
Advances in Industrial Control

Other titles published in this Series:

Data-driven Techniques for Fault Detection and Diagnosis in Chemical Processes
Evan L. Russell, Leo H. Chiang and Richard D. Braatz

Nonlinear Identification and Control
Guoping Liu

Digital Controller Implementation and Fragility
Robert S.H. Istepanian and James F. Whidborne (Eds.)

Optimisation of Industrial Processes at Supervisory Level
Doris Sáez, Aldo Cipriano and Andrzej W. Ordys

Applied Predictive Control
Huang Sunan, Tan Kok Kiong and Lee Tong Heng

Hard Disk Drive Servo Systems
Ben M. Chen, Tong H. Lee and Venkatakrishnan Venkataramanan

Robust Control of Diesel Ship Propulsion
Nikolaos Xiros

Hydraulic Servo-systems
Mohieddine Jelali and Andreas Kroll

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques
Silvio Simani, Cesare Fantuzzi and Ron J. Patton

Strategies for Feedback Linearisation
Freddy Garces, Victor M. Becerra, Chandrasekhar Kambhampati and Kevin Warwick

Robust Autonomous Guidance
Alberto Isidori, Lorenzo Marconi and Andrea Serrani

Dynamic Modelling of Gas Turbines
Gennady G. Kulikov and Haydn A. Thompson (Eds.)

Control of Fuel Cell Power Systems
Jay T. Pukrushpan, Anna G. Stefanopoulou and Huei Peng

Fuzzy Logic, Identification and Predictive Control
Jairo Espinosa, Joos Vandewalle and Vincent Wertz

Optimal Real-time Control of Sewer Networks
Magdalene Marinaki and Markos Papageorgiou

Process Modelling for Control
Benoît Codrons

Rudder and Fin Ship Roll Stabilization
Tristan Perez
Publication due May 2005

Adaptive Voltage Control in Power Systems
Giuseppe Fusco and Mario Russo
Publication due August 2005

Control of Passenger Traffic Systems in Buildings
Sandor Markon
Publication due November 2005

Ajoy K. Palit and Dobrivoje Popovic

Computational
Intelligence in Time
Series Forecasting
Theory and Engineering Applications

With 66 Figures

123

Dr.-Ing. Ajoy K. Palit
Institut für Theoretische Elektrotechnik und Microelektronik (ITEM),
Universität Bremen, Otto-Hahn-Allee-NW1, D-28359, Bremen, Germany

Prof. Dr.-Ing. Dobrivoje Popovic
Institut für Automatisierungstechnik (IAT), Universität Bremen,
Otto-Hahn-Allee-NW1, D-28359, Bremen, Germany

British Library Cataloguing in Publication Data
Palit, Ajoy K.

Computational intelligence in time series forecasting: theory and engineering applications. –
(Advances in industrial control)
1. Time-series analysis – Data processing 2. Computational intelligence
I. Title II. Popovic, Dobrivoje
519.5′5′0285

ISBN 1852339489

Library of Congress Control Number: 2005923445

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.

Advances in Industrial Control series ISSN 1430-9491
ISBN-10: 1-85233-948-9
ISBN-13: 978-1-85233-948-7
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

MATLAB® and Simulink® are the registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, USA. http://www.mathworks.com

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Typesetting: Electronic text files prepared by author
Printed in the United States of America
69/3830-543210 Printed on acid-free paper SPIN 10962299

Advances in Industrial Control

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Michael A. Johnson, Professor Emeritus of Control Systems and Deputy Director

Industrial Control Centre
Department of Electronic and Electrical Engineering
University of Strathclyde
Graham Hills Building
50 George Street
Glasgow G1 1QE
United Kingdom

Series Advisory Board

Professor E.F. Camacho
Escuela Superior de Ingenieros
Universidad de Sevilla
Camino de los Descobrimientos s/n
41092 Sevilla
Spain

Professor S. Engell
Lehrstuhl für Anlagensteuerungstechnik
Fachbereich Chemietechnik
Universität Dortmund
44221 Dortmund
Germany

Professor G. Goodwin
Department of Electrical and Computer Engineering
The University of Newcastle
Callaghan
NSW 2308
Australia

Professor T.J. Harris
Department of Chemical Engineering
Queen’s University
Kingston, Ontario
K7L 3N6
Canada

Professor T.H. Lee
Department of Electrical Engineering
National University of Singapore
4 Engineering Drive 3
Singapore 117576

Professor Emeritus O.P. Malik
Department of Electrical and Computer Engineering
University of Calgary
2500, University Drive, NW
Calgary
Alberta
T2N 1N4
Canada

Professor K.-F. Man
Electronic Engineering Department
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong

Professor G. Olsson
Department of Industrial Electrical Engineering and Automation
Lund Institute of Technology
Box 118
S-221 00 Lund
Sweden

Professor A. Ray
Pennsylvania State University
Department of Mechanical Engineering
0329 Reber Building
University Park
PA 16802
USA

Professor D.E. Seborg
Chemical Engineering
3335 Engineering II
University of California Santa Barbara
Santa Barbara
CA 93106
USA

Doctor I. Yamamoto
Technical Headquarters
Nagasaki Research & Development Center
Mitsubishi Heavy Industries Ltd
5-717-1, Fukahori-Machi
Nagasaki 851-0392
Japan

Writing a book of this volume involves great strength, devotion and the
commitment of time, which are lost for our families. We are, therefore, most

grateful to our wives, Mrs. Soma Palit and Mrs. Irene Popovic, for their

understanding, patience and continuous encouragement, and also to small Ananya
Palit who missed her father on several weekends and holidays.

 A. K. Palit and D. Popovic

Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology

transfer in control engineering. The rapid development of control technology has

an impact on all areas of the control discipline. New theory, new controllers,

actuators, sensors, new industrial processes, computer methods, new applications,

new philosophies , new challenges. Much of this development work resides in

industrial reports, feasibility study papers and the reports of advanced collaborative

projects. The series offers an opportunity for researchers to present an extended

exposition of such new work in all aspects of industrial control for wider and rapid

dissemination.

Computational Intelligence is a newly emerging discipline that, according to

the authors Ajoy Palit and Dobrivoje Popovic, is about a decade old. Obviously,

this is a very young topic the definition and content of which are still undergoing

development and change. Nonetheless, the authors have endeavoured to give the

topic a framework and demonstrate its procedures on challenging engineering and

commercial applications problems in this new Advances in Industrial Control

monograph, Computational Intelligence in Time Series Forecasting.

The monograph is sensibly structured in four parts. It opens with an historical

review of the development of “Soft Computing” and “Computational Intelligence”.

Thus, Chapter 1 gives a fascinating insight into the way a new technology evolves

and is consolidated as a self-evident discipline; in this case, proposals were made

for constituent methods and then revised in the light of applications experience and

the development of new methodologies which were added in to the core methods.

No doubt the debate will continue for a few more years before widely accepted

subject definitions appear, but it is very useful to have a first version of a

“Computational Intelligence” technology framework to consider.

In Part II, the core methods within Computational Intelligence are presented:

neural networks, fuzzy logic and evolutionary computation – three neat self-

contained presentations of the building blocks for advanced development. It is in

Part III that new methods are developed and presented based on hybridisation of

the three basic routines. These new hybrid algorithms are demonstrated on various

application examples. For the practicing engineer, chapters in Part II and III should

almost provide a self-contained course on Computational Intelligence methods.

x Series Editors’ Foreword

The current and future development of Computational Intelligence methods are

the subject of Chapter 10 which forms Part IV of the monograph. This chapter

balances the historical perspective of Chapter 1 by attempting to identify new

development areas that might be of significant interest to the engineer. This is not

an easy task since even a quick look at Chapter 10 reveals an extensive literature

for a rapidly expanding field.

This volume on Computational Intelligence by Dr. Palit and Dr. Popovic is a

welcome addition to the Advances in Industrial Control monograph series. It can

be used as a reference text or a course text for the subject. It has a good opening

historical review and a nice closing chapter looking to the future. Most usefully,

the text attempts to present these new algorithms in a systematic framework, which

usually eases comprehension and will, we hope, lead the way to a new technology

paradigm in industrial control methods.

M.J. Grimble and M.A. Johnson

Industrial Control Centre

Glasgow, Scotland, U.K.

Preface

In the broad sense, computational intelligence includes a large number of

intelligent computing methodologies and technologies, primarily the evolutionary,

neuro and fuzzy logic computation approaches and their combinations. All of them

are derived through the studies of behaviour of natural systems, particularly of the

connectionist and reasoning behaviours of the human brain/human being.

