estimation in finite samples 
depends on the algorithms used. The finite-sample theory empirically describes the 
different outcomes of those algorithms. The usual theory in the majority of the 
literature is asymptotic. It is the same for all AR estimation algorithms, and it gives 
no explanation for the observed differences among estimation methods (Ulrych and 
Bisshop, 1975).  

Finite-sample effects are neglected, although they are completely responsible 
for the differences in performance of the various estimation methods. Therefore, 
the asymptotic literature has to remain vague on the subject of the differences 
among methods. Broersen and Wensink (1993) give a finite-sample comparison for 
AR estimation methods. They studied the bias and the variance of estimated 
parameters, as well as the average quality of estimated models. Several AR 
methods will be treated briefly here to indicate why they were not selected as the 
preferred algorithm. Detailed descriptions can be found elsewhere (Kay and 
Marple, 1981). Only the preferred algorithm will be treated in detail. 

6.4.1   Yule-Walker Method 

The Yule-Walker method of AR estimation uses the Yule-Walker Equations (5.4), 
with the lagged product autocovariance estimates defined in (3.30). The biased 
autocovariance estimates are substituted for the true autocovariances r(k) in (5.4). 
Exactly the same solution can also be obtained with a least-squares algorithm. 
First, the signal xn is made infinitely long by surrounding it with zero observations 
outside the interval 1 - N. A least-squares solution estimates all parameters 
simultaneously by minimising 
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1 1ˆ ˆRSS( ) n n p n p
n

p x a x a x  (6.3) 

A comparison with the ordinary least-squares regression solution (2.38) shows that 
this solution involves the estimated autocorrelation function of an infinitely long 
signal. That autocorrelation is just the lagged product biased estimate because all 
additional terms are zero.  

This well-known Yule-Walker AR estimation method has a small variance, but 
it can have a very large bias. In Chapter 5.7, it has been demonstrated that the bias 
may become of magnitude one for true reflection coefficients with an absolute 
value close to one, instead of the bias of magnitude 1/N that applies for other AR 
estimation methods. Therefore, the Yule-Walker method cannot be advised for data 
with unknown characteristics. The small estimation variance of the parameters 
(Broersen and Wensink, 1993) will give favourable overall accuracy if the bias is 
not important for a given example. But this small variance advantage is completely 
lost for other processes with huge biases (Erkelens and Broersen, 1997). 

6.4.2   Forward Least-squares Method 

The forward least-squares method uses N – K residuals to estimate an AR (K)
model. A least-squares solution estimates all parameters simultaneously by mini-
mising 

2

1 1
1

ˆ ˆRSS( )
N

n n K n K
n K

K x a x a x (6.4)

The first K contributions would require observations from before the measurement 
interval and they are omitted in the residual sum of squares RSS(K) that is 
minimised in the forward least-squares estimation. Broersen and Wensink (1993) 
showed that the finite-sample variance of estimated parameters is approximately 
given by 1/(N + 2 – 2K) instead of by the asymptotic parameter variance 1/N. The 
difference becomes noticeable for K  N/10 and becomes extreme for K  N/2. The 
finite-sample variance is explained approximately because K parameters are 
estimated by minimising N – K residuals in (6.4). That leaves N – 2K degrees of 
freedom; the correction two is used in the finite-sample variance approximation. A 
disadvantage of this least-squares estimation method is that the estimated model is 
not guaranteed to be stationary. It is possible that poles of the estimated polynomial 
are outside the unit circle. 

6.4.3   Forward and Backward Least-squares Method 

Reversing the observed measurements gives the same estimated lagged products 
autocovariance function. The reversed data sequence is also a possible realistion of 
the same AR process as the forward process. Therefore, least-squares minimisation 
can also be applied to backward residuals. One specific least-squares estimation 
method minimises the sum of forward and backward residuals.  
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Broersen and Wensink (1993) showed that the empirical finite-sample variance of 
estimated parameters is given approximately by 1/(N + 1.5 – 1.5K).

A problem is that none of the least-squares methods, forward and/or backward, 
can guarantee stationary models with all poles inside the unit circle. All K
parameters are estimated simultaneously to find an AR(K) model. Examples can be 
found where the minimum of the residual variance is obtained with an estimated 
pole outside the unit circle. For that reason and also because Burg’s method will 
have a smaller estimation variance, least-squares estimators are not preferred. 

6.4.4   Burg’s Method 

Apart from the Yule-Walker method, there is a second estimation method for 
finding a single new reflection coefficient at each stage of the computations: 
Burg’s method (Burg, 1967). The first K – 1 reflection coefficients are kept 
constant at stage K. The parameters for increasing model orders follow with the 
Levinson-Durbin recursion (5.24). This favourably influences the estimation 
variance. Burg’s method estimates the reflection coefficients for increasing model 
orders, thus making sure that the model will be stationary with all roots of A(z)
within the unit circle. Of all methods that have been mentioned, this method of 
Burg gives the smallest expected mean square error for the parameters of the 
estimated AR model, and it is always stationary. Therefore, Burg’s method is 
preferred as an estimator of AR parameters. 

Each individual reflection coefficient is estimated from all available 
information for the reflection coefficient of that order. In the least-squares 
algorithms, only N – K residuals contribute to the estimation of all K parameters 
simultaneously. In Burg’s method, each reflection is estimated individually. N – 1
residuals contribute to the estimation of k1, N – 2 residuals to k2, and so on. It is 
difficult to give an explicit expression of parameter estimates from data. It is not 
possible to give an explicit expression for the residual variance that is minimised in 
Burg’s method. The usual description of the method is in terms of the relation of 
estimates of order K, given the estimates at order K – 1. The Levinson-Durbin 
recursion is used to determine parameters of increasing model orders. It uses one 
new reflection coefficient for all parameters of one order higher and also for the 
decrease in the residual variance. This single new estimated reflection coefficient is 
a good measure of the improvements obtained by estimating a model of one order 
higher. Here, it is explained how kK is found with Burg’s method if an AR(K – 1)
model has already been estimated with the Burg algorithm. The basic idea is to 
filter the presently estimated model out of the data and to estimate one single 
reflection coefficient from the filtered data. Filtering out an AR model of order K
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has the consequence that only N – K residuals are available. Define forward and 
backward residuals of order zero up to intermediate order K as 

0

1 1 1

1 1
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n

n n

K K
K n n K n K

f n x

f n x k x

f n x a x a x n K N (6.6)

Starting with the measured data, the forward residuals represent the data from 
which the present model of order K has been filtered out. Likewise, backward 
residuals are found by filtering out the present model: 
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The special way of indexing the reversed backward residual bK (n) of order n as the 
result for xn – K  gives computational advantages in the actual implementation of the 
filter operation. Both the forward and the backward residuals are defined for the 
same set of indexes n.

The filter results for the backward residuals at stage K can also be written with 
the reversal operator ~ defined in (5.10): 
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The Levinson-Durbin recursion has been derived in (5.21) to relate the parameters 
of the AR(K – 1) model to the AR(K) parameters as 
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With some elementary manipulation, the forward and backward residuals become 
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From those equations, the single unknown ˆ
Kk  is estimated by minimising the sum 

of squares of the forward and backward residuals 
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which, by equating the derivative with respect to the reflection coefficient to zero, 
yields the following result for ˆ

Kk :
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This estimate ˆ
Kk  is always smaller than one in absolute value because  
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That all reflection coefficients are  1 guarantees that all poles of the AR parameter 
polynomial are within the unit circle. Hence, Burg’s algorithm always produces 
stationary models. The residual variance of the Burg method could be related to the 
residual sum of squares (6.11), but it is better to define the fit of the AR(K) model 
as in the solution of the Yule-Walker relations (5.23), as 

2 2 2
1

ˆ(1 )K K Ks s k  (6.14) 

Broersen and Wensink (1993) have shown that the average of (6.14) over many 
experiments is equal to the average of squared forward and backward residuals of 
(6.11): 
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 (6.15) 

It will turn out later that using (6.14) is convenient for order selection. 
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6.4.5   Asymptotic AR Theory 

Kay and Makhoul (1983) showed that asymptotic theory gives rather complicated 
formulas for the variance of the first p – 1 reflection coefficients of an AR( p)
process. They will not be discussed here because they are not important for the 
problem of order selection that is concentrated on what happens at and around the 
true process order. The results for the true order p and for higher orders are much 
more simple: 

2
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1ˆvar

1ˆvar , '

p
p

p

k
k

N

k p p
N

(6.16) 

Moreover, all reflection coefficients for the true AR order p and higher are 
independent of the lower order estimates. The first p – 1 reflection coefficients of 
an AR( p) process, however, have a covariance matrix with strong correlation 
coefficients between the lower order estimates. 

The covariance matrix of the reflection coefficients prevents easy analysis of 
the residual variance for model orders lower than the true process order. The 
theoretical asymptotic analysis of 2

Ks  will be identical for all methods of estimation 

that have been discussed because K is neglected with respect to N in asymptotic 
theory. 

Akaike (1969, 1970, 1970a) has derived the asymptotic formula: 

2 2 1 ,K

K
E s K p

N
  (6.17) 

for the decrease in the residual variance. He derived the result for K = p, but it is 
evident that every AR( p) process is also a true AR( p+k) process with k additional 
parameters that are all equal to zero. Akaike (1970) also derived an asymptotic 
expression for the prediction error (PE) that has been defined for an ARMA 
process in (5.36). That definition can be applied to AR processes by taking B(z) =
1. The asymptotic expectation of the squared one step ahead prediction PE(K)
becomes 

2PE( ) 1 ,
K

E K K p
N

  (6.18) 

The condition for those formulas is that K << N. In asymptotic theory, the 
multiplication (1–1/N) (1– p/N) yields 1– ( p+1)/N, and all terms containing 1/N 2

are neglected. 
For white noise, the expectations of the residual variance and of the prediction 

error apply to all model orders. Estimating AR parameters from a white noise 
signal seems to decrease the residual variance, but the prediction error increases by 
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the same amount. Using (6.14) and (6.16), the asymptotic expectation for a white 
noise signal is derived as  

2 2 2 2
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2 2

1 1 var
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1 1

K K

K i i
i i

K

E s E k k

K

N N
 (6.19) 

by realising that the variance of all reflection coefficients is 1/N in (6.16) and their 
expectation is zero. The bias is proportional to 1/N and is neglected in the 
expectation of the squared reflection coefficient. Asymptotic theory also treats the 
last approximation as an equality. Often, K + 1 is found in the literature in (6.17) 
and (6.18). That indicates that the mean is subtracted and that an additional 
estimated quantity is explicitly included in the number of estimated parameters in 
those formulas.  

6.4.6   Finite-sample Practice for Burg Estimates of White Noise 

In finite-sample theory, the final approximation in (6.19), omitting all contributions 
with 1/N 2 and higher, will not be allowed because it is not assumed that K << N.
So far, an exact theoretical derivation of the properties of the reflection coefficients 
estimated from white noise by the Burg method is not available. Simulations will 
be used to establish the variance of reflection coefficients and the development of 
the residual variance and of the prediction error for increasing model orders. Jones 
(1976) studied the prediction error of the maximum entropy AR estimation 
method, which is just another name for the Burg algorithm. Broersen (1985, 1990) 
related the variance of estimated reflection coefficients to the residual variance and 
the prediction error. This exercise has been carried out for every AR estimation 
method, but only the Burg results are reported here. The bias of Burg estimates is 
much smaller than that of Yule-Walker estimates. Tjøstheim and Paulsen (1983) 
show that the bias of reflection coefficients is about 1/N in white noise experiments 
and much more important for even than for odd model orders. That is explained 
because the estimation of k2 involves the squared estimate of (1) in the Levinson-
Durbin recursion (5.24). The square of (1) is precisely the variance of (1) in 
white noise where the true expectation is zero. That variance is 1/N in (3.40) and 
the same reasoning applies to other even reflection coefficients. As a matter of 
convenience, bias is neglected in the finite-sample experiments as well as in finite-
sample theory. Its contribution of 1/N 2 to the mean square error is small in 
comparison with the variance contribution.  

For the variance of reflection coefficients, Broersen (1985) used the finite-
sample formula,  

1
var

1i iv k
N i

  (6.20) 
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Figure 6.1.  Measured variance of reflection coefficients, the asymptotic variance, and the 
finite-sample approximation 1/(N + 1 – i) of average Burg estimates of 200,000 simulation 
runs of 200 white noise observations. 

as an approximation for the variance estimated by the Burg method in white noise. 
The relation has been found for different values of N. The variance for order N/2 is 
almost 2/N for all N. The vi coefficient in (6.20) can be seen as the number of 
degrees of freedom that is available in estimating i parameters from N obser-
vations; the correction with one in the denominator improved the accuracy.

Figure 6.1 shows the average of simulations and the finite-sample relation of 
(6.20), compared with asymptotic theory. The vi coefficients are much closer to the 
experimental data than 1/N, but the approximation could perhaps be improved 
somewhat, especially for orders greater than N/4. However, the simple formula 
(6.20) has been considered sufficiently accurate until now. Many different white 
noise simulations with N between 4 and 1000 have been done. Always, vi of (6.20) 
is a useful approximation for the variance of reflection coefficients. This shows one 
important feature of finite-sample behaviour: it is not the sample size N itself, but 
the ratio of the model order i and N that is decisive. If the model order is lower than 
about N/10, asymptotic theory is often applicable with sufficient accuracy. For 
higher orders, finite-sample behaviour may become important.  

The empirical formula for the variance of reflection coefficients can be used to 
derive formulas for the finite-sample behaviour of the residual variance and the 
prediction error as a function of the model order. The approximation for the 
residual variance of white noise models is derived from the first line of (6.19) as 
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Figure 6.2.  Measured residual variance and prediction error as the average Burg estimates 
of 200,000 simulation runs of 200 white noise observations with variance 1. Also the 
relations of asymptotic theory and of finite-sample theory are shown. 

Substitution of vi of (6.20) in (6.21) shows that the residual variance is exactly the 
same in asymptotic and in finite-sample theory. As in (6.17), it decreases linearly 
with the model order for white noise. This is accidentally the case only for finite-
sample Burg estimates.  

In white noise, every AR parameter that is used for prediction will deteriorate 
the result. In analogy with the residual variance, the prediction error in finite-
sample theory is approximated by 

2
FS

1

PE( ) 1
K

i
i

E K v   (6.22) 

Broersen and Wensink (1993) have given a formal derivation of this finite-sample 
equation for the prediction error.  

These finite sample formulas are compared with the average of simulations in 
Figure 6.2. The approximation for the residual variance is very good; the lines 
almost overlap. The approximation for the prediction error is excellent for orders 
less than 0.4N and still very good for higher orders. It starts to deviate from the 
asymptotic result for orders greater than 0.15N. The good approximation in Figure 
6.2 is the main reason that no better approximation of the variance in Figure 6.1 
has been developed. Formulas (6.21) and (6.22) together will be referred to as 
finite-sample theory, although it is realised that the mathematical background is 
weak. They are empirical and simple approximations for the average result of 
simulations with white noise as a signal. Choosing (6.20) for the variance of 
reflection coefficients can be loosely connected with degrees of freedom.  
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6.4.7   Finite-sample Practice for Burg Estimates of an AR(2) Process 

The knowledge of the behaviour of higher order estimates obtained from a white 
noise signal as a true process is not important in itself. However, asymptotic theory 
shows  that all AR( p)  processes show the same white noise  behaviour for the true 
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Figure 6.3.  Measured variance of reflection coefficients, asymptotic white noise variance, 
and the finite-sample approximation 1/(N + 1 – i) of the average Burg estimates of 10,000 
simulation runs of 50 AR(2) observations. 
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Figure 6.4.  Measured residual variance and prediction error as the average Burg estimates 
of 10,000 simulation runs of 50 AR(2) observations. The white noise relations of asymptotic 
and finite-sample theory are also shown for 2 = 1. 
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order p and for all higher orders. For lower orders, the behaviour depends on the 
true process parameters. To study finite-sample behaviour in some detail, 
simulations have been done. The example in Figure 6.3 shows the results for an 
AR(2) process with 

A(z) = 1 + 0.51 z–1+0.7 z–2.

It is evident that the empirical variance of the first two reflection coefficients in 
Figure 6.3 deviates strongly from the expectations for white noise signals. With 
(6.16), the asymptotic variance expression for k2 gives 0.51/N. That value is found 
in Figure 6.3 for order two. For higher model orders, the white noise behaviour 
returns approximately for orders greater than two. 

The residual variance and the prediction error in Figure 6.4 are almost identical 
for orders one and two. The value is largely determined by the true process para-
meters, and the statistical variations of magnitudes about 1/N are almost invisible. 
The variance of the AR(2) process is 2

x = 2.155 2. At the true order two and at 

higher orders, the behaviour of the AR(2) models in Figure 6.4 is very close again 
to the white noise results in Figure 6.2. It may be concluded that the behaviour of 
estimated models of AR( p) processes is independent of true AR process 
characteristics for order p and higher. At and above the true order, it becomes 
similar to what happens in estimates from white noise. This will be very helpful in 
order selection. An order-selection criterion can be based on the detection of white 
noise behaviour for the residual variance of higher model orders, independent of 
the true process parameters for low model orders. In biased models of orders lower 
than true order p, the bias contribution of the nonzero reflection coefficients to the 
residual variance will generally be much greater than the contribution of the 
estimation variance above the true order. 

6.4.8   Model Error (ME) of Burg Estimates of an AR(2) Process 

The accuracy of estimates is important. The model error (ME) has been introduced 
as measure in (5.40) with the number of parameters as minimal expectation. 
Therefore, the Cramér-Rao lower bound for the ME of the AR(2) process is two. 
The average ME of 1000 simulation runs is given in Table 6.1, as a function of 
sample size N.

Table 6.1.  The model error (ME) of AR(2) estimates as a function of sample size N.

N ME
10 2.86 
20 2.56 
50 2.23 
100 2.11 
200 2.08 
500 2.00 
1000 1.95 
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Figure 6.5.  Autocorrelation function and normalized power spectral density of the AR(2) 
process with A(z) = 1+0.51z–1+0.7z–2

Figure 6.5 gives the spectrum and the autocorrelation function of the process. 
The accuracy in Table 6.1 is quite close to the Cramér-Rao bound for all sample 
sizes. That is remarkable for N equal to 10 and 20 because those sample sizes are 
less than the correlation length. This shows that the excellent performance for large 
samples is accompanied by very good model accuracy for finite and small samples 
always close to the Cramér-Rao bound. Therefore, the Burg algorithm is the 
preferred AR estimator. 

This section treated only the estimation of AR models of AR( p) processes, 
with the true order considered as known. Later, the selection of the model order 
and the model type will be treated. 

6.5  MA Estimation Methods 

The convergence problems of maximum likelihood estimates, zeros on the unit 
circle, and selection problems stimulated the search for a robust algorithm to 
determine MA parameters. Osborn (1976) tried constrained optimisation of the 
likelihood function. Davidson (1981) described the inevitable problems, and 
Findley (1984) showed that ambiguities can be associated with the question, which 
is the best model. Priestley (1981) mentions many attempts to find approximate 
maximum likelihood estimators for MA models. 

Durbin's (1959) method for MA estimation replaces a nonlinear estimation 
problem by two stages of linear estimation. Firstly, the parameters of a long AR 
model are estimated from the data. Afterward, MA parameters are computed by 
using the sequence of estimated AR parameters ai as if they were an input signal xn

for the Yule-Walker algorithm. A derivation will be given here, based on ME 
manipulations. 
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The MA method of Durbin (1959) is based on the asymptotic theoretical 
equivalence of AR( ) and MA(q) processes. Durbin’s method for MA estimation 
gives outcomes with all zeros inside the unit circle and fulfills all requirements to 
be useful under all circumstances. Theoretically, a MA(q) model B(z) is equivalent 
to an AR( ) model C(z) with C(z)=1/B(z). Durbin’s method uses the estimated
parameters of a long AR model to approximate the MA model. Of course, the order 
of that long AR model has to be finite in estimation.  

A new formulation of this old principle can be given with the model error and the 
approximate relations for interchanging the arguments in (5.61). Searching the best 
fitting MA(q) model for an AR(M) process is difficult. It requires a nonlinear 
solution that cannot be solved explicitly without a search procedure. Under the 
condition that both models are close or that the quotient of both models resembles 
white noise, an approximate solution is given by interchanging  (5.61) as 
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ME , ME ,
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q M

M q

B z C z

C z B z
 (6.23) 

Then, (5. 62) gives the solution 

( )

( )1ˆ ( ) arg min ME ,
( ) 1q

M
q

B z q

C z
B z

B z
(6.24) 

As the sequence of the operations in the ME had to be exchanged, it is clear that 
the resulting MA estimation method can be an approximation at best. The steps in 
this Durbin solution are 

estimate the autoregressive AR(M) model CM (z) of the data 
treat the parameters as a MA(M) process to find the autocorrelation with 
(4.11)
use the first q autocorrelations to determine the parameters of an 
autoregressive model of order q with the Yule-Walker relations (5.24) 
those parameters are the parameters of the desired MA(q) model. 

This method has good properties if a very high order AR model is used that is 
computed with the true MA(q) process. However, using estimated AR models 
generally gives disappointing results. Also using very high orders for the estimated 
intermediate AR model is not accurate. Mentz (1977) tried several modifications of 
Durbin’s method, which are reported to be consistent but asymptotically 
inefficient.  

Broersen (2000b) showed that the choice of order M of the AR model is very 
critical. It had been assumed without any proof that the best intermediate order 
would be the order of the best predicting AR model for the data. Simulations show 
that this order is not a good choice. A better choice is given by the AR order with 
the smallest mean square error of the parameters. Hocking (1976) showed that 
those two model orders for prediction and for parameter accuracy are different in 
ordinary  regression  theory.  Simulation  experiments will be required to determine 
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Figure 6.6.  The average accuracy of the MA(2) model estimated with an intermediate 
AR(M) model, as a function of the AR order M  in 1000 simulations with N = 50 of the 
MA(2) process with B(z) = 1 – 0.24z–1 – 0.6z–2. Also the mean square error of the AR 
parameters is shown, multiplied by 20. 

the best intermediate AR order for estimating a MA model. Also the accuracy of 
the MA model will be determined with the ME as a measure. That will be compared 
to the Cramér-Rao lower bound for the ME, which is equal to the number of 
estimated parameters. A comparison of models estimated with this MA algorithm 
and models estimated with other algorithms so far always had the result that the 
average ME of this method was smallest.  

Figure 6.6 gives the average ME of MA(2) models as a function of the 
intermediate AR order M. The ME of that AR(M) model is also given. The ME of 
all AR models is greater than the ME of the MA models. Hence, it is also better to 
have MA candidates for accurate modeling of data of an unknown character. The 
best predicting AR model, if estimated from 50 observations, is the AR(4) model 
C4(z), both in theory and in simulations.  

The theoretical best order for prediction follows the principle that every 
estimated parameter contributes one to the expected ME due to the estimation 
variance. If the bias in omitting a group of parameters is less than the omitted 
number of parameters, the expected bias of that group is less than the expected 
variance if they are included. They can better be left out as a group. 

The mean square error of the parameters of an AR(M) model CM (z) is defined 
as 

2 2

0 1

ˆMSE ( )
M

M i i i
i i M

C z c (6.25) 

where i denote the true AR parameters of the AR( ) model (z) which can be 
computed from the true MA process parameters with (z) = 1/B(z).
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For ordinary regression, Hocking (1976) has shown that the best theoretical 
parameter order can be found as the lowest order where the deterministic residual 
variance is less than 21 1/ N . The deterministic residual variance is defined 

here as the residual variance for biased models with fewer parameters than the true 
process if the true reflection coefficients are used without any estimation variance. 
That theoretical order is 10 for 50 observations of the MA(2) process of Figure 6.6. 
The smallest ME of the MA(2) model and the smallest mean square errors of the 
parameters are found for the estimated AR(10) model. The curves in Figure 6.6 are 
flat around their minima. It may be concluded that the simulations confirm the idea 
that the best intermediate AR order for Durbin’s MA method is given by the 
AR(10) model with the smallest mean square error of the parameters, not by the 
best predicting AR(4) model. 

The minimum ME of the MA(2) model was 3.1, quite close to the Cramér-Rao 
lower bound that is 2 for the MA(2) process. The ME obtained with the 
intermediate AR(4) model was 4.4, for the intermediate AR(25) model, it was 6.6. 
This demonstrates that a good choice for the intermediate AR order can give MA 
estimates close to the Cramér-Rao lower bound. The average ME of the best 
predicting AR(4) model was 8.4. 

The fact that the ME of the MA(2) model was 3.1, which is rather close to the 
Cramér-Rao lower bound but still somewhat higher, is probably a finite-sample 
effect. The simulations for the same MA(2) process have been repeated with 250 
observations. The results are given in Figure 6.7 with an enlarged scale for the 
parameter inaccuracy for visualizing the minimum. The best predicting order was 
10 for 250 observations, in both theory and in the simulation result. The best order 
for the  parameter  accuracy was 18 in theory and in the  simulations.  Also the best  
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Figure 6.7.  The average accuracy of the MA(2) model estimated with an intermediate 
AR(M) model, as a function of the AR order M in 1000 simulation runs of 250 observations 
of the MA(2) process with true B(z) = 1– 0.24z–1 – 0.6z–2. Also the mean square error of the 
AR parameters is shown, multiplied by 20. 
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MA(2) model was found with the intermediate AR(18) model. The best orders 
depend on sample size N. The minimum ME was 2.25, slightly above the Cramér-
Rao bound, but that rather small difference can also be due to statistical uncertainty 
in the average of 1000 runs. All intermediate AR orders between 13 and 38 give a 
value below 3 as the ME of the MA(2) model, which is still rather accurate. The 
intermediate AR order can be chosen within a rather wide range without much loss 
in the accuracy of the final MA model. However, taking the best AR order for 
prediction as intermediate AR order would give ME = 3.9, and taking the 
intermediate AR order N/2 would give ME = 10.3 in the example of Figure 6.7. 
Too low or too high intermediate AR orders have a negative influence on accuracy. 

The difference between the ME of the best AR model and the MA(2) model 
will increase with sample size. The minimum of the ME in Figure 6.7 is found at a 
higher order than in Figure 6.6, but it is also higher. All finite-order AR models are 
biased. Eventually, for N going to infinity, the bias contribution of the best AR 
model to the PE is only a small constant. However, multiplication by N in the ME 
gives an asymptotic infinite ME contribution in (5.40). 

Many other examples and sample sizes have been tested in simulations. For 
MA processes, the best AR order for parameter accuracy is almost always higher 
than the best AR order for prediction in simulations, never lower. Approximately 
that highest order for the best parameter accuracy is also always the best 
intermediate AR order for MA estimation.  

A MA(13) example has also been simulated that was sensitive for the triangular 
bias in Figure 3.4. The theory for the best predicting AR model gives AR order 60, 
and the simulations in Figure 6.8 also have  the minimum at order 60.  The best pa- 
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Figure 6.8.  The average accuracy ME of MA(13) models estimated by an intermediate 
AR(M) model, as a function of the AR order M in 3000 simulation runs of 1000 obser-
vations of a true MA(13) process. Also, 5.10–5 times the mean square error of the parameters 
is shown. The MA(13) example is the same as in Figures 3.4 and 3.11. 
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rameter accuracy should be found at order 81 according to the theory, and the 
simulations had a minimum at order 89. The best MA(13) model was estimated for 
the intermediate AR order 81. The average ME value for the MA(13) model in the 
simulations was 14.9, close to the minimum achievable Cramér-Rao bound of 13. 

This example is seen as a severe test. The ME due to triangular bias was 11,500 
for 1000 observations of this process; see Table 5.2. If the true process order is 
known and if the best AR order is known, Durbin’s MA estimation method with 
(6.22) is a very accurate method with accuracy close to the best achievable. The 
performance for data of an unknown character will be treated after the discussion 
of order selection. All three figures for MA estimation show that in those 
processes, the quality of estimated MA models can be much better than the quality 
of the best estimated AR model. This is a firm recommendation to try the class of 
MA models as candidates for practical data with unknown characteristics. 

6.6  ARMA Estimation Methods 

ARMA models are the most difficult to estimate. All problems of MA return, and 
also a new problem arises of splitting the dynamics in AR and MA parts. As in the 
MA estimation, maximum likelihood does not provide a reliable estimator.  

Moreover, extra problems arise if ARMA( p+1,q+1) models are estimated for a 
true ARMA( p,q) process. If the true order of a process is not known a priori, it 
will be necessary to estimate models of orders too high before it can be concluded 
that the lower orders give a better fit to the data. Estimation of one extra zero in the 
numerator and one extra pole in the denominator gives the possibility that the extra 
pole and zero are equal. They can cancel each other. In that case, the 
ARMA( p+1,q+1) and the ARMA( p,q) models have the same spectral density and 
the same autocovariance functions, but they can have different parameters. If the 
extra pole and zero are close to each other, they almost cancel. This has been 
discussed already in Section 6.3.3. Stoica and Moses (1997) stipulate that there is 
yet no well-established algorithm, from both theoretical and practical standpoints, 
for ARMA parameter estimation.  

A recent development with subspace analysis, called canonical correlation 
analysis, seemed a new solution. However, Bauer and de Waele (2003) have shown 
that this method always fails to produce accurate models for processes that are 
sensitive to the triangular bias (3.32) in the autocorrelation function. Hence, at least 
one complete class of processes has a poor result with subspace analysis. Because 
the quality of the estimated model cannot be guaranteed with subspace methods, 
those methods are not considered for routine application to measured stochastic 
data.  

The successful improvement of Durbin’s MA method is a reason to investigate 
the possible quality of the ARMA method of Durbin (1960). That also uses 
intermediate AR models for two stages. The first stage is finding an initial 
separation of the AR and the MA parts; the second stage uses the parameter 
estimates of the first stage as starting values for an improved ARMA estimate.  
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6.6.1   ARMA( p,q) Estimation, First-stage 

The first ARMA method of Durbin uses both reconstructed residuals and previous 
observations as regressors for an explicit least-squares solution:  

( ) ( )

ˆ( )
p n q n

M n n

A z x B z

C z x (6.26) 

The residuals nˆ  are reconstructed with a finite-order estimated long AR model 

CM (z)

1 1
ˆ

n n n M n Mx c x c x   (6.27) 

If the order of CM (z) were infinite and if CM (z) is exactly equal to the true 
Bq(z)/Ap(z), the reconstruction of nˆ  could be perfect, and the accuracy of the 

reconstruction is reasonable for finite length and estimated parameters. Parameters 
are estimated in Durbin’s first method by minimising 

2

1 1 1 1
max( , ) 1

ˆ ˆˆ ˆ ˆˆ ˆ
N

n n p n p n n q n q
n p q

x a x a x b b    (6.28) 

This ARMA( p,q) solution is not efficient and is not guaranteed to be stable and 
invertible. Therefore, the objective quality of (6.28) cannot be established or it is 
very poor because this estimate is not fully efficient, according to Durbin (1960). 
However, by computing the AR and the MA parameters at the same time, the 
dynamics are automatically divided into AR and MA parts. Many suggestions to 
improve efficiency have been made. Many of those improved methods are 
iterative, using the results of Durbin’s first ARMA method as initial conditions. A 
second stage after the regression step in (6.28) is always necessary to obtain a 
satisfactory model. 

If the estimated parameters are required only as an initial separation into an AR 
part with p parameters and a MA part with q parameters, several inefficient but 
simple alternative first-stage methods have been given by Broersen and de Waele 
(2002, 2005). They are called reduced-statistics estimators. Four different 
transformations of the long AR model have been used to find an initial splitting of 
the dynamics in the AR and the MA parts. Those methods use the estimated AR 
model CM (z) as a reduced-statistic input, and they do not use the data any further. 
The four methods are  

long AR 
long MA 
long covariance 
long inverse correlations 

Klees et al. (2003) described a satellite signal processing application where the 
only available representation of the data is a given autocorrelation function. That 
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autocorrelation can be transformed into a long AR model by the Levinson-Durbin 
recursion (5.24). Then, the only MA and ARMA estimators which are realisable 
must be derived entirely from the autocorrelation or from that long AR model.  

6.6.2   ARMA( p,q) Estimation, First-stage Long AR 

The first method, long AR, uses CM (z) itself as the basis for computations. The 
method was introduced by Graupe et al. (1975) as a single-stage ARMA method. 
The long AR method employs the relation 

ˆ ( ) 1
ˆ ( )( )

or

ˆˆ ( ) ( ) ( )

q

Mp

q M p

B z

C zA z

B z C z A z   (6.29) 

A serious problem is that those relations are approximations. They give exact 
results for exact polynomials, but in practice with estimated polynomials, they 
cannot be satisfied exactly. Standard estimation theory requires information about 
the statistical errors in these equations to formulate a good estimator. That 
information is not available here, and for that reason, it is not possible to derive a 
maximum likelihood estimator or any other efficient estimator from (6.29). By 
arbitrarily concentrating the inaccuracies in an unknown error signal m, the second 
representation in (6.29) can be written as 

0

ˆ ˆ , 0, ,
q

i m i m m
i

b c a m M   (6.30) 

by equating the left- and right-hand side coefficients of z–m. For the moment, it will 
be supposed that the orders p and q are known. Later, it will be shown how to 
select those orders for practical data.  

If an ARMA( p,q) model has to be estimated, it is known that the AR 
parameters have to be zero for orders m > p. With that knowledge, the q first-stage 
MA parameters can be estimated without knowing the first p AR parameters. MA 
parameter estimates can be found as a least-squares solution from the higher order 
equations in (6.30) as 

0

ˆ , 1, ,
q

i m i m
i

b c m p M   (6.31) 

by minimising  the sum of m
2 for p < m < M. A solution  exists  for M  p + q. If 

M = p + q, there are just enough equations to estimate the q MA parameters with 
zero as the expectation for m. The equations are overdetermined for greater values 
of M and need a least-squares solution. This will be followed by calculation of the 
p AR parameters. 
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Having obtained these MA estimates, it seems attractive to determine an AR 
solution by solving the first p equations in (6.30). Substitution of the MA estimates 
from (6.31) yields ˆma  with m = 0 for m = 0, 1,..., p. However, simulations have 

shown that better initial first-stage AR parameters for a given MA model can be 
found with the second-stage AR algorithm that will be derived later.  

The informal derivation of this algorithm clarifies the idea that no statistical 
optimality can be claimed for this first-stage solution of the initial estimates. The 
same lack of statistical optimality applies to the next three estimators of initial 
estimates. It is hoped that at least one of the four estimators will be adequate for 
each different type of measured data. Simulations will be necessary to investigate 
the performance. 

6.6.3   ARMA( p,q) Estimation, First-stage Long MA 

The second reduced-statistics method, denoted long MA, is derived from an 
alternative evaluation of the first relation in (6.29). It uses an estimate for the 
infinite MA representation G(z) of (4.63). This long MA model is calculated from 
the M parameters of CM (z).  The length of the impulse response computed from 
G(z) CM (z) = 1 can be chosen freely,  much  greater than M. Suppose that the 
impulse response practically died out at L.

ˆ ( ) 1
( )

ˆ ( )( )

ˆ ˆ( ) ( ) ( )

q
L

Mp

p L q

B z
G z

C zA z

A z G z B z   (6.32) 

Knowing that the MA parameters are zero for m > q, the p AR parameters for the 
initial Âp(z) follow as the least-squares solution from 

0

ˆ , 1, ,
p

i m i m
i

a g m q L   (6.33) 

The different expressions for m in (6.30) and (6.33) indicate once more that the 
application of least squares to those approximate relations will not lead to theore-
tically optimal or efficient estimators. However, they can be useful as first-stage 
solutions. 

6.6.4   ARMA( p,q) Estimation, First-stage Long COV 

The third method for finding initial conditions for the AR part Âp(z) of the 
ARMA( p,q) model is denoted long COV because it uses the autocovariance 
function as reduced-statistics information. If the autocovariance or autocorrelation 
itself is given, it can be used immediately in this method. Otherwise, it has to be 
calculated from the long AR model. The formulas required to establish the 
relations between the AR parameters in the long AR model CM (z) and the 
autocovariances are based on the Yule-Walker equations, as in (5.5): 
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0
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i
i

c R m i m M

R k R k k   (6.34) 

Now the initial AR parameters Âp(z) are calculated with (4.69) and (4.70) by a 
least-squares solution: 

0

ˆˆ ( ) , 1, ,
p

i m
i

a R m i m q M   (6.35) 

by minimising the sum of m
2 for q + 1 < m < M. It is assumed that M is greater 

than p + q.

6.6.5   ARMA( p,q) Estimation, First-stage Long Rinv 

The fourth method, long Rinv, uses inverse correlations. Inverse correlations and 
spectra are defined by interchanging AR and MA polynomials (Priestley, 1981). 
The inverse correlation is found from the parameters of the intermediate AR model 
CM (z) with 

0

ˆ ˆ( ) , 0,1, ,
M k

inv i i k
i

R k c c k M   (6.36) 

Further, Rinv(k) is zero for shifts greater than M, and it is symmetrical around zero 
shift. The initial estimates for the r – 1 MA parameters are found with the 
overdetermined equations: 

0

ˆ ( ) , 1, ,
q

i inv m
i

b R m i m p M   (6.37) 

by minimizing the sum of m
2 for p + 1 < m < M. Afterward, the second-stage AR 

method is used to calculate the first-stage AR model from these estimated MA 
parameters, as in the long AR method before. 

6.6.6   ARMA( p,q) Estimation, Second-stage 

Five different estimators have been discussed as possibilities for the first stage. The 
first one uses the data and the residuals that are reconstructed with a long AR 
model in (6.28); the other four use only the long AR model CM (z) that was 

estimated from the data. Only the AR parameters ˆ̂
( )pA z  of the first stage are 

required as initial estimates for the second stage. The estimated MA parameters of 
the first stage are not used in the second stage. The second-stage algorithm consists 

of two steps. The initial AR estimates ˆ̂
( )pA z  are used first to compute the final MA 
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model ˆ ( )qB z . Then this final MA model is used to improve the first-stage AR 

estimate. The derivation is similar to the MA algorithm of (6.23) and (6.24). The 
MA parameters are estimated by 

( )

( )

( ) 1ˆ ( ) arg min ME ,
ˆ ( )ˆ ( )

( )1
arg min ME ,

ˆ( ) ˆ ( )

q

q

q
q

B z M
p

M

B z q
p

B z
B z

C zA z

C z

B z A z

  (6.38) 

In this derivation, use is made of the approximation due to interchanging the 
sequence of the elements of the ME, as in (5.61). After this final MA estimation, 
the intermediate AR model CM (z) is multiplied by this newly estimated MA model 
ˆ ( )qB z . The solution for the improved AR parameters can be formulated as 

( )

1 1ˆ ( ) arg min ME ,
ˆ( ) ( ) ( )p

p
A z p q M

A z
A z B z C z

  (6.39) 

This yields the AR(p) model ˆ ( )pA z  with the first p autocovariances equal to the 

first p autocovariances of the AR product model ˆ ( )qB z  CM (z). The same compu-

tation is also used to calculate ˆ̂
( )pA z  in the first stage for the long AR and the long 

Rinv methods where the overdetermined equations yielded an initial estimate for 
ˆ̂ ( )qB z .