The computational technology was evolved, in fact, from what was known as

soft computing, as defined by Zadeh in 1994. Also, soft computing is a

multidisciplinary collection of computational technologies still representing the

core part of computational intelligence. The introductory chapter of this book is

dedicated to the evolutionary process from soft computing to computational

technology. However, we would like to underline that computational intelligence is

more than the routine-like combination of various techniques in order to calculate

“something”; rather, it is a goal-oriented strategy in describing and modelling of

complex inference and decision-making systems. These soft computing approaches

to problem formulation and problem solution admit the use of uncertainties and

imprecisions. This, to a certain extent, bears a resemblance to artificial intelligence

strategies, although these emphasize knowledge representation and the related

reasoning rather than the use of computational components.

Computational intelligence, although being not more than one decade old, has

found its way into important industrial and financial engineering applications, such

as modelling, identification, optimization and forecasting required for plant

automation and making business decisions. This is due to research efforts in

extending the theoretical foundations of computationally intelligent technologies,

exploiting their application possibilities, and the enormous expansion of their

capabilities for dealing with real-life problems.

Although in the near past books on computational intelligence and soft

computing have been published, today there is no other book dealing with the

systematic and comprehensive expositions of methods and techniques for solving

the forecasting and prediction problems of various types of time series, e.g.
nonlinear, multivariable, seasonal, and chaotic. In writing this book our intention

was to offer researchers, practising engineers and applications-oriented

professionals a reference volume and a guide in design, building, and execution of

xii Preface

forecasting and prediction experiments, and this includes from the collection and

structuring of time series data up to the evaluation of experimental results.

The fundamental knowledge and the methodologies of computationally

intelligent technologies were drawn from various courses for advanced students

and from the experimental studies of Ph.D. candidates at the Institute of

Automation Technology of University of Bremen, the Control Engineering

Laboratory of Delft University of Technology, and from our experience in co-

operation with industry. The material presented in the book is therefore suitable to

be used as a source in structuring the one-semester course on intelligent

computational technologies and their applications.

The book is designed to be largely self-contained. The reader is supposed to be

familiar with the elementary knowledge of neural networks, fuzzy logic, optimum

search technique, and probability theory and statistics. The related chapters of the

book are written so that the reader is systematically led to the deeper technology

and methodology of the constituents involved in computational intelligence and to

their applications. In addition, each chapter of the book is provided with a list of

references that are intended to enable the reader to pursue individual topics in

greater depth than that has been possible within the space limitations of this book.

To facilitate the use of the book, an index of key terms is appended.

The entire book material consists of 10 chapters, grouped into four parts, as

described in the following.

Part I of the book, containing the first two chapters, has the objectives of

introducing the reader to the evolution of computational intelligence and to the

traditional formulation of the time series forecasting problem and the approaches

of its solution.

The evolution of computational intelligence is presented in the introductory

Chapter 1, starting with the soft computing as developed by Zadeh in 1994 up to

the present day. During this time, the number of constituents of computational

intelligence has grown from the fuzzy logic, neurocomputing, and probabilistic

reasoning as postulated by Zadeh, with the addition of genetic algorithms (GAs),

genetic programming, evolutionary strategies, and evolutionary programming.

Particular attention is paid to the achievements of hybrid computational

intelligence, which deals with the parameter tuning of fuzzy systems using neural

networks, performance optimization of neural networks through monitoring, and

parameter adaptation by fuzzy logic systems, etc. The chapter ends with the

application fields of computational intelligence today.

The ensuing Chapter 2 is devoted to the traditional definition and solving of the

time series forecasting problem. In the chapter, after the presentation of the main

characteristic features of time series and their classification, the objective of time

series analysis in the time and frequency domains is defined. Thereafter, the

problem of time series modelling is discussed, and the linear regression-based time

series models that are mostly used in time series forecasting are presented, like the

ARMA, ARIMA, CARIMA models, etc., as well as some frequently considered

models, such as the multivariate, nonlinear, and chaotic time series models. This is

followed by the discussion of model estimation, validation, and diagnostic checks

on which the acceptability of the developed model depends. The core part of the

chapter, however, deals with the forecasting approaches of time series based on

 Preface xiii

Box-Jenkins methods and the approaches using exponential smoothing, adaptive

smoothing, and the nonlinear combination of forecasts. The chapter ends with an

example in control engineering from the industry.

In Part II of the book, which is made up of Chapters 3, 4, and 5, the basic

intelligent computational technologies, i.e. the neural networks, fuzzy logic

systems, and evolutionary computation, are presented.

In Chapter 3 the reader is introduced to neuro-technology by describing the

architecture, operating principle, and the application suitability of the most

frequently used types of neural network. Particular attention is given to various

network training approaches, including the training acceleration algorithms.

However, the kernel part of the chapter deals with the forecasting methodology

that includes the data preparation, determination of network architecture, training

strategy, training stopping and validation, etc. This is followed by the more

advanced use of neural networks in combination with the traditional approaches

and in performing the nonlinear combination of forecasts.

Chapter 4 provides the reader with the foundations of fuzzy logic methodology

and its application to fuzzy modelling on examples of building the Mamdani,

relational, singleton, and Takagi-Sugeno models, suitable for time series modelling

and forecasting. Special attention is paid to the related issues of optimal shaping of

membership functions, to automatic rules generation using the iterative clustering

from time series data, and to building of a non-redundant and conflict-free rule

base. The examples included deal with chaotic time series forecasting, and

modelling and prediction of second-order nonlinear plant output using fuzzy logic

systems. Also here, the advantage of nonlinear combination of forecasts is

demonstrated on temperature prediction in a chemical reactor.

In Chapter 5 the main approaches of evolutionary computations or intelligent

optimal solution search algorithms are presented: GAs, genetic programming,

evolutionary strategies, evolutionary programming, and differential evolution.

Particular attention is paid to the pivotal issues of GAs, such as the real-coded GAs

and the optimal selection of initial population and genetic operators.

Part III of the book, made up of Chapters 6 through to 9, presents the various

combinations of basic computational technologies that work in a cooperative way

in implementing the hybrid computational structures that essentially extend the

application capabilities of computational intelligence through augmentation of

strong features of individual components and through joint contribution to the

improved performance of the overall system.

The combination of neuro and fuzzy logic technology, described in Chapter 6,

is the earliest experiment to generate hybrid neuro-fuzzy and fuzzy-neuro hybrid

computational technology. The motivation for this technology merging, which in

the mean time is used as a standard approach for building intelligent control

systems, is discussed and the examples of implemented systems presented. Two

major issues are pointed out: the training of typical neuro-fuzzy networks and their

application to modelling nonlinear dynamic systems. In order to demonstrate the

improved capability and performance of neuro-fuzzy systems, their comparisons

with backpropagation and radial basis function networks are presented. Finally,

forecasting examples are given from industrial practice, such as short-term

forecasting of electrical load, prediction of materials properties, correction of

xiv Preface

pyrometer readings, tool wear monitoring, as well as the examples on modelling

and prediction of Wang data and on prediction of chaotic time series.

The subjects of the succeeding Chapter 7 are two most important, but very

often neglected, and recently increasingly considered issues of model transparency

and the interpretability of data-driven automated fuzzy models. Here, strong

emphasis is placed on making the reader familiar with the compact and transparent

modelling schemes that include the model structure selection, data clustering,

similarity-based simplification, and model validation. In addition, the similarity-

based rule base simplification through removing irrelevant fuzzy sets, removing

redundant inputs, and the merging of rules are presented. In this chapter some

formal techniques are proposed for regaining the interpretability and transparency

of the generated fuzzy model, which helps in generating the “white-box-like”

model, unlike the black-box model generated by a neural network.

Chapter 8 covers the application of GAs and evolutionary programming in

evolution design of neural networks and fuzzy systems. This is a relatively new

application field of evolutionary computation that has, in the past decade, been the

subject of intensive research. The text of the chapter focuses on evolving the

optimal application-oriented network architecture and the optimal values of their

connection weights. Correspondingly, optimal selection of fuzzy rules and the

optimal shaping of membership function parameters are on the agenda when

evolving fuzzy logic systems.

Chapter 9, again, deals in a sense with the inverse problem, i.e. with the

problem of adaptation of GAs using fuzzy logic systems for optimal selection and

tuning of genetic operators, parameters, and fitness functions. In the chapter, the

probabilistic control of GA parameters and - in order to avoid the prematurity of

convergence - the adaptation of population size while executing of search process

is discussed. The chapter closes with the example of dynamically controlled GA

using a rule-based expert system with a fuzzy government module for tuning the

GA parameters.

Part IV of the book, consisting of Chapter 10, introduces the reader to some

more recently developed computationally intelligent technologies, like support

vector machines, wavelet and fractal networks, and gives a brief outline about the

development trends. In addition, the entropy and Kohonen networks-based fuzzy

clustering approaches are presented and their relevance to the time series

forecasting problem pointed out, for instance through the design of Takagi-Sugeno

fuzzy model. In the introductory part of the chapter the reasons for selecting the

above items of temporary computational intelligence are given. It is also indicated

that the well advanced bioinformatics, swarm engineering, multi-agent systems,

and fuzzy-logic-based data understanding are the constituents of future emerging

intelligent technologies.

Finally, we would like to thank Springer-Verlag, London, particularly the AIC

series editors, Professor M.A. Johnson and Professor M.J. Grimble, and Mr. Oliver

Jackson, Assistant Editor, Springer-Verlag, London, for their kind invitation to

write this book. Our special thanks also go to Mr. Oliver Jackson, for his cordial

cooperation in preparing and finalizing the shape of the book.

Bremen, March 2005 Ajoy K. Palit and Dobrivoje Popovic

Contents

Part I Introduction

1 Computational Intelligence: An Introduction .. 3
 1.1 Introduction .. 3
 1.2 Soft Computing... 3
 1.3 Probabilistic Reasoning .. 4
 1.4 Evolutionary Computation.. 6
 1.5 Computational Intelligence... 8
 1.6 Hybrid Computational Technology .. 9
 1.7 Application Areas ... 10
 1.8 Applications in Industry ... 11
 References .. 12

2 Traditional Problem Definition ... 17
 2.1 Introduction to Time Series Analysis ... 17
 2.2 Traditional Problem Definition... 18
 2.2.1 Characteristic Features .. 18
 2.2.1.1 Stationarity .. 18
 2.2.1.2 Linearity .. 20
 2.2.1.3 Trend.. 20
 2.2.1.4 Seasonality... 21
 2.2.1.5 Estimation and Elimination of Trend and
 Seasonality... 21
 2.3 Classification of Time Series.. 22
 2.3.1 Linear Time Series .. 23
 2.3.2 Nonlinear Time Series... 23
 2.3.3 Univariate Time Series.. 23
 2.3.4 Multivariate Time Series... 24
 2.3.5 Chaotic Time Series .. 24
 2.4 Time Series Analysis .. 25
 2.4.1 Objectives of Analysis .. 25

xvi Contents

 2.4.2 Time Series Modelling.. 26
 2.4.3 Time Series Models... 26
 2.5 Regressive Models.. 27
 2.5.1 Autoregression Model .. 27
 2.5.2 Moving-average Model .. 28
 2.5.3 ARMA Model ... 28
 2.5.4 ARIMA Model .. 29
 2.5.5 CARMAX Model.. 32
 2.5.6 Multivariate Time Series Model.. 33
 2.5.7 Linear Time Series Models ... 35
 2.5.8 Nonlinear Time Series Models.. 35
 2.5.9 Chaotic Time Series Models ... 36
 2.6 Time-domain Models.. 37
 2.6.1 Transfer-function Models.. 37
 2.6.2 State-space Models.. 38
 2.7 Frequency-domain Models ... 39
 2.8 Model Building... 42
 2.8.1 Model Identification.. 43
 2.8.2 Model Estimation .. 45
 2.8.3 Model Validation and Diagnostic Check 48
 2.9 Forecasting Methods... 49
 2.9.1 Some Forecasting Issues ... 50
 2.9.2 Forecasting Using Trend Analysis .. 51
 2.9.3 Forecasting Using Regression Approaches 51
 2.9.4 Forecasting Using the Box-Jenkins Method.............................. 53
 2.9.4.1 Forecasting Using an Autoregressive Model AR(p).... 53
 2.9.4.2 Forecasting Using a Moving-average Model MA(q)... 54
 2.9.4.3 Forecasting Using an ARMA Model 54
 2.9.4.4 Forecasting Using an ARIMA Model.......................... 56
 2.9.4.5 Forecasting Using an CARIMAX Model 57
 2.9.5 Forecasting Using Smoothing ... 57
 2.9.5.1 Forecasting Using a Simple Moving Average 57
 2.9.5.2 Forecasting Using Exponential Smoothing 58
 2.9.5.3 Forecasting Using Adaptive Smoothing 62
 2.9.5.4 Combined Forecast .. 64
 2.10 Application Examples... 66
 2.10.1 Forecasting Nonstationary Processes .. 66
 2.10.2 Quality Prediction of Crude Oil .. 67
 2.10.3 Production Monitoring and Failure Diagnosis 68
 2.10.4 Tool Wear Monitoring .. 68
 2.10.5 Minimum Variance Control .. 69
 2.10.6 General Predictive Control.. 71
 References .. 74
 Selected Reading .. 74

 Contents xvii

Part II Basic Intelligent Computational Technologies

3 Neural Networks Approach ... 79
 3.1 Introduction .. 79
 3.2 Basic Network Architecture.. 80
 3.3 Networks Used for Forecasting .. 84
 3.3.1 Multilayer Perceptron Networks ... 84
 3.3.2 Radial Basis Function Networks ... 85
 3.3.3 Recurrent Networks .. 87
 3.3.4 Counter Propagation Networks ... 92
 3.3.5 Probabilistic Neural Networks .. 94
 3.4 Network Training Methods... 95
 3.4.1 Accelerated Backpropagation Algorithm.................................. 99
 3.5 Forecasting Methodology ... 103
 3.5.1 Data Preparation for Forecasting... 104
 3.5.2 Determination of Network Architecture.................................. 106
 3.5.3 Network Training Strategy.. 112
 3.5.4 Training, Stopping and Evaluation.. 116
 3.6 Forecasting Using Neural Networks... 129
 3.6.1 Neural Networks versus Traditional Forecasting 129
 3.6.2 Combining Neural Networks and Traditional Approaches 131
 3.6.3 Nonlinear Combination of Forecasts Using Neural Networks 132
 3.6.4 Forecasting of Multivariate Time Series 136
 References .. 137
 Selected Reading .. 142

4 Fuzzy Logic Approach ... 143
 4.1 Introduction .. 143
 4.2 Fuzzy Sets and Membership Functions .. 144
 4.3 Fuzzy Logic Systems ... 146
 4.3.1 Mamdani Type of Fuzzy Logic Systems................................. 148
 4.3.2 Takagi-Sugeno Type of Fuzzy Logic Systems........................ 148
 4.3.3 Relational Fuzzy Logic System of Pedrycz............................. 149
 4.4 Inferencing the Fuzzy Logic System .. 150
 4.4.1 Inferencing a Mamdani-type Fuzzy Model 150
 4.4.2 Inferencing a Takagi-Sugeno-type Fuzzy Model 153
 4.4.3 Inferencing a (Pedrycz) Relational Fuzzy Model.................... 154
 4.5 Automated Generation of Fuzzy Rule Base.. 157
 4.5.1 The Rules Generation Algorithm .. 157
 4.5.2 Modifications Proposed for Automated Rules Generation...... 162
 4.5.3 Estimation of Takagi-Sugeno Rules’ Consequent
 Parameters ... 166
 4.6 Forecasting Time Series Using the Fuzzy Logic Approach.................. 169
 4.6.1 Forecasting Chaotic Time Series: An Example....................... 169
 4.7 Rules Generation by Clustering.. 173
 4.7.1 Fuzzy Clustering Algorithms for Rule Generation.................. 173
 4.7.1.1 Elements of Clustering Theory 174

xviii Contents

 4.7.1.2 Hard Partition .. 175
 4.7.1.3 Fuzzy Partition... 177
 4.7.2 Fuzzy c-means Clustering ... 178
 4.7.2.1 Fuzzy c-means Algorithm.. 179
 4.7.2.1.1 Parameters of Fuzzy c-means Algorithm.... 180
 4.7.3 Gustafson-Kessel Algorithm... 183
 4.7.3.1 Gustafson-Kessel Clustering Algorithm.................... 184
 4.7.3.1.1 Parameters of Gustafson-Kessel
 Algorithm.. 185
 4.7.3.1.2 Interpretation of Cluster Covariance
 Matrix ... 185
 4.7.4 Identification of Antecedent Parameters by Fuzzy
 Clustering .. 185
 4.7.5 Modelling of a Nonlinear Plant ... 187
 4.8 Fuzzy Model as Nonlinear Forecasts Combiner 190
 4.9 Concluding Remarks .. 193
 References .. 193