The original method of Durbin (1960) used iterative updates of MA and AR 
parameters until the iterations converged. The two steps (6.38) and (6.39) in the 
second stage can be iterated if desired. Iteration of the second stage will give an 
improved model if poor or zero initial-stage AR estimates were used from the first 

stage. With zero parameters substituted in ˆ̂
( )pA z , many second-stage iterations are 

required to converge to a somewhat acceptable estimated ARMA( p,q) model. In 
simulations with reduced-statistics, initial estimates up to 10 second-stage 
iterations did not improve the quality of the estimated models for the very best of 
the five types of initial estimates, at least in most simulation examples. Generally, 
second-stage iterations tend to converge for all first-stage methods to the same 
final value. That common value is slightly worse than the result that is obtained 
with the best type of the first stage after a single second-stage iteration. However, it 
will often improve other types of initial estimates that have poorer quality. In other 
words, poor second-stage estimates will mostly be improved with iterations in the 
second stage, but the best second-stage estimates will generally not improve and 
become worse by iterations. 
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The best choice for the order M of the long AR model has been studied by 
Broersen (2000b). It turns out to be the same principle as in MA estimation: the 
order of the estimated AR model with the smallest expected mean square of the AR 
parameters is the best choice. 

6.6.7   ARMA( p,q) Estimation, Simulations 

Four different examples have been chosen to demonstrate the necessity of different 
methods in reduced-statistics, first-stage solutions. The examples are 

ARMA(2,1) 

1 2 10.39 0.3 0.9n n n n nx x x

ARMA(3,2) 

1 2 3 1 20.88 0.5 0.45 0.5n n n n n n nx x x x

ARMA(4,3) 

1 2 3 4

1 2 3

3.36 5.09 3.42 0.92

1.8 1.05 0.12
n n n n n

n n n n
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ARMA(5,4) 

1 2 3 4 5

1 2 3 4

3.9097 6.7395 6.4026 3.3521 0.7738

3.2795 4.4493 2.9597 0.8145
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Figure 6.9.  The autocorrelation function and the power spectral density of the four example 
processes. The ARMA(4,3) process has a long autocorrelation function, the ARMA(5,4) 
process has a large spectral range. 
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Figure 6.9 gives the autocorrelation functions and the spectral densities of the 
four examples. The first two processes have an autocorrelation function that is 
much shorter than 100, which will be the usual number of observations in the 
simulation results shown in the figures. The ARMA(4,3) process describes a 
spectrum with two low-order peaks. Therefore, this process has a very long 
autocorrelation function. The ARMA(5,4) process has all poles and zeros at the 
same radius of 0.95. This is realised by building parameters from reflection 
coefficients using (5.28) with km = (0.95)m for the AR parameters and km =(– 0.95)m

for the MA parameters. In this way, all poles of the generating process have the 
same radius of 0.95.

The last two examples have been selected especially as difficult processes, 
which had rather particular performance in simulations with numerous other 
ARMA processes. The first two examples are well-behaved processes. 
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Figure 6.10.  The average accuracy ME of the first- and second-stage ARMA(2,1) models 
estimated from the data as a function of the AR order M in 10,000 simulation runs of 100 
observations of a true ARMA(2,1) process.  

Figure 6.10 gives the results of the ARMA algorithm based on data, with (6.28) 
in the first stage as initial values. The first-stage estimates are denoted INIT; the 
full estimates completed with the second stage for the ARMA(2,1) example are 
denoted ARMA(2,1) data. The order of the intermediate AR model is varied from 3 
to 50, to find the best choice for that model order. Both the initial-stage and the 
second-stage ARMA models have better accuracy than the AR model. This shows 
that it is a good idea to have ARMA models as candidates. The theoretical best AR 
order for prediction for the ARMA(2,1) example is 8 for N = 100, in agreement 
with the simulation result. The average ME of the AR(8) model was 13.6. The 
theoretically expected order with the smallest mean square error of the parameters 
was 15; the simulation result for the AR order with the best ARMA(2,1) in the 
second stage was 17. The smallest ME value was 4.17. The lowest ME value for 
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the first-stage ARMA(2,1) model was 6.80. This first-stage ME also depends on 
the AR order because the reconstruction of the residuals with (6.27) is done with 
the AR model. It is remarkable that the AR order with the best result is somewhat 
different for the first- and the second-stage ARMA(2,1) models. The first stage has 
minimum 6.8 at order 12; the second stage has the minimum value 4.16 at order 
17. Therefore, the best initial first-stage estimate does not belong to the best final 
estimate in the second stage. However, both curves are rather flat at the bottom.  

For AR orders until seven, the initial stage ARMA model is better than the 
second stage. The second stage was no improvement, probably because the 
interchange of AR and MA parts in (6.38) and (6.39) is allowed only if the final 
ARMA model is accurate. The lower order models are least accurate. For higher 
intermediate AR orders, the second stage is certainly an improvement on the first-
stage result. 

The best predicting AR order has the lowest ME. Taking that order as inter-
mediate, as is done or advised in most examples in the literature, would give the 
ME value 6.15 for the ARMA(2,1) model. This is more than a factor of 2 higher 
than the minimum of the Cramér-Rao bound 3 for the model with three estimated 
parameters. That explains the poor reputation of Durbin’s method. It is clear that 
proper choice of the AR order is necessary for a good final ARMA model. The 
influence of the intermediate AR order on the accuracy of the ARMA estimates is 
moderate in the wide area of the minimum of the ME curves. However, taking a 
much lower order will have a strong effect. Also taking the highest order 50 will 
reduce the accuracy of the estimated ARMA(2,1) model, with ME values that are 
twice higher. 

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30
ME of ARMA(2,1) and AR(M) model and MSE of AR parameters

  Intermediate AR order M

AR(M)
ARMA(2,1) long AR
INIT ARMA(2,1) long AR
MSE parameters (*3)

Figure 6.11.  The average accuracy ME of the ARMA(2,1) long AR model estimated with 
an intermediate AR(M ) model, as a function of the AR order M in 10,000 simulation runs of 
100 observations of a true ARMA(2,1) process. Also the mean square error of the para-
meters is shown, multiplied by 3. 
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Repeating the simulations of the same process with the long AR method of 
(6.31) in the first stage gives Figure 6.11. Here, the initial first-stage results are 
slightly better than the results with the second stage included, and iterations with 
the second stage cannot improve the result. In this example, a single-stage 
estimator would be sufficient and the best. However, even in this special example, 
the application of the second stage does not do much harm. The smallest MSE of 
the parameters was at order 17, and the smallest ME of the ARMA(2,1) model was 
found for the intermediate order M equal to 18. Also for ARMA processes, the best 
intermediate AR order is close to the theoretical order with the smallest parameter 
errors, as it was for MA models. The ME of the ARMA(2,1) model is 2.88 for the 
first stage only and 3.27 with the second stage included. Both values are close to 
the Cramér-Rao lower bound of 3. 

Taking the order with the best parameter accuracy as the intermediate AR order 
is a good choice. However, the ME values for high intermediate AR orders 
increase much less for long AR than in Figure 6.10 for the reconstructed residuals 
as first stage. 

All four reduced-statistics methods for the first stage have been tested in 
simulations to compare their results. Figure 6.12 gives the average ME after two 
stages; Figure 6.13 after only the first stage. For convenience, the theoretical orders 
for the best predicting AR model and the order for the best parameter accuracy 
have been indicated with arrows. The differences among the five first-stage 
methods are rather strong. The differences become smaller after the second stage, 
but they do not disappear. 

The long AR method was the best reduced-statistics first-stage method for the 
ARMA(2,1) example for N = 100. This is seen in Figure 6.13. After the second 
stage in Figure 6.12, long AR and long Rinv are close competitors that almost 
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Figure 6.12.  The average accuracy ME of the four second-stage ARMA(2,1) models 
estimated exclusively from an intermediate AR(M ) model and of the AR(M ) quality, as a 
function of the AR order M in 500 simulation runs of 100 observations of a true ARMA(2,1) 
process.  
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Figure 6.13.  The average accuracy ME of the four first-stage ARMA(2,1) models estimated 
from an intermediate AR(M ) model, as a function of the AR order M in 500 simulation runs 
of 100 observations of a true ARMA(2,1) process. The AR(M ) quality is also given. 

coincide over the whole range of intermediate AR orders. All methods give poor 
results for low intermediate AR orders. The best first-stage methods in this 
example have smooth dependence on the AR order. That dependence is much 
stronger for the long MA and for the long COV method. 

At least two methods, long AR and long Rinv, give accurate ARMA(2,1) 
models after the second stage. Two methods with reconstructed residuals from data 
and with long MA give slightly worse results. Comparing Figures 6.10 and 6.12, 
the performances of the reconstruction with data and the long MA method are 
similar, especially after the second stage. Finally, the result of the long COV is 
poor, after both the first and second stages. 

In simulations, the true process is known and all accuracies can be established. 
For practical data, everything must be derived from the data. In later chapters, it 
will be shown that the choice of the intermediate AR length and the choice among 
the different first-stage methods can be made automatically with order-selection 
criteria. The rather extensive treatment here explains why more first-stage methods 
have to be tried on practical data with unknown characteristics. Furthermore, it 
gives the background information for the automatic spectral analysis algorithm. 
The examples have been chosen such that every first-stage method is best some-
where. 

Long MA is the best first-stage algorithm for the ARMA(3,2) process in Figure 
6.14, long COV is the best for the ARMA(4,3) example in Figure 6.15, and long 
Rinv is only just the winner for the ARMA(5,4) process in Figure 6.16. The 
influence of the intermediate AR model order is moderate in all four examples, at 
least for the best first-stage method and as long as the order is above some critical 
value. The long COV method has peculiar behaviour in Figures 6.15 and 6.16. 
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Figure 6.14.  The average accuracy ME of the five second-stage ARMA(3,2) models 
estimated from an intermediate AR(M ) model, as a function of the AR order M in 200 
simulation runs of 100 observations of a true ARMA(3,2) process. 
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Figure 6.15.  The average accuracy ME of the five second-stage ARMA(4,3) models 
estimated exclusively from an intermediate AR(M ) model, as a function of the AR order M
in 500 simulation runs of 100 observations of a true ARMA(4,3) process.  

In the first two ARMA examples, the best of the four methods for the first stage 
gives a result that is close to the minimum achievable Cramér-Rao bound. The 
distance to that bound is somewhat greater in the last two examples. The difference 
from the Cramér-Rao bound was greatest for the ARMA(4,3) process, which has a 
true spectrum with two close and strong peaks. In this example, only the long COV
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Figure 6.16.  The average accuracy ME of the five second-stage ARMA(5,4) models 
estimated exclusively from an intermediate AR(M ) model, as a function of the AR order M
in 5000 simulation runs of 100 observations of a true ARMA(5,4) process  

method gives more or less satisfactory results, if the intermediate AR order is high 
enough. These simulation results show the influence of the intermediate AR order. 
Moreover, they also demonstrate the well-known fact that no simple ARMA 
estimation algorithm is reliable in all circumstances.  

In most examples, it is very important to take as an intermediate AR order, an 
order that is significantly higher than the best AR order for prediction. Taking that 
wrong and too low an intermediate order has been the main reason that the good 
accuracy of the algorithms developed here has not been recognized in the literature 
on ARMA estimation. For the best first-stage method for a particular signal, the 
choice of the intermediate AR order is not very critical, but the quality will always 
diminish if the maximum order were used, like N/2 in the examples. 

In most examples, the performance of the ARMA algorithm based on the 
reconstruction of the residuals with (6.25) was close to the behaviour of the long 
MA method. That will be demonstrated once more in Figure 6.17 for the 
ARMA(4,3) example, with 1000 observations. This was the example with the 
worst quality for N = 100. What happens if more observations are available has 
been studied. The minimum ME of the long COV method was 7.9 for N = 1000, 
close to the minimum value of 7. All other methods give very inaccurate models. 
The first stages from data and from the long MA are quite close over the whole 
interval. The results of the first and of the second stage are very close for long 
COV; for the other methods, the second stage gave a significant improvement. The 
simulations have been repeated for N = 10,000. The global appearance was like 
Figure 6.17. The minimum ME of long COV was 7.0, the ME of long MA was 
148, of long AR 1147, and of long Rinv 2104.  

It turns out that the accuracy of the estimated ARMA(4,3) model for N = 10,000 
is equal to the  minimum obtainable  value of 7 for the long  COV method. Heavily  
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Figure 6.17.  The average ME of the five second-stage ARMA(4,3) models, as a function of 
the AR order M in 100 simulation runs of 1000 observations of a true ARMA(4,3) process  

biased models are found with the other four initial-stage methods. However, this 
bias disappears if the ARMA order is taken somewhat higher. The best accuracy 
for the initial stage with residuals reconstructed from the data was ME = 12 for the 
estimated ARMA(7,6) model. Sometimes, one or more initial-stage methods are 
biased if models of the true order are estimated. However, no examples have been 
found where all initial-stage methods were seriously biased. Furthermore, the bias 
always diminished or disappeared if the order was chosen somewhat higher than 
the true order, at the cost of an extra variance contribution to the ME for the 
additionally estimated parameters. Therefore, if models of a fixed a priori deter-
mined order are estimated, it is advisable to use all five initial-stage methods, 
followed by a second-stage estimation. It will turn out in the next chapter that an 
order-selection criterion can automatically select the best of the five solutions. 

The results in Figure 6.17 and all previous figures in this section have been 
determined for a single iteration of the second-stage algorithm of (6.38) and (6.39). 
The question is still what improvement can be obtained with iterations of the 
second stage. 

The most inaccurate ARMA(4,3) example has been used to test the result of 25 
iterations of the second-stage algorithm for each of the five first-stage estimators. 
Figure 6.18 gives the results. The five methods converge more or less to the same 
ARMA models after iterations. The quality is much improved for the methods with 
poor quality in the first stage. However, the quality becomes worse for the best 
first-stage method, which was long COV for this example. After the iterations, long 
COV no longer gives the best result, but the long MA method does. Altogether, 
long COV after a single iteration gave the best result. The first stage with recon-
structed residuals from the data remains close to the long MA first stage-line. It is 
curious that the long COV was the best before  iterations and one of the worst after. 
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Figure 6.18.  The average ME of the five second-stage ARMA(4,3) models, as a function of 
the AR order M in 500 simulation runs of 100 observations of a true ARMA(4,3) process, 
left is after one second-stage computation, and right gives the results of the same simulations 
after 25 second-stage iterations. Long COV is the best on the left-hand side. After iterations, 
it coincides with long AR, and long MA is the best. 
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Figure 6.19.  The average accuracy ME of the five second-stage ARMA(5,4) models, as a 
function of the AR order M in 500 simulation runs of 100 observations of a true ARMA(5,4) 
process, left is after one second-stage computation, and right gives the results of the same 
simulations after 25 second-stage iterations. All five lines coincide completely on the right-
hand side. However, the minimum ME at AR order 28 is 1.0 lower on the left-hand side.



Estimation of Time Series Models 155 

From this simulation and many others, it has been concluded that computationally 
demanding iterations do not improve the quality of the best result. 

Figure 6.19 gives the result of iterations for the ARMA(5,4) example. Here, all 
five initial stages converge to exactly the same ME with the second-stage 
iterations. But the minimum ME after iterations is one greater than the best result 
after a single iteration of the second stage. A few simulation runs with very poor 
quality was the main cause for the poor average quality of the residuals 
reconstructed from the data after a single iteration. In most runs, the ME was about 
100 but in some runs, much more than 1000. 

At first sight, the result of the left-hand side of Figure 6.19 seems to indicate 
that the reconstruction of the residuals with (6.28) can sometimes deliver very poor 
models. However, this is only partially true. Examples can be found where the 
reconstruction of residuals as the first-stage method delivers a poor model of the 
fixed true process order. In those cases, a model of one or two orders higher is 
much better. Only if the algorithm is used to estimate models of predetermined 
orders, it may deliver a poor result.  

So far, the results may seem disappointing. One or two of the five first-stage 
methods can give accurate results if the intermediate AR order is not chosen 
erroneously. It is not known in advance which first-stage method is the best. The 
intermediate AR order can be chosen quite well if the true process parameters are a
priori known. It is the order of the best parameter accuracy then, where the residual 
variance computed with the true AR parameters of the process becomes less than 

21 1/ N . However, that information is not usually available in time series 

estimation. The automatic choice among the five first-stage methods and what 
should be the intermediate AR order will be treated after the next chapter on order 
selection. 

6.7  Covariance Matrix of ARMA Parameters 

6.7.1 The Covariance Matrix of Estimated AR Parameters 

Kay (1988) reported large sample results for the covariance matrix for efficient 
estimates of AR parameters. They can also be used as good approximations for 
finite samples, as long as the AR order p is much less than N and the distance of 
the poles to the unit circle is not too small. The distance should be at least greater 
than 1/N. The asymptotic covariance matrix for the estimated AR( p) parameters is 
given by 

2 1

ˆ ˆ ˆcov( ) ( )( )

/

T
p p p p p

p

E

R N   (6.40) 

where Rp has been defined in (5.5). An extended covariance matrix includes the 
estimation of the residual variance, giving 
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This is the equation which one would expect by treating the lagged xn values as 
ordinary regressors in a linear regression problem. The estimates of the parameters 
are not correlated with the estimate of the residual variance, which follows from 
the zero in the off-diagonal position in (6.41). Furthermore, for an AR(1) process, 
it follows 

2
1

1

1
ˆvar( )

a
a

N
  (6.42) 

For an AR(2) process, the variances of both parameters are equal and become 

2
2

1 2

1
ˆ ˆvar( ) var( )

a
a a

N
  (6.43) 

More generally, as the matrix Rp is symmetrical about both the diagonal and the 
anti-diagonal, its inverse will have the same property. Therefore, the variance of 
estimated AR(p) parameters is symmetrical which means  

var(a1) = var(ap), 

var(a2) = var(ap–1)

and so on. 
In all AR, MA and ARMA processes, the covariance between estimated 

parameters and the estimated innovation variance is equal to zero. The lower bound 
for the estimated variance of the innovation variance for unbiased models is given 
by  

4
2 2

ˆvar( )
N

  (6.44) 

Kay and Makhoul (1983) derived formulas for the variance of estimated 
reflection coefficients by treating them as transformations of the parameters and 
using (2.32). 
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6.7.2   The Covariance Matrix of Estimated MA Parameters 

The covariance matrix for efficiently estimated MA(q) parameters becomes 

2
1

2
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0ˆ ˆ
ˆ ˆcov( , )

2ˆ ˆ
0

T
zz

q q q q
q

R
NE

N

,   (6.45) 

where Rzz denotes the q  q autocovariance matrix of the signal zn that is created 
with an AR(q) model with the parameters of the MA(q) process and the same 
innovation variance 

1 1n n q n q nz b z b z   (6.46) 

Rzz looks like Rp in (5.5). In principle, maximum likelihood estimates will approach 
the efficiency of this covariance matrix asymptotically. In finite samples, the 
variance found with (6.46) is a fair approximation of the variance of Durbin’s 
method with the best intermediate AR order. It is not necessary to make a detailed 
study of finite-sample properties because the highest order that can be estimated 
efficiently for MA models must necessarily be much lower than the order of the 
intermediate AR order. It cannot be as high as 0.5N, but only 0.1N or 0.2N. For low 
orders, the asymptotic expressions are reasonably accurate, and no finite-sample 
formulas have been developed. 

6.7.3   The Covariance Matrix of Estimated ARMA Parameters 

The covariance matrix of ARMA parameters is given in Kay (1988). The most 
important property is that the parameter variance becomes infinite if both the AR 
and the MA order are greater than the true order. That is easily explained because 
multiplying a quotient of a canceling pole-zero pair (1-a z–1)/(1-a z–1) by an 
arbitrary ARMA( p,q) model does not change the quotient B(z) / A(z), the 
autocorrelation function, or the spectrum. However, many different parameter 
values in the ARMA( p+1,q+1) model yield exactly the same second-order 
moments, and the true values of the parameters cannot be found, at least not with 
the given estimation methods. The estimation of the parameters of the 
ARMA( p+1,q+1) model will not converge to the true ARMA( p,q)ARMA(1,1) 
process parameters for N , although the estimated autocorrelation and the 
estimated spectrum will have a vanishing error with respect to the ARMA( p,q)
process, at least if numerical problems are avoided in the estimation procedure. 

The covariance matrix for efficiently estimated ARMA( p,q) parameters 
becomes the inverse of the Fisher information matrix (Kay, 1988) and is given by 
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The result for the estimated variance given by (6.44) is independent of the para-
meters and also equal to the accuracy of estimating the variance of a white noise 
process. The process yn is an AR( p) process with Ap(z) as parameters, the process 
zn is an AR process with Bq(z) as parameters, and the matrix Ryz  has elements 

[Ryz]i,j = E [y(n)z(n + i – j)].  (6.48)

The elements of those matrices are easily found with a variant of Yule-Walker 
equations that are used directly for the elements of the symmetrical matrices Ryy

and Rzz:

1 1

1 1 .
n n p n p n

n n q n q n

y a y a y

z b z b z   (6.49) 

Multiplying the first equation by zn, zn–1,…,zn–p , the second by yn–1,…,yn–p , and 
taking expectations yields 
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1 1 1 1 1 1
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E z y E b z y E b z y E y

This can be rewritten with the general property Ryz (k) = Rzy (– k) and with the pro-
perty that yn and zn can be written as a linear combination of n and only previous 
values of :
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Together this gives 2p + 1 equations for 2p + 1 unknowns, which can be solved 
with 
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This completes the computation of terms required for the covariance matrix for 
estimated parameters of an ARMA( p,q) process. The p q matrix Ryz becomes 
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   (6.50) 

with ryz(k)=E[ynzn+k].
The accuracy of estimated autocorrelations and spectra is found by considering 

them as functions of the estimated parameters. Friedlander and Porat (1984) give 
some results for spectral estimates as well as for integrated spectra. That latter 
result can be applied to the minimum obtainable value for the ME, which is equal 
to the number of estimated parameters. With the Taylor expansion result of (2.32) 
and the covariance matrix (6.47) of the estimated ARMA parameters, formulas for 
the variance can be derived. Ninness (2003) gives an improved mathematical 
analysis and Ninness (2004) included also the effect of not knowing the true 
process order in the accuracy analysis. 
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6.8   Estimated Autocovariance and Spectrum 

6.8.1   Estimators for the Mean and the Variance  

The estimator for the mean value has been defined in (3.19) as 

1

1
ˆ

N

x i
i

x
N

  (6.51) 

In all further results, it is assumed that the mean of the data is subtracted before the 
signal processing starts. Not subtracting the mean value may have strange effects in 
the estimation of time series models. 

The estimator for  the variance is given in (3.20) as 

22
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1

N

x i x
i

x
N

  (6.52) 

Subtracting the measured average gives a loss of one degree of freedom for an 
unbiased estimate. The variance 2ˆ x  of the process is generally estimated directly 

from the data without a model for the data.  
Porat (1994) proved that only the first p – q estimates of autocovariances are 

efficient for an ARMA( p,q) process. That shows that (3.20) is an efficient 
estimator for the variance of an AR( p) processes and also for ARMA( p,q)
processes with p > q. According to the theory, the variance estimator (6.52) is not 
efficient for ARMA( p,q) with q  p and for all MA(q) processes. Asymptotically, 
the maximum likelihood principle should provide an efficient estimator for the 
variance in those circumstances. However, the finite-sample properties of 
maximum likelihood estimation are poor and those estimates have not been 
considered. No existing estimator claims better accuracy. Therefore, (6.52) is the 
estimator for the variance of a signal that is used in all circumstances. 

6.8.2   Estimation of the Autocorrelation Function 

Estimation of an autocorrelation function requires knowledge of or the estimation 
of the parameters ˆ ( )A z  and ˆ( )B z  of the time series model of the data. The lagged 

products estimator (3.31) provides only biased estimates for individual lags, which 
can hardly be interpreted as estimating a function. Furthermore, the lagged product 
bias has two components in (3.33), the triangular bias and a contribution arising 
from the fact that the autocorrelation is the quotient of two estimated stochastic 
variables. 

Porat (1994) derived the important result that only the first p lagged product 
estimates are efficient for AR( p) processes and only p – q are efficient for an 
ARMA( p,q) process with p > q. Efficiency is a special statistical property. 
Priestley (1981) defined relative efficiency as the quotient of the variances of two 
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different unbiased estimators. An estimator is efficient if it has the smallest 
possible variance of all unbiased estimators. That lowest variance bound is called 
the Cramér-Rao lower bound.  

Lagged product estimators are not efficient for ARMA( p,q) with q  p and for 
all MA(q) processes (Porat, 1994). The length of the lagged product estimator with 
nonzero estimates is in principle equal to N – 1. Taking more observations gives a 
longer nonzero estimate for the autocorrelation function. The reason that this 
lagged product estimator has been preferred in the past was probably that no other 
estimator was available.  

The time series estimators for the autocorrelation function use the theoretical 
relations between true parameters and their correlations by substituting the 
estimated parameters. The general solution for the autocorrelation function of 
ARMA processes is given by (4.62) 

ˆ ˆ ˆ( ) ( ) ,

ˆ ˆ ˆ( ) ( ) / (0)

q

v MA
m q

r k r k m r m k

k r k r   (6.53) 

For AR models, the estimated parameters ˆ ( )pA z  are transformed into reflection 

coefficients with (5.30), and those give the autocorrelation function ˆ ( )vr k  with 

(5.31). This solution can also be written as the solution of the Yule-Walker 
equations (5.4) with estimated parameters. 

1ˆ ˆ ˆˆ ˆ( ) ( 1) ( ) 0 , 1, ,pk a k a k p k p   (6.54) 

It is possible to start the solution arbitrarily with 2 = 1 or any other value and to 
use division by ˆ(0)r  after convolution with the MA autocovariance to obtain the 

autocorrelation function starting with one.  
The estimated moving average autocovariance uses (4.61) with the estimated 

parameters 

| |
0

ˆ ˆˆ ( ) ,
q

MA i i k
i

r k b b q k q   (6.55) 

Some care is required with the scaling because ˆ (0)MAr  is not normalized.  

The autocovariance function follows always from the autocorrelation function 
by multiplying by 2ˆ x  with 2ˆ ˆ(0) xR . The estimated autocovariance function is 

always symmetrical. 
The autocorrelation is found by substituting estimated parameters in the true 

relations. This is valid for all ARMA processes. For AR( p) processes, the reverse 
is also true: p parameters follow from p autocorrelations. This has been used in 
(6.24) to derive the MA estimator and also for the first- and the second-stage 
ARMA estimators. However, the reverse is not valid for estimated MA and ARMA 
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models. Of course, p + q true autocorrelations are enough to find the exact para-
meters of an ARMA( p,q) process with p + q equations and without measurement 
errors. However, estimated MA or ARMA parameters have estimation errors and 
they require more than p + q estimated autocorrelations. The simulations of the 
best intermediate AR order have demonstrated this. It is clear that high 
intermediate AR orders give much better estimates than the AR(2) model in 
Figures 6.6 and 6.7. The AR(2) model defines efficient estimates for the first two 
lags with the smallest possible estimation errors. But that is not good enough to 
estimate two MA parameters efficiently. MA parameters become better if more 
estimated AR parameters are used. 

6.8.3   The Residual Variance 

It is not often necessary to have an explicit estimate for the variance of the 
innovations n. Due to the differences between the residual variance and the 
prediction error, this might become a confusing quantity in estimation practice. 
Nevertheless, if some explicit expression is required, it is advisable to use (5.47) 
with true values replaced by estimates: 

2 2 ˆ ˆˆ ˆ / ( ), ( )x gP A z B z   (6.56) 

Pg is defined as the power gain or ratio of output and input power of an ARMA 
model. This choice of 2ˆ  guarantees that 2ˆ , 2ˆ x  and the ARMA process with 

ˆ ˆ( ), ( )A z B z  together are a consistent description of the process. This has the elegant 

advantage that if new data are generated with innovation variance 2ˆ  and 

parameters ˆ ˆ( ), ( )A z B z , then the output variance will have 2ˆ x  as an expectation. 

Generally, the variance 2ˆ x  of the process will be an unbiased estimate. This 

means that 2ˆ  will be a biased estimate of 2 , using the estimated parameters for 

this computation of the innovation variance. The reason is that the square of 
unbiased estimated parameters is always greater than the square of the true 
parameters due to the estimation variance. 

6.8.4   The Power Spectral Density 

The estimated spectral density can be scaled with a constant such that the integral 
becomes equal to 2ˆ x

. Any other scaling is also allowed. The spectral density 

shows how the power is divided over the frequency range. For the total power of 
the data, (6.52) can be used. 

Using the estimated parameters gives a unique estimated spectral density as 

2
2

2

ˆ ( )ˆˆ( )
2 ˆ( )

j

j

B e
h

A e

  (6.57) 
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The method of Burg for AR and the improved methods of Durbin that have been 
treated for MA and ARMA models give estimated models that can be used with 
this formula to compute an estimated spectrum. This shows that the parameters of a 
time series model, together with the variance of the exciting white noise, determine 
the spectral density.  

The normalized spectral density is given by 

2

2

ˆ ( )1 1ˆ ( )
ˆ ˆ2 ˆ( ), ( ) ( )

j

j
g

B e

P A z B z A e

  (6.58) 

The actual computation of (6.58) for a finite number of frequencies is carried out 
with the fast Fourier transform (FFT), adding zero parameters until the required 
length of the Fourier transform carries out the FFT of a short parameter vector. An 
AR(1)  process is exactly the same as an AR(M ) process with a1,  completed with 
M – 1 AR parameters equal to zero. In this way, the required number of 
frequencies for evaluating (6.57) and (6.58) with the FFT is obtained. 

The program that is used for spectral computations in the ARMASA toolbox of 
Broersen (2002) does not use any information about the process variance. If K
equidistant points are demanded, the program calculates the spectrum at K
frequencies given by 

0 5 1 0 5 2 0 5 1
0

1 1 1 1

. . ( K ) . ( K )
, , , , ,

K K K K

if the sampling time is one. Otherwise, the frequencies are multiplied by 1/Ts,
where Ts denotes the sampling time. The spectrum is then multiplied by Ts. The 
normalization is such that the sum of all spectral estimates for all 2K – 2 
frequencies in the frequency domain equals (2K – 2)Ts. Those frequencies are 

1 2 1 2 3
0, , , , , ,

2 2 2 2 2 2 2s s s s

K

K T K T T K T

Only K frequencies are given; the last K – 2 spectral values have not been given 
because they are the mirrored results of K – 2 frequencies between 0 and 1/2Ts.

Generally, the autocovariance function (6.53) and the spectrum (6.58) are not 
related by a finite FFT transformation, which is often used in digital computations. 
The FFT relates N points in the time domain to N points in the frequency domain. 
The true autocovariance function of ARMA processes is generally infinitely long 
and the spectrum is a continuous function for – . Both do not fulfill the 
requirements for a practical FFT. 
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6.9  Exercises 

6.1 Find one important reason why the estimator   

1
2 1

1
ˆ

1

N
n

n n

x
a

N x

for the parameter of an AR(1) process is not treated in this chapter.  

6.2 Let xn be a normally distributed zero mean AR(1) process 

1 1

2

0

1.

n n nx a x

The estimator of the Yule–Walker algorithm from N observations would be 
given by 

1,YWˆ ˆ ˆ(1) / (0)a r r , where the estimated autocovariances are the 

usual biased lagged product estimates.  
Derive an asymptotic expression for the variance of this estimator as the 
quotient of two stochastic variables. The variance expressions for the lagged 
product estimator for the autocorrelation are given in (3.34) to (3.40). The 
asymptotic expression has terms with order of magnitude 1/N ; terms with 
order of magnitude 1/N 2 and still higher negative powers of N are 
neglected. 

6.3 A new estimator for the process of Exercise 6.2 is defined as  

1,NEW 2

ˆ2 (1)
ˆ .

ˆ1 1 4 (1)

r
a

r

What is the asymptotic expectation of this estimator? All terms with order 
of magnitude 1/N may be neglected here. 

6.4 Prove that the variance of this new estimator of Exercise 6.3 is 

2 2 4

1,NEW 22

1 1 41
ˆvar .

1

a a a
a

N a

Would you prefer the Yule-Walker estimator or the new one? 

6.5 Prove the asymptotic equivalence  

1

1 1 .
K

i
i

K
v

N
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6.6 What is the asymptotic covariance matrix of the two MA parameters 
estimated from N observations of a MA(2) process with the true parameter 
vector [1, b1, b2] . 

6.7 Prove the asymptotic relation  

1ˆ ˆvar var pa a

for the estimation of p parameters from N observations of an AR(p) process. 

6.8 What is the relation between Exercise 5.16 and the Yule-Walker method of 
AR parameter estimation? 

6.9 Give a reason why the Burg method is often preferred to the Yule-Walker 
method for the estimation of the parameters of an AR model from stochastic 
data with unknown characteristics. 

6.10 Give a reason why the Burg method is mostly preferred to the least-squares 
methods for the estimation of the parameters of an AR model from 
stochastic data. 

6.11 Give a reason why the Burg method is mostly preferred to the maximum 
likelihood method for the estimation of the parameters of an AR model 
from stochastic data. 

6.12 Given an ARMA(1,1) process with AR parameter   and MA parameter .
Prove  

2 2 2

2 2 2 2

1 1 1 11 1ˆˆcov , .
1 1 1 1

a b
N



7

AR Order Selection 

7.1 Overview of Order Selection 

In many problems, models of different types and orders can be estimated, and the 
best is not always known a priori. An old problem is the fitting of a polynomial to 
measured data. It is well known that an estimated polynomial of order M – 1 fits 
precisely to M given data points, but it is equally known that the same polynomial 
will have a poor fit to new data. The question is to select the best order of a 
polynomial that is estimated from the current data and that will fit well to new data of 
the same type. Every extra order of the polynomial will give a better fit to the current 
data, but only statistically significant orders improve the fit to new data. 

A related problem is subset selection. Which regressors are important for a 
measured independent variable and which are not? This latter question can also be 
applied to polynomial fitting by letting the sequence of the polynomials free. 
Hierarchical ordering of the polynomials prescribes the sequence, generally X 0, X 1,
X 2, …, where X is the measured regressor vector. A model with p parameters or 
regressors included will contain all X k, k < p. If the sequence is free, every  power 
X k can be the next regressor in a model. Subset selection is much more difficult 
and less reliable than hierarchical order selection because any hierarchically 
ordered model has only one neighbouring model with one parameter more and one 
with one parameter less. Limiting the number of candidate models makes selection 
easier. Mallows (1973) described Cp, a selection criterion from regression theory. 
Hocking (1976) showed the relations of Cp with several statistical tests. He also 
proved that the order with the smallest error of the parameters is not always the 
same as the model with the best fit to the data. 

In autoregressive order selection, Akaike (1970, 1974, 1978) introduced several 
criteria. Many others followed with similar criteria. Ulrych and Bishop (1975) 
reported the practical problem that the order selected depended on the highest 
candidate order. The consistent criteria that were introduced by Rissanen (1978, 
1986), Akaike (1978), and Hannan and Quinn (1979) could under some conditions 
converge to the true process order if the number of observations approaches 
infinity. However, in practice, only a finite number of observations is available, 
and the theoretical properties for infinite sample size are not relevant for finite-
sample practice. Shibata (1976, 1984) derived mathematically how much selection 
quality suffered from overfit with the explicit assumption that underfit was 
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impossible. Overfit denotes the situation where the model has too many 
parameters; underfit happens if not all important orders are included. Overfit 
models give extra inaccuracy due to estimation variance errors, and underfit 
models suffer from bias errors. 

Broersen (1985) described the finite-sample character of order selection if the 
candidate model orders are not very small in comparison with sample size. He 
showed that finite-sample properties depend heavily on the estimation algorithm that 
is used; see Figures 6.1 - 6.4 for AR estimates with the algorithm of Burg. For AR 
estimates, the Yule-Walker method, the Burg method, and the least-squares method 
require different finite-sample adaptations (Wensink, 1996). Also Hurvich and Tsai 
(1989) and Hurvich et al. (1990) introduced a small sample improvement to Akaike’s 
AIC criterion. Surprisingly, their improved AICC criterion is not dependent on the 
method of estimation. It gives good results only in small sample AR estimation when 
applied to Burg estimates. Broersen and Wensink (1996, 1998) introduced several 
improvements to finite-sample selection criteria for autoregressive order selection. 
Finally, finite-sample peculiarities and the desired asymptotic behaviour have been 
combined in a single criterion by Broersen (2000a). 

Recent books on order selection have been written by Choi (1992), Burnham 
and Anderson (1998), and Miller (1990). Miller’s book is not concerned with time 
series. However, it describes the different types of bias that are also relevant for 
order selection in time series. They are caused by the double use of the 
observations, first to estimate parameters and afterward to select a model. It is clear 
that a parameter that occasionally has a higher estimate than its expectation will 
also have a greater probability of being selected. Shibata (1976, 1984) studied this 
effect for time series. Those aspects are often neglected in the theory of order 
selection. Kuhlback (1959) has defined a discrepancy measure to express the 
difference between probability density functions. An order-selection criterion 
based on these statistical measures for probability density functions will resemble 
closely a criterion that searches for the smallest prediction error. 

It is rather difficult to take all peculiar effects into account and derive a 
theoretical preference for an order-selection criterion along strict mathematical 
lines. Bias, consistency, finite-sample effects, the number of observations and the 
estimation method may have their influence. The approach here will be to present 
several selection criteria without trying to be complete. Many equivalent criteria 
have been presented in the past, and it is not necessary to explain all of them. The 
most important criteria will be compared in simulation studies. Which type of 
simulation is decisive will be discussed.  

Unfortunately, many simulation studies that have been carried out lead to dubious 
conclusions. It can be explained easily how wrongly conducted simulation studies 
have led to disappointing results. Akaike’s AIC criterion is known to be sensitive to 
overfit by selecting too many parameters and almost completely free of underfit by 
including too few parameters. On the other hand, consistent criteria are safe against 
overfit at the cost of a high probability of underfit. Many simulation studies compare 
only criteria from those two categories. Their results depend on whether the 
examples used are more prone to underfit or to overfit. This chapter will show that 
the best criterion is generally a compromise between overfit and underfit. 
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Often, selection criteria are developed only for AR processes and applied 
afterward to AR( p), MA(q), and ARMA( p,q) processes. Only some special finite-
sample criteria of Broersen (2000a) are exclusively applicable to AR order 
selection, and most other criteria can be applied to all AR, MA, and ARMA 
processes. The number of estimated parameters is denoted K. For an ARMA( p,q)
process with subtracted mean, K will be p + q + 1. The subtraction of the mean 
itself will generally not lead to the selection of another order of the time series 
model, but the estimated model parameters may be different. 

In linear regression, the observations are modeled as the true response values 
plus additive noise. Without noise, the estimated parameters would become equal 
to the true values, for all sample sizes N. This is different from the estimation of 
time series models, where the white input innovations are necessary to obtain a 
time series. Without input innovations n in (4.53), no output xn would be found. 
The estimated linear regression parameters converge to the true values for smaller 
noise and greater sample size. Their accuracy depends on the noise level. The 
accuracy of estimated time series parameters, however, is independent of the level 
of the innovations in (6.42) and (6.43). Therefore, innovations in time series and 
noise in regression have some mathematical correspondence but also a number of 
differences. As the expectations of parameters in regression are simply the values 
obtained by substituting zero for the additive noise, the treatment and the 
interpretation of order selection are somewhat simpler in linear regression. For that 
reason, it is presented here. 