5 Evolutionary Computation .. 195
 5.1 Introduction .. 195
 5.1.1 The Mechanisms of Evolution .. 196
 5.1.2 Evolutionary Algorithms... 196
 5.2 Genetic Algorithms... 197
 5.2.1 Genetic Operators.. 198
 5.2.1.1 Selection .. 199
 5.2.1.2 Reproduction ... 199
 5.2.1.3 Mutation .. 199
 5.2.1.4 Crossover ... 201
 5.2.2 Auxiliary Genetic Operators ... 201
 5.2.2.1 Fitness Windowing or Scaling................................... 201
 5.2.3 Real-coded Genetic Algorithms .. 203
 5.2.3.1 Real Genetic Operators.. 204
 5.2.3.1.1 Selection Function 204
 5.2.3.1.2 Crossover Operators for Real-coded
 Genetic Algorithms..................................... 205
 5.2.3.1.3 Mutation Operators 205
 5.2.4 Forecasting Examples ... 206
 5.3 Genetic Programming... 209
 5.3.1 Initialization .. 210
 5.3.2 Execution of Algorithm... 211
 5.3.3 Fitness Measure... 211
 5.3.4 Improved Genetic Versions... 211
 5.3.5 Applications .. 212
 5.4 Evolutionary Strategies... 212
 5.4.1 Applications to Real-world Problems 213
 5.5 Evolutionary Programming .. 214
 5.5.1 Evolutionary Programming Mechanism 215

 Contents xix

 5.6 Differential Evolution 215
 5.6.1 First Variant of Differential Evolution (DE1) 216
 5.6.2 Second Variant of Differential Evolution (DE2)..................... 218
 References .. 218

Part III Hybrid Computational Technologies

6 Neuro-fuzzy Approach ... 223
 6.1 Motivation for Technology Merging .. 223
 6.2 Neuro-fuzzy Modelling .. 224
 6.2.1 Fuzzy Neurons .. 227
 6.2.1.1 AND Fuzzy Neuron... 228
 6.2.1.2 OR Fuzzy Neuron.. 229
 6.3 Neuro-fuzzy System Selection for Forecasting 230
 6.4 Takagi-Sugeno-type Neuro-fuzzy Network.. 232
 6.4.1 Neural Network Representation of Fuzzy Logic Systems....... 233
 6.4.2 Training Algorithm for Neuro-fuzzy Network........................ 234
 6.4.2.1 Backpropagation Training of Takagi-Sugeno-type
 Neuro-fuzzy Network .. 234
 6.4.2.2 Improved Backpropagation Training Algorithm 238
 6.4.2.3 Levenberg-Marquardt Training Algorithm................ 239
 6.4.2.3.1 Computation of Jacobian Matrix 241
 6.4.2.4 Adaptive Learning Rate and Oscillation Control 246

 6.5 Comparison of Radial Basis Function Network and
 Neuro-fuzzy Network .. 247
 6.6 Comparison of Neural Network and Neuro-fuzzy Network Training .. 248
 6.7 Modelling and Identification of Nonlinear Dynamics 249
 6.7.1 Short-term Forecasting of Electrical load 249
 6.7.2 Prediction of Chaotic Time Series... 253
 6.7.3 Modelling and Prediction of Wang Data................................. 258
 6.8 Other Engineering Application Examples .. 264
 6.8.1 Application of Neuro-fuzzy Modelling to
 Materials Property Prediction ... 265
 6.8.1.1 Property Prediction for C-Mn Steels 266
 6.8.1.2 Property Prediction for C-Mn-Nb Steels 266
 6.8.2 Correction of Pyrometer Reading ... 266
 6.8.3 Application for Tool Wear Monitoring 268
 6.9 Concluding Remarks .. 270
 References .. 271

7 Transparent Fuzzy/Neuro-fuzzy Modelling .. 275
 7.1 Introduction ... 275
 7.2 Model Transparency and Compactness .. 276
 7.3 Fuzzy Modelling with Enhanced Transparency.................................... 277
 7.3.1 Redundancy in Numerical Data-driven Modelling 277

xx Contents

 7.3.2 Compact and Transparent Modelling Scheme 279
 7.4 Similarity Between Fuzzy Sets ... 281
 7.4.1 Similarity Measure .. 282
 7.4.2 Similarity-based Rule Base Simplification 282
 7.5 Simplification of Rule Base.. 285
 7.5.1 Merging Similar Fuzzy Sets.. 287
 7.5.2 Removing Irrelevant Fuzzy Sets ... 289
 7.5.3 Removing Redundant Inputs... 290
 7.5.4 Merging Rules .. 290
 7.6 Rule Base Simplification Algorithms .. 291
 7.6.1 Iterative Merging... 292
 7.6.2 Similarity Relations... 294
 7.7 Model Competitive Issues: Accuracy versus Complexity 296
 7.8 Application Examples... 299
 7.9 Concluding Remarks .. 302
 References .. 302

8 Evolving Neural and Fuzzy Systems ... 305
 8.1 Introduction .. 305
 8.1.1 Evolving Neural Networks.. 305
 8.1.1.1 Evolving Connection Weights 306
 8.1.1.2 Evolving the Network Architecture 309
 8.1.1.3 Evolving the Pure Network Architecture................... 310
 8.1.1.4 Evolving Complete Network 311
 8.1.1.5 Evolving the Activation Function.............................. 312
 8.1.1.6 Application Examples.. 313
 8.1.2 Evolving Fuzzy Logic Systems... 313
 References .. 317

9 Adaptive Genetic Algorithms... 321
 9.1 Introduction .. 321
 9.2 Genetic Algorithm Parameters to Be Adapted...................................... 322
 9.3 Probabilistic Control of Genetic Algorithm Parameters 323
 9.4 Adaptation of Population Size .. 327
 9.5 Fuzzy-logic-controlled Genetic Algorithms ... 329
 9.6 Concluding Remarks .. 330
 References .. 330

Part IV Recent Developments

10 State of the Art and Development Trends .. 335
 10.1 Introduction .. 335
 10.2 Support Vector Machines ... 337
 10.2.1 Data-dependent Representation... 342
 10.2.2 Machine Implementation... 343
 10.2.3 Applications .. 344

 Contents xxi

 10.3 Wavelet Networks .. 345
 10.3.1 Wavelet Theory... 345
 10.3.2 Wavelet Neural Networks ... 346
 10.3.3 Applications .. 349
 10.4 Fractally Configured Neural Networks... 350
 10.5 Fuzzy Clustering... 352
 10.5.1 Fuzzy Clustering Using Kohonen Networks........................... 353
 10.5.2 Entropy-based Fuzzy Clustering ... 355
 10.5.2.1 Entropy Measure for Cluster Estimation 356
 10.5.2.1 The Entropy Measure 356
 10.5.2.2 Fuzzy Clustering Based on Entropy Measure............ 358
 10.5.2.3 Fuzzy Model Identification Using
 Entropy-based Fuzzy Clustering................................ 359
 References .. 360

Index .. 363

Part I

Introduction

1

Computational Intelligence: An Introduction

1.1 Introduction

Within the artificial intelligence society the term computational intelligence is
largely understood as a collection of intelligent computational methodologies, such
as fuzzy-logic-based computing, neurocomputing, and evolutionary computing,
that help in solving complex computational problems in science and technology,
not solvable or at least not easily solvable by using the conventional mathematical
methods.

1.2 Soft Computing

The research activity in the area of combined application of intelligent computing
technologies was initiated by Zadeh (1994), who has coined the term soft
computing, which he defined as a “collection of methodologies that aim to exploit
the tolerance for imprecision and uncertainty to achieve tractability, robustness,
and low solution cost”. According to Zadeh, the principal constituents of soft
computing are fuzzy logic, neurocomputing, and probabilistic reasoning.

The reason for the need of soft computing was, in Zadeh’s opinion, that we live
in a pervasively imprecise and uncertain world and that precision and certainty
carry a cost. Therefore, soft computing should be seen as a partnership of distinct
methods, rather than as a homogeneous body of concepts and techniques.

Initially, as the main partnership members of soft computing, also called its
principal constituents, the following technologies have been seen:

fuzzy logic, which has to deal with the imprecisions in computing and to
perform the approximate reasoning
neurocomputing, which is required for learning and recognition purposes
probabilistic reasoning, which is needed for dealing with the uncertainty
and belief propagation phenomena

4 Computational Intelligence in Time Series Forecasting

Later, the initial partnership group was extended by adding

evolutionary computation

belief theory

learning theory.