7.2  Order Selection in Linear Regression 

This section about linear regression has the same notation as Section 2.5 that is 
specific for this section only, except for the variance of the noise that will be 
denoted 2  here. The regression Equation (2.39) has K regressors. In matrix 

notation, 

Y X  (7.1) 

The expectation of RSSK, the residual sum of squares for the model with all K
regressors included, can be derived by simple matrix calculations. With given 
values of the regressors, the best prediction that can be made for the output Y is X .

Estimates b̂  of (2.41) are found by minimising the sum of squared errors 

ˆ ˆRSS [ ] [ ]T
K Y Xb Y Xb (7.2)

RSSK can be calculated as 
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1 1

1 1

1

ˆ ˆRSS [ ] [ ]

[ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ]

[ ( ) ]

ˆ ,

T
K

T T T T T

T T T T T T
N N

T T T
N

T T

Y Xb Y Xb

Y X X X X Y Y X X X X Y

Y I X X X X I X X X X Y

Y I X X X X Y

Y Y Y Xb (7.3)

where b̂  from (2.41) has been substituted. IN denotes the unit matrix of dimension 

N. The matrix MK is introduced as a shorthand notation for the projection matrix on 
all K regressors, 

1( )T T
KM X X X X  (7.4) 

Further,  

2{ [ ]}T T T T

E Y X

E Y Y E trace YY N X X  (7.5) 

where the equality trace (BA) = trace (AB) has been used. Applying this rule to the 
next to last line of (7.3), the expectation of RSSK  becomes  

2

2

2 2

2 2

2

(RSS ) { ([ ] )}

( ) ( )

( ) ( )

( )

T
K N K

T T
N K N

N K

N K

N K

E E trace I M YY

E trace I M I X X

trace I M

trace I trace M

trace I trace I

N K   . (7.6)

What happens if some of the true parameters in the regression equation are very 
small will be investigated. Then it would be possible that the standard deviation in 
estimated parameters would become greater than their true values. Suppose for a 
moment that the true value of a parameter is zero, which indicates that one of the 
regressors has no influence at all. Suppose that the true relation is a straight line 
y(n)=x(n)+ . Then, using x(n) and x2(n) as possible regressors, the true parameter 
for x2(n) would be zero. The influence of such a superfluous regressor can also be 
studied by introducing additional uncorrelated rows of N random numbers, which 
are considered extra regressors. The expectation of the estimated parameter values 
for those q extra or nonsense regressors would be zero, but with (7.6), the residual 
sum of squares RSSK+q would become 

2(RSS ) ( )K qE N K q  (7.7) 



AR Order Selection 171 

This demonstrates that the expectation of the residual variance reduces with 2  for 

all parameters, whether they belong to important or to nonsense regressors. 
Important regressors have an extra reduction of the residual variance that is 
generally much greater than 2 . Excluding such regressors would give an extra 

bias term in RSSK–r in addition to the variance contributions. Superfluous uncor-
related regressors have no influence on the bias in RSSK–r , only on the reduction 
due to the estimation variance. 

By taking less than K regressors, it is possible that a bias component will also 
be present in the residual sum of squares RSSK–r. In order selection or in subset 
selection, models are considered where only a part of the regressors has been 
included in the model. Order selection is the expression for selection in 
hierarchically nested models, e.g., with successive orthogonal polynomials as 
candidate models. Subset selection is the term used for the selection of some 
arbitrary set of regressors, without any sequence.  

A lower order model has p parameters, whereas  r  parameters are left out, with 
p + r = K. Without loss of generality, the p parameters can be attributed to the first 
p regressors because the individual numbering of the regressors can be changed 
without mathematical consequences. Therefore, the equations describe order 
selection as well as subset  selection.  The N K matrix  X  is partitioned into the 
(N p | N r) matrices ( Xp | Xr ). The K  1 vector   is partitioned in the p  1 
vector p and the r  1 vector r. The parameter vector ˆ

pb  for the first p regressors 

is estimated by minimising the residual sum of squares for a subset RSSp

ˆ ˆRSS [ ] [ ]T
p p p p pY X b Y X b  (7.8) 

The solution for the p parameters is given by 

1ˆ ( )T T
p p p pb X X X Y  (7.9) 

which is a biased estimate for p if the true values r for the omitted regressors are 
not equal to zero. It follows elementarily that 

1

1

1

1

ˆ{ } ( )

{( ) [ ]}

( ) [ ]

( )

T T
p p p p

T T
p p p

T T T
p p p p p p r r

T T
p p p p r r

E b E X X X Y

E X X X X

X X X X X X

X X X X   (7.10) 

This gives no bias if  r  equals 0 or if Xp and Xr are orthogonal, meaning that Xp
TXr

= 0.
The residual sum of squares RSSp has been minimised to find ˆ

pb . The expec-

tation of RSSp becomes 
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1 1
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With the shorthand notation 

1( )T T
p p p p pM X X X X   (7.12) 
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T
p N p

T T
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N p X I M X   (7.13) 

The right-hand side of this expression can be simplified by explicitly writing out 
the submatrices 

1

1

1 ( )

0 0
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T
T T T T Tp

N p p p p p p rT
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T T T Tp r
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X
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X X X M X

X I M X

The residual result can be related to the partitioned covariance matrix of the 
complete K 1 parameter vector b̂ , whose expectation is the true vector and is 
given by 

1 1

1 1

1 1 1 12

12

ˆ ˆ ˆ ˆcov ,

( ) ( )

T

T T T T T T T

T T T T

T T T T T T T
N

T

b b E b b

E X X X X X X X X

E X X X X X X

X X X E X X X X X X I X X X

X X  (7.14) 

The covariance matrix can be partitioned to give
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12

1

2

ˆ ˆ ˆ ˆ
ˆ ˆcov , cov
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cov cov
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r p r r

T T
pp prp p p r

T T
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b b X X

b b b b

X X X X

X X X X
  (7.15) 

A standard partitioned matrix result in Searle (1982) gives for symmetrical A and 
D and all inverses existing 

1 1 1 1

1 1

1

1

T

T T

T

A B A FE F FE

B D E F E

E D B A B

F A B   (7.16) 

which yields for the lower right rectangle of the parameter covariance matrix 

112

1
2

cov T T T T
rr r r r p p p p r

T
r N p r

X X X X X X X X

X I M X   (7.17) 

This can be substituted in the residual sum of squares in (7.13): 

2

2

2 1

{RSS }

[ ]

cov

T T
p N p

T T
r r N p r r

T
r rr r

E N p X I M X

N p X I M X

N p   (7.18) 

This shows that every regressor in the model gives a decrease in the expectation of 
the residual sum of squares RSSp that is at least equal to the variance of the noise.  

Furthermore, regressors with truly nonzero parameters have a bias contribution 
to RSSp that depends on the value of the true parameter and on the covariance 
matrix of the parameters that are left out. Suppose that r = 1 or p = K – 1 and only 
the last regressor is excluded from the estimated model. Then, the 1  1 covariance 
matrix covrr is just the variance of that last parameter. If it is difficult to estimate 
that last parameter accurately, that means that the variance of that parameter is 
great. The inverse of the variance is small and the bias contribution to the 
expectation of RSSp is small. 

The real purpose of the estimation is not to make the residuals as small as 
possible but to make the description ˆ

p pX b  as close as possible to the true relation 

without noise, which is given by X . Hence, a quality measure can be introduced, 
the scaled subset model error Jp, which is defined as 
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2ˆ ˆT

p p p p pJ X b X X b X   (7.19) 

This measure requires knowledge of the true parameters, which is not available in 
practice. As such, it has the same meaning as the model error (ME), introduced in 
(5.40) as an accuracy measure for time series models. Jp can be used in Monte 
Carlo computer simulations with artificially generated data with a random 
generator. It is also useful in theoretical derivations where the true regression 
equation X  is supposed to be known. It is a natural demand to look for the 
particular subset p* with the smallest Jp* of all possible subsets of the K available 
regressors. In words 

Which estimated subset is closest to the response that would have 
 been obtained if noise-free measurements could have been made? 

This is not necessarily the unbiased subset with all nonzero parameters included. It 
is possible that omitting a small parameter and its regressor from the regression 
equation gives an additional bias component in JK–1 that is smaller than the 
increased variance that is involved in the estimation of the complete model with all 
K regressors included. If the bias in leaving out a regressor is smaller than the 
standard deviation in including a regressor with an estimated parameter, an 
estimated model without that regressor is better. 

With some manipulation, the expectation of the subset model error Jp can be 
written as 

1covT
p r rr rE J p  (7.20) 

There is a strong relation between this subset model error Jp and the expectation of 
the residual sum of squares RSSp in (7.18) of the subset model. Substitution gives 

2(RSS ) 2p pE J E N p  (7.21) 

It is possible to define a selection criterion that is based on quantities that are 
known in the practice of estimation and has the same expectation as Jp. This is the 
order-selection-criterion Cp of Mallows (1973), defined as 

2RSS 2p pC s N p   (7.22) 

In this criterion, s2 is defined with the residual sum of squares of the complete 
model with all K regressors included in the estimation. This is an unbiased estimate 
if all true regressors are between those K, given by 

2 RSSKs
N K

  (7.23) 
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The expectation of s2 is the true variance 2 . With that expectation result substi-

tuted, it turns out that the expectation of Jp and Cp are the same. Cp is calculated for 
all subset models with p = 1,…,K, and the model with the smallest value of Cp is 
selected. 

In linear regression, the number of regressors is often denoted as the size of a 
subset. In polynomial regression, subsets generally consist of nested hierarchical 
models of increasing order, the regressors of which may be made orthogonal. The 
formula for Cp shows that the decrease in RSSp when including one extra 
parameter, should at least be 2s2 to make the extra parameter significant. Intro-
ducing r extra parameters gives the minimally required increase of 2r in Cp. Hence, 
the new residual variance RSSp+r should be at least 2rs2 less than RSSp to give a 
smaller value of Cp. The idea is to calculate Cp for all possible 2K subsets if K
regressors are available as candidates. Subset selection is looking for the subset 
with the smallest value of Cp. That subset is selected. In hierarchical models with a 
fixed sequence of the regressors, the total number of candidate subsets is only K. It 
is clear why this reduced number of candidates improves selection quality. The 
probability that the single next hierarchical regressor has an estimate that is 
significantly greater than its expectation is much smaller than the probability that 
one of all remaining regressors has that property. 

An interpretation as a weak parameter criterion is that a group of r parameters 
is weak and can better be omitted from the selected model if it causes a residual 
reduction less than 2rs2. For a single parameter, 

2ˆ ˆ2 vari ib b   (7.24) 

or a parameter estimate has to be greater than 2 times its standard deviation to be 
statistically significant. For the last r parameters, this can be written as  

1ˆ ˆcov 2T
r rr rb b r   (7.25) 

to make sure that Cp > K, where K is the criterion value for the complete model CK

due to the specific choice (7.23) for s2.
Hocking (1976) gives an extensive survey of the properties of Cp. The criterion 

Cp has a relation with the t - statistic for comparing two subsets with only one 
additional regressor in the larger one: 

2
1

ˆ ˆˆ/ var 2K K K KC C b b ,   (7.26) 

which has as distribution t 2 – 2. For larger subsets,  

1
,

ˆ ˆˆcov 2 ( 2)T
p K r rr r r N KC C b b r r F   (7.27) 

where the estimated covariance equals the true covariance with s2 instead of the 
true variance 2  and Fr,N–K is the central F-distribution with N – K degrees of 
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freedom. Central means that it is based on the hypothesis that r̂b  equals zero. There 

is a strong relation between looking for the minimum of Cp and testing of F-
statistics with significance level 2. On the one hand, the introduction of Cp was 
based on the relationship between the expectation of Cp and Jp. This leads to the 
single level 2 for the F-test, whereas also other levels of significance are quite 
common in using F-tests. This principle can and will be used in defining other 
coefficients for the penalty factor of additional parameters in an order-selection 
criterion. Cavanaugh (2004) treats the correspondence between order-selection 
methods in regression and in time series. 

With the choice of Jp, the quality criterion is chosen as the fit of the estimated 
model to precisely the interval that is covered by the regressors in (2.39). One 
consequence is that extrapolation of regression equations is generally very 
inaccurate. It might be reasonable if the selected regression equation occasionally 
represents a true physical relationship, but extrapolation is never supported by 
statistical properties. A different purpose of order selection might be that the best 
fit is sought for only an interval of the regressors. Hocking (1976) showed that 
such a purpose would require a dedicated order-selection criterion. If the accuracy 
of the estimated parameters were the purpose, as in (6.25), the best model is 
characterized by 

1cov 1T
r rr r

  (7.28) 

according to Hocking (1976). That gives the result that the parameter accuracy 
becomes better if those last r parameters are excluded when they give a residual 
reduction less than s2 if their expectations are substituted. This order cannot be 
selected properly from practical data because each individual parameter contributes 
the same amount s2 to the residual reduction due to variance. That order plays a 
role in the intermediate order of the AR model used for MA and ARMA 
estimation.  

As a comparison, the best prediction order with minimum Jp is found with (7.25) 

1covT
r rr r r   (7.29) 

In this case, the expectations of the residual reductions due to the bias and due to 
the variance of omitted parameters would be exactly equal. The requirements for 
the best parameter accuracy are stronger, and the order with the best parameter 
accuracy will generally be higher than the order with the best prediction. 
Therefore, intermediate AR orders for MA and ARMA estimation need special 
treatment. 

7.3  Asymptotic Order-selection Criteria 

The order selection criterion FPE, the final prediction error, has been described by 
Akaike (1970) as the first order-selection criterion for AR processes. The FPE uses 
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the relation between the unbiased expectations of the residual variance 2
Ks  in (6.17) 

and the prediction error PE(K) in (6.18): 

2FPE( ) K

N K
K s  

N K
  (7.30) 

The application of this order-selection criterion is simple: Compute the residual 
variance for all candidate models, compute the FPE of all candidates, and select the 
model order with the smallest FPE. For models with orders lower than the true 
process orders, the residual variance will have significant contributions due to true 
parameter values. Omitting those low order parameters introduces a bias in the 
prediction error. Hence, the value of the FPE for biased models will be greater than 
that without significant bias contributions. The FPE is the transform of the residual 
variance in the expected prediction error. Therefore, the expectation of the FPE is 
PE(K), and it is obvious that selecting the model with the smallest FPE is a sensible 
choice. Figure 7.1 illustrates the principle. The averages of PE and FPE are almost 
the same, and PE and FPE virtually coincide in the figure. For the parameters 
below the true order 5, which are statistically significant, the decrease in both the 
empirical residual variance RES and the PE is determined mainly by the true 
parameter values. The small difference is given with (7.30) by a factor 2m/N for 
model order m. The lines really start to diverge visually at the true order 5, where 
the PE increases with the model order and the residual variance keeps decreasing. 
Finite-sample deviations are small in Figure 7.1 because the highest candidate 
model order is small in comparison to the sample size. The average looks very 
regular; the result of individual runs has more variation. One peculiar individual 
result is given in Figure 7.2. That example has been selected because the minimum 
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Figure 7.1.  Average of the residual variance, the prediction error, and the order-selection 
criterion FPE from Burg estimates in 200 simulation runs of 200 AR(5) observations, as a 
function of the AR model order 
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Figure 7.2.  The residual variance, the prediction error, and the order-selection criterion 
FPE from Burg estimates in a single simulation run of 200 AR(5) observations, as a function 
of the AR model order  

of the FPE was again decreasing at the highest orders in the specific simulation 
run, whereas the true PE increases. Generally, the difference between the PE and 
the FPE is much smaller, and individual plots look like Figure 7.1. 

One important issue in Figure 7.1 is that knowledge of the true system 
parameters has been used to compute the PE with (5.40) or (5.46). That is possible 
in simulations, but in real experiments, only the residual variance 2

Ks is known. 

That is the variance of the residuals, which is minimised for the estimation of the 
parameters. The prediction error is not known for practical data; it has to be 
approximated somehow using the residual variance. That is precisely what is done 
in the FPE criterion (7.30). The average of the PE and the FPE is the motivation to 
use the FPE criterion as an order-selection criterion. Most order-selection theory 
deals with expectations or average behaviour. However, for a single realisation, the 
behaviour of the PE and the FPE can be somewhat different.  

Sometimes, the residual variance is not available for order selection because it 
has not been minimised directly. That happens in (6.24) for MA models and in 
(6.38) and (6.39) for second-stage ARMA models. In those situations, it is always 
possible to obtain an estimate for 2

Ks  in given data by substituting the estimated 

parameters in the time series Equation (5.34) and by computing the variance of the 
remaining residuals. Applying the same equation to new data gives an estimate for 
the prediction error (PE), whereas the residual variance is the result if the estimated 
parameters are substituted in the data xn, used to obtain those estimates. 

Akaike (1974) derived a second order selection criterion, which is the famous 
AIC, Akaike’s Information Criterion. Although the definition of AIC is based on 
the maximum likelihood estimate of the residual variance, it has become a 
common  practice  to apply it to any  estimate of the residual  variance 2

Ks , obtained  
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Figure 7.3.  Average of the residual variance and AIC from Burg estimates in 2000 
simulation runs of 100 AR(5) observations, as a function of the AR model order. The global 
minimum of AIC is found at very high orders if candidates with orders above N/2 are 
allowed. The global minimum of the average of AIC is at order 5 if the highest candidate 
order is not taken too high. 

by arbitrary methods of parameters estimation. With this extension, AIC is defined 
as  

2AIC( ) ln 2K

K
K s  

N
  (7.31) 

Figure 7.3 shows the residual variance for the AR Burg algorithm and the AIC 
criterion of (7.31) that is derived from the logarithm with an additional penalty that 
depends on the number of estimated parameters. AIC has a local minimum at order 
5. This would also be the global minimum if the highest candidate order is not too 
high. However, high AR orders are often necessary as candidates for selection, 
e.g., as intermediate orders for MA and ARMA estimation. The behaviour of the 
residual variance is regular, as in Figure 6.2. However, the order-selection criterion 
AIC has a undesirable effect at higher model orders. The same local high order 
minimum would be found with the FPE of Figure 7.1 if the highest candidate 
orders were as high as N/2.  

Both the FPE and the AIC criterion could give dubious results when applied to 
high-order AR candidate models. Ulrych and Bishop (1975) reported the 
preference for too high orders and also the selection of the highest candidate order. 
Therefore, order selection depended on the available candidates instead of 
exclusively on the characteristics of the data. Furthermore, Shibata (1976) showed 
that AIC had a tendency for overfit. Even asymptotically, the minimum of AIC 
does not converge to the true AR order. 
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Criteria have been introduced under various names. To show the similarity, a 
general information criterion (GIC) can be defined as  

2GIC( , ) ln K

K
K s  

N
  (7.32) 

where  is called the penalty factor. It is clear that every additional parameter 
must reduce the first term more than /N to give a lower value of the criterion 
(7.32). A parameter is significant according to a criterion with penalty if it causes 
a decrease in ln 2

Ks  that is greater than /N.

Consistent order-selection criteria have been introduced by Akaike (1978) under 
the acronym BIC or Bayesian Information criterion and by Rissanen (1978) as the 
MDL criterion, the minimum description length. They are derived from different 
basic principles, but they can be represented as 

2GIC( , ln ) ln lnK

K
K N s N  

N
  (7.33) 

For the usual consistent criteria, the penalty factor  is given as ln N.  
Hannan and Quinn (1979) also introduced a criterion with the smallest possible 

penalty factor that leads to consistency: 

2GIC( , 2 ln ln ) ln 2ln lnK

K
K N s N  

N
.   (7.34) 

So far, all criteria have been derived with asymptotic theory. Hurvich and Tsai 
(1989) suggested a small sample correction to AIC, called AICC as 

2
C 2

1
AIC ( ) ln

1

K
N

K K
N

K s   (7.35) 

The small-sample correction in this criterion is an asymptotic correction to AIC. 
Later, dedicated small-sample criteria for AR order selection will be presented. 

7.4  Relations for Order-selection Criteria 

For large N, or rather for large N and small K, the FPE of (7.30) is closely 
approximated with the first order Taylor approximation: 

2 2
FPE( ) 1K

K
K s

N
  (7.36) 

This approximate way to describe the FPE is used to compare the candidate orders 
FPE( p–1) and FPE( p) for N observations of an AR( p) process. The order p is 
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used here to indicate that the calculations apply only to AR models. The residual 
reduction between the AR( p–1) model and the AR( p) model is given by the 
square of the additionally estimated parameter, as in the Levinson-Durbin 
recursion of (5.24): 

2 2 2
1

ˆ1p p ps s k   (7.37) 

It follows by the same approximation of (7.36) that 

2
1FPE( 1) 1 2( 1) /pp s p N   (7.38) 

and combining the above equations yields 

2

2 2
1

2 2
1

FPE( ) {1 2 }

ˆ1 {1 2 }

ˆ{1 2 }

p

p p

p p

p s p N

s k p N

s p N k  (7.39) 

The approximation in the last line supposes that the square of the parameter has a 
magnitude of about 1/N and terms with 1/N 2 are neglected. That is a property of all 
asymptotic approximations to neglect terms that are a factor of N smaller; those 
terms vanish asymptotically. A comparison of (7.38) and (7.39) shows that the 
square of the last parameter must be greater than 2/N to be statistically significant 
and to give a reduction in FPE( p) with respect to FPE( p–1).  

The variance of the last parameter or of the last the reflection coefficient is 
given by (6.16) as  

21ˆvar p
p

k
k

N
  (7.40) 

For final parameters with a magnitude of about 1/  N or less, the variance (7.40) 
can be approximated asymptotically by 1/N. This gives a very simple expression 
for the last parameter to be statistically significant, meaning that including the 
parameter will give a lower value for the FPE: 

A parameter is statistically significant 
 if its squared estimate is greater than 

 twice its estimation variance. 

If the estimate for the last parameter is greater than 2 times its standard deviation, 
it should be included. 
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An extra parameter is statistically significant and should 
be selected if the expected increase of the residual 
variance due to the bias, if the parameter is omitted, is 
greater than the expected decrease of the residual 
variance  due to the estimation variance if it is included. 

A very rough derivation of Akaike’s order-selection criterion AIC is found by 
taking the natural logarithm of FPE, using ln(1+  )  , 

2

2

2

ln FPE( ) ln 1 2

ln ln 1 2

ln 2

AIC( ) .

p

p

p

p s p N

s p N

s p N

p   (7.41) 

This clarifies why the criteria FPE( p) and AIC( p) will almost always select the 
same order. However, this sloppy derivation does not give justice to the much 
deeper implications, which are more visible in a derivation that approximates the 
Kullback-Leibler discrepancy. An elegant derivation from basic statistical theory is 
the basis for AIC and that will be given later. 

All order selection criteria, which have been discussed, have a strong relation. It 
requires some manipulation to compare Cp and AIC( p). Dividing Cp of (7.22) by N
to transform from a residual sum of N squares to the residual variance gives 

2

2 2

RSS 1 2

1 2

p p K

p K

C N Ns p N

s s p N   (7.42) 

By assuming that the residual variance of the models of order K and of order p are 
close to each other, with a quotient close to one, it follows again by using ln(1+ )

, that 

2 2ln ln 2p p KC N s s p N   (7.43) 

As 2
Ks  is a constant for all different model orders, the minimum of Cp is found as 

2 2

2

min min ln ln 2 /

min ln 2 / min AIC( ) .

p p K

p

C s s p N

s p N p   (7.44) 

This shows that the application of a logarithm in selection criteria gives the 
possibility of selecting the best order without having or using knowledge of the 
true value of the variance of the innovations. This unknown value is the same for 
all different candidate models and can be omitted in looking for the minimum of 
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selection criteria. This normalizing value was required in Cp but is not necessary in 
the GIC criteria (7.32). 

7.5  Finite-sample Order-selection Criteria 

Finite-sample theory for AR processes and the result of simulations have shown 
that the asymptotic expression for the variance 1/N can, for AR estimation with 
Burg’s method, better be replaced by the inverse of the true number of degrees of 
freedom, which is is 1/(N + 1 – i) for order i. Broersen (1990), Broersen and 
Wensink (1993), and Wensink (1996) have also investigated the small sample 
performance of other AR estimation methods. Empirical approximations for the 
variance of reflection coefficients with the true value zero are given by 
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Those are the results for the Yule-Walker method, Burg’s method, unilateral AR 
least squares, and the combined forward-backward AR least-squares algorithms, 
respectively. If the mean is subtracted from the signal before the parameters are 
estimated, this can be included in the finite-sample variance coefficient by taking 
v0 = 1/N, the same for all estimation methods. The highest AR order for which 
parameters can be estimated depends on the estimation method. The method is 
indicated with the acronym of the estimation method in the index: vi,YW, vi,B, vi,LS,
vi,LSFB. In the following, all vi without further indication will be those of the Burg 
method and general formulas will use vi,. with a dot denoting a method to be 
specified.  

The variance coefficients for the Yule-Walker are smaller than the asymptotic 
value 1/N, as given in (6.16). That is possible because they are biased estimates. 
The other coefficients are greater than 1/N. Least squares can estimate K
parameters from N – K residuals, leaving N – 2K degrees of freedom, which 
explains the factor 2 in the denominator of the coefficient vi,LS. Likewise, the Burg 
algorithm estimates one reflection coefficient of order K from N – K residuals and 
vK,B is almost 1/(N – K), apart from the constant one. The constants in the 
denominators of (7.45) have been introduced to obtain a still better approximation. 
This is an empirical result, found by estimating parameters in a white noise signal. 
The average variance of the ith reflection coefficient in a large number of repeated 
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Monte Carlo simulations was closely approximated by the finite-sample variance 
coefficient vi. If the model order is less than 0.1/N, the difference between the finite 
sample variance vi and the asymptotic variance 1/N is often negligible for practical 
purposes. For higher orders, however, the difference may become important. The vi

are used to adapt order-selection criteria to the method of estimation.  
For all estimation methods, the finite-sample expectations of the prediction error 

and the residual variance are much better described by finite-sample expressions 
than by asymptotic theory. The expressions for white noise signals have been given 
in (6.17) and (6.18). For AR( p) processes, a correction should be given for the first 
p orders. That correction uses the deterministic relation (5.25) for all intermediate 
orders and keeps the statistical formula that has been obtained for white noise. 
Without a formal derivation, the approximate finite-sample expressions for the 
residual variance and the prediction error of intermediate orders p for general 
AR(K) processes have been given by Broersen (1990) as  

2 2 2
,.

1

1 1
p

FS p x i i
i

E s k v   (7.46) 

and  

2 2
,.

1

PE( ) 1 1
p

FS x i i
i

E p k v   (7.47) 
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Figure 7.4.  Average of the residual variance and the prediction error from Burg estimates 
in 500 simulation runs of 100 AR(5) observations, as a function of the AR model order. The 
theoretical finite sample FS expressions (7.46) and (7.46) are also plotted for the Burg 
method.  
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The results are reasonably good approximations for all p and for all estimation 
methods. Furthermore, they are quite accurate if p is equal to or greater than the 
true order. The limited accuracy is not considered important here because the 
statistical magnitude of the vi,. will be much smaller than the deterministic 
influence of statistically significant parameters.  

Those empirical relations belong much more to the derivation of relations in 
physics than to mathematics. In physics, it is usual to look for relations for 
observed phenomena, as in Figure 7.4; in mathematics, axioms are used to derive 
exact relations. The empirical lines in Figure 7.4 are given for rather high AR 
orders; the same true AR process has been used in Figure 7.1 with a lower 
maximum candidate order and with more observations. The theoretical formulas 
are good approximations for the empirical curves. The finite-sample residual 
variance is equal to the asymptotic result for the Burg method; the finite PE differs 
significantly from the asymptotic approximation. It might be possible to derive still 
more accurate theoretical approximations for the residual variance and the PE for 
AR Burg estimates for model orders greater than N/2. For the purpose in mind, 
finite sample order-selection criteria, the description is considered accurate 
enough. 

The problem in time series analysis is that the validity of the axioms can be 
proved only for the asymptotic case with finite orders and an infinitely growing 
sample size N. However, the sample size N in practice is always limited, and the 
true AR representation of most processes would be of infinite order because many 
practical processes have some noise. All analog signals that are represented on a 
digital computer have at least quantisation noise, and often more noise sources are 
present. An AR( p) process with additive white noise is theoretically a finite-order 
ARMA( p,p) process, which is equivalent to an AR( ) process. Therefore, the two 
requirements to apply asymptotic theory, both finite model orders and infinite 
sample sizes, are not met in practical time series data. The finite-sample 
description is the first attempt to describe the empirical practical relations. 
Mathematicians may not appreciate the loose mathematical style that has to be 
used in finite-sample theory, despite the fact that the outcomes are closer to reality 
than the more elegant asymptotic formulas. It may be expected or considered a 
challenge that a more strict and elegant mathematical basis of finite-sample theory 
will be developed in the future. 

The finite-sample criterion (FSC) is the equivalent of the FPE criterion (7.30) 
for order selection in finite sample theory. It is also the method for deriving an 
expectation for the prediction error PE( p) from the observed residual variance that 
is known and minimised in the estimation; see Broersen and Wensink (1993). FPE 
has been introduced as the quotient of the prediction error in (6.18) and the residual 
variance in (6.19). Likewise, the quotient of the white noise results (6.21) and 
(6.22) defines the finite-sample equivalent: 
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  (7.48) 
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The expectations in (7.46) and (7.47) have shown that the deterministic 
contributions to the prediction error and the residual variance are the same and they 
disappear in the quotient. That is a reason to apply FSC also to real-life data. This 
indicates that the FSC is a good way to transform the residual variance into the 
prediction error.  

The difference between FPE and FSC is very small if the order p is less than, 
say, N/10. This means that application of FPE and FSC will almost always select 
the same model order. If higher model orders are considered candidates for 
selection, FSC outperforms FPE.  

The two criteria, FPE and FSC, are conceptually simple. That is the main 
reason to derive them. However, the criteria to be used in practice are variants of 
Akaike’s famous AIC criterion. The selection results of AIC and FPE are almost 
always the same, the differences are marginal. For only low orders as candidate 
models, FSC would also select the same order as AIC. 

In finite-sample theory, the residual variance decreases with the product of 1–vi.,
where asymptotic theory gives 1–1/N. Taking the logarithm of FSC( p), Broersen 
and Wensink (1993) derived the finite-sample equivalent of AIC for the selection 
of the order of AR processes:  
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With this result, the finite-sample equivalent of AIC( p), the finite information 
criterion, FIC( p), is defined as 

2

0

FIC( ,2) ln{ } 2
p

p i
i

p s v ,   (7.50) 

where 2 in FIC( p,2) denotes the penalty factor 2 before the summation in the 
definition.  

Figure 7.5 shows that the global performance of FIC( p,2) as an order-selection 
criterion is more desirable than that of AIC. FIC has only one minimum. At orders 
around 25, the difference FIC( p,2) – FIC( p – 1,2) is also greater than the 
difference AIC( p) – AIC( p – 1). That would become very important if the true 
order were around 25. For orders lower than N/10, the difference between AIC and 
FIC is negligible. Finite-sample corrections are required if the maximum candidate 
AR order is greater than about N/10.  
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Figure 7.5.  Average of the residual variance, AIC, and FIC( p,2) from Burg estimates in 
2000 simulation runs of 100 AR(5) observations, as a function of the AR model order. The 
global minimum of AIC is found at high orders if candidates with orders above N /2 are 
allowed. The global minimum of the average of FIC( p,2) is at order five, independent of the 
highest candidate order.  

The more general finite sample criterion with penalty  becomes 

2

0

FIC( , ) ln
p

p i
i

p s v   (7.51) 

Historically, most attention in the time series literature has been devoted to AR 
processes. Therefore, most derivations have been given exclusively for AR. 

So far, order-selection criteria are based on a transform of the residual variance 
in the prediction error. Order selection can be interpreted as looking for the best 
predicting model. However, a very strong additional argument comes from the 
statistical theory of Kullback (1959). That relation was already mentioned by 
Akaike (1974), who also pointed at the relation with the regression theory of 
Mallows (1973). 

7.6  Kullback-Leibler Discrepancy 

In the statistical theory, a measure has been defined that describes the difference 
between two probability density functions. It can be used for evaluating the 
difference between true and estimated probability density functions. It is the 
Kullback-Leibler information quantity I ( q ; f ). Kullback (1975) defined this as 
the expectation of ln [ f (x) / q(x) ], where f (x) is the true probability density 
function and q(x) is the probability described by the estimated model: 
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It can be interpreted as the information that is lost if the estimated density function 
q(x) is used to approximate the true f (x). Firstly, I ( f ; f ) = 0 and I ( q ; f ) can be 
zero only if  f = q. Furthermore, I ( q ; f ) 0. A remarkable feature is that I ( q ; f )
is not symmetrical, or I ( q ; f )  I ( f ; q ). Hence, this quantity is not a distance in 
the mathematical sense. Therefore, it is called a discrepancy, or an information 
quantity. 

The Kullback-Leibler discrepancy is the negative of the expectation of Bolz-
mann’s entropy B ( q ; f ) is given by 

( ) ( )
( ; ) ln ln

( ) ( )

q x f x
B q f

f x q x
  (7.53) 

Thus, minimising the Kullback-Leibler discrepancy is equivalent to maximising 
Bolzmann’s entropy. However, the minimisation is subject to a constraint, which is 
the model of the information in the data. A good model contains all information, 
leaving only noise. Maximising the expectation of this uncertainty leaves the 
information that is justified or supported by the model. It should be stressed that x
denotes the integration variable in (7.53); in other words, the data are not directly 
present in the definition of the Kullback-Leibler information but are felt only by 
their influence on the estimated or approximating model distribution q(x).

It is interesting how this information measure can be applied to order selection 
in time series models. Remember that a time series model represents the 
autocovariance function, which is all there is to know for a vector of multivariable 
normally distributed variables. Therefore, the search for the best estimated auto-
correlation function is the same as that for the model with the minimum of the 
Kullback-Leibler discrepancy. The first term in I ( q ; f ) of (7.52) contains only the 
true probability density f (x), which is a constant for all possible models and need 
not be taken into account in looking for the minimum. The function ln[q(x)] has a 
strong relation with the likelihood function that has been maximised to estimate the 
parameters by the maximum likelihood principle.  

The Kullback-Leibler index has been defined as  

( ; ) 2 ln ( ) ( ) 2 ln ( )q f q x f x dx E q x   (7.54) 

With this new definition, the Kullback-Leibler discrepancy or information is given 
by 
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( ; ) 1/ 2 * ( ; ) ( ; )I q f q f f f   (7.55) 

This quantity cannot be determined in practice because the true f (x) will not be 
known. It is only known in simulation experiments. Using this discrepancy as a 
quality measure, the second term is not important. It is identical for all different 
probability densities q(x) and has no influence on which estimated density q(x) will 
produce the smallest value for the Kullback-Leibler discrepancy. Therefore, an 
order-selection criterion will be derived with only the first term in (7.55). 

Now suppose that all probability density functions are Gaussian. In time series, 
the true probability density function f (X) represents the joint probability of N
observations X = x1 ,..., xN  that could be generated with the true A(z), B(z) and 2 .

The model density qX (x) is completely characterized by X
* and by RX

*, which can be 
computed with the estimated A*(z), B*(z) and *2 . The general expression involving 

the likelihood function of the data is 

* * 1 *
1/ 2/ 2 *
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1 1
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q f E q X
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   (7.56) 

The expectation denotes the N dimensional integral with the true f (X) of N
observations. The likelihood of time series observations is often approximated by 
the likelihood of the innovations. The density function qx represents the density 
function of n that belongs to the estimated model with parameters A*(z) and B*(z), 
whereas the true parameters are A(z) and B(z). This simple relation is often used as an 
asymptotic approximation for the statistics of the data. Apart from values at the 
beginning of the interval, the observations can be related directly to the innovations 
that generated those observations. For an AR(1) process with parameter a and 2 ,

an approximation can be given that has no special treatment of the initial terms:  
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q   (7.57) 

In practice, the true process quantities are unknown. Therefore, only estimated values 
for mean and variance and an assumed type of the probability density function can be 
used to approximate Kullback-Leibler index . The variables n belong to a model 
with A*(z), B*(z), and *2  for which the Kullback-Leibler index has to be computed. 
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They can be derived from the variables X, with the observations x1, x2, , xN, with 
density fX (x) as 

*

*

( )

( )n n

A z
x

B z
  (7.58) 

and are supposed to have the same shape of the probability density function as n.
Therefore, the joint density of n becomes 

2*

*
1

*2*
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( )1

( ) exp
22
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NN

A z
x

B z
q  .   (7.59) 

An asymptotic approximation for the Kullback-Leibler index, for N approaching 
infinity and with omission of conditioning of the initial observations xn for n < 1, can 
be evaluated as 
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 (7.60) 

Only n is a function of X and requires integration with f (X) to determine the 
expectation with the true density given by A(z), B(z), and 2 . The other quantities 

A*(z), B*(z), and *2  are given as the model characterization of the probability 

density for which the Kullback-Leibler index has to be computed. 
The constant 2  is not important in looking for a minimum of (q ; f ). The first 

term is given by the estimate for the residual variance 2
Ks , obtained when 

estimating a time series model with K parameters. The third term can be 
approximated with the same result used in deriving the FPE criterion (7.30), where 
the estimate for the prediction error has been used that could be based on the 
residual variance. This gives 
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This equation yields the well-known selection criterion of Akaike as an estimator 
for the Kullback-Leibler index: 

2AIC( ) ln{ } 2 /KK s K N   (7.62) 

This derivation shows that the background of AIC has a sound statistical basis. The 
previous derivation of AIC as a Taylor approximation of the logarithm of FPE 
incidentally gave the same result.  

Cavanaugh (1999) introduced the symmetrical Kullback divergence measure 

2 ; 2 ; 2 ;

; ; ; ;

J q f I q f I f q

q f f f f q q q

As in (7.55), the second term is a constant for all possible q(x). Furthermore, 
Cavanaugh (1999, 2004) proved that the last two terms together have as 
expectation K,  the number of estimated  parameters that is involved.  He divided 
J( q;f ) in the contribution –2E ln [q(x)] plus three remaining terms that have the 
expectation K. With this result, a second order-selection criterion, based on the 
symmetrical Kullback divergence has been introduced as  

2KIC( ) ln{ } 3 /KK s K N .   (7.63) 

A comparison with AIC(K) of (7.62) shows that only the penalty term for the 
parameters has been changed from 2 to 3. 

Those asymptotic approximations are poor for AR models if the order K is 
greater than say N/10. Then finite-sample theory should be used, which gives 
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This yields the finite-sample information criterion FSIC(K), derived by Broersen 
and Wensink (1998) as an alternative for the asymptotic criterion AIC(K):
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  (7.64) 
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This criterion turns out to give good protection against the increased variance of 
ln( 2

Ks ) for higher values of K.

Finally, three different derivations of an order-selection principle give the same 
penalty factor 2 for additional parameters 

Cp of Mallows (1973) that minimises the difference from noiseless 
regression data 

FPE of Akaike (1970) that minimises the prediction error in time series 

AIC of Akaike (1974) and FSIC that minimise the Kullback-Leibler index or 
maximise the expectation of entropy

Furthermore, differences in Cp have also been expressed as F-statistics with the 
hypothesis that the additional parameters are zero. This latter point of view allows 
an investigation of the influence of taking levels of significance in F-tests other 
than the fixed penalty factor 2 that appears in the other derivations.