Fuzzy logic, which is the most important part of soft computing, bridges the gap
between the quantitative information (i.e. the numerical data) and the qualitative
information (or the linguistic statements), which can be jointly processed using
fuzzy computing. In addition, fuzzy logic operates with the concept of IF-THEN
rules in which the antecedents and the consequents are expressed using linguistic
variables. Neural networks, for their part, have the capability of extracting
knowledge from available data, i.e. the capability of learning from examples,
which fuzzy logic systems do not have. This capability is known as the
connectionist learning paradigm.

The process of learning can take place in supervisory mode (when the
backpropagation networks are used) or in unsupervised mode (when the recurrent

networks/Kohonen networks are used). This is due to the computing neuron or
the perceptron (Rosenblatt, 1962), the theoretical background of which was
worked out by Minsky and Papert (1969). It is the multi-layer perceptron
configuration that is capable of emulating human brain behaviour in learning and
cognition. The learning capability of multi-layer perceptrons, as proposed by
Werbos (1974), should be obtained through a process of adaptive training on
examples.

Dubois and Prade (1998) remarked that soft computing, because it was a
collection of various technologies and methodologies with distinct foundations and
distinct scopes, “lumped together” although each of the components has little in
common with the other, could not form a scientific discipline in the traditional
sense of the term. Therefore, they understand the term soft computing more as a
“fashionable name with little actual contents”. This is in fact a hard judgement, in
view of the fact that in the meantime various combinations of the constituent
technologies have been used to build hybrid computational systems, such as neuro-

fuzzy systems, fuzzy-neuro systems, evolutionary neural networks, adaptive

evolutionary systems, and others, that were extensively documented by Bonissone
(1997 and 1999). This issue is the main subject of Part 3 of this book, where it will
be shown that the individual components of soft computing are not mutually

competitive, but rather are complementary and co-operative. Jang et al. (1997)
considered soft computing from the neuro-fuzzy point of view, rather than from the
fuzzy set theory only, and pointed out that the neuro-fuzzy approach is to be seen
as a technological revolution in modelling and control of dynamic systems, taking
the adaptive network-based fuzzy inference system (ANFIS) as an example.

1.3 Probabilistic Reasoning

As the third principal constituent of soft computing, probabilistic reasoning is a
tool for evaluating the outcome of computations affected by randomness and

 Computational Intelligence: An Introduction 5

probabilistic uncertainties. To name a few, Bayesian belief networks and
Dempster–Shafer theory belong to this kind of reasoning approach.

At this point a few words of clarification concerning the similarity between the
terms probability and fuzziness could be of use, because it is still controversial.
The reason is that probability theory as a formal framework for reasoning about
uncertainty was “there earlier” than fuzzy reasoning, so that some doubts have
been raised about the fuzzy reasoning: Is it really something new or only a clever
disguise for probability? Bezdek (1992b) denied this. Zadeh (1995) has even seen
probability and fuzzy logic as being complementary, rather than as competitive
approaches. In the meantime, this is actually accepted consensusly within the soft
computing community.

Probabilistic reasoning deals with the evaluation of the outcomes of systems
that are subjects of probabilistic uncertainty. The reasoning helps in evaluating the
relative certainty of occurrence of true or false values in random processes. It relies
on sets described by means of some probability distributions. Therefore,
probabilistic reasoning represents the possible worlds that are the solutions of an
approximate reasoning problem and thus being consistent with the existing
information and knowledge (Ruspini, 1996). Probabilistic reasoning methods are
primarily interested in the likelihood, in the sense of whether a given hypothesis
will be true under given circumstances.

Zadeh (1979) extended the reasoning component of soft computing by
introducing the concepts of

fuzzy reasoning

possibilistic reasoning

which belong to the approximated reasoning. According to Zadeh, approximate
reasoning is the reasoning about imprecise propositions, such as the chains of

inferences in fuzzy logic. Similarly, the predicate logic deals with precise

propositions. Therefore, approximate reasoning can be seen as an extension of the
traditional propositional calculus operating with the incomplete truth.

Fuzzy reasoning, with roots in fuzzy set theory, deals with the fuzzy

knowledge as imprecise knowledge. Unlike the probabilistic reasoning, fuzzy
reasoning deals with vagueness rather than with randomness. Fuzzy reasoning is
thus an approximate reasoning (Zadeh, 1979), in the sense that it is neither exact
nor absolutely inexact, but only to a certain degree exact or inexact. Fuzzy
reasoning schemes operate on chains of inferences in fuzzy logic, in a similar way
to predicate logic reasons with precise propositions. That is why approximate
reasoning is understood as an extension of traditional prepositional calculus
dealing with uncertain or imprecise information, primarily with the elements of
fuzzy sets, where an element belongs to a specific set only to some extent of
certainty. The inference by reasoning with such uncertain facts produces new facts,
with the degree of certainty corresponding to the original facts.

Possibilistic reasoning, which also roots in fuzzy set theory (Zadeh, 1965), as
an alternative theory to bivalent logic and the traditional theory of probability,
tends to describe possible worlds in terms of their similarity to other sets of
possible worlds and produces estimates that should be valid in each given case and

6 Computational Intelligence in Time Series Forecasting

under all circumstances. Possibilistic reasoning produces solutions to the problems
that bear the indication that the determination of validity is an impossible task.

Possibility theory is closely related to evidence theory and the theory of belief.
It deals with events relying on uncertain information, such as fuzzy sets are, and it
is a complementary alternative to the traditional probability theory. Therefore, the
membership functions of a fuzzy set, which represent imprecise information, are to
be considered as possibility distributions (Zadeh, 1978).

The issue of the relationship between fuzziness and probability was for many
years on the agenda. Kosko (1990) considers that probability arose from the
question of whether or not an event occurs, in the sense that the probability that an
event at a certain time occurs or does not occur is the certainty. Similarly, the
probability that a possible event at a certain time occurs and does not occur is
impossible. Fuzziness measures the degree to which an event occurs, but not
whether it occurs. Therefore, fuzzy probability extends the classical concept of
probability, admitting the outcomes to belong at the same time to several event
classes to different degrees (Dubois and Prade, 1993).

1.4 Evolutionary Computation

Evolutionary computation, which was later adjoined to the methodologies of soft
computing as their new constituent, is a computational technology made up of a
collection of randomized global search paradigms for finding the optimal
solutions to a given problem. The term evolutionary is borrowed from the
terminology introduced by Charles Darwin (1859), describing the process of
adaptation of survival capabilities through natural selection, fitness improvement
of individual species, etc. To achieve this, evolutionary computation tries to model
the natural evolution process for a successful survival battle, where reproduction
and fitness play predominant roles. Being an evolutionary process, it is essentially
based on the genetic material of offspring inherited from the parents. Therefore, if
this material is of bad quality then the offspring can not win the battle of survival.

The evolutionary process considers the population of individuals represented
by chromosomes, each chromosome bearing its characteristics called genes. The
genes are assigned their individual values. Through the process of crossover the
offspring are generated by combining the gene values of their parents. During the
combination, the genes can undergo a (low probability) mutation process
consisting of random changes of gene value in a chromosome, in order to insert
fresh genetic material into the chromosomes. Finally, the winner will be the
offspring with the highest value of fitness, i.e. with the best characteristics
inherited from the parents.

However, the evolutionary computation algorithms used in practice are not
strictly confined to the natural evolutionary process described above. In the
meantime, various evolutionary algorithms and their modifications are found. But
still, the following variants are only considered as basic evolutionary algorithms:

genetic algorithms, which model genetic evolutionary processes in a
generation of individuals

 Computational Intelligence: An Introduction 7

genetic programming, which is an extension of genetic algorithms to the
population in which the individuals are themselves computer programs
evolutionary strategies, which deal with “evolution of evolution” by
modelling the strategic parameters that control variations in evolutionary
process
evolutionary programming, which models adaptive evolutionary
phenomena

It is interesting to note that the algorithms of evolutionary computation listed
above, although being structurally similar, have still been quite independently
developed by different researchers without any contact between them.

Genetic algorithms, the first evolutionary algorithms, have been widely studied
across the world and predominantly used for optimum random search. The basic
version of genetic algorithm, originally proposed by Holland (1975), models the
genetic evolution of a population of individuals represented by strings of binary
digits. Based on this model, genetic evolution is simulated using the operations of
selection, crossover, and mutation and monitoring and controlling the simulation
performance using the fitness function.