7.7  The Penalty Factor 

The discussion is first restricted to the penalty for AR(p) models. Every 
additional reflection coefficient above the true order p has the expectation zero and 
the asymptotic approximation for the variance is 1/N. The probability density 
function is normal, and the probability density function of N times the squared 
reflection coefficient has 2 density with one degree of freedom. The asymptotic 
criterion for order p + 1 for a small estimated reflection coefficient kp+1 can be 
written as: 

2 2
1

2
1

1ˆGIC( 1, ) ln 1

ˆGIC( , )

p p

p

p
p s k

N

 p k
N

  (7.65) 

It follows that order p + 1 has a smaller criterion value if 

2
1

ˆ
pk

N
  (7.66) 

The probability that order p + 1 will be selected for a true AR(p) process instead of 
p is asymptotically given by the probability 2 > , if the possibility of underfit is 
excluded. For FPE, AIC, and similar asymptotic criteria with penalty 2, the 
probability that 2 > 2 is 15.7%. Using a higher penalty factor = 3 for the 
additional parameter would give a probability of overfit given by 2  > 3 which is 
8.3%, and 2 > 10 gives 0.0016%. The higher the penalty factor, the smaller the 
probability of overfit. 
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This simple reasoning can be applied to the choice between the candidate orders 
p and p + 1. For more overfit possibilities with higher orders, the combinatorial 
probabilities for the selection of a specific overfit order become somewhat more 
complex. Suppose for the moment that underfit is still not possible. Therefore, the 
selected order is always at least p or higher.  

Order p + 2 is selected if 

the residual reduction of the two additional orders together is at least 
2  /N
 the residual reduction of the second order separately is at least /N
the residual reduction of all orders p + 2 + k in comparison with  
order p + 2 is less than  k /N, for all k.

Shibata (1976) has theoretically described those probabilities. Moreover, every 
order overfit gives asymptotically an expectation of the increase of the normalized 
prediction error PE / 2 with a magnitude of 1/N. Multiplying the probability of 
overfitting exactly k orders by k and summing all possibilities gives the cost of 
overfit Cover(  , p), measured on the same scale as the model error (ME). The index 
p is the true order of the AR process. That cost has been given in a very elegant 
result by Shibata [1984], using the mathematical properties of 2 as 

2
2

1

( , ) ( )over i
i

C p pr i   (7.67) 

The value of Cover(  , p) is 2.56 for  = 2 and 0.85 for  = 3. Those numbers have 
been calculated with the assumption that infinitely many overfit orders are 
available, but they are already quite accurate for 10 possible overfit orders, at least 
for  > 2. The cost of overfit is computed with the explicit assumption that also the 
true order p was a candidate; selecting the true order gives no contribution to the 
cost in (7.67). 

Figure 7.6 shows that the costs of overfit will increase sharply if  is less than 2. 
Therefore, penalty factors less than 2 have not been considered in practice. The 
asymptotic cost of overfit does not depend on the true order p. The asymptotic 
expectation of the ME equals p if the AR( p) model is estimated. If the model is 
order selected with GIC( p, ) and if the lowest candidate for selection is order p,
the expectation for the ME of the selected order is given by 

ME(selected with GIC( , )) ( , )overE p p C p   (7.68) 

Considering only the possibility of overfit is reasonable in practice if all model 
orders are candidates and the true reflection coefficients in the AR( p) process are 
much greater than 1/  N. Overfit is always a danger in order selection, unless the 
highest candidate order is the best to select. Hence, the above given expected loss 
in accuracy in the normalized ME or PE/ 2 will always be present. 
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Figure 7.6.  Cost of overfit as a function of the penalty factor, measured as an increase in 
the expected model error (ME) of the selected model due to the selection. Only the true 
order and higher orders are taken as candidates for selection. 

How much of the inaccuracy of the estimated and selected model is due to overfit 
remains unknown in individual real-life experiments. That would require a priori 
knowledge of the order. Overfit is purely a statistical matter.  

However, if the true final reflection coefficient is less than about 3/  N, the 
probability of selecting an order less than p should also be considered. That might 
happen in the individual estimation of a time series model when the actual estimate 
is one or two standard deviations smaller than its expectation due to the estimation 
variance. 

If the true final parameters are small, it is possible that they are not selected 
with a selection criterion. The probability of underfit depends strongly on the true 
parameters of each specific example. Therefore, it is largely deterministic. Often, 
all parameters until order p give a very significant relative reduction of the residual 
variance, much greater than 1/N. As a reduction of /N is minimally required to 
include that order, it is usual that the first p parameters are included for all sensible 
values of , say, less than 5 or 6. In this situation, the risk or cost of underfit is 
negligible. Without the possibility of underfit, the highest values of give the best 
accuracy for the selected model. The reason is that the cost of overfit decreases for 
greater values of in Figure 7.6. On the other hand, the true representation of a 
MA process has an infinite AR order, with ever-smaller true AR parameter values 
at higher orders. In such cases, all finite AR order models are underfitted, but the 
bias contribution of the higher orders will be very small. The standard deviation 
caused by the variance of high-order estimated parameters contributes much more 
to inaccuracy than the bias of parameters if they are omitted. 

The best compromise for  remains a matter of taste. The cost of underfit is 
present in those specific examples only where the magnitude of the reduction of 



AR Order Selection 195 

the scaled residual variance by including one more order is about /N. That is the 
value that gives criteria equal to (7.66) for orders p – 1 and p:

1
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  (7.69) 

This derivation uses the asymptotic approximation where products with terms 1/N 2

are neglected if terms 1/N are present.  
Furthermore, the expectation of a squared estimated reflection coefficient is 

biased by the estimation variance, which is equal for the first and the last 
parameters in (6.39). For an AR(p) process, it follows for small values of  kp  that 

2
2 2 21 1ˆ p
p p p

k
E k k k

N N
  (7.70) 

The other way around, for a measured value 2ˆ /pk N , the expected value of 2
pk  is 

given by ( – 1)/N. With (7.65), it follows that if GIC( p, ) = GIC( p – 1, ), then  

2 2

PE( 1) PE( ) 1 1
(1 )

2 2
(1 )(1 ) (1 )

E p E p

N N

p p

N N N
  (7.71) 

The expectations of the prediction errors for the orders p – 1 and p are equal for 
= 2. The always present cost of overfit has been quantified in (7.67) and in Figure 
7.6: 2.56/N for = 2 and 0.85/N for = 3. It has been shown that no cost of 
underfit was expected for = 2. For arbitrary values of , if greater than 2, the 
expected cost of underfit caused by selecting the AR( p – 1) model can be defined. 
It is the increase of the ME value, caused by excluding the order p with the critical 
parameter from the model selected. The critical value is defined by GIC( p, ) = 
GIC( p – 1, ) in (7.65) 

underME GIC 1, ( , )E p p C p   (7.72) 

With (7.71), the underfit cost becomes 

under ( , ) 2C p .   (7.73) 
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Figure 7.7.  Costs of overfit, underfit, and the sum of both as a function of the penalty 
factor, measured as an increase in the expected model error (ME)  

The cost of overfit is always applicable, the cost of underfit is applicable only if the 
last parameter is less than (  /N ).

Figure 7.7 gives both the cost of overfit and of underfit, as well as the sum of 
both. The cost of overfit decreases gradually for higher values of the penalty factor. 
It will eventually become zero for very high penalties. That is the property that is 
used in the consistent order-selection criteria of (7.33) and (7.34). By letting the 
penalty grow with N, the cost of overfit vanishes. That is a nice property if the cost 
of underfit may be neglected. Figure 7.6 shows that the cost of underfit increases 
linearly with the penalty factor. If some lower limit of the true final parameter 
values were known, the highest penalty that gives no risk of underfit would be the 
best choice for the penalty factor. Otherwise, the best choice for the penalty factor 
is a compromise. 

It is remarkable that neither the true order p nor the number of observations N
plays a role in Figure 7.7. Obviously, the best compromise for the penalty is 
independent of p and N. Penalty 2 gives only costs of overfit, no cost of underfit. 
Hence, the AIC criterion will never leave out statistically significant parts at the 
cost of often including insignificant details in the selected model. High penalties 
will have small overfit costs and give mainly costs of underfit. Broersen (1996) 
proposed a compromise and takes the value where overfit and underfit are equal as 
the best penalty, and de Waele (2003) used the formula 

opt under overarg min max ( , ), ( , )C p C p   (7.74) 

to find the same compromise for , which is 2.915. Another compromise would 
follow as the value for which the sum is minimal. That value for   is 2.72. The 
compromise is made between two heterogeneous types of cost. All finite-sample 
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arguments have been left out. Therefore, it would be presumptuous to use such a 
precise number, and the result of this discussion is summarized by taking as a 
penalty   

opt 3   (7.75) 

In practice, a model cannot have overfit and underfit costs at the same time. By 
taking the penalty 3, it can be concluded that the expected selection cost has a 
maximum of one. 

It is quite remarkable that two completely different derivations have found the 
same penalty factor 3. The first was by Cavanaugh (1999), who introduced a 
symmetrical Kullback divergence, instead of the Kullback-Leibler discrepancy that 
is given in (7.52). The second used a compromise between underfit and overfit 
costs. Simulations will be used to illustrate the differences between the factors 2 
and 3 in the practice of order selection. 

The expected selection cost with maximum one should be compared with the 
cost of estimating an extra parameter, which also makes an asymptotic minimal 
contribution of one to the ME for each estimated parameter in (5.41). In other 
words, selection among many candidates has the same cost in model quality as the 
estimation of one extra parameter. An alternative formulation of this principle is 
that avoiding order selection by taking a fixed model order gives better model 
quality in asymptotic theory only if precisely the best order is taken. Taking the 
fixed order one too high gives the same expected loss as taking a selected order. 
Taking it too low gives underfit errors. Guessing a fixed order that is two or more 
orders wrong gives a disadvantage in comparison with order selection with penalty 
3. Finite-sample results of selection will be obtained later in Monte Carlo simu-
lations. The selection results will be compared with the accuracy of fixed model 
orders. Examples will be used with possible costs of overfit and underfit. 

For AR models, a discussion of the cost of underfit underpins the choice of the 
penalty factor. For small values of ˆ

pk , the standard deviation can with (6.16) be 

approximated by 1/N. The unilateral probability to be further from the expectation 
kp than 1.96 times the standard deviation equals 2.5% for a normally distributed 
estimate ˆ

pk . In other words, if the true last parameter kp equals about 3/  N, there 

is still a nonvanishing probability that the actual estimate ˆ
pk  is twice the standard 

deviation smaller than the true value and the estimated 2ˆ
pk will become  1/N. This 

gives a residual reduction that is too small to be selected with the usual values of 2 
or 3 for  in GIC( p, ). On the other hand, if the true parameter kp equals zero, 
there is almost a 5% probability that the absolute value of ˆ

pk exceeds 2/  N, which 

will lead to selection by the criterion GIC( p, ) if the penalty factor  is less than 
4. Final true parameters must be greater than four or five times their standard 
deviation 1/  N to make it practically sure that in no single simulation run too 
small an estimate is found that is not selected. A final true AR( p) parameter value 
of 0.01 would require more than 200,000 observations to be almost never missed in 
the practice of order selection or in a proper conditional theory that includes the 
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estimation uncertainty. However, the unconditional expectation for the statistical 
significance of the final AR parameter is 1/  N and 10,000 observations are 
sufficient to let a final parameter of 0.01 be significant in unconditional theory, 
based on the expectation of the parameter. The reasoning for the last reflection 
coefficient kp can be extended to processes where both kp and kp-1 have true values 
near /  N. In those critical cases, a large estimate for the last parameter ˆ

pk  can 

compensate for a smaller estimate for 
1

ˆ
pk . This conditional theory is much more 

complicated than the study of Shibata (1976), which treated only the probability of 
overfit. A combined theoretical study of overfit and underfit may be feasible, but 
the bias results depend on the particular AR( p) process, especially on the true 
values of the last parameters. Therefore, simulations will be used to demonstrate 
the importance of underfit. 

For all purposes where Akaike’s AIC criterion with penalty 2 has been a good 
choice in the past, a better choice will probably be a similar criterion GIC( p, ) of 
(7.32), the generalized information criterion, with the value 3 for the penalty .
This criterion can also be recommended for MA and ARMA models, where the 
asymptotic theory gives a satisfactory description of the behaviour of the residual 
variance.  

A particular and well-known choice of  leads to problems with the underfit 
discussion here. That is the choice = ln N in (7.33) or = 2lnln N in (7.34) that is 
sometimes used in so-called consistent criteria. This dependence of   on N can 
lead to serious underfit problems for increasing sample sizes N, because  can 
grow without bound for N . Moreover, in the discussion above, it is clear that 
an increasing   is a weapon against overfit at the cost of underfit. No reason can 
be given to make this overfit/underfit compromise a function of sample size. 
Consistent criteria are popular for mathematicians if they want to know with 
certainty that they describe the truth. Those criteria are not at all attractive for 
practical use where the best fitting model is the purpose. The literature has given 
much attention to consistent criteria because they will select the true order for N

. A mathematical condition for the applicability of consistent criteria is that the 
true AR order must be finite and that the final AR parameters are greater than some 
fixed small number. Under those conditions, consistent criteria have excellent 
theoretical properties because they can reveal the truth if the sample size increases 
more and more. However, the costs of underfit are neglected, and the costs of 
overfit go to zero. If the truth has an infinite order, like AR models of MA or 
ARMA processes, consistent criteria will have poor performance due to the 
underfit costs. These follow from Figure 7.7 and are equal to – 2. Therefore, 
examples can be constructed for the final parameter with a value somewhat smaller 
than (lnN / N) that would not be selected with penalty lnN and that would give an 
unbounded underfit error of ln N – 2.

Numerous simulation results in the literature support the use of consistent 
criteria. However, the favourable conclusions for consistent criteria have always 
been obtained from examples where no underfit costs were possible or probable, 
by choosing the last parameter of the simulated processes much greater than 

(lnN / N). Taking smaller values would lead to the conclusion that the 
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performance of consistent criteria is poor. Moreover, the usual application is to 
select the best model for a given and fixed number N of observations. Then, ln N is 
only a constant, dependent on N. It is only important what happens for that 
particular value of N. There may be a good reason to take a value for the penalty 
different from 2, but there are hardly any reasons to let the penalty depend on N.
Therefore, consistent criteria have no practical importance. That will be 
demonstrated in simulations. 

For AR models, finite-sample theory remains necessary. It is easy to combine a 
penalty with finite-sample results using the finite-sample variance coefficients vi,
of (7.45), giving the finite information criterion of (7.51). 

A recent development for automatic model selection used subspace techniques. 
Bauer and de Waele (2003) describe an automatic procedure for ARMA estimation 
and selection. They found one important disadvantage, directly related to the 
fundament of subspace modeling. Subspace autocorrelations are subject to the 
triangular bias that also plays a role in the lagged product autocovariance function 
(3.30). It means that examples can be found that are sensitive to triangular bias and 
subspace methods are very inaccurate for those examples. Furthermore, order 
selection in subspace methods has some peculiar properties. Bauer (2001) used 
estimated singular values and a penalty function that depends on sample size. 
Singular values have the property that the dividing line between significant and 
insignificant values depends on the actual true process parameters. It is not 
possible to establish critical values for singular values without knowing the process 
or without looking at the estimated singular values. In other words, order-selection 
criteria cannot rely on the white noise behaviour that is found in the PE in Figure 
7.1 for all orders above the true order. No such characteristic exists for singular 
values. Bauer and de Waele (2003) used a consistent penalty factor for selection. 
However, it is not possible to make an objective compromise between overfit and 
underfit, as in Figure 7.7, if the critical level depends on true singular values. Bauer 
and de Waele (2003) conclude that the influence of spectral leakage is considerable 
in examples that are sensitive to triangular bias. As long as a method is not reliable 
for all types of measured data, it is less useful than methods without such flaws. 

The compromise for penalty 3 in the FIC criterion of (7.51) has been derived by 
balancing overfit costs with the cost of underfit with only one critical parameter 
value at the end. It is also possible to derive a compromise for more critical values 
at the highest AR orders. Suppose that the critical value of the last two parameters 
of an AR( p) process is determined by 

GIC( 2, ) GIC( 1, ) GIC( , )p p p   (7.76) 

Then the underfit cost would become 2(  – 2). That would make the line of the 
underfit costs two times steeper in Figure (7.7) and the line of the overfit costs 
would stay the same. The minimum of the sum is found at  = 2.3 now. More 
generally, by considering the possibility of more underfit orders, the penalty of the 
best would become very close to 2. Penalty 3 is a good compromise to protect 
against one order of overfit. However, if two models are compared where the 
number of parameters differs by more than 3 or 4, the best penalty becomes close 
to 2. 
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7.8  Finite-sample AR Criterion CIC 

The asymptotic problem has been resolved sufficiently. The Kullback-Leibler 
derivation yields AIC( p) with penalty 2. The compromise between bias and 
variance errors gives the value 3 for the penalty factor in GIC if one order of 
underfit is considered. This same value 3 follows with a symmetrical Kullback 
divergence by Cavanaugh (1999). The situation has some extra complications for 
finite-sample theory. Asymptotic theory is always applicable to low-order models 
with less than N/10 parameters. That gives the finite-sample criterion FIC( p, ) of 
(7.51) with = 3 as the best compromise for low-order finite samples.  

The Kullback-Leibler derivation yields the criterion FSIC( p) in (7.64) with 
remarkably good finite-sample performance; see Broersen (2000). Even if the ma-
ximum model order is as high as N – 10 or higher, the selection results of FSIC( p)
are not seriously influenced by the curious finite sample-effects that other criteria 
display, including the FIC( p, ) criterion with = 3 that was the favourite based 
on asymptotic arguments. However, using a Taylor approximation, the low-order 
penalty factor in FSIC( p) turns out to be 2. FSIC( p) with a smaller penalty for 
low-order models mostly selects more parameters in AR simulations than 
FIC( p,3), whereas the accuracy of the latter model is better if only low-order 
candidates are considered. On the other hand, FIC( p,3) can sometimes select 
orders above N/2 where low orders are much better. It would be desirable to 
combine the good performance of FIC( p,3) of (7.51) for low orders with the good 
performance of FSIC( p) of (7.64) for much higher orders.  

Broersen (2000) showed that the increasing uncertainty of the estimated 
residual variance sp

2 can give problems at very high model orders, say, about 0.5N.
Due to the increased standard deviation of the estimated residual variance, it occurs 
more often that the sample residual variance is very much smaller than its 
expectation. FSIC( p) is a criterion with an order-dependent penalty. A 
compromise between the best low-order penalty 3 and the desirable extra 
protection against very high candidate orders is found in the combined information 
criterion CIC( p), that is defined by Broersen (2000) as 
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  (7.77) 

where vi is 1/(N+1–i) for AR estimates by Burg’s method. For other estimation 
methods, the vi coefficients of (7.45) can be substituted in CIC( p). The criterion 
CIC takes the highest of two penalty factors. Almost the same selection results as 
with CIC can be obtained with a number of similar criteria combining the 
asymptotic penalty factor of 3 at lower orders with the good performance of 
FSIC( p) of (7.64) for higher model orders. 

The candidate order for selection with CIC( p) can be chosen as high as N – 1
without numerical complications, but generally p = N/2 is taken as an upper 
boundary for accurate estimation. For large data sets, the maximum candidate 
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order can be restricted to 250, 500, or 1000 to limit computing time. However, 
especially if an order were selected close to that chosen maximum candidate order, 
it is advisable to verify whether a relaxation of the experimenter’s restrictions on 
the maximum candidate order influences the order selected. 

Asymptotic AR order-selection criteria can give wrong orders if the candidate 
orders are higher than 0.1N. Using higher penalties or consistent criteria cannot 
cure that problem. For autoregressive order selection, three categories of criteria 
have been discerned. They take into account  

 the asymptotic expectation of 2
ps

FPE, AIC, GIC, AIC, AICC, Cp

 the finite-sample expectation of 2
ps

FSC, FIC  

 the finite-sample expectation and the finite-sample variance of 2
ps

FSIC, CIC 

Figure 7.8 gives the effective penalties of the finite-sample criterion FSIC( p)
(7.64) with the finite-sample variance coefficients of (7.45) substituted for the 

different estimation methods. The order-dependent part of the criteria after ln( 2
ps )

is shown. As a comparison, the penalties of the AIC (7.31) and the improved AICC

criterion (7.35) are also given. It is notable that AIC and FSIC for the Yule-Walker 
method are very  similar.  That means that  Yule-Walker  estimation and  AIC are a  
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Figure 7.8.  Penalty of FSIC for four AR estimation methods, as a function of model order. 
The penalty factor of AIC and AICC is divided by N.
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Figure 7.9.  Penalty of order-selection criteria for AR Burg estimates as a function of model 
order. N = 100 determines the penalty ln N of the consistent criterion. 

perfect finite-sample match. To a lesser degree, FSIC for Burg and AICC are also 
similar for model orders below 0.25N. That is one reason and also an explanation 
why those combinations are often used in practice. It also explains why AICC is 
less suitable than the AR Burg algorithm as a selection criterion for other estima-
tion methods. 

Figure 7.9 shows that AIC( p), FIC( p,2), and FSIC( p) are very close for AR 
orders less than N/10. FSIC is rising steeply for orders above 0.3N, much more 
than the other criteria. CIC( p) combines the best low-order with the best high-
order performance. The consistent criterion has the penalty factor 4.6 for 100 
observations; it would be 9.2 for N = 10,000. From (7.73), it is clear that the costs 
of underfit are very much higher for consistent selection criteria. Simulations with 
a variation of sample size will compare the behaviour of all selection criteria.  

A final remark about selection criteria is that selection bias is present after 
selection. Too high a order model order with overfit is selected only if that extra 
estimated parameter has a value greater than expected. In that case, the prediction 
error seems to become smaller through the eyes of the selection criterion, although 
it is really becoming greater. This causes the criterion value to become smaller than 
a priori expected for fixed model orders without selection. At the same time, the 
prediction error becomes greater than the a priori fixed order expectation without 
selection. Miller (1990) describes how the multiple use of the same data for 
estimation and selection leads to selection bias in linear regression. Experience 
from simulations teaches that it is also present in time series. 
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7.9  Order-selection Simulations 

The following procedure has been used in many simulations to construct different 
interesting examples easily. The true parameters of a generating process of an 
arbitrary order p are built from reflection coefficients using (5.28) with km = m. In 
this way, all poles of the generating process have the same radius .  The example 
used here is slightly different and has an interesting looking autocorrelation 
function. This example can be done by taking km = m  and afterward taking a 
different sign for k1 that becomes – . Figure 7.10 gives the poles of this example 
for  = 0.7, and Figure 7.11 shows the true autocorrelation function and the power 
spectral density of the true AR(11) process.  
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Figure 7.10.  Poles of the AR(11) example with k1= – 0.7 and ki = 0.70 i , i =2,…,11  
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This example process has been used to compare order-selection criteria. It is 
applied to sample sizes varying from 20 to 5000. At size 20, the sample size is 
shorter than the correlation length in Figure 7.11 and only a few parameters are 
statistically significant. For 5000 and more observations, all 11 parameters are 
significant. The criterion FPE (7.30) gives the same results as AIC (7.31) in almost 
all circumstances, and FSC (7.48) is the same as FIC( p,2) (7.50). Therefore, the 
results of FPE and FSC are not reported.  

The best fixed order model is not always the true AR(11) model but depends on 
the sample size in Table 7.1. Hence, knowledge of the true process order is not 
sufficient to know the best order for estimation. Table 7.1 shows that for every 
sample size, a fixed order can be established for which the average model error 
(ME) is smaller than the average ME that is obtained from selected models. The 
analysis in Chapter 7.5 of the penalty factor suggested that the loss in quality due 
to selection, measured on the ME scale, would be approximately one. Table 7.1 
gives approximately 2.5 or 3 as the loss in the ME between the best fixed order 
model and the model selected with the best selection criterion. The reason is 
twofold. In the first place, finite-sample effects play a role, giving a higher 
variability to estimated parameters and also to the residual variance, which is the 
basis for order-selection criteria. That can cause some wrong order to be selected 
occasionally. The second reason is that the theoretical derivation of the penalty 
factor supposed that only one underfit order was possible. In practice in Table 7.1, 
several underfit orders are candidates, the best order is still an underfit order, and 
also orders higher than the best order are still lower than the true order. This 
demonstrates that the asymptotic theoretical derivation for the best penalty factor 3 
is not completely applicable. However, Table 7.1 shows that penalty 3 in FIC( p, )
is always better than penalties 2 and 4, for all sample sizes. Therefore, the 
theoretical analysis that led to penalty 3 is strongly supported by the simulations. 

The sum over the columns of the ME values in Table 7.1 for the fixed model 
orders ranges from 118 for the AR(8) model to 5988 for the AR(1) model. The sum 
for the true AR(11) model is 151. Therefore, order selection will improve the 
model quality, even if the true order were known. 

The absolute value of all reflection coefficients is 0.7 in the example. It follows 
from (7.36) that the prediction error will be the same for two orders if k 2 = 1/N.
This would give the values of Table 7.2 as asymptotic critical values for N.

The sample size must be at least Ncrit to let order p be significant. Comparing 
this to the best fixed order in Table 7.1 shows that the agreement would be perfect 
if the AR(4) model were the best for N = 20. That single deviation is due to finite- 
sample effects where critical values are given by vi  instead of 1/N. Therefore, the 
best fixed order can be determined easily for a process with uniformly decreasing 
reflection coefficients. 

The average ME of the AR(11) model is close to the finite-sample expectation 
of the ME that is given with (7.47) as 

FS
1

ME( ) 1 1
p

i
i

E p N v   (7.78) 
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Table 7.1.  Average ME of Burg estimates of the AR(11) process of Figure 7.11 with 
parameters 1., – 0.714,  0.2116,  0.2004,  0.1594,  0.1178,  0.0838,  0.0578,  0.0386,  0.0243,  
0.0141, and  0.0198. The average is over 10,000 simulation runs for models selected with 13 
different criteria. The maximum candidate AR order is N/2, or 11 for N = 15 and 20. The 
fixed order ME and the finite-sample expectation of the ME of the AR(11) model are also 
given. 

N 15 20 50 100 200 500 1000 2000 5000

GIC( p,2)=AIC 35.6 20.3 26.4 27.8 21.4 13.2 13.4 13.7 14.1
FIC( p,2) 23.1 15.2 14.1 12.5 12.2 12.7 13.3 13.7 14.1
GIC( p,3)=KIC 28.2 15.7 13.1 11.3 11.4 12.2 12.8 13.3 13.4
FIC( p,3) 14.7 12.1 11.4 11.1 11.4 12.2 12.8 13.3 13.4
GIC( p,4) 21.3 13.8 12.5 11.9 12.1 12.9 13.6 14.0 14.2
FIC( p,4) 12.4 12.3 12.6 12.0 12.2 12.9 13.6 14.0 14.2
GIC( p,2lnlnN) 36.6 19.1 14.6 11.3 11.6 12.6 13.4 14.1 14.4
FIC( p,2lnlnN) 23.2 14.2 11.4 11.1 11.6 12.6 13.4 14.1 14.4
GIC( p,lnN) 30.7 15.7 12.4 12.6 13.6 15.4 16.9 18.2 19.5
FIC( p,lnN) 16.4 12.1 12.4 12.8 13.8 15.4 16.9 18.2 19.5
AICC( p) 10.2 10.6 10.8 11.0 11.6 12.5 13.1 13.6 14.1

FSIC( p) 9.9 10.3 10.6 10.7 11.4 12.4 13.0 13.6 14.1
CIC( p) 10.4 11.0 11.4 11.1 11.4 12.2 12.8 13.3 13.4

AR(1) 11.4 14.7 34.7 68.2 135.4 337.3 673.8 1347 3366
AR(2) 7.9 9.2 17.4 31.0 58.1 139.6 275.3 546.7 1361
AR(3) 6.8 7.2 10.3 16.2 28.2 64.7 125.5 247.3 612.7 
AR(4) 7.6 7.5 8.2 10.7 16.2 33.2 61.7 118.8 290.2 
AR(5) 8.77 8.3 7.5 8.4 10.9 18.9 32.5 59.7 141.5 
AR(6) 11.2 10.0 8.1 8.1 9.1 12.8 19.3 32.3 71.4
AR(7) 14.2 11.8 8.9 8.4 8.6 10.3 13.2 19.4 37.9
AR(8) 18.7 14.4 10.2 9.3 9.1 9.7 11.0 13.7 22.2
AR(9) 24.0 17.5 11.5 10.3 9.8 9.9 10.3 11.4 15.0
AR(10) 31.3 21.6 13.0 11.5 10.8 10.5 10.6 10.8 12.0
AR(11) 41.0 26.6 14.5 12.6 11.8 11.3 11.2 11.1 11.0

EFS[ME(11)] 33.0 22.0 13.8 12.2 11.6 11.2 11.1 11.1 11.0

Table 7.2.  Critical sample size Ncrit  as a function of the best fixed order p of the AR model 

p 1 2 3 4 5 6 7 8 9 10 11 
Ncrit 3 5 9 18 36 73 148 301 615 1254 2558 

The results for N equal to 15 and 20 are less accurate because the data length is 
shorter than the correlation length there. That is always a reason for poor accuracy 
of the theoretical relations with either asymptotic or finite-sample approximations. 
However, it is still possible to select the order; it is only difficult to determine the 
accuracy without simulations. 

FIC( p, ) and GIC( p, ) are identical for greater N, except for  = 2. It is better 
to use finite-sample equations if the highest candidate order for selection is greater 
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than N/10. If the highest candidate order is smaller than N/10, FIC( p,3), GIC( p,3) 
and CIC( p) will almost always select the same AR order. Therefore, the use of 
finite-sample equations is advisable for all sample sizes. 

None of the criteria is best in all circumstances. The average of the ME or the 
sum of the ME values can be taken as a method of formulating a preference for one 
of the criteria because the ME is more or less independent of sample size. The 
sequence for the descending sum of the average model errors ME over the different 
sample sizes in Table 7.1 is  

Best group with sum of ME is about 107, in descending quality: 

FSIC( p),  CIC( p),  AICC( p),  FIC( p,3)

Middle group where the sum of ME is about 115: 

FIC( p,4),  FIC( p,2lnlnN),  GIC( p,4),  FIC( p,2),  GIC( p,3) 

Final group with sum ME from 137 to 180: 

FIC( p,lnN),  GIC( p,2lnlnN),  GIC( p,lnN),  AIC( p)

The best is FSIC( p) where the sum is 1.3 less than for AICC( p). Those two criteria 
behave similarly in the AR Burg estimates, although they have been derived from 
quite different points of view. The difference between the sum of FSIC( p) and 
CIC( p) is 0.9 and CIC would have the smallest sum if one more column with 
many observations were added. It is clear that penalty 3 is best for higher N, better 
than 2 and 4. Eventually, for N , the risk of underfit will disappear completely 
in the true AR(11) process. Then, higher penalty factors will become better in true 
finite-order AR simulations. But the performance of the consistent order-selection 
criteria with penalty ln N in Table 7.1 shows that this desired behaviour requires 
many more than 5000 observations. Because of the asymptotic quality, CIC( p) is 
preferred. However, all criteria from the best group are quite acceptable criteria in 
small or finite samples. 

It is remarkable that the two criteria that are most widely known and discussed 
in the literature, AIC( p) of Akaike and the consistent criterion GIC( p,lnN),
perform poorly in this simulation, as well as in many other simulations. Generally, 
simulations with a small probability of overfit tend to find AIC( p) preferable, 
whereas simulations with a small probability of underfit have a preference for the 
penalty ln N, or the highest of the penalties that is tested. It seems to be a good idea 
to perform simulations with both the possibilities of underfit and of overfit present. 
That is always an unprejudiced way to treat measured data. 

To verify the expected performance for very large sample sizes, the order- 
selection simulation with the same example of Figure 7.11 has been repeated with 
N = 5,000,000. Finite sample and asymptotic criteria give the same results then. 
Therefore, only one ME value is given for each penalty in Table 7.3. As could be 
expected in this situation without any danger or even possibility of underfit, the 
highest  penalty  gives  the  best result.  In  this  case,  that  is the  consistent  order-  
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Table 7.3.  Average ME of selected models from 5,000,000 observations of the AR(11) 
process of Figures 7.8 and 7.11. The average is over 200 simulation runs for models selected 
with 15 different criteria. Maximum candidate AR order is 1000.  

Penalty ME 
2 13.16 
3 11.73 
4 11.40 
2lnln N = 5.4 11.29 
ln N = 15.5 11.03 

Table 7.4.  Average ME of AR models estimated from data of an MA(11) process with 
parameters  1.,  – 0.714,  0.2116,  0.2004,  0.1594,  0.1178,  0.0838,  0.0578,  0.0386,  
0.0243,  0.0141, and  0.0198. The average is over 100 simulation runs for models selected 
with different criteria. Maximum candidate AR order is N/2, or 11 for N = 15, 20. 

N 15 20 50 100 200 500 1000 2000 5000 

GIC( p,2)=AIC 44.9 20.7 31.8 46.6 34.9 30.5 31.5 36.0 41.7
FIC( p,3) 10.9 13.3 17.7 21.5 24.9 30.0 33.5 36.6 43.8
FIC( p,4) 9.3 11.9 18.5 23.8 26.2 31.9 36.8 40.6 48.0
GIC( p,lnN) 33.6 15.4 20.1 26.0 29.8 41.6 45.3 57.1 70.2
AICC( p) 9.0 11.4 18.1 20.8 23.7 29.7 31.3 36.0 41.7

FSIC( p) 8.8 11.5 16.9 20.4 23.5 29.5 31.5 35.6 41.7
CIC( p) 9.3 11.8 17.8 21.5 24.9 30.0 33.5 36.6 43.8

selection criterion with penalty lnN. However, a fixed penalty factor of 25 would 
still be better. The value of the penalty where overfit becomes probable is about 44. 

Table 7.4 presents selection results that have been obtained with a MA(11) 
process. The zeros of the MA process are the locations of the poles in Figure 7.10. 
As the true AR order of MA processes is , all estimated AR models are necess-
arily underfitted and biased. The best fixed order model will always increase with 
sample size.  

The sequence of decreasing sum of the ME over all sample sizes is: 

FSIC( p), AICC( p), CIC( p), FIC( p,3), FIC( p,4), GIC( p,2)=AIC and GIC( p,lnN).

Also in this case, the finite-sample criteria FSIC( p) and CIC( p) and also AICC( p)
give the best result. In this example with only biased AR models, the ME will keep 
increasing for greater sample sizes. The best AR model is found with penalty 2 for 
greater values of N because the costs of underfit are most important in this 
example. However, in practical signal processing applications, MA models also 
will be used as candidates and then it is quite certain that a MA model will be 
chosen for greater sample sizes. Therefore, the choice for the preferred selection 
criterion should be based on Table 7.1, where CIC( p) is preferred to the other 
good criteria because of its better performance with increasing N.
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7.10  Subset Selection 

Subsets of parameters or of reflection coefficients do not have the hierarchical 
structure of the usual AR estimation algorithms. Therefore, selection becomes 
more difficult and less accurate. Broersen (1990b) studied subsets of AR 
parameters. Under rather strict conditions, subset models of AR parameters could 
be found. The most important condition was that the highest AR order was limited 
in the search for a subset. The main problem of subsets is that even in white noise, 
many  parameters are  accepted  in a subset  because they are  greater than  2/N or 

 3/N, as penalty 2 or 3 is used in the selection criterion GIC(K, ) of (7.32) for 
subset selection.  

Subsets of reflection coefficients have been examined by Broersen (1986). If the 
order of the reflection coefficients in the true subset is known, it is nevertheless 
possible that the estimation of only those truly nonzero reflection coefficients gives 
a subset model with very poor quality. This happens if reflection coefficients are 
close to one in absolute value. This disadvantageous effect is much stronger than 
the small profits that can be found in other examples. Also replacing a number of 
very small estimated reflection coefficients, say, less than 1/N, by zero 
sometimes has an undesirable effect. Subsets of parameters as well as subsets of 
reflection coefficients have so few advantages and so many disadvantages that they 
are not treated any further here.  

7.11  Exercises 

7.1  Derive the expectation of Jp , as given in Equation (7.20). 

7.2  Find an example AR process and sample size where the performance of the 
order-selection criterion GIC( p,10) will be better than the performance of 
CIC( p). Show it in a simulation example. 

7.3  Find an example AR process, sample size, and maximum candidate order 
where the performance of the order-selection criterion GIC( p,1) will be 
better than the performance of CIC( p). Show it in a simulation example. 

7.4  Find an example AR process and sample size where the expectation of the 
order-selection criterion GIC( p,3) is approximately the same for orders 0, 
1, 2, and 3. Find out in a simulation experiment which order is selected. 
Compare the ME of the selected order with the ME of the fixed order 
models of the orders 0, 1, 2, and 3. 

7.5  Given a MA(2) process with parameters [1, 0.8, 0.6]. Find the theoretically 
expected order of the best predicting AR model for N = 10, 100, 1000, and 
10,000.  

7.6  Under which conditions is it possible to estimate models with an accuracy 
that is lower than the Cramér-Rao lower bound.  



8

MA and ARMA Order Selection 

8.1  Introduction 

The best estimation methods for MA and ARMA models use an intermediate AR 
model discussed in Chapter 6. The theoretical best order for an intermediate AR 
model is  if the true parameters are known. A MA(q) process with polynomial 
Bq(z) is equivalent to an AR model of infinite order with the parameters of 1/Bq(z).
For estimated AR models to be used as intermediates for MA and ARMA 
estimation, this order  has been replaced in the past by the best predicting AR 
order. This was an important reason that those methods had a poor reputation. In 
simulations, it turned out that the best order for an estimated intermediate AR 
model is finite. It was equal to the order of the AR model, which has the smallest 
mean square error (6.25) of the parameters. Taking a higher intermediate order had 
a negative influence on the accuracy of the MA and ARMA models. Taking a 
lower intermediate AR order was often still more detrimental. The problem is that 
the mean square errors of the parameters cannot be computed for given data. 
Therefore, the intermediate order has to be chosen or selected from the measured 
data. 

A second order that has to be selected is the MA order q in MA estimation or 
the two ARMA orders p and q. ARMA models present a new phenomenon, not 
found in AR and in MA models. In pure AR and pure MA models, each model of 
order p has one single neighbouring model with one parameter less and a single 
neighbour with one parameter more. That makes order selection a hierarchical 
problem with nested models as candidates. Each higher order model comprises the 
parameters of all lower order models, unless the possibility of subsets of 
parameters is considered.  

The number of ARMA( p’,q’) candidate models with p’ L and q’ L is L2. If 
all ARMA( p’,q’) models were available for order selection, the true order model 
would have many close competitors and it may be expected that the performance 
of order-selection criteria would deteriorate. It would be related more to subset 
selection with arbitrary subsets than to selection in a hierarchically nested class of 
candidate models, where each higher order model contains all parameters of lower 
order models. Nested selection has L candidate models if L is the highest order 
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considered, whereas there are 2L possible subset models. In subset selection, each 
possible subset model is a next candidate for selection, and each estimated 
parameter that seems statistically significant individually is included, even if many 
previous model orders were not significant. Theoretically, the selected subset size 
will increase with the number of candidate models, whereas the selected 
hierarchical model order is independent of L. Solo (2001) investigated the costs of 
subset selection instead of hierarchical search: the choice between all possible 
subsets selects many more parameters but leads to a poor model in time series. The 
explanation is simple. If many closely competing candidates with similar 
unconditional accuracy are available for selection, generally one of those 
candidates is an estimated model that seems to fit much better than the others and 
that one will be selected. The performance of L2  ARMA( p’,q’) candidate models 
will be somewhere between L hierarchical models and 2 L subset models.  