Genetic programming, developed by Koza (1992), extends the original version
of genetic algorithms to the space of programs by representing the evolving
individuals through individual programs to be evolved. While evolving the
programs, genetic programming for each generation qualifies their fitnesses by
measuring the performances. The qualifying one is used to find out the programs
that at least approximately solve the problem at hand.

Evolutionary strategies have been formulated by Rechenberg (1973) for the
direct solving of the engineering optimization problems. This is performed by
emulation of the evolutionary process of self-optimization of biological systems in
the given environments. It is similar to the case in biological evolutionary
processes. Schwefel (1975) extended the concept of initially formulated
evolutionary strategies and developed the evolution of evolution strategy. In the
latter, the individuals are represented by genetic building blocks and by a set of
parameters related to the strategy and these are used to determine the behaviour of
individuals in the given environment. The strategic parameters are simultaneously
evolved while evolving the genetic characteristics of individuals. During the
evolutionary process, the mutation operator is strictly permitted only if it directly
improves the fitness value.

Evolutionary programming was introduced by Fogel et al. (1975) using the
concept of finite-state automata. In contrast to genetic algorithms, the algorithm
deals with the development of adequate behavioural models, rather than of genetic

models. Evolutionary programming was developed to simulate the adaptive
behaviour of some real-life phenomena and by selecting the set of optimal
behaviours using the fitness function as a measure of success. The substantial
operative difference to genetic algorithms is that evolutionary programming does
not use the crossover operator.

8 Computational Intelligence in Time Series Forecasting

1.5 Computational Intelligence

According to the published sources, the term computational intelligence was
coined and defined by Bezdek (1992a), in his attempt to study the relationship
between neural networks, pattern recognition, and intelligence. He stated that
computational intelligence deals with the numerical data provided by the sensors
and does not deal with knowledge. This is different from artificial intelligence,

which mainly deals with the non-numerical system knowledge.
Bezdek later attempted to classify the two kinds of intelligence, considering
artificial intelligence as a “mid-level computation in the style of the mind”,
whereas computational intelligence was the “the low-level computation in the style
of the mind”. However, this classification and the definitions of two types of
intelligence, viewed more or less from the aspect of pattern recognition and neural
networks, remained as more of a personal view of the author than a general
opinion.

A still different view on computational intelligence was presented by Poole et
al. (1998), who considered computational intelligence as the study of intelligent

agent design, i.e. capable of learning from experience and flexible to the changing
environments and to the changing goals.

However, a most decisive step in defining the nature of computational
intelligence was made during the 1994 IEEE World Congress of Computational
Intelligence (WCCI), which brought together the International Conferences on
Neural Networks, Fuzzy Systems, and Evolutionary Programming. On the eve of
the WCCI, Marks (1993), in his Editorial to IEEE Transactions of Neural
Networks entitled “Intelligence: Computational Versus Artificial,” pointed out that
“although seeking similar goals, computational intelligence has emerged as a
sovereign field whose research community is virtually distinct from artificial
intelligence”. This indicated that there are two alternative intelligent technologies,
the artificial and computational.

In the middle of the 1990s, some researchers advocated defining computational
intelligence using the adaptivity concept. Eberhard et al. (1995) pleaded for a
definition of computational intelligence as a methodology that exhibits the
capability of learning and that comprises practical adaptation concepts, paradigms,
algorithms, and implementations for facilitation of appropriate actions in complex
and changing environments. Similarly, Fogel (1995) suggested that the intelligent
technologies, i.e. neural, fuzzy, and evolutionary computation, brought together
under the generic term computational intelligence should be viewed as a new
research field holding the computational methodologies capable of adapting
solutions to new problems without relying on human knowledge. Bezdeck went a
step further and even viewed computational intelligence and adaptation as
synonyms.

To sum up, in the last decade or so, we have witnessed a parallel evolution of
two computational streams, soft computing and computational intelligence, both
based on methods and tools of artificial intelligence (Popovic and Bhatkar, 1994),
predominantly on neural networks, fuzzy logic, and evolutionary computation.
Nowadays, because both soft computing and computational intelligence have
integrated a large number of computational methodologies, it is difficult to draw a

 Computational Intelligence: An Introduction 9

clear distinction between them. Tettamanzi and Tomassini (2001) rather view the
scope of computational intelligence as the broader of the two methodologies,
because computational intelligence encompasses most various techniques for
describing and modelling of complex systems, which is not the case with the scope
of soft computing. This is in accordance with the view of Zadeh (1993, 1996,
1999), which defines computational intelligence as the combination of soft
computing and numerical processing. But still, Engelbrecht (2002) suggests
conceiving soft computing as an extension of computational intelligence in the
sense that the probabilistic methods are added to the paradigms of computational
intelligence.

In fact, the boundary of the disciplines associated with computational
intelligence are still not finally defined. They are still growing up to include new
emerging disciplines. For example, the agenda of the 2002 IEEE World Congress
on Computational Intelligence includes neuroinformatics and neurobiology as
new constituents. In the meantime, computational intelligence is viewed as a new-
generation artificial intelligence for human-like data and knowledge processing,
professionally known as High Machine Intelligence Quotient (HMIQ)
technology. Most recently, the convergence of the core computational technologies
- neural networks, fuzzy systems, and evolutionary computation - to a common
frontier has drawn strong attention from the computational intelligence society. A
related term was coined: autonomous mental development (Wenig, 2003).

1.6 Hybrid Computational Technology

In the 1990s we witnessed a new trend in computational intelligence. A growing
number of publications on its applications have been published reporting on
successful combination of intelligent computational technologies – neural, fuzzy,
and evolutionary computation – in solving advanced artificial intelligence
problems. The hybrid computational technology created in this way is rooted
mainly in integrating various computational algorithms in order to implement more
advanced algorithms required for solving more complex problems. For instance,
neural networks have been combined with fuzzy logic to result in neuro-fuzzy or
fuzzy-neuro systems in which:

Neural networks tune the parameters of the fuzzy logic systems, which are
used in building of adaptive fuzzy controllers, as implemented in the
Adaptive Network-Based Fuzzy Inference System (ANFIS) proposed by
Jang (1993).
Fuzzy logic systems monitor the performance of the neural network and
adapt its parameters optimally, for instance in order to achieve the
nonlinear mapping and/or the function approximation to any desired
accuracy (Wang, 1992).
Fuzzy logic is used to control the learning rate of neural networks to avoid
the creeping phenomenon in the network when approaching the solution
minimum (Arabshahi et al., 1992).

10 Computational Intelligence in Time Series Forecasting

Evolutionary algorithms have also been successfully used in combination with
fuzzy logic in improving heuristic rules and in manipulating optimally the genetic
parameters, particularly the crossover operator (Herrera and Lozano, 1994).

Neural networks, in combination with evolutionary algorithms, have profited in
optimal evolution of network topology and in finding the optimal values of
network weights directly, without network training (Maniezo, 1994). Finally,
evolutionary algorithms have also profited through combinations with the
traditional computing methods. For instance, in order to improve the efficiency and
the accuracy of evolutionary computing algorithms in locating the global
extremum, Renders and Bersini (1994) combined these algorithms with the
conventional search methods, such as the hill climbing method. Renders and Flasse
(1976) even simply integrated such a method in the crossover operator.

1.7 Application Areas

Computational intelligence and soft computing have proven to be very efficient
and valuable tools for solving numerous problems in science and engineering that
could not be solved using their individual constituents, i.e. neuro, fuzzy, or
evolutionary computing alone. Although their constituents are themselves capable
of solving problems that are difficult or even impossible to solve by traditional
computation methods, the synergetic effect of aggregation of two or more
constituents enlarges the number and the complexity of solvable problems. This
holds not only for the so-called academic problems, but also for real-life problems,
including the problems of industrial engineering. Moreover, application of soft
computing and computational intelligence has provided the appropriate means for
merging the vagueness (e.g. perceptions of human beings) and real-life uncertainty
with a relatively simplified computational program. This has made them capable of
participating in a variety of real-life applications in engineering and industry. For
instance, the application of soft computing in engineering covers most areas of data
handling, like:

intelligent signal processing, which includes time series analysis and
forecasting
data mining
multisensor data fusion, including intelligent pattern recognition and
interpretation, performance monitoring and fault diagnosis
systems engineering, to which belong system identification, system
modelling, advanced systems control
planning and design processes, like optimal path planning and engineering
design

Intelligent signal processing solves the problems of adaptive signal sampling,
analysis of sampled data, signal features extraction, etc. Of outstanding interest for
engineering, commerce, and management here is the forecasting of time series data
(Kim and Kim, 1997).