In contrast with the hierarchical models, the ARMA( p,q) class of models will 
have several ARMA( p+k,q–k) models with the same number of parameters and 
many more with one parameter more or with one parameter less. ARMA models 
can be made hierarchical by considering only ARMA(r,r–1) or only ARMA(r,r)
models. At the cost of probably missing the true process orders among the possible 
models, the order-selection problem is made much simpler. This problem will be 
discussed, and it will be shown that the loss caused by not having the proper 
ARMA( p,q) model as a candidate for order selection is largely compensated for by 
the fact that selection from a small number of candidates is more accurate. 
Broersen and de Waele (2004) have shown that a limitation is hardly of influence 
on the average quality of selected ARMA models. 

8.2  Intermediate AR Orders for MA and ARMA Estimation 

Theoretically, different model orders can be the best for various purposes. Two 
important rather general purposes are 

prediction with the model  
accuracy of the model parameters.  

Those orders are often the same. As an example, consider an AR( p) process where 
all p reflection coefficients are much greater than 1/  N. Therefore, all parameters 
will be statistically significant, and the estimated model of order p will be the best 
for all purposes.  

However, both MA and ARMA processes are represented exactly by an AR( )
process. No matter how large N becomes, the reflection coefficients at very high 
orders will always tend to zero and become small in comparison with 1/  N. In 
those cases, the best order for prediction with an AR model and the AR model with 
the closest approximation of the parameters will generally not be the same. The 
parameter accuracy is the infinitely long sum of squared errors between estimated 
and true parameters. Hocking (1976) has given theoretical arguments that the AR 
order q is the best for the parameter accuracy if the sum of the true values of ai

2

for i = q + 1 until  is less than 1/N; see also (7.28) which gives the same result if 
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applied to the true AR parameters of orders greater than q. This is quite different 
from the best model order for prediction which is found as the order q’ for which 
all individual ai

2 for i > q’ are less than 1/N, or more precisely the order q’ for 
which each sum of r squared values of ai

2 for q’< i < q’+r is less than r/N, for each 
value of r; see (7.29) for the linear regression case. For AR selection, that order can 
be found by using the order-selection criterion GIC(q’, ) of (7.32), with penalty 
equal to 1, applied to the intermediate residual variances of models with the true 
parameters, as found with the Levinson-Durbin recursion (5.24). Penalty one can 
be made plausible by considering that the usual penalty 2 gives the same weight to 
bias and variance contributions. Substitution of the true parameters in lower order 
models removes the variance contribution and leaves only the bias.  

In simulation experiments, the best intermediate theoretical AR order for MA 
and ARMA estimation turned out to be the order for which the parameters are most 
accurate, not the model order for the best prediction. All order-selection criteria 
that have been described in Chapter 7 select the best model order for prediction. It 
is not possible with known criteria to select the best model order for parameter 
accuracy from measured data. It would require a penalty of about 1 + 1/N. Figure 
7.6 gives the cost of overfit as a function of the penalty. Values of close to 1 
make the probability of overfit almost 100%. No practical useful model orders for 
any purpose would be selected with those penalties. The estimation variance of 
parameters for given data would completely determine which order is selected. 
That means that the intermediate AR order that turns out to be the best in 
simulations with known true MA parameters cannot be selected from data in 
practice with any known selection criterion. 

Many simulations have been done to find a good practical choice for the AR 
order; see Broersen (2000b). That order is used in the ARMASA program, where it 
is selected automatically. It is based on the AR order K that is selected with the 
CIC criterion (7.77) for the best predicting AR model and on the order q of the 
MA(q) model that is computed.  

Table 8.1.  Average of 100 simulation runs of the ME of MA(4) models estimated from 
different intermediate AR orders from 500 observations of the MA(4) process, as a function 
of the radius of the zeros of the MA polynomial 

AR order  = – 0.3  = 0.6  = – 0.9 
q 3.00 3.38 180.01 
2q 3.49 4.05 20.36 
K 3.00 3.47 7.21 
2K 3.49 4.05 6.11 
K+q 3.49 4.03 6.91
2K+q 3.64 4.15 5.02
3K+q 3.81 4.19 5.30 
N/2 30.18 31.08 21.45 

  
Best order 3.00 4.05 4.34 
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Table 8.1 shows that too low an AR order gives very poor results if the zeros 
are close to the unit circle. The best average result is found for the intermediate 
order 2K + q. This order has been called a sliding window order, because it 
depends on the number of MA parameters that is estimated. The choice of the AR 
order turns out to be particularly important if zeros are close to the unit circle. Both 
orders too low and too high would give a poor result then. The final row gives the 
ME for the AR order that is found by using (6.23) and the known process 
parameters. That order is unknown in practice but using the practical order 2K + q
gives almost the same results for MA(4) quality given in Table 8.1. They are close 
to the Cramér-Rao lower bound which is four for the MA(4) process. 

Table 8.2.  Average of 100 simulation runs of the ME of MA(q) models estimated from 
different intermediate AR orders from 100 observations of the MA(q) process, as a function 
of the order q of the MA polynomial, with radius  = 0.8 of the zeros 

AR order q = 1 q = 2 q = 3 q = 4 
q 20.38 17.55 4.77 4.07
2q 9.33 4.20 4.69 6.17 
K 3.42 5.01 4.59 4.47 
2K 1.87 3.83 4.25 6.11 
K+q 2.43 4.60 4.61 6.02 
2K+q 1.74 3.06 3.68 5.57
3K+q 1.66 3.29 4.14 6.13 
N/2 4.33 8.27 15.74 19.37 
     
Best order 1.38 2.98 3.35 5.26 

Table 8.2 shows that for different MA orders, the sliding window choice 2K+ q
always gives also a MA quality close to what can be found by using the theoretical 
best intermediate order. Therefore, to estimate the MA(q) parameters with the 
method of (6.24), the AR(2K + q) model is used as the intermediate AR(LMA)
model, with 

2MAL K q   (8.1) 

Broersen (2000b) has chosen that order as a good practical compromise. Generally, 
the upper limit for LMA is taken as N/2 or about 1000 if N is greater than 2000 and 
(8.1) would give a higher result.  

In ARMA estimation with small parameter values, the intermediate order is not 
very critical. But if poles and zeros approach the unit circle, it becomes very 
important to have an intermediate AR model of sufficiently high order. Table 8.3 
gives some results. Based on previous results of Broersen (2000b) and also on the 
results in Table 8.3 for ARMA( p,q) estimation, the sliding window AR(3K +p +q)
model is used for automatic spectral analysis with ARMASA. Using higher AR 
orders can have a negative influence on the accuracy of the final MA or ARMA 
model. However, lower AR orders might often lead to poor accuracy of the MA or 
ARMA models. The choice 
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3ARMAL K p q   (8.2) 

is also given by Broersen (2002b). If the roots are not too close to the unit circle, 
the ME values are close to the Cramér-Rao lower bound 5 for the ARMA(3,2) 
process. 

Table 8.3.  Average of 100 simulation runs of the ME of ARMA(3,2) models estimated 
from different intermediate AR orders from 1000 observations of the ARMA(3,2) process, 
as a function of the common radius  of the poles and zeros 

AR order  = – 0.5  = 0.8  = – 0.95  = – 0.99 
p+q 5.25 98.8 876.64 1247.1 
2(p+q) 5.30 8.99 102.68 389.7 
K 5.15 5.72 14.46 39.29 
2K 5.32 5.34 6.23 19.86 
K+p+q 5.29 5.27 12.6 38.28 
2K+p+q 5.76 5.28 5.95 19.58
3K+p+q 5.89 5.32 5.99 11.84
     
Best order 4.74 5.12 5.75 11.84 

8.3  Reduction of the Number of ARMA Candidate Models 

It has been discussed that using hierarchical ARMA models will reduce the 
required computation time and improve the quality of order selection. The reason 
is that ARMA( p,q) models may have several ARMA( p+k,q–k) neighbours with 
the same number of parameters which may be of comparable quality. The choice 
between a large number of good models is much more difficult than the choice 
between only a few serious candidates. If the estimate of a parameter with a true 
value on the boundary of statistical significance is greater than its true value, it will 
be selected and if its estimate is smaller, it will not be selected. If there is only one 
candidate for overfit, the selection problem is concentrated on the statistical 
properties of the estimated AR parameters of order p and order p+1. If there are 
more competing candidate models, the model that occasionally has the largest 
parameter estimates will probably be selected. If there are many serious candidates, 
there will often be one among them that occasionally has higher estimates for the 
given data, and that particular candidate model will be selected for those data. 

In the ARMAsel program, the standard is that only hierarchical ARMA(r,r–1) 
models are considered as candidates. This particular choice is inspired by the fact 
that models of those orders are good discrete time approximations for many 
continuous time processes (Priestley, 1981, p. 382). The first higher order 
candidate has two parameters more, the closest lower order candidate has two 
parameters less. This nesting also gives an important reduction in the computation 
time required. Only L instead of L2 models have to be evaluated. 

The closest biased model has two parameters less. Only if both the last MA and 
the last AR parameter of the ARMA(r,r–1) are small, will underfit be probable. 
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Asymptotically, the probability of one order overfit for ARMA(r,r–1) models is 
given by the probability that the chi-squared distribution with two degrees of 
freedom exceeds 2 , where is the penalty factor. This is smaller than the 
probability that the chi-squared distribution with one degree of freedom exceeds ,
which applies to AR or to MA models where only one parameter more is involved. 
Therefore, the probability of overfit of ARMA order selection with the same 
penalty factor is much less than that of AR or MA selection. The price to be paid is 
that the true ARMA(p,q) model may not always be among the candidates for 
selection and some additional parameters with zero expectation have to be included 
in the model selected. For increasing sample size, all biased underfit models will 
have very large ME values. In that case, the best choice for an ARMA(p,q) process 
will have both  r  p and  r – 1  q.  This requires the estimation of a maximum of 
r – 1 extra parameters with the true values of zero if the true process were  
ARMA(1,r–1). The asymptotic increase in the Cramér-Rao lower boundary will be 
from r to 2r – 1 in this worst case, which is considered acceptable for data with an 
unknown character.  

It turns out that the loss in accuracy is still much less than described above in 
many finite-sample simulations because many ARMA(r+k,r–1–k) models have 
about the same ME. Unfortunately, theoretical evaluation of the accuracy of 
underfit models is rather difficult and would depend on the true values of all 
parameters. It can be expected that estimated parameters for those different models 
with the same total number of parameters are strongly correlated if they are 
estimated from the same data. Conditional expectations are required for theoretical 
results for the costs of selection, and it is not attractive to make such a study, even 
if it were possible. 

Therefore, simulations have been used to investigate the behaviour of 
neighbouring ARMA models. The simulations have been made with an 
ARMA(7,2) processes with AR parameters given by the reflection coefficients 

1, – , (– )2, (– )3, (– )4, (– )5, (– )6, (– )7 (8.3)

and with MA parameters given by reflection coefficients

1, , 2 (8.4)

The AR and the MA parameters are computed with (5.28) that relates AR 
parameters to reflection coefficients. This choice for generating reflection 
coefficients gives an ARMA process with all poles and all zeros at the same radius 
| |. It gives the convenient possibility of generating different levels of significance 
for the parameters of the true process and creating examples where biased underfit 
models are the best, as well as processes where only unbiased models are attractive 
candidates for selection. The ARMA(7,2) process is chosen such that all 
competitive ARMA models are in the class ARMA(r, < r) if is large enough. In 
this way, the conclusions can be extrapolated to the full class of all ARMA( r, r)
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Figure 8.1.  Average of 4000 simulation runs of the PE of ARMA(p,q) models estimated 
from 250 observations of the ARMA(7,2) process with = 0.7 as a function of the model 
orders

models. The variation in  gives an opportunity for studying the performance of 
the penalty factor in the most difficult selection examples where underfitted, biased 
models are expected to be the best candidates among estimated models. 

The average of many closely related ARMA models is shown in Figure 8.1, 
where the average prediction error of a number of ARMA( p,q) models is given for 
q < p. The PE is normalized with the value 1 for the ARMA(7,2) model in this 
figure. The PE of very poor underfitted models is limited to 1.005 times the PE of 
the ARMA(20,19) model, to improve the reach in the grey-scale image. This 
corrected value is found for the ARMA(2,1) and the ARMA(3,2) models in Figure 
8.1. All models with less than seven AR parameters or less than two MA 
parameters are biased. The best ARMA(r,r–1) model is the biased ARMA(5,4) 
model, with a prediction error PE 0.9983. This is slightly smaller than the PE value 
1 of the unbiased ARMA(7,2) model, which has the same number of parameters. In 
other words, limiting the selection candidates exclusively to the ARMA(r,r–1) 
models will not necessarily have a negative influence on the quality of estimated 
models. Furthermore, the lines of constant colour are more or less under 45°, for 
higher ARMA orders. This indicates that the normalized PE of all those unbiased 
models with the same number of parameters p + q is about 1 + ( p + q – 9) / N in 
this figure. The subtraction of nine is caused here by normalizing the PE to one for 
an unbiased model with nine parameters. 

If more observations are available, the quality of biased models will become 
worse. That can be seen in Figure 8.2 where the same process has been used in 
simulations with 5000 observations. The PE of heavily underfitted models is 
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Figure 8.2.  Average of 2000 simulation runs of the PE of ARMA(p,q) models estimated 
from 5000 observations of the ARMA(7,2) process with = 0.7 as a function of the model 
orders

truncated. The darkest area with the smallest PE is the area with unbiased models 
with 10 to 13 parameters together. It is remarkable that the models with orders r
and r – 1 for AR and MA, respectively, are relatively accurate in Figures 8.1 and 
8.2, with a little darker colour. The ARMA(r,r–1) model is the best of all over-
fitted models with 2r – 1 parameters. 

8.4  Order Selection for MA Estimation 

The theory of MA and ARMA order selection is only asymptotic. No finite-sample 
deviations of overfitted models from asymptotic behaviour have been reported. 
The reason might be that MA and ARMA models have not been studied for orders 
much higher than N /10. The discussion of possible bias due to the final parameter 
ap of AR( p) models in Section 7.7 produced the preference 3 for the penalty  in 
GIC( p, ). Similar reasoning can also be used for the final parameter bq of a 
MA(q) model. Therefore, only two possibilities are considered in simulations: 
GIC( p,2) and GIC( p,3), where the penalty 3 has been found as the optimum for 
AR processes in (7.75). In this way, whether the reasoning for AR selection is also 
applicable to MA selection can be verified experimentally. 

The simulation example is chosen as a MA(11) process with the zeros at the 
locations of the poles of Figure 7.7. Figure 8.3 gives the autocorrelation function 
and the power spectral density of the process.  
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Figure 8.3.  The autocorrelation function and the power spectral density of the MA(11) 
process with zeros at the locations of the poles in Figure 7.10

Table 8.4.  Average ME of MA models estimated from data of the MA(11) process of 
Figure 8.3 in 1000 simulation runs. The model error (ME) is given of MA models, selected 
with penalty 2 and 3 the of the true order MA(11) model, as a function of sample size N.

N  = 2  = 3 MA(11) 
15 17.8 15.8 94.0 
20 18.0 16.3 120.4 
50 17.4 16.8 22.0 

100 17.4 15.6 17.8 
200 16.3 14.6 15.7 
500 14.6 13.7 13.3 

1000 14.4 14.0 12.8 
2000 14.3 14.0 11.9 
5000 14.5 14.3 11.8 

25000 13.5 12.4 11.1 
100,000 13.2 11.8 11.0 

Table 8.4 gives the ME of fixed order MA(11) models as well as the ME of 
selected models. MA(11) models have the value 11 as the Cramér-Rao boundary. 
That lower limit is obtained for the average of the MA(11) model for N equal to 
100,000. This shows that the MA algorithm described in (6.24) and with the 
practical sliding window choice (8.1) for the intermediate AR order is 
asymptotically efficient. This means that the variance of the unbiased model is 
equal to the minimal variance that can be obtained. In this and many other 
examples, the asymptotic efficiency of the MA estimator (6.24) has been shown. 
The proposed estimator (6.24) is robust, gives invertible models, is asymptotically 
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efficient, and fulfills all desirable requirements. Note that the estimator includes 
automatic selection of the intermediate AR order. It can also be used in small 
samples. The ME of the MA(11) model has higher values for smaller sample sizes 
and is very large for N less than 50. This means that at least 50 observations are 
required to estimate the true order MA(11) model for this example with reasonable 
accuracy.  

Order selection has been carried out with the criterion GIC( q, ). The quality of 
the selected model is better with penalty  = 3 than with  = 2 for all sample sizes. 
The asymptotically expected cost of underfit for AR selection was 2.6 for  = 2 
and 0.9 for  = 3. For N greater than 5000, the ME differences between the 
selected models and the true order model are rather close to these asymptotic 
expectations. Therefore, the asymptotic theory that has been developed for the 
penalty function in AR estimation is also applicable to MA estimation. No finite- 
sample theory has been derived for MA estimation because the highest MA order 
is much lower than that for AR estimation due to the choice (8.1) of the 
intermediate AR order.  

The results of Table 8.4 can be compared to the results of Table 7.4, where AR 
models have been estimated from the same MA(11) data. The quality of the 
selected MA model is better for N  50. For smaller sample sizes, the quality of the 
selected AR model would be better. It is clear that the ME of selected MA models 
is less than half of the ME of selected AR models for N  500. This demonstrates 
that MA models can be the best choice in practice with the algorithms that have 
been used. 

8.5 Order Selection for ARMA Estimation 

Choi (1992) has described several selection criteria developed exclusively for 
ARMA models. The theoretical background of special ARMA criteria relies 
primarily on asymptotic properties, where the quality of all biased models will 
certainly become poor. Then, pattern recognition methods can find the edge of 
unbiased models in Figures 8.1 and 8.2 in the previous section. Thus, the corner is 
found where both the AR order is greater than or equal to p and the MA order is at 
least q for a true ARMA( p,q) process. Figure 8.2 showed that 5000 observations 
are not always sufficient for such principles in practice. Biased models may still be 
good candidates. Especially in finite and small samples, pattern recognition 
methods are not attractive for order selection. 

Simulations have been done to find the influence of the limitation to only 
ARMA(r, r–1) candidates on the quality of selected models. Qualitatively, Figures 
8.1 and 8.2 show that high-order AR models, though biased, are quite good. Biased 
ARMA(r, r–1) models with r < 7 can have also acceptable accuracy. In principle, 
the penalty factor and the limitation of the candidate models can interfere. 
Therefore, the best penalty factor has been determined for selection with and 
without the limitation to ARMA(r, r–1).

Table 8.5 gives the results for the average ME of the models selected with 
GIC( p + q, ),  when is 2 or 3. In almost all  simulation  examples, the  average  
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Table 8.5.  Average ME of ARMA models estimated and selected from data of the 
ARMA(7,2) process with the parameters of (8.3) and (8.4) in 1000 simulation runs, as a 
function of . The model error ME is given of ARMA models, selected with penalty 2 and 3 
from all candidates ARMA(r,<r) and from the hierarchical ARMA(r,r–1) models for N = 
250. 

ARMA(r,< r)
 = 2 

ARMA(r,< r)
 = 3 

ARMA(r,r–1)
 = 2 

ARMA(r,r–1)
 = 3 

0.1 4.2 2.7 2.5 2.0 
0.4 6.6 4.8 4.5 3.6 
0.7 13.2 12.4 11.8 11.5 
0.9 17.2 15.5 20.4 20.7 

ME of models selected with penalty  equal to 3 is smaller than the ME of penalty 
2. Therefore, penalty 3 is also better for ARMA selection. This conclusion has 
been drawn before by Broersen and de Waele (2004) with similar simulation expe-
riments. 

Furthermore, the quality of ARMA models selected from the hierarchical, 
nested ARMA(r,r–1) candidates is better than the quality of models selected from 
the wider class of ARMA(r,< r) candidates. The exception to this rule is found for 

 = 0.9, where all biased models with less than seven AR parameters and less than 
two MA parameters have much greater MEs than the true ARMA(7,2) model. This 
means that the ARMA(7,6) model is the best possible candidate among the 
hierarchical ARMA(r,r–1) candidates. This has four parameters more, which 
approximately explains the difference in the ME values 15.5 and 20.7 in the last 
row of Table 8.5. It can be concluded that, for the lowest values of , the biased 
ARMA(r,r–1) models are a good choice. The ME values are much less than nine, 
indicating that less than nine parameters are present in the biased model selected. 
Apparently, having more candidate models makes selection quality worse.  

The value  = 0.7 shows some intermediate character where the number of 
parameters for models with a low ME is minimally nine, the size of the true 
process. The selection quality ME of selecting from nested candidates is still a little 
bit better than the ME of selected ARMA(r,< r) models. This has been concluded 
for N = 250.

Table 8.6 gives the results of the value  = 0.7 as a function of sample size. As 
might be expected, the results for a large number of observations have the tendency 
to be most accurate if all truly nonzero parameters are included, hence for unbiased 
models. The differences in the ME between the results of ARMA(r,< r) and 
ARMA(r,r–1) are not so large in Table 8.6 that the accuracy gives a decisive 
reason to prefer the complete class of ARMA(r,< r) models. However, the number 
of models in the hierarchical ARMA(r,r–1) class is much less, and therefore the 
computing time is less and that is a good reason to consider only the limited class 
of hierarchical models as candidates for estimation and selection.  

The average ME of the true order ARMA(7,2) model is 32.7 for N = 100,000. 
Apparently, the ARMA estimation algorithm is not fully efficient for this example 
because that would require an average ME of nine, the number of parameters in the 
true order model. However,  a model  with some  more  parameters is  selected  by 
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Table 8.6.  Average ME of ARMA models estimated and selected from data of the 
ARMA(7,2) process with the parameters of (8.3) and (8.4) in 1000 simulation runs, for   = 
0.7, as a function of N. The model error (ME) is given of ARMA models, selected with 
penalty 2 and 3 from all candidates ARMA(r,<r) and from the hierarchical ARMA(r,r-1) 
models. 

N ARMA(r,< r)
 = 2 

ARMA(r,< r)
 = 3 

ARMA(r,r–1)
 = 2 

ARMA(r,r–1)
 = 3 

25 23.4 17.4 15.4 15.3 
50 26.6 16.1 23.4 19.1 

100 14.5 12.6 14.2 14.0 
250 13.2 12.4 11.8 11.5 
500 13.6 12.5 11.5 11.2 

1000 14.0 13.5 12.3 12.1 
2500 15.9 16.3 15.1 16.0 
5000 16.4 17.2 16.6 19.0 

100,000 15.1 13.4 16.1 16.8 

order selection criteria, with better ME quality. In this example, selection gives the 
ME value of 16.8, which is higher than the Cramér-Rao lower limit of 9, but much 
lower than the outcome of the ARMA(7,2) model. 

This problem has been found in several examples. The performance of the 
ARMA estimator with the initial stage (6.28) with reconstructed residuals did not 
always give the accuracy expected. The average ME of experiments with the 
estimated true order model often gives a less accurate result than the selection 
among a number of ARMA(r, r–1) candidates. This could also happen in a true 
ARMA( p, p–1) process. However, in all those examples, the combination with 
order selection was always rather satisfactory. This problem was the reason to 
introduce the four reduced-statistics methods for the first ARMA stage in Section 
6.6. Those other methods are also not always accurate, as has been shown. 
However, for all examples, at least one of the initial stages gives an acceptable 
ARMA model with an accuracy that is not too far from the Cramér-Rao lower 
limit. The ARMA estimator does not yet have the same statistical efficiency that 
has been found for the MA estimator in Table 8.4. 

The quality of selected models depends on two factors: the quality of the 
available models and the capacity to select one of the best models from those 
available. The selection capacity depends on the penalty factor. For those ARMA 
processes where several biased models are good candidates, penalty 3 is mostly 
better than penalty 2 which defines the widely used AIC criterion. For processes 
that fall in a critical parameter range for the given number of observations, penalty 
2 can sometimes perform better in ARMA selection. Usually, penalty  = 3 is 
better for an arbitrary number of observations of an unknown process and should 
be preferred. Therefore, penalty  = 3 will be used in the automatic spectral 
estimation algorithm ARMAsel. 

The limitation imposed by ARMA(r,r–1) candidate models, to only models with 
MA order one less than the AR order, gives an enormous reduction in computation 
time in comparison with the estimation of all combinations of p for AR and q for 
MA orders. Reducing the number of candidate models in ARMA estimation gives 
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the possibility that the very best model is not estimated, if the MA order is not 
equal to the AR order minus one. Obtaining a good model may sometimes require 
estimating that some extra parameters with true values of zero. However, the 
additional variance inaccuracy of those extra parameters will generally be 
compensated for by reduced selection costs. Those are lower because of the 
limitation of the number of candidates. Generally, limiting the selection to 
ARMA(r,r–1) candidate models does not lead to much lower quality of the model 
selected. Often, the quality is even better. 

8.6  Exercises 

8.1 Use the ARMAsel program to estimate an AR(2) model from arbitrary input 
data. Arbitrary data can be found on the Internet, or they can be generated 
with the program “simuarma” on the computer. 

8.2 Use the ARMAsel program to select the best AR model from the same data.  

8.3 Compute the model error (ME) between those two AR models. Consider the 
selected AR model as the true process for this computation. 

8.4 Use programs from the ARMASA toolbox to compute an approximating 
AR(100) model for the MA(2) process with b1 = 1.5 and b2 = 0.9. 

8.5 Show theoretically that the selection criterion GIC( p,1) applied to the 
residuals of the true AR( ) model of an MA(q) process selects the best AR 
order for prediction. 

8.6 Use the ARMAsel program to select the best MA(2) model from the data of 
Exercise 8.1. 

8.7 Use the ARMAsel program to select the best MA model from the same data.  

8.8 Compute the model error (ME) between those two MA models. Consider the 
selected MA model as the true process for this computation. 

8.9 Compute the model error (ME) between the selected MA model of Exercise 
8.7 and the selected AR model of Exercise 8.2. Consider the selected AR 
model as the true process for this computation. 

8.10   Use the ARMAsel program to select the best ARMA(4,3) model from the 
data of Exercise 8.1.  

8.11   Use the ARMAsel program to select the best ARMA(4,1) model from the 
data of Exercise 8.1.  
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ARMASA Toolbox with Applications 

9.1 Introduction 

This chapter contains some additional topics to facilitate automatic analysis of 
random data. The selection of the model type is discussed, starting with the 
assumption that the best model order for each model type has been selected before. 
The easy and standard application for spectral and autocorrelation analysis will be 
restricted to automatically selected AR, MA, or ARMA model.  

The language of random data is described to show how other interesting models 
are suggested by the data. By estimating the expected fit of each model to new 
data, the prediction error is found for all candidate models. If there appears to be an 
important deviation from the normally expected behaviour of prediction errors, that 
is a strong indication or warning that the data comprise some interesting details. 

The principle of order selection with reduced statistics is described. Using as 
input a long AR model and the number of observations, order selection is possible. 
If the number of observations is not known, a good estimate of the sample size can 
be derived from the long AR model. The accuracy of the reduced-statistics ARMA 
models, computed and selected with the long AR model as first-stage input, is 
compared to the accuracy that can be obtained by using the data themselves in the 
first stage. 

The application of the automatic ARMASA algorithm to harmonic data with 
different levels of additive noise is investigated and compared to the harmonic 
analysis with the periodogram. 

Finally, a complete standard routine for the analysis of random data is 
described. Some practical applications are presented. Also the Matlab® commands 
are listed that are used in the ARMASA toolbox of Broersen (2002). 

9.2  Selection of the Model Type  

The ARMAsel algorithm computes AR( p) models with p = 0, 1, …, N/2, using the 
Burg algorithm (6.12). The choice of the highest candidate AR order is limited to 
1000 for N > 2000, but that is not necessary. It is intended to reduce the 
computation time required if the sample size is much greater. It has not been seen 
in practice that this limitation was important. However, it remains advisable to try 
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still higher AR candidate orders if the program selected the highest available 
candidate. The selection of the AR order p is made with the CIC criterion of (7.77); 
the model order p with the minimum of CIC( p) among the candidates is selected. 
Mostly, all model orders are used as candidates, including the white noise model 
with zero parameters. For stationary random data where the global characteristics 
are already known from previous experiments, it might be possible to reduce the 
maximum candidate order without loss of accuracy. It can be taken safely as twice 
the highest order that ever has been selected before. The selected AR model is 
called the AR(K) model. 

MA(q) models are estimated with q = 1, … , N/5, using algorithm (6.24). The 
highest candidate order is taken as 400 for N > 2000. The maximum MA candidate 
order is taken lower than that for AR. The most important reason is that a long AR 
model is used as an intermediate model in the MA algorithm based on (6.24). The 
intermediate AR order LBMA B to estimate the MA(q) model was taken as 2K + q in 
(8.1). If the calculated LBMA B exceeded the maximum AR order N/2, it is limited to 
that highest order N/2. By limiting the highest candidate MA orders, the computed 
intermediate AR order LBMA B will mostly be available. Experience shows that 
selected MA candidates are often of a lower order than selected AR candidates and 
the highest MA candidate order may be limited. The best MA model order Q is 
selected from those candidates with the minimum GIC(Q,3) of (7.32). Use of this 
criterion requires computation of the residual variance of all MA(q) models as an 
approximation for the fit of the MA model to the data. Although this residual 
variance has not been used in the estimation algorithm (6.24), its computation is 
required as an argument of the order-selection criterion GIC(q,3) with 

3
GIC( ,3) ln RES

q
q q

N
   (9.1) 

The notation RES has been used for the residual variance of MA and ARMA 
estimation to emphasize the difference from AR estimation. To compute the 
residual variance, the data x B1B, …, x BNB are firstly extrapolated backward with a long 
AR model to obtain estimates for x B0B, x B-1 B, xB-2 B ,…, x B-N/2B. This elongated signal x Bn B is 
inversely filtered, and the parameters of the estimated MA(q) model are used as 
AR parameters, using the relation that was also exploited in (5.34): 

1
ˆ , / 2, ,0,1, ,

ˆ ( )
n n

q

x n N N
B z

                  (9.2) 

In Equation (9.2), the estimated parameters in qB̂ ( z )  are also found with the long 

AR model of the data x BnB. Therefore, nˆ  here has the character of a residual, not of a 

prediction, as in (5.35). The residual variance to be substituted in (9.1) is found as  

2

1

1
ˆRES( )

N

n
n

q
N

   (9.3) 
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using all N observations. 
ARMA(r,r–1) models are also estimated for r = 2, ...., N/10 with maximum of 

200. The best ARMA order R is selected with the smallest criterion GIC(2R–1,3). 
To determine residuals, the data are extrapolated backward with a long AR model, 
as for MA residuals. The residual variance RES(2r–1) of the ARMA(r,r–1) model 
is found from the extrapolated signal with 

1

ˆ ( )
ˆ , / 2, ,0,1, ,

ˆ ( )
r

n n

r

A z
x n N N

B z
   (9.4) 

followed by averaging the residuals in the observation interval, as in (9.3). 
The AR order is selected with a finite-sample criterion CIC( p). The MA and 

ARMA models have been selected with an asymptotic criterion GIC(q,3). The 
minimum values of those different criteria cannot be used for a mutual comparison 
between AR models and the other model types. Moreover, it may occur that the 
best models of different types have a great difference in the number of parameters. 
As an example, the best AR order will always increase with the number of 
observations for increasing sample sizes of an MA(1) process. In the derivation of 
the penalty factor, the possibility of selecting only one underfit order has been used 
as an example to derive penalty factor 3. It was clear that the same reasoning if two 
underfit orders are possible in (7.76) gives a smaller penalty factor. If it would 
have been applied to the simultaneous selection of a larger group of small 
parameters, penalty 2 would have been a good choice. That penalty factor will be 
used for the mutual comparison of different model types. 

It is possible to use an estimate of the prediction error in the selection of the 
model type. The prediction error is estimated with the FPE of (7.30) and is 
asymptotically equivalent to penalty factor 2 for order selection; see (7.41). Having 
selected the best AR(P) model, the best MA(Q) model,  and the best ARMA(R , 
R–1) model, the FPE of those three resulting models is computed as an estimate for 
the prediction error. For MA and ARMA models, this is given by 

1 /
PE( ) RES

1 /

m N
m m

m N
   (9.5) 

where m is the number of estimated parameters in the model. The asymptotical 
relations (6.17) and (6.18) for AR models have been used here. Those relations 
have been proved only for unbiased AR models. They are applied to all ARMA 
and MA models with m parameters. It may be expected that RES(m) of acceptable 
candidates will be much smaller than the residual variance of the lower order 
models where the model does not include all significant parameters and the models 
are severely biased. The major influence on the prediction error is then caused by 
the high low-order values of RES. The correction term after RES(m) in (9.5) 
accounts for the estimation variance. It is important for higher orders.  

For AR( p) models, the expression for the PE( p) is derived from expressions 
(6.21) and (6.22) for the finite-sample expectations of the residual variance and the 
prediction error, respectively: 
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2
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1 1/( 1 )
PE( )

1 1/( 1 )
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N m
p s

N m
   (9.6) 

The finite-sample variance coefficients (6.20) for Burg’s estimation method have 
been substituted. The model type with the smallest estimate of the prediction error 
is selected. In this way, a single time series model with selected type and order can 
be determined for given observations. It is called the ARMAsel model. The 
spectral density or the autocovariance function can be computed from its estimated 
parameters, and that gives the best representation of the-second order 
characteristics of the measured data.  

9.3  The Language of Random Data 

In the previous section, the PE could be used to select the model type. If there are 
more competing models, they would have about the same PE values and that would 
become clear by looking at the PE of all models. In deriving (9.5), it is expected 
that the average of the residual variance of unbiased models decreases with 1/N
above the true order. The average of the PE of unbiased models increases with 1/N
for each additional parameter.  

Figure 9.1 gives the PE of the models obtained from the 142 detrended global 
temperature data of Figure 1.5. The automatic ARMAsel program selected the 
AR(4) model. The figure also shows that the ARMA(3,2) model would be a 
possible choice; MA models are certainly less accurate. The MA models with 
orders between 5 and 13 all have about the same  estimated PE,  but the accuracy is 
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Figure 9.1.  The estimated accuracy of AR, MA, and ARMA candidates for selection, 
estimated with ARMAsel from the 142 detrended global temperature data shown in Figure 
1.5
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much less than that of the selected AR(4) model. The similar behaviour of the 
higher order AR and MA models is very remarkable. All unbiased high-order 
models with the same number of parameters have almost the same PE. AR and MA 
models are very close. The slope of the ARMA models is two times steeper 
because each higher order has two more parameters. 

If the slopes of the higher model orders are regular, it is almost certain that the 
parameters are all small and not statistically significant. In this example, only one 
candidate seems attractive: the AR(4) model that has been selected by the 
ARMAsel program. The AR model of order 37 gives a sudden decrease in the PE. 
The AR(37) reflection coefficient was –0.27; the standard deviation for all 
reflection coefficients above the true order would be 1/N, which is 0.084. This 
means that the largest of the estimated AR high-order reflection coefficients had a 
value about three times the standard deviation for a true parameter value of zero, 
which is not impossible. Therefore, the detrended temperature data do not deviate 
significantly from an AR(4) process. However, if the decrease in the PE at order 37 
were much stronger, that would indicate that something interesting would happen 
at that order and it would be advisable to compare the AR(4) and the AR(37) 
spectral densities and autocorrelation functions. ARMAsel selects one single model 
for the data, but inspection of the PE of all candidates reveals possibly interesting 
details, if present. In this respect, ARMAsel gives a language to random data. 

9.4  Reduced-statistics Order Selection 

Order selection is usually based on the reduction of the residual variance as a 
function of the model order with an additional penalty for every estimated 
parameter. Reduced-statistics MA and ARMA estimators do not use the data; 
hence no direct estimate for the residual variance is available. Broersen and de 
Waele (2002, 2005) compared the different AR, MA, and ARMA models with the 
very long AR model CBM B(z). The order of this very long AR model is determined by 
the available size M of the reduced statistic. Residuals Bn,r B for an ARMA(r,r–1) 
model can be related symbolically to the unknown observations by the equation 

,

1 1

ˆ ˆ( ) ( ) 1
ˆ ˆ ( )( ) ( )

r r
n r n n

Mr r

A z A z
x

C zB z B z
   (9.7) 

where the reduced-statistics AR model BnB/CBM B (z) is substituted for the unknown 
process x BnB. Hence, Bn,r B can be expressed approximately as a filtered version of the 
white noise process BnB. The ratio of the output and input variances is given as the 
power gain 

1
ˆ ˆ( ), ( ) ( )g r M rP A z C z B z  of (5.47). A simple computation of the ARMA 

power gain is found by separating the AR and MA filter operations. Thus, a value 
for the power gain or the relative residual variance of the ARMA(r,r–1) model can 
be calculated from the estimated parameters and CBM B(z), without knowledge of Bn B or 

BnB, using a simple expression in the time domain: 
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2 2 2
1

ˆ ˆRES(2 1) / / ( ), ( ) ( )g r M rr P A z C z B z    (9.8) 

This relative residual variance can be used in an order-selection criterion based on 
the logarithm of the residual variance. Penalty factor 3 is preferred for order 
selection.  

The reduced-statistics order-selection criterion for MA(q) models becomes 

RS

3ˆGIC ( ,3) ln 1, ( ) ( )g M q

q
q P C z B z

N
  (9.9) 

The unknown constant 2ln( )  has been subtracted in this reduced-statistics crite-

rion in comparison with the usual definition of GIC in (7.32): 

2

2
RS

3
GIC( ,3) ln RES( )

3ˆln 1, ( ) ( ) ln( )

GIC ( ,3) ln( )

g M q

q
q q

N
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This unknown constant is the same for all model orders. Hence, the order at which 
the minimum of the selection criterion is found is not altered by this subtraction. 
Even the numerical values of the two selection criteria are equal for 2 1.

The selection criterion for ARMA(r,r–1) models becomes 

RS 1

6 3ˆ ˆGIC (2 1,3) ln ( ), ( ) ( )g r M r

r
r P A z C z B z

N
  (9.11) 

This order-selection criterion can be used to select the best order for each of the 
four reduced-statistics first-stage ARMA estimators in chapter 6.6, but it can also 
be used to select among those four estimators. In this way, the best, first-stage 
ARMA algorithm can be selected automatically.  

The same type of criterion can also be used to select the order of the best AR 
model order by substituting b B0 B= 1 for 1

ˆ ( )rB z  and by using the number of estimated 

parameters in the penalty function. In this way, the criterion for the AR order p
becomes 

RS

3ˆGIC ( ,3) ln ( ), ( )g p M

p
p P A z C z

N
(9.12) 

For AR order selection, this criterion can be used, but a finite-sample criterion 
is preferred if the highest candidate order for selection is greater than N/10. The 
reduced-statistics variant of the CIC criterion of (7.77) becomes 
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Figure 9.2.  The estimated accuracy of AR, MA, and ARMA candidates for selection, 
estimated with ARMAsel-rs from the 142 detrended global temperature data shown in 
Figure 1.5  
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where the approximations in (7.45) for the Burg method have been substituted for 
the finite-sample variances. 