 Computational Intelligence: An Introduction 11

Data mining is a strategy for rapid collection, storage and processing of huge
amounts of data (Mitra and Mitra, 2002) in some particular application areas, such
as in production and financial engineering (Heider, 1996; Major and Riedinger,
1992), surgery (Blum, 1982), telecommunication networks (Pedrycz, Vasilakos,
and Karnouskos, 2003/2004), Internet (Etzioni, 1996), etc.

Multisensor data fusion, again, is an advanced area of signal processing that
deals with the simultaneous collection of multiple sensor values related to a
physical system or to any observable phenomenon. It is the most useful technique
for solving the problems of pattern recognition and pattern interpretation (Bloch,
1996). For instance, in analysis of remotely sensed satellite images the multisensor
image interpretation plays a crucial role. Here, the reflected radiation values from
different sensors build a feature vector, which subsequently undergoes the feature
extraction and classification process (Bloch, 1996). In engineering, multisensor
data fusion has been applied to solve the problems of systems performance
monitoring and the problems of fault diagnosis of rotating machinery based on
vibration measurements (Emmanouilidis et al., 1998). In addition, the multisensor
data fusion approach has been particularly applied in monitoring of operability of
individual sensors (Taniguchi and Dote, 2001). In recent years, on-line fault
detection and diagnosis of dynamic systems based on a reliable model of the
overall system behaviour under normal operating conditions have been the subjects
of research by the soft computing experts. Remarkable results have been reported
in this field of research by Akhimetiv and Dote, (1999).

In systems engineering, the application of soft computing encompasses the
activities that are essential for system study, optimal system design, and design of
adaptive system control concepts: identification and model building of dynamic
systems (Tzafestas, 1999; Zurada et al., 1994). Here, model building and parameter
estimation of dynamic systems are the initial steps in the generation of a
mathematical description of dynamic systems behaviour, based on experimental
data. The methodology of computational intelligence helps generally in
implementation of advanced neuro and fuzzy controllers and supports the evolving
of adaptive controllers.

Optimal path planning is a soft computing application area widely needed in
manufacturing, primarily in job-shop scheduling and rescheduling, in optimal
routing in very large-scale integration layouts, and in robotics for optimal path
planning of robots and manipulators.

As a systems designer’s tool, computational intelligence helps in styling the
circuit layout in microelectronics (Bosacci, 1997), optimal product shaping, etc.

1.8 Applications in Industry

In the industrial reality, there is a growing need for employing completed machine
and process automation, which includes not only the motion or process control, but
also their performance monitoring, diagnosis, and similar tasks. Owing to the
increasing complexity of the tasks, advanced intelligent computational tools, such
as soft computing and computational intelligence, are called upon to help in
handling the execution of the tasks efficiently. The application capabilities of both

12 Computational Intelligence in Time Series Forecasting

intelligent computational tools presented above guarantee their successful use in
solving the majority of high-complexity problems in the industrial world. This was
demonstrated on a number of examples published in the last decade.

The earliest use of fuzzy logic in the process industry was recorded in Japan,
where, in the late 1980s, fuzzy logic facilities capable of solving complex
nonlinear and uncertainty problems of a chemical reactor were used to replace the
skilled plant operator. Around the same time, neural networks were applied in
statistical analysis of huge sets of acquired sensor data by time series analysis and
forecasting. This application was later extended to include data mining for
managing very large amounts of more complex data using the methodologies of
soft computing based on pattern recognition and multisensor data fusion. This was
helpful in better understanding the process behaviour through analysis and
identification of essential process features hidden in data piles. In addition, it was
also possible to solve some accompanying problems related to plant monitoring
and diagnosis, product quality control, production monitoring and forecasting,
plant logistics and various services, etc.

In the iron and steel industry, enormous progress was made after introducing
intelligent computational approaches in process modelling, advanced process
control, production planning and scheduling, etc. For more than three decades the
steel producers have profited from advanced methods, starting with direct digital
control and finishing with the glorious distributed computer control systems
developed by systems and control engineers (Popovic and Bhatkar, 1990). With the
advent of intelligent computational technologies, fuzzy logic control, neural
networks-based modelling, intelligent sensing, evolutionary computing-based
optimization at various process and plant levels, etc. have been on the agenda
mainly because of high international competition in this industrial branch in
producing high quality product at the lowest production cost.

However, it was the electronic industry that has to the most remarkable extent
profited from the introduction of intelligent computational technology in chip
design and production processes.

Computational intelligence has also found wide application in manufacturing,
particularly in product design, production planning and scheduling, monitoring of
tool wear, manufacturing control and monitoring of automated assembly lines, and
product quality inspection (Dagli, 1994). The use of intelligent technologies in this
area was particularly accelerated after the discovery and massive applications of
the mechatronics approach in product development. This has also contributed to
extending the application field of intelligent technology to include rapid
prototyping, integration of smart sensors and actuators, design of internal
communication links oriented systems, etc. (Popovic and Vlacic, 1999).

References

[1] Akhimetiv DF and Dote Y (1999) Fuzzy system identification with general parameter
radial basis function neural network. In: Farinwata SS, Filev D, and Langari R (Eds)
Fuzzy control synthesis and analysis, Wiley, Chichester, UK, Ch. 4.

 Computational Intelligence: An Introduction 13

[2] Arabshahi P, Choi JJ, Marks RJ, and Caudell TP (1992) Fuzzy control of
backpropagation. In: IEEE Internat. Conf. on Fuzzy Systems, San Diego: 967-972.

[3] Bezdek JC (1992a) On the relationship between neural networks, pattern recognition
and intelligence. Int. J. Approximated Reasoning, 6: 85-102.

[4] Bezdek JC (1992b) Computing with uncertainty. IEEE Commu. Magaz., Sept: 24-36.
[5] Bloch I (1996) Information combination operators for data fusion: a comparative

review with classification. IEEE Trans. Syst. Man and Cybern. A26(1): 52-67.
[6] Blum RI. (1982) Discovery and representation of causal relationship from a large

time-oriented clinical database: The RX project, Lecture Notes in Medical
Informatics, vol. 19:23-36, Springer-Verlag, New York.

[7] Bonissone PP (1997) Soft computing: the convergence of merging reasoning
technologies. Soft Computing 1: 6-18.

[8] Bonissone PP, Chen YT, Goebel K, and Khedkar PS (1999) Hybrid soft computing
systems: industrial and commercial applications. Proc. of the IEEE 87(9): 1641-1667.

[9] Bosacci B (1997) On the role of soft computing in microelectronic industry. Soft
Computing 1: 57-60.

[10] Dagli CH (ed.) (1994) Artificial neural networks in intelligent manufacturing.
Chapman and Hall, London.

[11] Darwin C (1859) The origin of species. John Murray, London, UK.
[12] Dubois D and Prade H (1993) Fuzzy sets and probability: misunderstandings, bridges

and gaps. Proc. of the Second IEEE Inter. Conf. On Fuzzy Systems, 2: 1059-1068.
[13] Dubois D and Prade H (1998) Soft computing, fuzzy logic and artificial intelligence.

Soft Computing 2(1): 7-11.
[14] Eberhard R, Simpson P, and Dobbins R (1995) Computational intelligence PC tools.

Academic Press, Boston, USA.
[15] Emmanoulidis C, MacIntyre J, and Coxs C (1998) Neurofuzzy computing aided

machine fault diagnosis. Proc. of Joint Conf. on Information Sciences, 1:207-210.
[16] Engelbrecht AP (2002) Computational intelligence: an introduction, Wiley, NJ.
[17] Etzioni O (1996) The world-wide-web: Quagmire or goldmine? Communication,

ACM, 39:65-68.
[18] Fogel DB (1995) Review of computational intelligence: imitating life (Zurada JM,

Marks RJ, and Robinson CJ, Eds.) IEEE Trans. on Neural Networks, 6(6): 1562-1565.
[19] Fogel LLJ, Owens AJ, and Walsh (1966) Artificial intelligence through simulated

evolution. Wiley, New York.
[20] Heider R (1996) Troubleshooting CFM 56-3 engines for the Boeing 737 using CBR

and data-mining. LNCS, vol. 1168:512-523, Springer-Verlag, New York.
[21] Herrera F and Lozano M (1994) Adaptive genetic algorithm based on fuzzy

techniques. In: Proc. of IPMU ’96, Granada, Spain: 775-780.
[22] Holland JH (1975) Adaptation in natural and artificial Systems. The University of

Michigan Press, Ann Arbor, Michigan.
[23] Jang JSR (1993) ANFIS: Adaptive-network-based-fuzzy-inference system. IEEE

Trans. Syst. Man Cybern. 23(3):665-685.
[24] Jang J-SR, Sun C-T, and Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice

Hall, Upper Saddle River, NJ.
[25] Kim D and Kim Ch (1997) Forecasting time series with genetic fuzzy predictor

ensemble. IEEE Trans. on Fuzzy Systems, 5(4): 523-535.
[26] Kosko B (1990) Fuzziness versus probability. Int. J. General Syst. 17(2/3): 211-240.
[27] Koza JR (1992) Genetic programming. The MIT Press, Cambridge, MA.
[28] Major JA and Riedinger DR (1992) EFD- A hybrid knowledge statistical –based

system for the detection of fraud. Internat. J. Intelligent System, 7:687-703.
[29] Maniezzo V (1994) Genetic evolution of the topology and weight distribution of

neural networks. IEEE Trans. on Neural Networks 5(1): 39-53.