The P Bg B values can also be used for a survey of the accuracy of all candidate 
models in a reduced-statistics ARMAsel program. Figure 9.2 gives the results 
obtained by using the long AR(71) model of the data of Figure 9.1 as input for 
reduced-statistics estimation and selection. The numerical values for the estimated 
accuracies are different, but the shapes of the curves in Figures 9.1 and 9.2 are 
similar. 

The results for AR models have to be identical, apart from scaling. They are 
derived from the same computed values of the residual variance, given by (6.14). 
The results for MA models are only slightly different because the residual variance 
is calculated by filtering the data in (9.3) in ARMAsel and with P BgB for the reduced-
statistics estimator. The results for ARMA models can be more different when 
using the reduced-statistics method because all four first-stage estimates are used in 
the second-stage ARMA estimation and the best of those four is selected. As an 
example, the ARMA(2,1) that was worse than the AR(4) model in Figure 9.1 turns 
out to be a little better in Figure 9.2, and the ARMA(2,1) model is selected by the 
ARMAsel-rs algorithm. The difference between those models is small: the ME of 



230 Automatic Autocorrelation and Spectral Analysis 

the AR(4) model compared with the ARMA(2,1) model estimated by the reduced-
statistics algorithm is only 5.8.

9.5  Accuracy of Reduced-statistics Estimation 

The four examples that have been used to investigate the differences among the 
first-stage reduced-statistics estimators in Chapter 6.6 are used again. In simu-
lations, firstly the data are used in the ARMAsel program and afterward the long 
AR model is used as input data for the reduced-statistics algorithm ARMAsel-rs. 
The model errors of the following estimated models are compared in Table 9.1  

ARMAsel, selected model from all candidates 

AR, selected from only AR candidates 

results MA, selected from only MA candidates 

ARMA, selected from only ARMA(r,r–1) candidates 

True order, fixed true order ARMA model, no selection. 

In all four examples, the AR results for the ME are identical for the data and for the 
reduced-statistics algorithm. The average quality of selected MA models was only 
slightly different because in some runs the model selected was not the same.  

The quality of ARMA models selected can be better and worse for ARMAsel 
or ARMAsel-rs. The data algorithm ARMAsel had numerical problems for less 
than 250 observations in the ARMA(5,4) example. That turned out to be the most 
difficult example in the simulations for ARMA algorithms. The ARMAsel-rs 
algorithm sometimes had numerical problems and created warnings for 1000 or 
more observations of that same example ARMA(5,4) process but only with the 
long COV initial-stage method.  

Unfortunately, numerical problems sometimes have as a consequence that 
automatic, order-selection criteria will select precisely the model for which a 
warning was given. That problem is also easily identified by looking at the 
expected model accuracies, as plotted in Figure 9.2. Dangerous numerical 
problems cause an isolated low prediction error for one single ARMA model. That 
is impossible because, without numerical problems, the residual variance cannot 
become greater if more parameters are included. It can only stay the same. Hence, 
the asymptotic increase of the prediction error can never be more than 1 + 2/N with 
(9.5), and isolated deep holes are impossible in figures such as 9.2. Those 
numerical problems are avoided by limiting the highest candidate order or by 
excluding candidates with a warning from the selection. For Table 9.1, the highest 
ARMA candidate was taken as ARMA(10,9). If the highest candidate order was 
ARMA(30,29), the average ME of the ARMAsel-rs and also of the ARMA 
selected would become 177.8 for the ARMA(5,4) example. That means that the 
candidate with numerical problems would be selected if the warnings were 
neglected. 
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Table 9.1.  Average of 2500 simulation runs of the ME of models estimated from 1000 
observations of the four different ARMA processes of Section 6.6.7. The selection is 
ARMAsel with type selection included, only for AR order, only for MA order, only for 
ARMA order, and for the fixed, true order ARMA model, for estimates obtained with the 
ARMAsel algorithm that uses the data and the reduced-statistics ARMAsel-rs algorithm that 
uses only a long estimated AR model of the data for MA and ARMA estimation and for 
order and type selection. 

ARMA(2,1) ARMA(3,2) ARMA(4,3) ARMA(5,4) 
Directly from data 

ARMAsel 5.6 7.1 21.0 28.0 
AR 27.5 49.2 30.2 81.4 
MA 7.7 22.3 80.9 711,587 
ARMA 3.6 5.3 17.3 29.7 
True order 3.5 5.2 179.2 6973.4 

Reduced statistics 
ARMAsel-rs 4.7 7.4 9.1 19.7 
AR 27.5 49.2 30.2 81.4 
MA 7.7 22.3 81.1 711,704 
ARMA 3.4 5.8 8.4 19.7 
True order 3.1 5.4 8.2 6324.3 

For some examples given here, fixed order ARMA estimation is no problem. 
Then the fixed order ARMA results are better than the results of selection. This is 
representative of many practical data. However, ARMAsel for the ARMA(4,3) 
example and both algorithms for the ARMA(5,4) algorithm give poor averages for 
fixed order models. Sometimes, the algorithm does not estimate a good model for 
some model order, and other orders are estimated better. The average fixed order 
result becomes worse than the average selection result. However, in all four 
examples, the automatically selected ARMAsel and ARMAsel-rs models were 
much better than they would have been without ARMA candidates. For the 
ARMA(5,4) example, it was necessary to limit ARMA candidate orders. 

The Cramér-Rao lower bound for the ME of unbiased models is asymptotically 
equal to the number of parameters estimated. The AR and the MA estimators are 
asymptotically close to that bound; Tables 7.1 and 8.4 show this for AR and MA, 
respectively. For some ARMA examples in Table 9.1, the fixed order ME was 
close to that bound. Selection with only ARMA candidates could also give an 
average ME close to the lower bound. This shows that the loss due to overfit is less 
for ARMA than that for AR or MA because the first overfitted model has two 
parameters more, instead of one. Unfortunately, the good performance of the 
ARMA algorithm is not found in all examples. Sometimes, the fixed order 
estimates are poor in the average, and the model errors of the selected models are 
as much as three times higher than the Cramér-Rao lower bound. A long search did 
not provide a better ARMA estimator. Maximum likelihood estimators have many 
more numerical problems than the algorithms of ARMAsel and ARMAsel-rs.  

Another candidate for ARMA algorithms of Bauer and de Waele (2003), based 
on subspaces, has much greater errors for examples where ARMAsel is close to the 
Cramér-Rao lower bound. The model error of the subspace method for the 
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ARMA(2,1) example is two times higher, and for the ARMA(5,4) example, it is 
more than 1000 times higher than in Table 9.1. Those errors are caused by the 
triangular bias of the subspace procedure, so that method cannot be recommended. 
ARMAsel and its reduced-statistics variant are the most accurate so far. 
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Figure 9.3.  The measured autocorrelation function of a numerical statistical turbulence 
experiment and the autocorrelation function selected with reduced statistics  

A practical application of the reduced-statistics estimator is given in Figure 9.3. 
From computational flow experiments solving the Navier-Stokes equation, a 
lagged product autocorrelation function is measured for turbulent channel flow. 
This autocorrelation gives information about the characteristic eddies formed in the 
channel. To identify turbulent structures, the maximum contribution to turbulent 
kinetic energy should be resolved. A technique called proper orthogonal 
decomposition is capable of determining these turbulent structures, provided an 
accurate estimate of the autocorrelation function is available. This autocorrelation 
function of the flow speed is the average computed from a number of parallel tubes 
in an artificial quasi-periodic turbulent flow. The dependence of the computations 
between neighbouring parallel tubes is high. The total number of observations that 
contributed to the given autocorrelation function was about 1,500,000. However, 
those observations from parallel tubes and different periods are not statistically 
independent.  

Therefore, the effective number of observations is unknown. The 96-point, 
measured, lagged product autocorrelation function is transformed into the 
reflection coefficients of an AR(96) model by the Levinson-Durbin recursion 
(5.24). Supposing that the best AR order is lower than half the length of the given 
autocorrelation, the effective number of observations is approximated with the 
average of the squared reflection coefficients:  
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Equation (6.16) is applied to the higher order reflection coefficients with the 
assumption that those will be comparable statistically to reflection coefficients 
estimated from white noise. The effective number of observations was about 
58,500 in this example, less than 4% of the number of contributions to the given 
autocorrelation. It is also possible to approximate the effective number with the 
median of the squared higher order reflection coefficients or with their standard 
deviation. If the three approximations are close, the resulting value for NBeffB can be 
considered satisfactory. If they are quite different, some further analysis is required 
to determine why.  

The selected model was the ARMA(8,7) model. The best AR model was 
AR(31) and the best MA candidate was MA(44). A plot of all model accuracies as 
in Figure 9.2 can be used to investigate the expected quality of the other candidate 
models. It turns out that the estimated model accuracy for AR orders greater than 
35 increases linearly in a way that agrees with a true AR(31) process. In other 
words, the use of (9.14) to compute an effective number of contributions was 
allowed in this case. The autocorrelation function obtained with order selection is 
much more in agreement with the theoretical expectations than the given 
autocorrelation. The convergence to zero at the end had been especially expected 
theoretically. That convergence was even necessary for the validity of the 
experiment. 

9.6  ARMASA Applied to Harmonic Processes 

Figures 9.4 and 9.5 give the spectra of two sine waves with different levels of 
additive white noise. An integral number of periods fits precisely in the observation 
interval in Figure 9.4. The signals are periodic with the observation interval. This is 
favourable for periodogram estimates that always suppose this periodicity. The 
periodogram is more accurate for the magnitudes of the amplitudes than the time 
series spectrum, if the signal-to-noise ratio (SNR) is better than 0 dB. However, the 
ARMAsel spectra also show two peaks at the correct frequencies. For the 0-dB 
result, time series still give two peaks whereas the periodogram seems to have a 
valley at f = 0.2 or f = 0.47. For –10 dB, both the periodogram and the time series 
model do not detect the peaks. 

In the lower part of Figure 9.5, the observation length was 10.5 periods of a 
very weak periodic signal and 30.5 periods for the second frequency involved. The 
ARMAsel solution detects the frequencies of the two peaks well, but the 
amplitudes are not accurate. The raw periodogram of the data also presented misses 
the weaker peak completely. It is clear that the background level for the SNR 120-
dB spectra in Figures 9.4 and 9.5 is the same for the time series models selected by 
ARMAsel and very different for the periodograms. That is the reason that this 
small sine wave is not seen in the periodogram.  
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Figure 9.4.  Raw periodogram above and spectrum of the selected ARMAsel model below 
from 100 observations of a periodic signal that fits in the observation interval with an 
integral number of periods 
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Figure 9.5.  Raw periodogram above and spectrum of the selected ARMAsel model below 
from 100 observations of a periodic signal that does not fit in the measurement interval; the 
length is an integral number of periods plus a half period for both frequencies 
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This example shows that the performance of the automatic ARMAsel selection 
is still valuable if the true process is not a stationary stochastic process but a sine 
wave with a small amount of noise.  

Of course, the behaviour of the periodogram can be improved by using tapers 
and windows. However, no automatic best solution is available, but many different 
approaches have been used. In practice, periodic data are multiplied by a taper or 
data window before they are transformed. Harris (1978) gives a survey of the 
improvements for periodic signals that do not have to be synchronized with the 
observation interval. With a suitable taper, the amplitude of the smaller sine wave 
would also have been detected in the low noise example of Figure 9.5. 

9.7  ARMASA Applied to Simulated Random Data  

The MA(13) example process, whose autocorrelation and spectral density are 
shown in Figures 3.2 and 3.3, respectively, has been used to generate 10,000 
observations. The ARMAsel algorithm is used for the first N of those observations. 
Table 9.2 gives the selected model order and model type as well as the ME of the 
model selected, as a function of sample size N.

Table 9.2.  The type, order, and ME of models estimated from a single realisation of the 
MA(13) process of Figure 3.2, as a function of the number of observations N.

N Type ME 
10 AR(4) 549.0 
20 AR(7) 410.8 
50 AR(15) 195.2 
100 AR(33) 63.8 
200 AR(41) 57.0 
500 MA(13) 21.3 
1000 MA(13) 12.5 
2000 MA(13) 19.3 
5000 MA(13) 22.1 
10,000 MA(13) 14.6 

Repeating the experiment with newly generated data will often give the same 
selection behaviour. For 500 and more observations, the MA(13) model is also 
selected in a number of repeated runs. If enough observations are available, the true 
type of the process will be selected, mostly with the true order. Using penalty 3 for 
order selection still gives a small probability of one order overfit and a very small 
probability of two or more orders overfit. Underfit becomes unlikely if the last 
parameter is sufficiently greater than 1/ N.

The values of the ME for the single simulation run vary considerably in Table 
9.2. It should be realised that the standard deviation of the model error (ME) is 
rather large. For N = 1000, the experimental standard deviation of the ME was 7.5 
in this MA(13) example. The results for larger sample sizes where the unbiased 
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MA(13) model is chosen are close to the Cramér-Rao lower bound, which is 13 for 
this example. 

9.8  ARMASA Applied to Real-life Data  

9.8.1 Turbulence Data 

In the numerous simulations where the algorithms have been tested on simulated 
data, no difficulties or abnormal behaviour have been found. All overcomplete 
unbiased models have an average growth of the prediction error of 1/N in plots 
where the accuracy of the ARMAsel candidates is given as a function of the 
number of estimated parameters. Data available on the Internet have also been used 
as examples. In the majority of examples, the automatically selected single 
ARMAsel model gives all necessary or relevant information. On some occasions, 
questions arise about the real true spectrum, but they cannot be answered for those 
unique data because the truth is unknown. Irregular behaviour in those data could 
be caused by careless experiments or errors in the registration or the transmission 
of the data. 

Turbulent flow is a challenging application area for signal processing. Legius 
(1997) used AR models as references for different flow regimes. He was successful 
in detecting a bubbly or a slug flow regime and also the transition between both. 
Pavageau et al. (2004) studied the application of AR models to isotropic turbu-
lence. They found that AR models are a nonambiguous way to identify spectral 
ranges of constant slope. Here, an example from computational physics is treated, 
where  data for turbulent  flow behind a cylinder  have been  produced;  see Sobera  
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Figure 9.6.  A computer simulation of turbulent flow, consisting of 70,814 observations, 
with the mean subtracted 
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Figure 9.7.  Spectrum of the 70,814 observations of turbulent flow, estimated with an 
AR(1000) model 

et al. (2003, 2004). This study focused on heat and mass transfer to a clothed 
human body in outdoor conditions. It is expected that a turbulent von Karman 
street is found, and slopes of f P

–5/3
P and f –7

P are in the double logarithmic spectrum. 
Those specific data are used because they are generated outside the framework of 
time series analysis and also because new questions evoked by the analysis with 
ARMAsel can be answered, if necessary, by adding new experimental data. 
Moreover, those data may illuminate some practical aspects of the selection and the 
analysis of additional models that are worth examining. 

The first stage in analysing new data is always to look at a plot of the data. 
Figure 9.6 gives the flow data. At first sight, there are no strong objections to the 
hypothesis that the signal can be treated as stationary stochastic. At this stage, 
trends, nonstationary variance, seasonality, and other obvious deviations have to be 
treated.

The next stage is never necessary for simulated data, but it might be important 
for real-life data, as in the example. If the sampling frequency is extremely high, 
the correlation between the successive observations can become very close to one, 
and that may cause numerical problems in the analysis. This can be detected by 
estimating a high-order AR model and plotting the spectral density. Figure 9.7 
gives the spectrum that contains hardly any power or information for frequencies 
above 0.033 Hz. Nevertheless, AR parameters are estimated to approximate this 
spectrum that is flat over more than 90% of the whole frequency range. Many 
parameters are used to describe behaviour at high frequencies. Spectral approx-
imation can be more accurate with the same number of estimated parameters if it is 
restricted to the first small part of the frequency domain. Downsampling with a 
factor of 15 is a good way to continue. If possible, no antialiasing filters should be 
used in  downsampling.  A big advantage is that the  time domain is not distorted if 
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Figure 9.8.  The language of the data with estimated accuracies of all candidate models in 
ARMAsel, applied to the 4721 downsampled turbulence data 

if those filters are not used. The distortion in the frequency domain is a 
redistribution of the original power at frequencies above half the new resampling 
frequency over the smaller, new, frequency domain. Broersen and de Waele 
(2000b) have shown that antialiasing filters often give much more distortion than 
simply downsampling without filters in many cases. If filters are absolutely 
necessary, the new downsampled frequency range should at least be completely 
within the passband of the antialiasing filter. In other words, the cutoff frequency 
of the antialiasing filter should be higher than half the resampling rate. Otherwise, 
time series analysis will describe mainly the characteristics of the transition band 
of the filter, not the spectrum of the data. 

Figure 9.8 gives the estimated accuracies of all models that have been estimated 
from the signal after downsampling with a factor of 15. The selected ARMAsel 
model was ARMA(9,8). MA models are not attractive for those data, but some AR 
models are close competitors. The best AR order was AR(18) with a spectral 
estimate that very much resembles the ARMA(9,8) spectrum. 

Two very remarkable features are seen in Figure 9.8: the higher order minimum 
at AR(107) and a very strong dip at AR(679). The local minimum of 
ARMA(54,53) has the same number of parameters as the AR(107) minimum. The 
spectra of the ARMA(r,r–1) models are very close to the spectra of AR(2r–1)
models with the same number of parameters. This could be expected from Figure 
8.1. Therefore, only AR models are considered further for this example. This figure 
represents the language of the data, and the reason for the local minima of the AR 
models will be investigated. 

After downsampling or decimating by a factor of 15, 15 different downsampled 
segments can be obtained, starting with t = 1, 16, … and t = 2, 17, … and so on. De 
Waele and Broersen (2000) described a Burg algorithm for using segments of data 
simultaneously in  estimating an AR model. The effective  number of  observations 
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Figure 9.9.  Order-selection criteria for AR models obtained from 15 simultaneous 
segments of downsampled data with minima at orders 18, 107 and 679 

can be approximated by the method used in (9.12). The average of the estimated 
squared reflection coefficients at higher orders is taken as the inverse of the 
number of independent data. The effective number found for the Burg algorithm 
applied to 15 segments was 5755 for the reflection coefficients at AR orders 
between 1000 and 2000. Each segment has a length of 4721. There is only an 
advantage of about 20% in accuracy by using the 15 segments simultaneously in 
this example. Downsampling by a factor of 15 and forgetting all other segments 
gives almost the same accuracy. The correlation between the segments is so high 
that they all contain the same information. This agrees with the very flat spectrum 
in Figure 9.7.  

Instead of using the average squared estimated reflection coefficients, it is also 
possible to use the median of the squared reflection coefficients to estimate the 
effective number of observations. Unfortunately, 15,561 was found by using the 
median. This difference between average and median indicates that the magnitude 
of high-order reflection coefficients is greater than the average expected. That 
behaviour is explained partially by the finite-sample behaviour of reflection 
coefficients. Estimating 2000 reflection coefficients from an effective number of 
5755 observations gives values greater than 1/N for the variance of high-order 
reflection coefficients with the finite-sample variance coefficients of (6.20). 
Having obtained these guesses for the effective number of observations, the 
selection criterion CIC can be used for order selection. Due to the uncertainty in 
the effective number of observations, the values of CIC( p) have been calculated 
with NBeffB = 5755, 8632, and 15,561. The middle value is 1.5 times the first. The 
higher values of NBeffB have the same influence as a smaller penalty for each 
additional parameter in CIC( p). The three results are presented in Figure 9.9 to 
demonstrate the influence of NBeffB  on estimated model accuracy. 
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Figure 9.10. Spectra estimated from 15 simultaneous segments of downsampled turbulence 
data, calculated for the AR orders 18, 107, and 679 that were the minima in Figure 9.9. The 
AR(679) is shifted by a factor of 10 to enhance visibility. As a comparison, the ARMAsel 
spectrum of the ARMA(9,8) model, that had been selected in Figure 9.8 is given. 

The flat shape of the lower curve in Figure 9.9 is what can be expected if the 
effective number of observations is replaced by a twice too high value. The esti-
mated prediction error becomes a constant then. Therefore, the first two values of 
NBeff are probably good guesses. The minimum of the lower curve is at order 679. It 
is remarkable that both other curves also show a irregular shape at that order. The 
reason for this will be investigated. At an order around 1350, all criteria also have a 
local valley. This order is about twice the order 679 of the minimum. The global 
minimum at order 107 is found for the middle curve. This is also a local minimum 
in the other curves. The upper curve has its minimum at order 18. In the derivation 
of the penalty and of the selection of the model type, it has been discussed that the 
value for penalty 3 is a compromise to prevent a couple of orders overfit and that 
the penalty 2 would become interesting for comparison of models with greater 
differences in model order. For that reason, the AR(107) model is considered the 
most interesting model order.  

The whole discussion of the effective number of observations after decimating 
could have been omitted here. It just showed that three different AR orders could 
be selected, depending on the assumptions. However, inspection of Figure 9.8 
immediately shows that there are three interesting AR models at orders 18, 107, 
and 679. The spectra of those three AR orders are presented in Figure 9.10 on a 
doubly logarithmic scale, which is usual for turbulence spectra. The AR(18) 
spectrum gives global appearance with three different slopes: flat for very low 
frequencies, a moderate slope in the middle, and very steep for the highest 
frequencies in the signal. The AR(107) spectrum shows some wiggles around this 
curve, and the AR(679) spectrum shows a very irregular pattern around the same 
global  spectral  shape.  The ARMA(9,8) spectrum,  selected by  ARMAsel,  is also  
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Figure 9.11.  Spectral details. The upper left figure compares the downsampled AR(107) 
spectrum with the first part of the full range spectrum of Figure 9.7. Upper right gives a part 
of the AR(107) spectrum on a linear frequency scale. The lower part gives the residuals of 
the AR(107) spectrum and the equidistant peaks in the AR(679) spectrum caused by a few 
of the largest residuals. 

presented. This looks very much like the AR(18) spectrum, except for the very 
wide peak around f = 0.00025. 

The upper left Figure 9.11 shows that the low-frequency part of the full range 
spectrum of Figure 9.7 is almost completely conserved by downsampling. Only in 
the very highest part of the new frequency range, can it be seen that a visual 
redistribution of power makes a noticeable difference. The white noise of higher 
frequencies has very little influence. The differences around 0.001 Hz can be 
attributed to using different AR orders for the spectra. Note that the area below 
0.001 Hz is very small in Figure 9.7 with a linear frequency scale. 

The linear frequency plot on the upper right hand side shows that the selected 
AR(107) model gives a number of almost equidistant spectral peaks. This 
phenomenon is characteristic of turbulence data that has strong periodicity. The 
periodic behaviour is fully developed in the AR(107) model, and it was completely 
absent in the AR(18) spectrum. The AR(107) model is on the boundary of 
statistical significance for the given amount of data. It would probably be selected 
if many more data had been collected. The language of the data in Figure 7.8 gives 
a strong indication that this model has interesting properties. The periodicity is less 
developed in lower order AR models. Higher order models, until order 679, do not 
require special attention. The plot of Figure 7.8 is what would be expected for a 
white noise signal in the range between 120 and 650. In asymptotic theory, that is a 
linear increase in the prediction error with model order. Finite-sample effects are 
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shown in Figure 7.4. If the prediction error increases approximately linearly with 
model order, the estimated reflection coefficients of those orders are not statis-
tically significant. 

The residuals of the AR(107) model give strong outliers around the original 
time points 10,000, 20,000, 30,000, 55,000 and 65,000 at the lower left-side of 
Figure 9.11. A series of peaks with a distance of 10,000 in the time domain would 
give a periodic spectrum with a frequency of 0.0001 in the frequency domain. That 
is precisely what is found in part of the spectrum of the AR(679) model, shown on 
the linear frequency scale plot at the lower right-hand side of Figure 9.11. Down-
sampling with a factor of 15 caused the outliers in the residuals at a distance of 
10,000 to lie at a distance of 667 new time units. That is quite close to the 
minimum AR order that was required to show this strong periodic behaviour in the 
spectrum. 

An important question is whether the outliers in the residuals have a significant 
influence on the estimated spectrum. This has been investigated by dividing every 
segment into a number of subsegments by eliminating 50 downsampled obser-
vations around the eight largest outliers in Figure 9.11. The AR algorithm to 
estimate the Burg coefficients from segments (de Waele and Broersen, 2000) has 
been modified to accept segments of different lengths. Figure 9.12 shows that the 
influence of leaving outliers is very limited for low frequencies but very significant 
in the high-frequency range. The difference in the spectra for frequencies between 
0.01 and 0.03 Hz is more than a factor of 10. About the same spectrum without 
outliers is found by using only the first 10,000 observations with downsampling or 
by using any contiguous part where no large outliers are found. The few outliers 
have a great influence on the magnitude and shape at high frequencies. Therefore, 
the signal  properties are not  stationary after all.  The spectrum  estimated  without  
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Figure 9.12.  Spectra of the AR(107) model estimated from 15 complete segments and from 
fragmented segments where the parts with large residuals have been eliminated. The 
periodogram of one downsampled segment is also given, shifted vertically to increase 
visibility. 
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Figure 9.13.  Autocorrelation function of the AR(107) model and the lagged product 
estimates estimated from the decimated data. The frequency 0.00025 of the spectral peaks in 
Figure 9.12 is equivalent to a period of about 4000 in the autocorrelation function.  

outliers is considered the best estimate. Finally, knowing that the outliers at a 
distance of 10,000 have such a strong influence on the spectrum, it is also possible 
to detect those outliers visually in the original data, as presented in Figure 9.6. As a 
comparison, the periodogram is shown in Figure 9.12. 

Two estimated autocorrelation functions are presented in Figure 9.13. The 
Fourier transform of the lagged product estimate is given by the periodogram in the 
previous figure. The details and the differences visible in the two estimated auto-
correlation functions are almost exclusively due to the differences around the peak 
at 0.00025 Hz in Figure 9.12. Spectral details for the frequency range above 0.001 
Hz are invisible in a plot of the autocorrelation function. The absolute sum of 
squares of those frequencies in the spectrum is very small, and hence they do not 
influence the sum of squares of the autocorrelation function. This shows why the 
cepstrum is necessary as a measure for the accuracy of autocorrelation functions. 

9.8.2  Radar Data 

The detection of moving objects with radar is a practical application of ARMAsel. 
De Waele (2003) has compared the performance of the usual detection criteria 
based on periodograms and lagged product autocorrelations, on the one hand, and 
fixed order or selected time series models on the other hand. He used frequency-
modulated, continuous-wave (FMCW) radar data. 

Target detection is an important step in radar processing. The aim of a detector 
is to distinguish between reflections from a target and background reflections. An 
example of a target is a small boat, which is to be detected amid reflections of 
waves and measurement noise. The statistical theory is hypothesis testing. The idea 
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Figure 9.14.  Doppler spectra obtained with the FFT and with ARMAsel, as a function of 
the range. A horizontal line in the range-Doppler spectrum shows the distribution of 
velocities in a particular range cell. The reflections around a speed of 2 m/s represent sea 
clutter, reflections of waves. Possible targets are found in range cell 0.55 at –7 m/s and a 
small one at range cell 1.4 at –6 m/s. The ARMAsel estimate shows these targets more 
clearly than the FFT estimate. 

is to estimate a model of the surrounding environment without the boat. If that is 
the sea, waves with low velocities will be present, and the prototype model is the 
sea clutter. Figure 9.14 illustrates his conclusions. The spectrum of the speed as a 
function of the distance shows slowly moving waves and some moving targets. It is 
easier to detect them in the time series spectra than in periodograms. In general, the 
FFT plot shows many more spurious details than the time series models. 

9.8.3  Satellite Data 

The development of space-borne and aircraft-based sensors and powerful computer 
hardware in combination with improvements in physical and mathematical 
modeling give the possibility of determining the earth’s gravity field with 
increasing resolution and accuracy. Satellite sensors often provide data corrupted 
by noise that is strongly correlated along the orbit and trajectory. Prominent 
examples are the Gravity Recovery and Climate Experiment (GRACE) and the 
Gravity Field and Ocean Circulation Explorer (GOCE) satellites. Accelerometers 
onboard the GOCE satellite will be subject to a strong, coloured, noise signal. The 
intention is to describe the geoid, the height of the equigravity plane around the 
world, as accurately as possible. Using a simple least-squares evaluation of the 
observations gives large geoid errors. Due to the coloured noise, the least squares 
solution is not optimal, and the orbit of the satellite can be recognized erroneously 
in the gravity field. The data have to be multiplied by the inverse of the covariance 
matrix of the noise in (2.43) to give a better estimate. However, too many data are 
available to invert that covariance matrix. Klees et al. (2003) describe how the data 

RADAR Detection, range Doppler spectrum 
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can be filtered so that the errors become white noise. Then, the least-squares 
solution of (2.41) gives the best solution. The errors in the geoid map are very 
much reduced. 

9.8.4  Lung Noise Data 

This example demonstrates the use of ARMAsel for feature extraction in a medical 
context. Many applications use the recognition of electrical signals that can be 
measured on living people or animals. Examples are the electro-encephalogram 
(EEG) signal for brain activities, the electrocardiogram (ECG) signal for heart 
activities and the electromyogram (EMG) for muscle activities. Liley et al. (2003) 
describe how effects of tranquilliser drugs can be detected in an EEG with ARMA 
models. Yang et al. (2001) use AR modeling with order selection to investigate the 
properties of transplanted kidneys of rats. Friedman et al. (2004) describe how time 
series analysis can be used for continuous monitoring of blood pressure. Kim et al.
(2004) recognize emotions from physiological measurable signals. Pfurtscheller 
(2004) gives a survey of brain-computer interface prospects. Feature extraction and 
classification use new time series techniques to improve the interaction. The EMG 
signal can be used for prosthesis control. Muscle activity can be detected in 
electrodes on the skin, and the signal specifications can be used for various 
commands. ARMAsel could very well improve the detection of the signal type and 
hence make revalidation with artificial limbs somewhat less difficult.  

A first step toward the detection of asthma in lung sounds is the detection of the 
presence of methacholine, a drug that has an influence on the properties of the 
lungs similar to that of asthma. This can be done by measuring the lung noises of 
the same person with and without methacholine; see Broersen and de Waele 
(2000). Figure 1.2 gives two cycles of the inspiration and the expiration signal. The 
signal is not stationary, but using only a finite part of the cycle that is synchronized 
with the beginning of the cycle will give data that can be considered more or less 
stationary. The experiment starts by defining two prototype spectra with known 
conditions: one with methacholine and one without methacholine. The parameters 
of the time series models of both prototypes are estimated. Later, a new test signal 
is recorded, and the experimenter does not know whether methacholine is present. 
Now, ARMAsel is used to estimate the parameters of the test signal. Figure 9.15 
gives an example of spectra of the two prototypes and a test signal. The model 
error is used as a measure of the difference between the test signal and the 
prototypes. In this example, the ME between the test signal and the prototype 
without methacholine was 94 and with methacholine 437. Hence, it may be 
concluded that the test was measured without methacholine.  

This example shows how ARMAsel can be used in the detection of diseases, in 
the classification of EEG signals, and in the control of prostheses. The principle is 
to measure prototype time series models under known circumstances. The 
prototypes can be established as the average of many experiments. For new test 
data, ARMAsel is used to estimate the time series model, and the model error is 
used to measure the difference between the test data and all prototypes. More than 
two prototypes can be used. The prototype with the smallest difference is selected. 
If  desired,  a maximum  value can be given  for the ME.  If the test is not  closer to 
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Figure 9.15.  Normalized spectral density of two prototype spectra and a test spectrum that 
must be classified as belonging to one of the prototypes. Each spectrum is computed with 
500 observations, starting at the beginning of the expiration phase. The ME between test and 
prototype 1 without methacholine was 94; with prototype 2 with methacholine, it was 437, 
and the test signal belongs to the class without methacholine. 

one prototype than the prescribed maximum allowable difference, the experiment 
is undecided. For instance, a prosthesis can be commanded to move forward, to 
move backward or not to move at all. A maximum ME difference will reduce 
unintentional motions. 

9.8.5  River Data 

The importance of an accurate early warning system for river flooding is obvious. 
Improving the forecast of river discharge enhances the safety of riverside residents 
and can prevent damage. Moreover, an improved forecast of river discharge or 
water level has economic advantages because the maximum loading of commercial 
vessels in inland navigation depends on the actual water level in rivers and ports. 
Therefore, much attention has been given to obtain better forecasts of river 
discharges. 

A practical application is improved prediction of the water level of rivers. The 
height can be predicted days in advance with a deterministic model that contains 
knowledge of the amount of rainfall in the river area in the past days. However, 
measuring the level will give a difference from the deterministic prediction. If the 
actual level exceeds the predicted level at a certain moment, it will probably also 
exceed the level predicted one hour later. The difference between the deterministic 
predictions and the actual observations of the water level is a stochastic signal. 
That signal is used to correct the deterministic predictions. Figure 9.16 gives the 
observed and the predicted hourly water levels of the Mosel discharge. 
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Figure 9.16.  Measured discharges of the Mosel and simulated discharges with a rainfall 
runoff model around the end of 1998. The RMSE of the difference is 155.3 mP

3
P/s.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

  Lead time in hours

 R
M

S
E

 d
is

ch
ar

ge
 in

 m
3 /s

Error correction on the rainfall runoff model of the Mosel discharge

only average
ARMAsel

Figure 9.17.  Average forecast accuracy for a period of 80 hours for the Mosel catchment. 
Three hundred updates have been made at dayly intervals with a model estimated from the 
error signal in the last eight days. The error correction is made with the selected ARMAsel 
model and with the mean value of the error in the last 8 days. The ARMAsel correction is a 
considerable improvement for the first couple of hours. After 1 day, the difference becomes 
small. The average discharge was 647 mP

3
P/s.
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The period contains extreme discharges in week 10. With ARMAsel, a model 
has been made every 24 hours of the error signal of the last days. The error signal 
is the difference between the measurement and the model in Figure 9.16. It has an 
RMSE (root means square error) of 155.3 mP

3
P/s. This ARMAsel model has been 

used by Broersen and Weerts (2005) to improve the predicted discharge. A slight 
improvement with respect to the RMSE difference of 155.3 mP

3
P/s is obtained by 

using the average error of the last couple of days as a correction. The RMSE is 
about 140 then. Using the ARMAsel model gives an important improvement in the 
predictions for the first 24 hours in Figure 9.17. Finally, no improvement can be 
obtained in predicting more than 3 days ahead. 

9.9 Exercises 

9.1 Given are the estimated reflection coefficients of an AR(1) process with 
k1B = – 0.6, kB2 B= – 0.03, kB3B = 0.15, and kB4 B= – 0.08. 

Make an educated guess about how many observations might have 
contributed to those estimates. 

9.2 Given are the two observations – 1 and + 1. Use ARMAsel to compute the 
parameters of the AR(1) model. The download address of ARMAsel is 
given in the next section. MATLAB® is the required computational 
environment. 

9.3 Given are the two observations – 101 and + 1. Use ARMAsel to compute 
the parameters of the AR(1) model. Compare the result with the previous 
exercise and explain. Think about what happens as a rule with the mean of 
the data. 

9.4 Run the MATLAB® program “simple_demo” to become familiar with the 
ARMAsel instructions to get a spectrum or an autocorrelation function from 
simulated data. 

9.5 Run the MATLAB® program “demo_armasa” to learn more about the 
ARMAsel program. 

9.6 Given are eight observations: 
x = [ 0.6,  – 0.7,  0.9,  – 0.3,  0.8,  -1.2,  1.1, and  – 0.9 ]. 

Use ARMAsel to compute the parameters of the various models with 

[a,b,sellog]=armasel(x)

AR(1) will be selected. Verify with the results in sellog that this model was 
the best candidate. 

9.7 Verify that the model error (ME) between the best AR model and the best 
MA model was only 0.09 in the previous example. 
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9.8 Given are eight observations 
x = [– 0.9,  1.1,  – 1.2,  0.8,  – 0.3,  0.9,  – 0.7, and  0.6 ]. 

This is the reversed sequence of Exercise 9.6. What will be the estimation 
result of the reversed data? Realise that the autocorrelation function of 
arbitrary data will not change if their sequence is reversed. 

9.9 Use the ARMAsel program to analyse some data sets, from the Internet. 
Many historical data sets can be found with the search term “climate data”. 
Also economic data and industrial production data can easily be found.
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ARMASA TOOLBOX 

MATLAB® programs for automatic time series analysis 

Download address: 

http://www.mathworks.com/matlabcentral/
then select: File Exchange, Signal Processing, Spectral Analysis, 

ARMASA     contributed by   Piet M.T. Broersen 
Automatic Spectral Analysis   contributed by   Stijn de Waele  

name   - function 

armasel   - ARMAsel model identification from data 
sig2ar   - AR model identification from data 
sig2ma   - MA model identification from data 
sig2arma  - ARMA model identification from data 

armasel_rs  - ARMAsel identification from long AR model 
arh2ar   - AR model identification from long AR model 
arh2ma   - MA model identification from long AR model 
arh2arma  - ARMA model identification from long AR model 

arma2cor  - parameters to autocovariance function 
arma2psd  - parameters to power spectral density 
arma2pred  - parameters to prediction 
moderr   - Model Error, difference between models 

ar2arset  - AR parameters to lower-order AR models 
rc2arset  - AR reflection coefficients to AR models 
cov2arset  - autocovariances to AR models 
cov2arset + arh2ma - autocovariances to MA models 
cov2arset+arh2arma - autocovariances to ARMA models 

armafilter  - calculation of residuals or predictions of data 
Burg   - Burg type AR estimator 
Burg_s   - Burg for segments 
CIC   - CIC finite-sample order-selection criterion 
cor2ma   - MA(q) covariance function to MA(q) parameters 
simuarma  - generates time series data 
psd2ar   - power spectral density to AR model 
sumarma  - sum of ARMA processes with different variances 

demo_armasa  - demonstration of some ARMASA toolbox features 
simple_demo  - demonstration of some ARMASA toolbox features 
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Advanced Topics in Time Series Estimation 

10.1   Accuracy of Lagged Product Autocovariance Estimates  

Raw periodograms have never been considered useful spectral estimates for ran-
dom processes. The standard deviation is equal to the expectation of the spectrum 
and does not become smaller if more observations are available. Only the number 
of frequencies with an independent spectral estimate increases. Nevertheless, the 
inverse Fourier transform of the periodogram, the mean lagged product estimator, 
is still often considered the natural estimator for the autocovariance function.  

Maximum likelihood is a reliable principle for deriving efficient estimators in 
ordinary linear regression problems. However, no relation can be established 
between the lagged product estimator for the autocovariance function and the 
maximum likelihood principle. Simply taking the average of a number of estimates 
with the same expectation is only an optimal estimator if the estimates are 
uncorrelated and all have the same variance. In other cases, weighted least squares 
gives a better estimate. 

Porat (1994) proved that only sample autocovariances until lag p – q are 
asymptotically efficient in an ARMA( p,q) process. All further lagged product 
estimators are not efficient, and their variances are greater than minimally 
obtainable. However, the autocovariance function can be calculated efficiently 
from efficiently estimated parameters of the proper time series model. The 
theoretical background of this statement is the invariance property, found in Zacks 
(1971): the maximum likelihood estimate of a function of parameters is found by 
substitution of the maximum likelihood estimates of the parameters in that 
function.  

Some expressions for the variance of estimated autocovariance functions have 
been given in Section 3.5. However, they could not be evaluated then because no 
standard expressions for infinitely long autocovariances had been developed at that 
stage. That requires the time series results of Chapter 4. Some explicit formulas are 
derived here for simple processes. The variance of the autocorrelation function has 
been given in (3.40). The asymptotic expression for the covariance of the 
autocorrelation with the lagged product estimator at lags k and k + v is found with 
the Taylor approximation (2.32) for the quotient of two stochastic variables (3.31) 
with lag k and lag 0 as 
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 (10.1) 

The variance of ˆ ( )LP k  follows from this expression for v = 0 and is given already 

in (3.40). The formulas are inversely proportional to sample size N, so the statis-
tical variations will finally approach zero for larger sample sizes. For larger lags k
where the true correlation (k) becomes approximately zero, all products in (10.1) 
vanish if the indexes differ by more than k. It follows that  

2ˆvar ( ) ( ) ,LP
m

N k m k  (10.2) 

The practical importance of this latter formula is that the statistical inaccuracy of 
lagged product estimates of decaying autocorrelation functions is a constant for all 
lags where the true autocorrelation (k) has died out. Substitution of lagged 
product estimates for the autocorrelation in (10.2) does not generally give a good 
idea of the actual accuracy. Take white noise as an example; only (0) is 1 and all 
other lags have zero expectation. The infinite summation in (10.2) has the true 
value 1, but each lag would give a contribution of about 1/N if estimated lagged 
product autocorrelations were used. 

A further example is the MA(1) process with parameter b. The variance 
expression (3.40) for lagged products gives 

2 4

2

ˆvar (1) 1 3 (1) 4 (1)

ˆvar ( ) 1 2 (1) , 2

LP

LP

N

N k k       (10.3) 

with the true autocorrelation values  (0) = 1, (1) = b / (1+b2 ) and (k) = 0 for k
> 1. An old expression of Whittle (1953) for the variance of the time series model 
based autocovariance estimate follows from a Taylor approximation of (1) :

2 2

2 42
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b b
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The variance of a MA(1) parameter follows from (6.45) as (1–b2) / N and  

2 4 6 8

2 3

ˆvar (1) 1 4
ˆvar (1) (1 )

LP

MA

b b b b

b
(10.5) 

This ratio is greater than one for all values of b other than zero because the  
numerator is greater than one and the denominator is smaller than one. The 
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quotient of the variances becomes  for k  2, where the MA estimate equals zero. 
Even though the variance of the mean lagged product estimator converges to zero 
for increasing N for all lags, the ratio of both estimates remains .

Monte Carlo simulation runs have been made with a MA(2) process with poles 
at an equal radius . In each run, three different autocorrelation estimates were 
determined for lags 2 and 4. The first is measured with the estimated true order 
MA(2) model, the second with the selected ARMAsel time series model (TS), and 
the third with mean lagged products (LP). The average of N times the mean square 
error (MSE) is given in Table 10.1.  

Table 10.1.  Average of N*MSE of 1000 simulation runs of 100 observations of the 
quantities ˆ ˆ ˆ ˆ ˆ ˆ(2), (2), (2), (4), (4), and (4)MA TS LP MA TS LP  of a MA(2) process, as a function 

of the radius 

 Lag k = 2 Lag k = 4 
MA(2)  TS LP MA(2) TS LP 

       
–0.9 0.005 0.52 1.53 0 0.33 1.58 
–0.6 0.21 1.18 1.33 0 0.94 1.65 
–0.3 0.77 0.89 1.11 0 0.23 1.20 
0 0.97 0.26 0.97 0 0.07 0.95 
0.3 0.81 0.91 1.13 0 0.22 1.11 
0.6 0.20 1.36 1.49 0 1.13 1.73 
0.9 0.005 0.56 1.47 0 0.38 1.47 

According to asymptotic theory, no autocorrelations can be estimated efficiently 
with lagged products for any lag. All columns for TS give errors smaller than LP. 
The much better accuracy of time series estimates in practice is clear in the results 
for lag 4.  

With some manipulation, the asymptotic expressions (3.40) and (10.2) for 
lagged  products  yield, for an AR(1)  process with true parameter – a, hence with

(1) = a

2 2 2 2

2

2 2

2

2 4 6

1 (2 1) (2 1)
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a a a
(10.6) 

The last line demonstrates that the correlation coefficient between the estimated 
autocorrelations for two successive lags (1 and 2 in this example) can be greater 
than the correlation between two successive observations. In other words, the 
autocorrelation function estimated with lagged products can look more correlated 
or regular than the observations. 
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Figure 10.1.  True  and  estimated  autocorrelation  functions  for  an  AR(1)  process  with 
a1 = – 0.8 

Another approach for determining the autocorrelation of an AR(1) process is 
using the estimated AR(1) parameter â  to compute the autocorrelation function as 

ˆ ˆ
k

AR k a  (10.7) 

An expression for the variance of this parametric approach can be found with a 
Taylor approximation (2.29) and the asymptotic variance expression (6.42) for â.
This gives 

2 2 2 2ˆvar ( ) (1 )

ˆvar ( ) 0

k
AR

AR

N k k a a

N  (10.8) 

A comparison of (10.6) and (10.8) reveals that the two variance expressions are 
identical for k = 0 and k = 1, where both are equal to 0 and 1– a2, respectively. For 
other k, the variance expressions give different outcomes. 

Figure 10.1 shows that the time series ARMAsel estimate for the 
autocorrelation function, obtained from 100 observations, may be more accurate 
than the lagged product estimate that is obtained from 10,000 observations. The 
difference is often large at higher lags where the true autocorrelation approaches 
zero because the AR poles damp out and the variance of lagged products is still 
given by (10.2). The LP results for k =  in (10.6) are good approximations for all 
values of k where the true autocorrelation becomes negligible.  

The ratio between the variance expressions (10.6) and (10.8) is shown in Table 
10.2. For k > 1, the time series estimator (10.8) has better accuracy than the mean 
lagged product estimator (10.6). The confidence that has been given to lagged 
product estimates in the past is based on the fact that the variance of mean lagged 



Advanced Topics in Time Series Estimation 255 

products finally converges to zero if N is ever increasing. However, the time series 
estimates already converge for much smaller sample sizes. Table 10.2 shows that 
the qualification “not asymptotically efficient” in practice means very inefficient. 

Table 10.2.  Theoretical ratio ˆ ˆvar ( ) / var ( )LP ARk k  for an AR(1) process, as a function 

of the AR parameter  (1) = a  and of k

k a = 0.25 a  = – 0.5 a = 0.75 a = – 0.9 
1 1 1 1 1 
2 4.75 1.75 1.19 1.06 
5 3169 22.6 2.56 1.33 
10 83 107 5825 14.2 2.08 

The AR(1) spectrum can be computed directly with a true or an estimated value of 
the AR(1) parameter. It is equal to the exact Fourier transform of an infinite length 
of autoregressive autocovariances, as estimated from the single true or efficiently 
estimated AR(1) parameter.  

Whatever windows are used, it will not be possible to obtain an efficient 
spectral estimate with periodograms, with an accuracy that is comparable to that of 
the AR(1) spectrum, because the periodogram is based on inefficient auto-
correlation estimates for all lags greater than one. This result can be generalized to 
AR(p) processes where only p autocorrelations can be estimated efficiently with 
lagged products. The Fourier transform of more than p lagged product correlations 
will give an inefficient spectral estimate because of inefficient higher lag estimates. 

Table 10.3.  Average of N*MSE of 10,000 simulation runs of (2,1)ˆ ˆ ˆ( ), ( ), ( )ARMA TS LPk k k  of 

an ARMA(2,1) process with  a1 = – 0.625, a2 = 0.25, b1 = – 0.9, N = 10,000 

k ARMA(2,1) TS LP 
    
1 0.73 0.74 0.73 
2 0.66 0.79 0.86 
3 0.44 0.82 1.18 
6 0.07 0.58 1.20 

The results of a simulation experiment with an ARMA(2,1) process are given in 
Table 10.3.  The empirical  accuracy of the three autocorrelation estimators is equal 
for k = 1. For higher lags, the autocorrelation can better be estimated with a time 
series model. The estimated ARMA(2,1) model of the true order gives better 
accuracy in this example than the selected time series model TS. Only the first lag 
is estimated with the same inaccuracy using the lagged product estimator (LP). 
This confirms the validity in finite samples of the asymptotic theoretical result of 
Porat (1994) that only p – q lagged product estimates are efficient for the 
autocorrelation of an ARMA( p,q) process. 

A general but inaccurate method for a rough comparison of estimated auto-
correlation  functions has been shown in Figure  3.9,  for lagged  product  estimates  
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Figure 10.2.  Three estimated autocorrelation functions from the fish data of Figure 3.8. 

only. Divide the data into two halves and estimate the autocorrelation functions 
separately for the first and the second half of the data. This comparison is rough 
because it is based on looking at absolute differences and not at the cepstrum 
(5.57).  

Figure 10.2 gives three estimates of the autocorrelation function of all 445 fish 
number observations. All three estimates almost coincide for the first 10 lags. 
Afterward, the ARMAsel estimate dies out. The lagged product estimate and the 
AR(N/2) estimate remain close to each other. The influence of the triangular bias 
of (3.32) on the lagged product estimator can be seen; the values of the AR(N/2) 
estimate are slightly further away from zero. It is a general property that high-order 
AR models and lagged products produce similar estimates of the autocorrelation 
function. The great difference is that time series models allow order selection to 
find out which part of the high-order AR autocorrelation function is statistically 
significant and which part can better be extrapolated. Figure 10.2 shows that the 
selected ARMAsel model gives a small autocorrelation for lags greater than 10. 
The lagged product autocorrelation estimate also illustrates the middle formula of 
(10.6) for lags where the true correlation is zero. If that is true, the variance of 
lagged product estimates for all higher lags is the same. Applied to Figure 10.2, all 
lagged product estimates between + 0.2 and – 0.2 are probably due to statistical 
variability. The high negative peak at lag 18 might also be due to the same 
uncertainty.  

Figure 10.3 shows the estimated model accuracy of all ARMAsel candidates of 
the fish data. The high-order AR models have the worst estimated accuracy. 
Lagged product estimates give an autocorrelation function that is very similar to 
high-order AR models, but those high-order AR models are poor time series 
candidates. AR(2) has been selected with the usual selection criterion with penalty 
3. Selection with penalty 2 would have selected the AR(37) model in this case. MA 
models are less attractive for those data,  and ARMA  models are also less accurate  



Advanced Topics in Time Series Estimation 257 

0 20 40 60 80 100 120 140 160 180 200
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Estimated model accuracy as a function of model order and type

  Model order r

  N
or

m
al

iz
ed

 m
od

el
 a

cc
ur

ac
y

AR(r)
MA(r)
ARMA(r,r 1)

Figure 10.3.  The language of the data with estimated accuracies of all candidate models of 
the fish data in ARMAsel 

than AR candidates. For the given number of observations, many AR models with 
orders between 2 and 40 are almost equally attractive as candidates. Their 
estimated accuracies are almost the same. The parameters of those orders are on 
the edge of statistical significance. It is quite certain that the best model would 
become AR with order about 37 if many more observations were available. 

It is almost equally certain that AR(200) will never become an attractive 
candidate, no matter how many observations are available. The accuracy of high-
order AR models in Figure 10.3 is representative of many examples. High-order 
AR models have an autocorrelation that is similar to the lagged product result, but 
the estimated model accuracy is very poor. If the slope of the estimated accuracy of 
the AR models is a constant that resembles r/N, the models contain only 
insignificant parameters. That applies to AR models of order higher than 40 in 
Figure 10.3. 

Figure 10.4 gives the autocorrelation function of the AR(37) model, as well as 
the selected AR(2) and the lagged product estimates. As AR(37) models use the 
Burg estimates for the first 37 correlations, it is clear that the lagged product and 
the AR(37) estimate stay close for the first 37 lags. For higher lags, the AR(37) 
estimate is obtained by extrapolation with (5.3). It damps out, but the lagged 
product estimate keeps heavy wiggles with constant periodicity. The periodicity of 
12 months or 1 year in the correlations is not surprising for ocean data. 

However, it is surprising that a real periodicity would have given a first 
minimum at lag 6 and a first maximum at lag 12 in the autocorrelation function. 
Those peaks are not present in any estimated function in Figure 10.4. The first sign 
of this yearly periodicity is the negative peak at lag 18. The periodicity is clearly 
visible at higher lags. The absence of the peak at lag 12 is probably the reason that 
the order-selection procedure is not very decisive for low-order AR models. The 
periodicity is on the boundary of statistical significance for this sample size. 
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Figure 10.4.  Three estimated autocorrelation functions from the fish data of Figure 3.8. The 
estimates are from all 445 data together, with ARMAsel, the AR(37) model, and obtained 
with lagged products. 

Dividing the data in two parts brings one uncertainty to an end. The reduced 
number of observations is not enough to support high-order models in an order-
selection procedure for one-half of the data. ARMAsel has been applied to the first 
and second halves of the data separately. The selected ARMAsel model was 
MA(8) for the first half and AR(2) for the second half of the observations. 
However, the autocorrelation functions belonging to those selected models are very 
close. For all observations together, the AR(2) model had also been selected by 
ARMAsel. It should be realised that certain details that can be statistically 
significant for all data are not always significant if half of the data is used. It is 
quite remarkable that the first 25 lagged product estimates are similar in the upper 
half of Figure 10.5 that gives the 50 first lags of Figure 3.9. However, there is no 
reason to conclude in Figure 10.3 that there is something statistically special in the 
AR model of order 25. The conclusion from Figure 10.3 is that the two models 
AR(2) and AR(37) deserve special interest because those two are selected by the 
data with penalties 3 and 2, respectively. The conclusion from the upper part of 
Figure 10.5 can be only that all details between plus and minus 0.3 are not reliable 
for the halved sample size. Therefore, applying a rule of thumb, only the first five 
lags in the lagged product autocorrelation function can be trusted as reliable 
because they are outside the uncertainty boundaries. This shows once more how 
the data can speak for themselves with the accuracy plot of Figure 10.3 for 
estimated time series models. 

A special property of those practical fish data is that there is not enough 
information to decide on the best model order. Automatic selection with ARMAsel, 
with penalty factor 3 for each parameter, selects the AR(2) model. Figure 10.3 
shows that almost all AR models with orders between 2 and 37 would be good 
candidates. For AR orders greater than 37, the performance in Figure 10.3 is more 
or less as expected when all higher order parameters are not significant. 
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Figure 10.5.  Estimation of the autocorrelation function of practical data on the amount of 
fish in the Pacific Ocean. The number of observations was 445. The estimates are from the 
first and second halves of the data. 

In comparing models, penalty 3 is favourable for a comparison of neighbouring 
models whereas penalty 2 is better if there is a large difference in the number of 
parameters. Therefore, the type selection of Section 9.2 uses penalty factor 2 for a 
mutual comparison of AR, MA, and ARMA models.  

To study what happens if not enough data are available to make all details 
statistically significant, Broersen (2005c) used the estimated AR(37) model of the 
445 fish data in Figure 3.8 to generate 10,000 new observations with the AR(37) 
parameters as the true process. According to Figure 10.3, all AR models between 
orders 2 and 37 are acceptable candidates for selection from about 450 obser-
vations. With much less, AR(2) would be the best and with much more, AR(37) 
has the smallest ME. From those artificial data, sequences of 100, 500, 1000, and 
10,000 observations have been analysed. Estimated spectra are given in Figure 
10.6, together with the true AR(37) spectrum. Selected by ARMAsel are the AR 
orders 2, 15, 37, and 37 for the increasing N of Figure 10.6. AR(37) is almost 
always selected if enough data are available, sometimes AR(38), and almost never 
any other model, no matter how many candidates are taken. For N = 1000 with 
AR(37) selected, it is visible that the amplitude at a yearly interval of 0.083 cycles 
per month is a bit smaller than in the true spectrum, but all true details are present. 
In a linear plot, almost no details at all would be visible for frequencies above 0.2, 
and the three peaks between 0.1 and 0.2 would just be visible with amplitudes 
around 4% of the full scale. 

The autocorrelation functions of the models selected are presented in Figure 
10.7. Being the inverse Fourier transform of the spectrum, the sum of squared 
differences of spectrum and autocorrelations are the same. Therefore, all details 
that were not visible in the linear spectrum are equally invisible in the 
representation  of the autocorrelation  functions.  In  other  words, if the  spectra  of  
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Figure 10.6.  Estimated spectra of models selected by ARMAsel, which are AR of orders 2, 
6, 37, and 37 for the four sample sizes  

Figure 10.6 had been made equal to zero for the frequency range from 0.1 to 0.5 
and had been transformed to autocorrelation functions afterward, the new 
autocorrelations would have been almost identical to those in Fig. 10.7. The 
removal of all weak details from the spectrum has no significant visual influence 
on the linear spectrum or on the autocorrelation representation. Differences can be 
found only in the decimals farther behind the decimal point. 

Evaluating the first and the second halves of the data is simple. This rough 
comparison of the quality of autocorrelations and spectra of time series models 
with the lagged product estimates and periodograms has been applied to many 
artificial and real-life data; see Figure 3.9. One would like to have a better 
approximation of the truth if more data become available. Without using any time 
series measure or argument, intuitively the method with the closest results for both 
halves is preferred. In almost all situations, time series with the selected ARMAsel 
model outperform lagged product estimates. 

The poor properties of the periodogram for spectral estimates and of lagged 
products for autocorrelation estimates are also encountered in simple transfer 
function estimators. Broersen (1995, 2004) proved that the variance of the popular 
empirical transfer function estimator (ETFE) is infinite. Therefore, the estimation 
of the combined properties of two or more signals also has some peculiarities if the 
signals are random. The input signal before the measurement interval has influence 
on the output signal during the interval. That influence of transient responses does 
not become negligible for increasing sample sizes. It is always present for 
stationary stochastic processes, which cannot be defined as zero before the 
observation interval. That would be in conflict with the concept of stationarity. 
Another well-known peculiarity for the joint properties of two random variables is 
the outcome of the coherency estimate that is identical to one if N coherency points 
are estimates from N joint observations. 
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Figure 10.7.  Estimated autocorrelations of models selected by ARMAsel 

ARMAsel analyses only a single stochastic signal and automatically selects one 
model from all candidates. It estimates autocorrelations of one signal, not the cross 
correlation between two signals. That would be a welcome addition to the 
ARMAsel toolbox, but cross correlations, cross spectra, and transfer functions have 
no simple and general classes of nested models. The equivalents of AR, MA, and 
ARMA are not sufficiently rich to describe all possible model types for more 
signals simultaneously.  

Ljung (1987) gives ARMAX structures with an input signal, an output signal, 
and noise. In principle, the model orders for input, output, and noise can be chosen 
freely. He also described several other structures, which are not nested either. 
Therefore, these model types are difficult as candidates for order selection. 
Automatic selection of the best model type for multivariable signal processing is 
not yet feasible. Neither is a description of a complete and compact class of linear 
models available for all possible interactions of two stochastic processes.  

Vector autoregressive models are a limited class of models for treating more 
signals simultaneously. They are nested artificially by taking the same order for all 
components. That has been done before in ARMA estimation where the 
unstructured class of ARMA( p,q) models has been replaced by the nested class of 
ARMA(r,r–1) models. The influence of this nesting on the achievable model 
accuracy was small in Table 8.5. De Waele and Broersen (2002, 2003) give details 
of finite-sample effects on vector autoregressive order selection. The accuracy of 
vector autoregressive models for unknown cross correlations and cross spectra has 
not been compared with the accuracy of other possible types of candidate models.  

No computer program with the automatic selection of the best model type and 
model order is available for the joint analysis of more stochastic signals.  
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10.2  Generation of Data 

Data generation is straightforward if the prescribed spectral density or 
autocovariance function is described by the parameters of a time series model. 
Otherwise, a time series model can be determined to generate equidistant discrete 
time data. Broersen and de Waele (2003) give several examples of data generation 
and describe the transition from an arbitrary given spectrum to a time series model. 
For discrete spectra, the frequency range is limited naturally, and for continuous 
time spectra with an infinite frequency range, the highest frequency of interest has 
to be determined. The question of the required order of the time series model for 
sufficient accuracy has also been treated. It has been shown under which conditions 
the difference between finite-order generating models and infinite orders for the 
generating process cannot be detected if only N equidistant observations are 
available. That principle is used to limit the order of the generating models. 

Special examples for the generation of discrete time data emerge in the 
simulation of continuous time processes. Using time series models, it is possible to 
generate equidistant discrete time data that have any desired spectral slope in a 
limited frequency range. For continuous processes, differential equations allow 
only specified slopes at high frequencies, proportional to even powers of the 
frequency. For the generation of discrete time data, spectral slopes with odd or 
broken powers of the frequency can be approximated with every desired degree of 
accuracy. Examples are turbulence, where the spectrum is proportional to  f  –5/3  or 
f –7, or chaotic physical problems with 1/f noise, and many other problems with 
broken or uneven powers as asymptotes for the high frequency range.  

As an example, the desired spectrum of 1/f noise would increase without limits 
for f going to zero due to the singularity at f = 0. The lowest frequency that can be 
detected in N equidistant observations is around 1/N. Hence, the generated 
spectrum has to be accurate only for frequencies between 1/N and half the 
sampling frequency. The target spectrum to be generated at frequencies lower than 
1/N is simply extrapolated from the frequencies just above 1/N. Broersen and de 
Waele (2003) used a parabola to find a value for f = 0 which gives an easily 
realisable time series model for the whole frequency range of equidistant data. 

The model error (ME) of (5.40) has been used by Broersen and de Waele 
(2003) to limit the order of generating AR models. First of all, the desired spectrum 
is approximated by a very high-order AR model. This can be approximated with 
any desired accuracy by taking the AR order high enough. Afterward, the ME 
between the very high-order AR model and an AR(L) model can be calculated for 
every value of N and L. For a given value of N, the order L must be such that the 
ME value is less than one. 

Generating stationary data for an ARMA process requires some care with the 
initialisation. If zeros or any arbitrary values are used as initial values, the 
generated signals become strictly stationary only after the duration of the impulse 
response. Unfortunately, the impulse response is only finite for a MA process. It is 
infinitely long for AR and ARMA processes. Therefore, this primitive method of 
data generation without care for initial conditions is exact only for MA processes. 
It is at best an approximation for AR or ARMA processes. A much better method 
is found by separating the generation into AR and MA parts. Consider the joint 
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probability density function of a finite number of AR observations with a 
prescribed correlation function. Data can be generated that obey that prescribed AR 
correlation. A realisation of the ARMA process is obtained by filtering AR data 
with the MA polynomial. 

The joint probability density function of N normally distributed observations X
is given by (2.22). That is a general expression that can be applied to AR, MA, or 
ARMA processes by expressing the Toeplitz matrix Rxx in the parameters. The 
probability density function of N observations can also be written as a conditional 
product of the last N – k observations, given the first k with (2.25). By using 
conditional densities, it follows that a joint distribution of N observations can be 
written as a product of N conditional distributions in (2.26). The probability density 
function of N observations with (2.25) becomes 

1 2 1 1 1( , , , ) ( , , | , , ) ( , , )N p N p pf x x x f x x x x f x x  (10.9) 

The first part of the right-hand side for the last N–p observations for an AR(p)
process with polynomial Ap(z), with normally distributed zero mean innovations n,
is given by 
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The second part describing the first p observations can also be derived. By using 
conditional densities in (2.26), it follows that 
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The Levinson-Durbin algorithm (5.24) can be used to evaluate this expression. 
The polynomial A[K](z) is made with the parameter vector [K] of (5.12) without the 
parameter of order zero. The polynomial 1 – A[K](z) is the best linear predictor of 
order K or the best linear combination of K previous observations to predict the 
next observation xK. Hence, the conditional probability density of xq, conditional on 
q – 1 previous observations has [ 1 – A[ q–1 ] (z) ] xq as expectation with variance 

2
1qs . Using this in the conditional expectations (10.11) gives 
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The recursive variance relation for intermediate AR orders can be expressed 
with an increasing or decreasing index, which gives  
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Now, the conditional density (10.12) becomes  
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All ingredients for the probability density function f (x1, x2,…, xN) have been given 
and this derivation is sufficient to be used in generating data for an AR( p) process. 

Data generation is strictly separated in MA and AR generation. For ARMA 
processes, it is essential that the AR part is used first. The AR observations are 
denoted vn. The first observation v1 has only the requirement that it has expectation 
zero and variance r (0) or v

2. That is found with a random number generator with 
normal or Gaussian density and the prescribed variance. The second observation v2

follows as a normally distributed random variable with mean – a1
1v1  and variance 

s1
2. The third observation v3  has mean –a1

2v2– a2
2v1 and variance s2

2. The first p
observations are generated in this way. All further observations can simply be 
generated with 

1 1 , 1, ,n n p n p nv a v a v n p N   (10.15) 

This is a filter procedure with a Gaussian, random, white noise signal as input 
signal and the first p observations as initial conditions. For AR processes, the p
initial observations and the N – p filter results with (10.15) together are the N
observations. 

For MA(q) data, the input signal vn is a Gaussian white noise n and length N +
q. For ARMA( p,q) processes, the input to the MA filter will be the output vn of the 
AR filter (10.15) of length N + q. The data xn are computed with 

1 1n n n q n qx v b v b v   (10.16) 

The first q data require a negative input index. Therefore, to generate N MA or 
ARMA observations with this method, the input sequence vn has to be N + q long. 
The first q points of the filter output are disregarded.  

10.3  Subband Spectral Analysis 

Standard time series analysis estimates the power spectral density over the full 
frequency range until half the sampling frequency. Processing of a time series 
spectrum in a subband may be useful if observations of a stochastic process are 
analysed for the presence or multiplicity of spectral peaks. Separating the heartbeat 
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of mother and child is a medical example. Magnetic resonance spectroscopy often 
analyses absorption spectra where different chemical components produce narrow 
peaks in a small frequency subband (see Tomczak and Djermoune, 2002). If two 
close spectral peaks are present, a minimum number of observations is required to 
observe two separate narrow peaks with sufficient statistical reliability. With fewer 
data, a model with one single broad peak might be selected.  

A high-order autoregressive model or a periodogram will often indicate the 
separate peaks in power spectral density, together with many other similar details 
that are not significant. However, order selection among full range models may 
select a model with a single peak. By using subband order selection, it is 
sometimes possible to detect the presence of two peaks from the same data by 
using subband analysis.  

Makhoul (1976) described a simple time series subband model estimation 
method where an AR( p) model is fitted to a subband of a periodogram. This 
method uses the inverse Fourier transform of a subband of the periodogram as if it 
were a new autocorrelation function. The AR parameters are found from that 
function with the Yule-Walker relations. Another approach of de Waele and 
Broersen (2001) is applicable only to the lowest frequency range from zero to a 
small fraction of the sampling frequency. The signal is downsampled at a lower 
sampling rate that automatically reduces the highest frequency in the spectrum, as 
in Section 9.8.1. If no filtering is applied, the downsampled spectrum becomes 
aliased, and the autocovariance function remains undistorted. It turned out that a 
narrow low-frequency peak in the spectrum of experimental wind tunnel data was 
found only after resampling at a reduced rate. Order selection for the whole 
frequency range did not select a model with the peak in the wind tunnel spectra, 
but order selection for only the first 1% of the frequency range showed the 
statistical significance of the peak. 

To evaluate the quality of subband estimation methods, it is necessary to have 
an objective quantitative measure that applies to part of the frequency range. Error 
measures have been developed by de Waele and Broersen (2000b) for the lowest 
part of the frequency range, with and without taking into account the possibility of 
spectral aliasing. Those measures can be transformed to arbitrary parts of the 
frequency range. It turned out that the dedicated order selection is especially 
important for the accuracy of frequency-selective models. Frequency-selective 
analysis for the lowest frequency subband can easily be used for the analysis of an 
arbitrary frequency subband. First, the spectral density of the required subband is 
determined as part of the spectrum of a very high order AR model that is estimated 
for the whole frequency range. Only the spectrum of the subband is transformed 
into an equivalent subband autocovariance function. Then, a reduced-statistics 
ARMA estimator uses the subband autocovariance to estimate a long AR model to 
compute dedicated subband ARMA and MA models. The reduced-statistics 
adaptations of order-selection criteria are required for proper selection of the 
statistical significance of details in a subband. A long AR model of the data is 
taken as a reference for the fit, instead of the observations.  

Makhoul (1976) used the principle of frequency-selective or subband model-
ling. He started with a raw periodogram. He transformed the frequency band 
between 1 and 2 to the interval 0 –   and mirrored it around   for the complete 
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interval 0 – 2 . Use of the inverse Fourier transform computes an autocovariance-
like function that belongs to this truncated spectrum. That autocovariance-like 
function in turn can be transformed into an AR model for the frequency subband 
by treating it as a true covariance function and by estimating the parameters with 
the Yule-Walker relations (5.24).  

Instead of using a subband of the periodogram as the starting point, a better 
possibility has been developed by Broersen and de Waele (2003b). Their approach 
is completely within the area of time series analysis. It uses the full range spectrum 
calculated with a very long AR model CL(z), estimated from the data, as the basis 
for the frequency subband of interest. The AR model CL(z) is given the fixed order 
L = N/2. In practice, the value L is often restricted to the maximum value 2000 if N
is greater than 4000, but that is not necessary; AR models have been computed 
with L as high as 100,000. The restriction is for computational purposes, and it is 
justified because higher order models are seldom selected for practical data. The 
long  AR spectrum of a subband between 1 and 2 is transformed to the interval 
0 –  by the mapping 

’ = (  – 1) / ( 2 – 1)   (10.17) 

Afterward, this ’  is mirrored around and the subband spectrum is sampled.
The subband spectrum is a continuous function. It can be sampled with an arbitrary 
high frequency. That frequency is chosen by realising that the sampled subband 
spectrum should contain at least L discrete equidistant frequency points between 
zero and to make certain that no significant detail is lost in the computations. 
Further, the subband spectrum is inversely Fourier transformed into an 
autocovariance-like function. That autocovariance-like function in turn is used in 
the Yule-Walker relations to calculate a new long AR model DL(z) for the subband 
between 1 and 2, with 0 < ’ < . The long AR subband model DL(z) is the 
input information for the frequency-selective time series analysis. That can be done 
automatically with the reduced-statistics estimator, ARMAsel-rs. 

Estimated models DL(z) should represent a predefined subband of the true 
spectrum. It is important that the subband is chosen a priori, independent of the 
data at hand. Under those circumstances, reliable statistical inferences are allowed. 
If the interesting subband is chosen after a preliminary full range spectral 
estimation, there is a probability that the chosen subband might contain details that 
only seem interesting in the single realisation of the process that is evaluated. The 
statistical reliability of order selection can be improved then by taking 4 or 5 for 
the penalty factor. In this way, some protection against subjective interference can 
be provided. 

Using only the frequency band between 1 and 2 from the true spectral 
density, the subband transform can be used to determine a true time series model 
only for the frequency subband selected.  

Simulations have been carried out for an example with two close peaks at 
frequencies 0.27f0 and 0.28f0 and white background noise. The peaks are generated 
as separate AR(2) processes, both with a pole at radius 0.99. The true power in the 
first peak is 1, the power of the second peak is 0.4, and the power of the additive 
white noise is 0.01. Figure 10.8 shows the true spectrum and the spectrum of a long  
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Figure 10.8.  True spectrum and AR(500) spectrum of 2000 observations of a process with 
two peaks at 0.27f0 and 0.28f0 and a white noise background 

AR(500) model, obtained from N = 2000 observations. Use of a still higher order 
AR model would give more details in the spectrum of the long AR, but no signi-
icant differences in the final subband spectrum. The order of the long AR model is 
not critical. The vertical scaling of the spectra is rather arbitrary, such that the 
surface under the spectrum is normalized to the number of calculated frequencies.  

A visual inspection of the long AR spectrum might suggest a two-peak 
spectrum around f = 0.275f0. However, the same visual inspection might suggest a 
valley  around the frequencies  f = 0.257f0  and  f = 0.267f0  and a third peak  around 
f = 0.291f0. Hence, visual inspection is not reliable, and it would be a dubious 
starting point for defining the statistical significance of peaks. Using the same 
order, 500, that had been used for the complete spectrum and also for the long AR 
representation of only the subband guarantees that no information is lost in the 
transition to the subband, even if all estimated spectral details were concentrated in 
the subband. 

Figure 10.9 shows the outcome of order selection. The true process has two 
peaks; the standard selected ARMAsel spectrum from the 2000 observations shows 
a single peak that is statistically significant. The range of the subband is 0.1 of the 
full range, starting at 0.25f0. Broersen and de Waele (2003b) showed that the 
effective number of observations to be used in subband order selection is therefore 
200, the same fraction as the subband in the frequency domain. In other words, the 
degrees of freedom in the frequency range selected determine the effective number 
of observations. The model selected for the chosen subband of the frequency range 
has two peaks, whereas over the whole frequency range, the selected model fails to 
detect the double peak in this realisation. 

Investigating a smooth subband of the full range spectrum without peaks gives 
flat frequency-selective spectra if the order is selected for the best subband model. 
Peaks are detected in a subband only if they are present. For a few observations, 
peaks  cannot  be  detected at all.  For some  more  observations,  subband  analysis 
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Figure 10.9.  True spectrum and the ARMAsel spectrum, selected from the data of Figure 
10.8 and the ARMAsel-rs spectrum, selected from the long AR(500) subband model. The 
selected full range model has a single peak, whereas the selected subband model displays 
two peaks close to the peaks in the true spectrum. The accuracy of the location of the peaks 
is better than the height of the peaks in the subband model selected. 

shows details that are not significant in a model for the whole frequency range. If N
becomes greater and greater, true twin peaks also become statistically significant in 
spectral models selected for the full freequency range. However, even then, the 
subband model will often be more accurate for the precise spectral shape. 

10.4  Missing Data 

The use of time series modeling is also successful if data are missing. Broersen et
al. (2004, 2004b) give a survey of existing methods for missing data problems and 
present simulations showing that AR modeling applied to missing data outperforms 
other known methods in the literature. Broersen and Bos (2004) also use MA and 
ARMA models as candidates.  

In real-life experiments, sensor failure or outliers lead to missing data 
problems. Weather conditions can disturb the equidistant sampling scheme in 
hydrologic, meteorologic, satellite, and astronomical observations. The pattern of 
missing data is important for the analysis. It may be random from sensor failure or 
outliers or it may have large gaps due to weather conditions. 

 The treatment of missing data has two different principles:  

reconstruct the missing data  
use only the remaining data. 
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The first group of methods is based on estimation algorithms that have been 
developed for contiguous, equidistant data. Two methods that extract equidistant 
information from missing data will be distinguished in this category. One is some 
sort of static interpolation between the remaining observations, linear, nearest-
neighbour, sample and hold, or splines. Those methods have been studied 
extensively. The performance depends heavily on the characteristics of the data. It 
may be accurate for slowly varying low-frequency signals, but no interpolation 
method gives good results for all types of data. The other method reconstructs the 
missing data using a model for the covariance structure. This method is derived 
from the EM algorithm of Little and Rubin (1987) for missing data. The E step 
finds the conditional expectation of the missing data, given the observed data 
together with the currently estimated model; the M step computes maximum 
likelihood estimates for the parameters of the model from all data, observed and 
reconstructed. Reconstruction methods may be simple and accurate but only for 
small missing fractions, say, less than 10% missing. 

The method of Lomb-Scargle (Lomb, 1976 and Scargle, 1982) uses only the 
available measured data. It computes Fourier coefficients as the least- squares fit of 
sinusoids and cosines to the available observations. The Lomb-Scargle spectrum is 
accurate in detecting spectral peaks. Bos et al. (2002) give an example that shows 
that this method is rather poor in describing slopes in the spectrum.  

Rosen and Porat (1989) tried to find some autocovariance estimate for 
incomplete data and to use that for further analysis. This technique does not always 
guarantee that the sample covariance estimate is positive-semidefinite. Moreover, 
sample autocovariances are known to be inefficient estimators for the covariance 
structure and generally will not produce accurate spectral estimates, not even for 
equidistant data.  

A third idea selects consecutive segments in the observed data and uses a 
special segment variant of the Burg algorithm of de Waele and Broersen (2000) to 
compute the parameters of an AR model. It can be successful if only a few 
parameters have to be computed or if large gaps alternate with longer consecutive 
segments. Its use is limited to rather small randomly missing fractions because only 
uninterrupted data segments can be used.  

The final method fits a time series model directly to the available observations 
with maximum likelihood estimation. An exact maximum likelihood approach with 
Kalman filtering has been given by Jones (1980). Broersen et al. (2004, 2004b) 
describe a finite interval approximation. The numerical results of those two 
approaches are almost identical. The computational effort of the exact approach 
depends on the total observation length of missing and available data; the 
computation time for the approximation depends mainly on the available number 
of data. The computing time is the same if about 10% of the data remains and 90% 
is missing. If less is missing, the method of Jones (1980) is faster. The finite 
interval approach can be very much faster if less than 10% remains. 

The original Burg algorithm for AR parameter estimation recursively estimates 
reflection coefficients kp from equidistant data. The Burg algorithm for segments 
has been modified by de Waele and Broersen (2000) for simultaneous AR 
estimation from S segments. First, the functions 0 ( )sf n  and 0 ( )sb n  are made equal to 

the S segments xs(n), s = 1,…, S. The filtering operations in (6.6) and (6.7) are 
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applied to all segments longer than the filter length. A segment can contribute as 
long as it is longer than the current filter order. The segments with different length 
consist of the consecutive observations, and the missing data separate the 
segments. Isolated observations are discarded. The first reflection coefficient k1 can 
now be estimated with p = 1: 

1 1

2 2
1 1

2 ( ) ( )

( ) ( )

s s
p p

p s s
p p

f n b n p
k

f n b n p
  (10.18) 

All reflection coefficients have the properties of (6.12) and are guaranteed to be 
less one in magnitude. New functions, 0 ( )sf n and 0 ( )sb n , called forward and 

backward residuals, can be computed with (6.8) for all segments that are long 
enough for stage p:
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This means that only segments that already contributed at stage p – 1 can appear in 
the residuals (10.19). These are used to estimate a new reflection coefficient kp+1

with (10.18). Only segments longer than p + 1 points contribute to the estimate kp+1

of order p+1. Therefore, the number of active segments decreases with the AR 
order. The total number of contributing residuals should be at least 10 for sufficient 
statistical reliability. Parameters of AR models of all intermediate orders can be 
calculated by applying the Levinson-Durbin formulas (5.24) to the series of 
reflection coefficients obtained with (10.18). This method can give good results if 
the missing fraction is small. Otherwise, too few segments are long enough to 
allow for model orders higher than AR(1) or AR(2). In those cases, it becomes 
interesting to develop an algorithm that also uses the interrupted data.  

The general theory of Gaussian variables gives the possibility of constructing 
ARMA( p,q) models from randomly available observations. Suppose that the scalar 
random variable U with mean U and variance U

2 has a joint multivariate normal 
distribution with a k-dimensional random variable Y with mean k

Y R  and 

covariance matrix k k
YYR R . The cross covariance vector is denoted 1 k

UYR R .

Then, the conditional density of U for a given vector Y is the normal distribution  

21/ 2

|

| 2 2
| |

1
( | ) exp

2 2
U Y

U Y
U Y U Y

u
f u y     (10.20) 

where the conditional mean and variance are given by Anderson and Moore 
(1979): 
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This conditional density can be used to find the ARMA parameters in a missing 
data problem. The mean in (10.21) can be used to predict any of the available 
observations U, given the N – 1 available other observations that are together in Y.

The joint density fX(x) for arbitrary distributions can be written as a product of 
the pdf of the first observation with conditional density functions (2.26). According 
to this recursive formulation, it is sufficient to use only previous observations for 
the prediction in (10.21). Consider a realisation of a random vector of N
observations X, consisting of xt(1) ,..,xt(N) , where t(i) is a multiple kT of the sampling 
time T. They are the N available samples of a stationary stochastic process with 
mean value zero and variance X

2. The conditional density of (10.20) will be used 
to predict the next available observation xt(i+1) from all available previous 
observations xt(i) ,…, xt(1), which are in general not contiguous if data are missing. 
The probability density for the first observation xt(1), without the possibility of 
predicting, is given by 

(1)

1/ 2 2
(1)2

(1) (1) 2 2

1
( ) ( ,0, ) exp

2 2t

t
X t t X

X X

x
f x N x   (10.22) 

where the normal distribution of a random variable with mean   and variance 2

is given by (2.18). The conditional density of xt(i+1) for given xt(1),xt(2),…,xt(i) follows 
from (10.20) and (10.21) by substituting xt(i+1) for u and all available previous 
observations (xt(1), xt(2),…,xt(i) )  for y. All elements of the covariance matrices 
required in (10.20) are determined symbolically by (4.62) for an ARMA( p,q)
process. The product probability density function of the complete vector X can now 
be written as  
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  (10.23) 

The  values  for  the  predictions  x̂ t(j)|t(j-1),…,t(1)  and  the  conditional  variances  
s2

t(j)|t(j-1),…,t(1) are defined implicitly by the equations in (10.21), with s2
t(1) = 1. 

The ARMA( p,q) parameter vector ˆ  with elements 1ˆ ˆ, , pa a  and 1̂
ˆ, , qb b  is 

estimated in the case of missing data by minimising  
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2ˆ ˆ( ; , )XL X = –2log fX(x) – Nlog2   (10.24) 

with respect to ˆ  and to 2ˆ X , which becomes 
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By using the maximum likelihood estimate for 2ˆ X
,
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it follows that substitution in (10.25) yields a constant N for the last term, and the 
first two terms of (10.25) are minimised together. 

The algorithm with (10.25) for the exact likelihood would still require too much 
computing time in practice, even for moderate N. The number of contributions in 
the predictor  U|Y in  (10.20)  would become  N – 1 for the last  observation and a 
N – 1 N – 1 matrix RYY  has to be inverted in (10.21) to determine 2

|U Y .

Generally, the prediction accuracy improves most with the nearest previous 
observations. Observations further away have much less influence on the 
prediction accuracy if the correlation function dies out fast enough, and they 
contain less useful information for the parameters to be estimated. A compromise 
in the algorithm limits the maximum interval in which previous observations are 
used to predict with an ARMA( p,q) model to a finite time interval 2 ( p + q ) T /
in missing data. The number   denotes the remaining fraction of the data, with 0 < 

< 1. Only the previous Ki observations are used, where Ki  is the largest integer 
such that (10.27) holds:  

( ) ( ) 2( ) /it i t i K p q T   (10.27) 

This algorithm is called ARMAFIL, ARMA, for a Finite Interval Likelihood. 
The name is ARFIL if it is used for AR models. The number Ki of observations 
within the interval (10.27) that are used to predict xt(i) varies with the index of the 
predicted observation; the average number is 2p + 2q. Using a larger interval in 
(10.27) would lead to longer computation times, but it would not generally 
influence the accuracy of the estimated spectrum. However, taking a much smaller 
interval will reduce the accuracy considerably. Only if estimated poles are very 
close to the unit circle, say, closer than 1/N, may some useful information be lost 
because the  autocorrelation  function is still  significant  outside the finite interval 
2 ( p + q ) T / . Thus, losing this information might give a bad approximation for 
the likelihood. However, it does not necessarily mean that the maximum of the 
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finite interval likelihood is found at really different parameter values. The average 
number of observations in the interval turns out to be sufficient to yield good 
spectral estimates in practical examples.  

To improve numerical robustness, the ARMAFIL algorithm uses unconstrained 
optimisation of tan ( / 2*ki) for increasing orders p and q for both the AR and the 
MA polynomials.  This guarantees that the estimated ki is always in the range – 1 < 
ki < 1. Hence, all models computed by nonlinear numerical optimisation routines 
are stationary and invertible. The usual Yule-Walker or Burg algorithms keep 
previous reflection coefficients as constants in computing one new reflection 
coefficient. In contrast with those consecutive algorithms, however, all ki are 
optimised afresh and simultaneously in ARMAFIL for every model order p and/or
q.

As possible starting values for the nonlinear optimisation of the ARMA( p,q)
model, the reflection coefficients of the ARMA( p – 1, q – 1) model have been 
considered with additional zeros as a start for the new kp  and kq. Broersen et al.
(2004, 2004b) showed that those recursive starting values are successful in AR 
estimation. However, this method failed completely for MA and ARMA 
estimation. 

ARMA models have a second problem in the maximum likelihood method. If 
the true process has a pole and a zero both of which have a rather small radius, they 
are almost canceling. The likelihood will mostly converge to an almost canceling 
pair of a pole and a zero, but their location is rather arbitrary in the complex plane. 
This will hinder the convergence. This problem also exists for uninterrupted data, 
but it is still more annoying if many data are missing. 

The best practical solution that has been found for the starting values of MA(q)
or ARMA( p,q) models is inspired by the reduced-statistics estimator for 
uninterrupted data. That algorithm can estimate MA and ARMA models using only 
a limited number of estimated AR parameters, instead of using the data themselves. 
The MA(q) or ARMA( p,q) model estimated from the AR parameters has been 
used as the starting point for a nonlinear search for that model. The model quality 
of the starting point has also been determined to see if and how much the nonlinear 
estimation with iterative minimisation of the likelihood function can improve it. In 
most cases, the reduced-statistics solution for the MA and ARMA models obtained 
from a long AR model was better than the result from the minimisation of the 
likelihood; see Broersen and Bos (2004). 

Having obtained many AR models and also a number of MA and ARMA 
models, it is essential to develop a selection criterion to choose the best among the 
candidates. Order selection for models estimated by likelihood minimisation can be 
performed with a generalized information criterion (GIC), defined as: 

2ˆˆ ˆGIC( , ) ( ; , , ) ( )p q xp q L X a b p q   (10.28) 

The best value for the penalty   has been investigated in the missing data case; 
= 2 is the famous AIC. Broersen and Bos (2004b) used simulations to conclude that 
the best choices for AR selection are between 3 and 5, 3 for a few missing data, 5 
for less than 25% remaining and 4 if around 50% is missing. For MA or ARMA 
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selection, = 3 is a good choice. In a theoretical missing data derivation, 
Cavanaugh and Shumway (1998) also showed that the best penalty factor for 
order-selection criteria will depend on the missing fraction. 

Some simulation results will be presented here. N/  equidistant contiguous 
observations are generated with an ARMA(3,2) process with the AR and MA 
parameter vectors 

[1,  –2.2053,  1.7265,  –0.5018]  and  [1,  0.7153 , 0.1282]. 

Plotted on a double logarithmic scale, this process resembles a turbulence spectrum 
with constant slopes of f  –5/3 and f  –7 in the power spectral density.  

If only a few percent is missing, say, less than 25%, the algorithms described 
above give very good results, comparable to the accuracy obtained when no data 
are missing. The real possibilities of time series models in missing data problems 
are shown in examples where many data are missing. The simulations use  equal 
to 0.01 and 0.1. Only 1% remaining means that 99% of the data is lost at random 
instants. This is realised by randomly discarding 99% of the 100N contiguous 
simulated data. If the distribution of the remaining times is a Poisson distribution, 

% remaining means also that also  N  consecutive pairs of observations are 
found in the average, and  N couples with a gap of 1, 2, … and every other gap. 
Therefore,  N can be called the effective number of observations. A couple of AR 
parameters can be estimated if at least 5 or 10 effective observations are available. 

First, simulations have been carried out with N = 100 and variable values of .
For  greater than 0.75, the results were about the same as if no data were missing.  
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True and selected spectra for ARMA(3,2) turbulence simulation
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Figure 10.10.  The true spectrum and the selected AR, MA, and ARMA spectra for a 
problem with 99% of the data missing. The MA and ARMA models are computed with 
ARMAsel-rs. The number of remaining observations is 500 of the ARMA(3,2) process with 
 = 0.01. Selected models for the three types are AR(2), MA(3), and ARMA(2,1) which is 

equal to AR(2). 

N =500
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The smallest value of   for which a reasonable spectral estimate has been found 
was  = 0.05 for N = 100, with  N = 5. The estimated spectra densities were almost 
identical with that in Figure 10.10, which have been estimated from the same 
effective number of observations. Taking  = 0.01 leaves one effective observation 
for N = 100. That is not enough for useful parameter estimation. The ARMAsel 
program for missing data selected the white noise model in this case. 

With  N equal to 5 for N = 500 in Figure 10.10, only two AR parameters could 
be estimated. MA models are not suitable for this type of spectra, and estimated 
MA models give a poor fit for all sample sizes. They also are inaccurate if no data 
are missing. AR and ARMA models give the same spectrum here, because the 
reduced-statistics algorithm can use only the AR(2) model as a basis. Then, the 
best ARMA(2,1) model fitting to an AR(2) model will have the MA parameter 
estimated as zero. For only five effective observations, the true spectral shape is 
already somewhat visible in the estimated and selected AR(2) model in Figure 
10.10. 
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True and selected spectra for ARMA(3,2) turbulence simulation
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Figure 10.11.  The true spectrum and the selected AR, MA, and ARMA spectra for a 
problem with 99% of the data missing. The MA and ARMA models are computed with 
ARMAsel-rs. The number of remaining observations is 5000 of the ARMA(3,2) process 
with   = 0.01. Selected are AR(3), MA(5), and ARMA(3,2), which is equal to AR(3). 

Figure 10.11 gives the result for  N = 50 effective observations. The AR(3) 
model is selected here and is rather accurate, at least for 99% missing data. 
Figure 10.12 has  N equal to 500 with 10% remaining. Selected are the AR(4) 
model and the MA(8) model for the AR and MA types, respectively. The most 
accurate ARMA(3,2) model is almost equal to AR(4). Those models are very close 
here, within the line width. Obviously, turbulence-like spectra can be represented 
by a few AR parameters and well-fitting AR and ARMA models can be estimated. 
The ARMAsel algorithm for missing data performs well for all processes that can 
be described by low-order AR models. That category includes many-real life data, 
where low-order AR models are very often at least a reasonable approximation. 

N =5000
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True and selected spectra for ARMA(3,2) turbulence simulation
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Figure 10.12.  The true spectrum and the selected AR, MA, and ARMA spectra for a 
problem with 90% of the data missing. The MA and ARMA models are computed with 
ARMAsel-rs. The number of remaining observations is 5000 of the ARMA(3,2) process 
with   = 0.1. Selected are AR(4), MA(8), and ARMA(3,2). The most accurate ARMA(3,2) 
model is almost equal to AR(4). 

10.5  Irregular Data 

Meteorological data or turbulence data obtained by laser-Doppler anemometry are 
often irregularly sampled due to the nature of the observation system. This may 
have the advantage that the highest frequency that can be estimated is higher than 
half the mean data rate, which is the upper limit for equidistant observations. The 
Lomb-Scargle estimator of Lomb (1976) and Scargle (1982) is a method that fits 
sinusoids to irregular data. It is equal to the periodogram if the data are equidistant. 
As for equidistant missing data problems, the Lomb-Scargle properties are not 
favourable for irregular data, unless for periodic signals with very little noise.  

Martin (1999) applied autoregressive modeling to irregularly sampled data using 
a dedicated method. It was particularly good in extracting sinusoids from noise in 
short data sets. Söderström and Mossberg (2000) evaluated the performance of 
methods for identifying continuous-time autoregressive processes, which replace 
the differentiation operator by different approximations. Larsson and Söderström 
(2002) apply this idea to randomly sampled autoregressive data. They report 
promising results for low-order processes. Lahalle et al. (2004) estimate 
continuous- time ARMA models. Unfortunately, their method requires explicit use 
of a model for irregular sampling instants. The precise shape of that distribution is 
very important for the result, but it is almost impossible to establish it from 
practical data. 

N = 5000, = 0.1
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No generally satisfactory spectral estimator for irregular data has been defined 
yet. Continuous time series models can be estimated for irregular data, and they are 
the only possible candidates for obtaining the Cramér-Rao lower boundary, 
because the true process for irregular data is a continuous-time process. Jones 
(1981) has formulated the maximum likelihood estimator for irregular 
observations. However, Jones (1984) also found that the likelihood has several 
local maxima and the optimisation requires extremely good initial estimates. 
Broersen and Bos (2005) used the method of Jones to obtain maximum likelihood 
estimates for irregular data. If simulations started with the true process parameters 
as initial conditions, that was sometimes, but not always, good enough to converge 
to the global maximum of the likelihood. However, sometimes even those perfect 
and nonrealisable starting values were not capable of letting the likelihood 
converge to an acceptable model. So far, no practical maximum likelihood method 
for irregular data has solved all numerical problems, and certainly no satisfactory 
realisable initial conditions can be given. As an example, it has been verified in 
simulations that taking the estimated AR( p–1) model together with an additional 
zero for order p as starting values for AR( p) estimation does not always converge 
to acceptable AR( p) models. The model with the maximum value of the likelihood 
might not in all cases be accurate  and many good models have significantly lower 
numerical values of the likelihood. Martin (1999) suggests that the exact likelihood 
is sensitive to round-off errors. Broersen and Bos (2005) calculated the likelihood 
as a function of true model parameters, multiplied by a constant factor. Only the 
likelihood for a single pole was smooth. Two poles already gave a number of sharp 
peaks in the likelihood, and three or more poles gave a very rough surface of the 
likelihood. The scene is full of local minima, and the optimisation cannot find the 
global minimum, unless it starts very close to it. 

Because the maximum likelihood principle does not lead to a practical 
estimator for continuous processes with irregular sampling instants, different 
estimators have to be developed from other principles. Approaches starting from 
continuous modeling have been mentioned. Broersen and Bos (2005) and Broersen 
(2005a) apply the best missing data algorithm to irregular data. It would be the 
ultimate goal to develop an estimator that can be applied to small and large data 
sets that requires no user interaction, that does not use any assumption about the 
distribution of the observation instants, and that estimates spectra with an accuracy 
close to the Cramér-Rao lower bound. An algorithm that can be used for arbitrary 
sample sizes will generally improve its variance performance with 1/N. Hence, it 
will become better and better for increasing sample sizes. The missing data 
ARMAsel algorithm is an example that operates for any sample size. Hence, it 
might be a good starting point for an algorithm for irregular data. If the sample size 
and hence the effective number of observations are too small, it just selects the 
white noise model. 

If an algorithm can be used only for very large sample sizes, it will be difficult 
to establish the accuracy as a function of sample size. The bias will often not 
become smaller for increasing N because the bias may be independent of the 
sample size and depend only on the slot width, the resampling frequency, or any 
other characteristic of the estimation method. Adrian and Yao (1987) showed that 
this applies to the sample and hold reconstruction of data. Britz and Antonia (1996) 
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compared interpolation methods and slotted autocorrelation function estimation. 
They concluded that no method is able to compensate satisfactorily for a data rate 
that is too low. De Waele and Broersen (1999) showed that resampling after 
sample and hold reconstruction is much better than slotting, if the data rate is high. 
The bias of slotting remains important at low resampling rates. Benedict et al. 
(2000) give an extensive survey of many techniques for irregularly sampled data. 
Various slotted estimates of the autocovariance function are compared using 
postprocessing algorithms. No serious problems are encountered if the highest 
frequency of interest is less than 20% of the mean data rate. Then, the resampling 
bias is rather small and many methods give acceptable results. Problems arise when 
higher frequencies are of interest. 

The challenge is to develop spectral estimation methods that can be used for the 
analysis of frequencies above the mean data rate. Slotting methods estimate an 
equidistant autocovariance function from irregularly sampled data. It is a lagged 
product estimator that gives a contribution for every two observations that have a 
distance within a certain slot width. For equidistant observations, the unbiased 
estimator (3.28) is a similar estimator. The problem with contiguous equidistant 
observations was that this specific estimator lacks the positive-definite property. 
The improved equidistant solution with the biased lagged product estimator (3.30) 
has no equivalent for irregular data. Slotting algorithms have been refined with 
local normalization and a variable window by Tummers and Passchier (1996, 
2001). Local normalization reduces the variance of the estimated autocovariance 
function, and a variable window is necessary to get a positive spectral estimate for 
each frequency. They reported very good results for sample sizes of 200,000 for a 
simulation with an AR(2) process until N = 1,000,000 for a benchmark example 
with two spectral peaks. The examples show that the accuracy is excellent in that 
part of the frequency range where the power in the spectrum is concentrated and 
becomes lower in the weak parts of the spectrum. A large width of the variable 
spectral window is required there to obtain positive spectral estimates. Unfor-
tunately, the algorithm may fail if it is applied to much smaller data sets. If an 
estimator for an autocorrelation function is not positive-definite, negative spectral 
estimates will be found for unfavourable spectral windows. It is possible to develop 
one single variable window algorithm for many different signals, all of which have 
constant and steep spectral slopes at higher frequencies. Hence, a single algorithm 
is suitable for large data sets of different types of decaying spectra. However, it 
will not be possible to detect peaks or other local details in the higher frequency 
range due to the width of the variable window there. Moreover, the method cannot 
be used for much smaller data sets. The choice of the variable window requires 
skill as well as (a priori) knowledge of the spectrum. Applying a wrong choice for 
the variable window will result in negative spectral estimates at some frequencies 
because the slotted autocorrelation estimate cannot be made positive-definite. 
Applying a different choice for the variable window results in a different spectral 
estimate from the same data. Theoretical considerations cannot give a unique 
preference for the variable window. Hence, it must be accepted that the experi-
menter has a strong influence on the estimated spectrum. The slotting method will 
always have a bias in the autocorrelation function because the arbitrary time 
intervals between observations are replaced by a multiple of the slot width. 
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Two types of slotted autocorrelation functions have been used as estimators. 
The first is the direct slotted estimate that is not positive-definite. Therefore, it does 
not have the properties of an autocorrelation function. Moreover, small spectral 
details and spectral slopes are not visible in that slotted autocorrelation. A proper 
measure like the cepstrum of (5.56) cannot be determined. The second is based on 
the Fourier transform of the direct slotted estimate. It uses a variable window over 
the spectrum to obtain a positive spectrum at all frequencies, and afterward the 
inverse Fourier transform of the spectrum is defined as the autocorrelation 
estimate. This has the advantage that the autocorrelation and the spectrum make a 
valid Fourier transform pair, which is a theoretical requirement. The disadvantage 
is that it is not possible to establish a variable window that is independent of the 
data and can be used for moderate sample sizes. 

Van Maanen et al. (1999) introduced fuzzy slotting. This distributes a corre-
lation product over two adjacent time slots and produces a smoother auto-
covariance function with a smaller bias because the true irregular time differences 
are shifted less. They also report a reduction in the variance of the estimated 
autocovariance function. Therefore, fuzzy slotting improves the slotting 
performance for large data sets. Fuzzy slotting can be combined with the local 
normalization and the variable windowing technique. However, autocovariance 
functions estimated by the fuzzy slotting technique are still not guaranteed to be 
positive-definite. This improvement results in spectra that can become negative at a 
percentage of the frequencies where the power is weak. That will always happen if 
the algorithm is applied to smaller data sets. All methods that improve the 
performance of slotting autocovariance methods require very large data sets. Even 
then, examples can be given where an algorithm would fail. However, those 
counterexamples do not occur in turbulence spectra, meteorologic spectra, or 
spectra of other physical properties. For instance, mirroring a true spectrum in the 
frequency range replaces the spectrum at frequency f by the spectrum at 0.5f0 – f.
This will still give a valid true spectrum that is positive everywhere, like the 
original spectrum was before mirroring. It is not realistic for any physical signal 
but feasible with simulated data. It would give strange results for a slotting 
algorithm with a variable window that was dedicated to the spectral shape before 
mirroring. Slotting algorithms with variable windows will not produce valid 
spectra for data of both the true spectral shape and the mirrored shape. This 
theoretical argument shows that all slotting algorithms will eventually fail for small 
data sets but may be successful if enough data are available. Applications have 
shown good results for very large data sets. Even then, a priori knowledge of 
spectral shape is necessary, and subjective experimental choices have to be made to 
produce successful spectral estimates.  

A special method of van Maanen and Oldenziel (1998) uses a curvefit to the 
autocorrelation function. That method will be useful to extract information from 
the data if already very much is a priori known and if that knowledge is completely 
true for the given data. If a spectrum is known to be flat up to a certain frequency 
and further to have a slope of  f –-7 for higher frequencies, it is possible to develop a 
useful estimator for the cutoff frequency. But neither the flat part nor the slope 
result from the estimation procedure; only the cutoff frequency is estimated. That 
frequency has a meaning only if the assumptions are exactly true. The method of 
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van Maanen and Oldenziel (1998) uses a flexible shape of the autocovariance 
function. That shape has been derived from a prototype turbulence spectrum. 
Although many different autocorrelation functions can be generated, many more 
autocorrelation functions do not belong to the class. If the class contains exactly the 
true shape, estimation of a few parameters can give very accurate spectral 
estimates. If it is merely an approximation of the true shape of the autocorrelation, 
it is not possible to give a theoretical analysis of the accuracy of the method. If 
noise is present in the measured data, the method can estimate only a turbulence 
model for the noise. The choice of this parametric model is a strong limitation, but 
it can be a good alternative if all methods fail that give the data more influence on 
the result. However, it should be realised that the class of candidate autocorrelation 
functions is not complete in any mathematical sense. 

Some theoretical problems exist for the curve-fit method applied to an 
estimated autocorrelation function. It uses a weighted, squared sum of the 
difference between estimated and model autocorrelations. A much better 
autocorrelation measure would be based on the cepstrum, defined in (5.56). 
Absolute measures in the spectrum or in the autocorrelation give hardly any 
difference in Figure 3.4, whereas logarithmic differences are very important. If the 
spectrum at some frequency is less than 1% of the highest spectral value, errors in 
the estimate of the spectrum at that frequency have almost no influence on the sum 
of squared differences. This means that all details in the estimated curve-fit 
spectrum that are a factor of 100 or more smaller than the low-frequency level have 
no influence on the spectral estimate or on the estimated parameters. The result of 
the curvefit is completely independent of the true low-power parts of the spectrum 
of the data. The spectral estimate obtained with the curve-fit method for those low-
power frequencies is completely determined by the estimation method and by the 
class of autocorrelation candidates and is completely independent of the data. 
Furthermore, the curve-fit method requires weighting factors that depend on the 
correlation coefficient for a proper answer. The weight factors of van Maanen and 
Oldenziel (1998) have a value between 1 and 200,000, and they have a strong but 
unknown influence on the resulting spectrum. Unfortunately, they cannot be 
derived from a theoretical concept. 

Resampling techniques reconstruct a signal at equal time intervals. After 
resampling, the equidistant data can be analysed using the periodogram or time 
series models. Spectral estimates at higher frequencies will be severely biased. 
Adrian and Yao (1987) described sample and hold reconstruction as low-pass 
filtering followed by adding noise. These effects can in theory be eliminated using 
the refined sample and hold estimator of Nobach et al. (1998). The same principle 
has been used by Simon and Fitzpatrick (2004). The method explicitly uses the 
Poisson distribution of observation instants to eliminate bias. If that distribution is 
not exactly true, the method fails. In practice, all spectral details that are smaller 
than the bias are lost. They are not visible in the rough estimated spectrum and 
cannot be reconstructed by the refined estimator. The accuracy of the 
reconstruction method is amazingly good if it is applied to the theoretically 
distorted spectrum. However, the quality of the same method is rather 
disappointing if it is applied to measured spectra, unless the sample size is very 
large. Nearest-neighbour resampling has similar bias and noise characteristics (de 
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Waele and Broersen, 2000), but this reconstruction method gives many more 
problems in undoing the bias than sample and hold. The resampled spectra are 
strongly biased for frequencies higher than about 20% of the mean data rate. The 
noise and filtering effects of equidistant resampling set limits to the achievable 
accuracy of resampling methods. This precludes the accurate estimation of spectra 
at higher frequencies where the inevitable resampling noise exceeds all small 
details and hides spectral slopes. The bias of resampling for a given data rate is 
independent of the sample size (Adrian and Yao, 1987). Details below the level of 
the bias can never be estimated by those methods, no matter how many data are 
available. Moreover, any deviation from the assumed distribution of the irregular 
observation instants gives errors in the reconstruction. In turbulent flow, this 
certainly happens in bubbly liquid flow. 

Bos et al. (2002) introduced a new idea for irregular data with time series 
analysis. Their estimator can be perceived as searching for uninterrupted sequences 
of data that are almost equidistant. The selected sequences of different lengths can 
be analysed with a slotted irregular version of the Burg (1967) algorithm for 
segments. The slotted nearest-neighbour Burg method uses an equidistantly 
resampled signal with many empty places where no original observation fell inside 
a slot. It has been demonstrated that the bias of slotted resampling is very much 
smaller than the bias of resampling without slotting. The reason is that a single 
original irregular observation can never appear at multiple resampled time instants. 
A disadvantage of this slotted resampling method is that still very large data sets 
are required to obtain some uninterrupted sequences of sufficient length for the 
irregular Burg algorithm. It operates well for sample sizes where slotted estimation 
of the autocorrelation, variable windows and refined reconstruction can also be 
successful.  

There is an obvious transition from uninterrupted sequences of data that are 
almost equidistant to interrupted sequences of data that are almost equidistant. That 
in turn resembles an equidistant missing data problem. It turned out that the non-
linear maximum likelihood missing data algorithm of Jones (1980), treated in 
Section 10.4, could also give a better solution for irregular data, if much less data 
are available. Whereas the slotted Burg method required about 200,000 irregular 
observations, the quasi-maximum likelihood method sometimes already converges 
to an accurate spectral estimate using less than 2000 observations.  

The variance of the spectra of useful methods in spectral estimation becomes 
smaller if more data are available. Often, the bias is independent of sample size, as 
in sample and hold resampling. The variance is generally inversely proportional to 
sample size. Therefore, most existing methods may finally converge to the biased 
spectral result if enough data are available. The variations due to the estimation 
variance will become negligible; only the bias error remains. Only then, refined 
estimators (Nobach et al., 1998; Simon and Fitzpatrick, 2004) can be applied 
successfully. Therefore, bias reduction algorithms require very large data sets. The 
purpose here is to develop a spectral estimator that can be used in small and in 
large data sets. It will be derived from the ARMAsel algorithm for missing data. 
Therefore, an irregular sampling scheme of the observations will be transformed 
into a regular time scheme on a fixed time grid with missing data. A resampling 
scheme will be developed where the resampling time and the slot width are not 
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directly connected. The resampling time determines the highest frequency in the 
spectral density, and the slot width determines the bias that is due to moving the 
irregular times to a regular grid within the slot. The smaller the slot width, the 
higher the missing fraction because every empty slot represents a missing 
observation in the regular resampled signal.  

10.5.1.  Multishift, Slotted, Nearest-neighbour Resampling 

Analysis of resampling methods shows that a common and important problem is 
the multiple use of a single irregular observation for more resampled data points. 
This immediately creates a bias term in the estimated covariance function because 
the autocovariance R(0) leaks to estimated nonzero autocovariance lags. The 
analysis of Adrian and Yao (1987) shows that both the autocovariance and the 
spectrum suffer from bias in sample and hold resampling. De Waele and Broersen 
(2000b) evaluate nearest-neighbour (NN) resampling with the same problems. Bias 
is caused by  

the shift of irregular time intervals to a fixed grid 
multiple use of the same irregular observation.  

Multiple use causes a correlation in the resampled signal, and it gives a coloured 
spectral estimate, even if the true irregular process were white noise. Multiple use 
will be eliminated in slotted  NN resampling. 

The signal x(t) is measured at N irregular time instants t1, ... tN. The average 
distance T0 between samples is given by T0 = (tN – t1 ) / (N – 1) = 1/ f0, where f0

denotes the mean data rate. The signal is resampled on a grid at kN equidistant time 
instants at grid distance Tr = T0 / k (for simplicity in notation, k or 1/k is limited to 
integral numbers). The resampled signal exists only for t = nTr with n integers. 
Therefore, the resampled signal is equidistant with or without missing data. The 
spectrum can be calculated up to frequency k f0 / 2. The usual nearest-neighbour 
resampling substitutes the closest irregular observation x(ti) at all grid points t = 
nTr, with 

|ti–1 – nTr| > |ti – nTr|      (10.29) 

|ti+1 – nTr| > |ti – nTr|

The uninterrupted resampled signal contains k (N – 1) + 1 equidistant observations. 
If k is greater than 1, that means that many of the original N irregular observations 
will be used for more resampled observations.  

Slotted nearest-neighbour resampling accepts only a resampled observation at t
= nTr if there is an irregular observation x(ti) with ti within the time slot w

nTr – 0.5w  <  ti   nTr +0.5w        (10.30) 

If there is more than one irregular observation within a slot, the one closest to nTr

is selected for resampling; if there is no observation within the slot, the resampled 
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signal at nTr is left empty. For small Tr and w equal to Tr, the number N0 of 
nonempty resampled grid points nTr  becomes close to N  because almost every 
irregular time point falls into another time slot. For larger values of Tr, hence with 
k < 1, more irregular observations may fall within one slot, and only the one closest 
to the grid point survives in the slotted NN resampled signal.  

Taking w = Tr /M, with integer M in (10.30) gives disjunct intervals where 
some irregular times ti are not within any slot of (10.30). Many observations can be 
lost completely in that resampling operation. Therefore, multi-shift, slotted, NN 
resampling is introduced, where M different equidistant missing data signals are 
extracted from one irregular data set: 

nTr+mw–0.5w < ti nTr+mw+0.5w,    m=0, 1,..., M-1               (10.31) 

Now, all slots of width w are connected in time, and all irregular observations fall 
within a slot. The number of possible grid points is (N – 1)*M*T0 / Tr + 1. Hence, 
the remaining fraction   is given approximately by 1/Mk. Experience with missing 
data problems of Broersen et al. (2004b) and also in the previous section shows 
that time series models can be easily estimated for  > 0.1. It may become 
somewhat difficult if  is less than 0.01, unless the remaining number of 
observations is very large. That has been demonstrated in Figures 10.10–10.12. 
This limits the useful range of resampling time and slot width for a given number 
of observations.  

10.5.2  ARMAsel  for  Irregular  Data 

Inputs for the algorithm are the M equidistant missing data sequences or segments 
obtained with the multishift, slotted, nearest-neighbour algorithm of (10.31). All 
segments are derived from the original observations in the same irregularly 
sampled time interval. In principle, the data in the different segments are correlated 
and not independent. However, the most influential parts of each segment are 
found at those dense time intervals where only few data are missing. Generally, the 
dense time intervals for the various segments are at different locations. Hence, the 
assumption that the segments are more or less independent is justified. The 
“likelihood” is computed separately for each segment that is treated as a missing 
data signal. The outcomes for the M segments are added afterward in the 
minimisation procedure. Therefore, not all contributions to the “true likelihood” 
are taken into account because some near observations are in different segments. 
Using all M segments, each with about N / M observations, gives much better 
accuracy than using only one segment. However, the method with resampled data 
will never be an exact maximum likelihood algorithm, not even approximately, 
because the time axis has been changed and not all near observations are used. 
Jones (1980) computed the likelihood of a missing data problem exactly by relating 
observations to all previous observations that are present in one single segment. In 
the irregular case, the data are distributed over different segments if M is greater 
than one. 

All elements for an automatic ARMAsel algorithm for irregular data can be 
copied from the algorithm that has been developed for missing data by Broersen et
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al. (2004, 2004b). Only the creation of equidistant segments with (10.31) had to be 
added by Broersen and Bos (2005). 

The “likelihood” for AR models is computed with the method of Jones 
(1980) or with ARfil (Broersen et al., 2004b), depending on whether   is 
greater or smaller than 0.15, respectively.  
The tangent of /2 times the AR reflection coefficients is used in the 
minimisation to guarantee estimated reflection coefficients with absolute 
values less than one. 
The starting values for the AR( p+1) model are the estimated reflection 
coefficients of the AR( p) model with an additional zero for order p + 1. 
AR( p) order selection uses GIC( p) of (10.33) as a criterion to select the 
AR(K) model 

       with = 3  for less than 25% missing,   
               = 5  for less than 25% remaining,  
               = 4  otherwise; see Broersen and Bos (2004b). 

The maximisation of the “likelihood” of MA and ARMA models gives 
problems with MA starting values and with order selection. Those models 
are much better estimated from the parameters of an intermediate AR model 
by a reduced-statistics method; see Broersen and Bos (2004a). 
The order of that intermediate AR model is chosen as the highest AR order 
with a spectrum close to the spectrum of the selected AR(K) model. The 
difference between the estimated spectra is measured with the model error 
(ME) of (5.40). The ME contribution should be less than two for each order 
higher than K.
Order selection for MA and ARMA is based on GIC of (10.33) with penalty 
3, the “likelihood”, plus three times the number of estimated parameters. 
The same criterion is used to determine the preferred model type for 
irregular data; see Broersen and Bos (2004a).  
The quantity N can be considered an effective number of observations. 
The remaining fraction is determined by the choice of the resampling 
period and the slot width. 

10.5.3  Performance  of  ARMAsel  for  Irregular  Data 

Simulations with a known (aliased) spectrum are a first step in testing new 
algorithms. Test data were generated using the following procedure. First 128N
equidistant data points were generated using a high-order AR process. Then, 127N
data points were discarded randomly. Each data point had a probability of 127/128 
of being discarded. The process was the same as used for missing data with an 
additional peak at 0.75f0. This peak is at a frequency above half the mean data rate 
and would have been invisible or aliased if the observations were equidistant. The 
resulting data can be considered completely irregular, and the time intervals 
between the observations were roughly Poisson distributed. The global shape of the 
logarithmic spectrum has two constant slopes of f –5/3 and f – 7 and is representative 
of a possible turbulence spectrum. The peak is added to test whether  details on the  



Advanced Topics in Time Series Estimation 285 

10
2

10
1

10
0

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

  Normalized frequency f / f
0

 L
og

ar
ith

m
 o

f s
pe

ct
ru

m

Aliased true spectral density and several estimates

true
NN
NN slotted

Figure 10.13.  The true spectrum, the selected ARMAsel spectrum for data resampled with 
the nearest-neighbour scheme, and the ARMAsel missing data spectrum obtained by the 
multi-shift, slotted, nearest-neighbour resampling method. The sample size was 1000 
irregular observations with Tr = 0.25T0 and w = 0.5Tr , with T0 = 1/f0. The NN resampled 
spectrum shows no detail at the location of the peak.

steep slope can also be detected. Leaving the peak away in the generated data 
discloses whether the peak has influence on the spectrum that is estimated by the 
various methods. 

Figure 10.13 shows the result obtained with the ARMAsel-irreg algorithm for 
N = 1000. The algorithm is automatically estimating, selecting the model order, 
and selecting the model type with the algorithm of Section 10.5.2. The result, 
denoted NN slotted, is quite accurate. It shows the first f –5/3 slope, the transition 
frequency to the second slope, and the peak at the true frequency. The only user 
interference is the choice of the resampling frequency and of the slot width. It is 
compared with the ARMAsel spectrum obtained by using nearest-neighbour 
resampling at all times nTr. The nearest-neighbour spectrum is close to its biased 
expectation that follows from the theory of NN bias. Above 0.2f0, the estimated 
NN spectrum is greatly determined by the bias and hardly by the true spectrum at 
those frequencies. The peak at 0.75f0 is not detectable in the ARMAsel spectrum of 
Figure 10.13. The bias of sample and hold and of NN swallows the peak. Hence, 
refined reconstruction methods like that of Nobach et al. (1998) cannot reconstruct 
this peak for N = 1000. The bias is not dependent on the sample size, and the small 
narrow peak above the bias level will be very difficult to detect, even if 10,000 or 
more observations are used. If the true peak is still somewhat smaller, below the 
level of the biased spectrum, it will never be possible to reconstruct it with NN 
resampling, no matter how many data are available.  

The resampling frequency determines the highest frequency for the estimated 
spectrum, and the slot width determines the bias. High resampling frequency and a 
small slot width give a resampled signal with a small remaining fraction. That may 
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create numerical problems because large missing fractions are not computationally 
attractive. In practice, the resampling frequency is determined by the true process 
characteristics as a function of the frequency. It is hardly a free choice, but the 
character of the data imposes it. Different values of the slot width can be tried as a 
compromise between a small bias and a small remaining fraction and a larger bias 
with less missing data. Inputs for the algorithm are the irregular instants and the 
signal at those instants. It is clear in Figure 10.13 that the slotted, nearest-
neighbour has a much smaller bias than the original nearest-neighbour 
interpolation where an observation is substituted at every resampling time. It is 
difficult to compare the NN slotted result with slotting of the autocorrelation 
function and variable window methods and many other methods that can be tuned 
by the experimenter. Those methods might need at least 100,000 observations 
instead of 1000. In small samples with less than 10,000 observations the 
ARMAsel-irreg algorithm estimates accurate spectra where other methods fail. 
However, with the present information, no definite preference can be given for an 
algorithm if the sample size is very large, say, greater than 100,000. 

A new robust estimator has been introduced that fits a time series model to 
multishift, slotted, nearest-neighbour resampled segments obtained from irregularly 
sampled data. The new irregular ARMAsel algorithm combines a spectrum that is 
guaranteed to be positive with accurate results at higher frequencies. In simulations 
with few data, the results are much better than those that can be obtained from the 
same data by other known existing techniques. The order and type of the best time 
series model for the data are selected automatically without user interaction.  

Multishift, slotted, nearest-neighbour resampling with ARMAsel-irreg can 
estimate accurate spectra if low-order AR models can reasonably approximate the 
true spectral shape. Many processes have this type of spectra, including turbulent 
flow data. For a large dynamic range, a small slot width will reduce the expectation 
of the bias. That requires very large data sets to obtain accurate estimates. The 
choice of the resampling frequency and the slot width is a compromise. 

10.6  Exercises 

10.1 Given is an AR(1) process. Derive  
2 4 6

2

1 5 3
ˆvar (2)

1LP

a a a
N

a
.

10.2 Given is an AR(1) process. Derive  
2

2 4 6

ˆ ˆcov (1), (2) 2 (1 )

ˆ ˆvar (1) var (2) 1 5 3

LP LP

LP LP

a a

a a a

10.3 Generate five observations of a MA(1) process with six normally 
distributed random numbers. 

10.4 Generate 10 observations of a stationary AR(2) process with 10 normally 
distributed random numbers. 
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