14 Computational Intelligence in Time Series Forecasting

[30] Marks RJ (1993) Intelligence: computational versus artificial. (Editorial) Trans. on
Neural Networks, 4(5): 737-739.

[31] Minsky ML and Papert S (1969) Perceptrons. MIT Press, Cambridge, MA.
[32] Mitra S and Mitra P (2002) Data mining in soft computing framework: a survey. IEEE

Trans. on Neural Networks, 13(1): 3-14.
[33] Pedrycz, Vasilakos, and Karnouskos (2003/2004) IEEE Trans. on Syst. Man and

Cybern., special issue on computational intelligence in telecommunication networks
and internet service. Pt.-I, 33 (3): 294-426; Pt.–II, 33(4): 429-501; Pt.-III, 34(1):1-96.

[34] Poole D, Mackworth, and Goebel R (1998) Computational intelligence: a logical
approach. Oxford University Approach, New York.

[35] Popovic D and Bhatkar VP (1990) Distributed computer control for industrial
automation. Marcel Dekker Inc., New York .

[36] Popovic D and Bhatkar VP (1994) Methods and tools for applied artificial
intelligence. Marcel Dekker Inc., New York.

[37] Popovic D. and Vlacic Lj (1999) Mechatronics in engineering design and product
development. Marcel Dekker Inc., New York.

[38] Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Fromman-Holzborg Verlag, Stuttgart.

[39] Renders YM and Bersini H (1994) Hybridizing genetic algorithms with hill climbing
methods for global optimization: two possible ways. 1st IEEE-CEC: 312-317.

[40] Renders YM and Flasse SP (1970) Hybrid methods using genetics algorithms for
global optimisation. IEEE Trans. Syst. Man Cyber., 26(2): 243-258).

[41] Rosenblatt F (1962) Principles of aerodynamics: perceptrons and the theory of brain
mechanics. Spartan Books, Washington D.C.

[42] Ruspini EH (1996) The semantics of Approximated reasoning. In: Fuzzy logic and
neural network handbook, Chen CH (Editor), McGraw-Hill, New York:5.1-5.28.

[43] Schwefel H-P (1975) Evolutionsstrategie und numerische optimierung. PhD Thesis,
Technical University Berlin.

[44] Taniguchi S and Dote Y (2001) Sensor fault detection for uninterruptible power
supply control systems using fast fuzzy network and immune network. Proc. of the
SMC 2001: 7-10.

[45] Tettamanzi A and Tomassini M. (2001) Soft computing: integrating evolutionary,
neural, and fuzzy systems. Springer-Verlag, Berlin.

[46] Tzafestas SG (1999) Soft computing in systems and control technology. World
Scientific Series in Robotics and Intelligent Systems, Vol. 18.

[47] Wang LX (1992) Fuzzy systems are universal approximators. Proc. Intl. Conf. on
Fuzzy Systems, San Francisco, CA: 1163-1172.

[48] Wenig J (2003) Autonomous mental development: A new frontier for computational
intelligence, IEEE Connections. Nov 2003: 8-13.

[49] Werbos P (1974) Beyond regression: new tools for prediction and analysis in the
behavioural science. PhD Thesis, Harvard University, Cambridge, MA.

[50] Zadeh LA (1965)Fuzzy sets. Information and Control, 8: 338-353.
[51] Zadeh LA (1979) A theory of approximate reasoning. In: Hayes P, Michie D, and

Mikulich I, eds. : Machine Intelligence, Halstead Press, New York: 149-194.
[52] Zadeh LA (1993) Fuzzy logic, neural networks, and soft computing. Proc. IEEE Int.

Workshop Neuro Fuzzy Control, Muroran, Japan: 1-3.
[53] Zadeh LA (1994) Soft computing and fuzzy logic. IEEE Software, Nov.: 48-58.
[54] Zadeh LA (1995) Probability theory and fuzzy logic are complementary rather than

competitive. Technometrics 37: 271-276.
[55] Zadeh LA (1996) The role of soft computing: An introduction to fuzzy logic in the

conception, design, and development of intelligent systems. Proc. IEEE Int.
Workshop Soft Computing in Industry, Muroran, Japan: 136-137.

 Computational Intelligence: An Introduction 15

[56] Zadeh LA (1998) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems 1: 3-28.

[57] Zadeh LA (1999) From computing with numbers to computing with perceptions.
Proc. IEEE Int. Workshop Soft Computing in Industry. Muroran, Japan: 221-222.

[58] Zurada JM, Marks RJ, Robinson CJ (1994) Review of computational intelligence:
imitating life. IEEE Press, New York.

2

Traditional Problem Definition

2.1 Introduction to Time Series Analysis

The importance of time series analysis and forecasting in science, engineering, and
business has, in the past, increased steadily and it is still of actual interest for
engineers and scientists. In process and production industry, of particular interest is
time series forecasting where, based on some collected data, the future data values
are predicted. This is important in process and production monitoring, in optimal
processes control, etc.

A time series is a time-ordered sequence of observation values of a physical or
financial variable made at equally spaced time intervals t, represented as a set of
discrete values 1 2 3, , , ...,x x x etc. In engineering practice, the sequence of values is

obtained from sensors by sampling the related continuous signals. Being based on
measured values and usually corrupted by noise, time series values generally
contain a deterministic signal component and a stochastic component representing
the noise interference that causes statistical fluctuations around the deterministic
values.

The analysis of a given time series is primarily aimed at studying it’s internal
structure (autocorrelation, trend, seasonality, etc.), to gain a better understanding of
the dynamic process by which the time series data are generated. In process
control, the predicted time series data values help in deciding about the subsequent
control actions to be taken.

The broad term of time series analysis encompasses activities like

definition, classification, and description of time series
model building using collected time series data
forecasting or prediction of future values.

For forecasting the future values of a time series a wide spectrum of methods is
available. From the system-theoretical point of view they can be

model-free, as used in exponential smoothing and regression analysis

18 Computational Intelligence in Time Series Forecasting

model-based, particularly used in modelling of time series data to capture
the feature of long-time behaviour of the underlying dynamic system.

In the following, various traditional approaches to time series classification,
modelling, and forecasting are considered and their application in engineering
demonstrated on practical examples taken from process and production industry
sectors. This should help in better understanding the modern approaches to time
series analysis and forecasting using the methods and tools of artificial intelligence
exposed in the chapters to follow. The items presented here should also serve as a
source of definitions and explanations of terms used in this field of data processing.
It will, however, be supposed that the time series, the model of which should be
built, are homogeneous, made up of uniformly sampled discrete data values.

2.2 Traditional Problem Definition

Traditionally, time series analysis is defined as a branch of statistics that generally
deals with the structural dependencies between the observation data of random
phenomena and the related parameters. The observed phenomena are indexed by
time as the only parameter; therefore, the name time series is used.

Basically, there are two approaches to time series analysis:

time domain approach, mainly based on the use of the covariance function
of the time series
frequency domain approach, based on spectral density function analysis
and Fourier analysis.

Both approaches are appropriate for application to a wide range of disciplines, but
the time domain approach is mostly used in engineering practice. This is
particularly due to the availability of the Box-Jenkins approach to time series
analysis, which is primarily concerned with the linear modelling of stationary
phenomena. However, Box and Jenkins have pointed out that their approach is also
applicable to the analysis of nonstationary time series, after their differencings
(trend removal).

2.2.1 Characteristic Features

The major characteristic features of time series are the stationarity, linearity,
trend, and seasonality. Although a time series can exhibit one or more of these
features, for presentation, analysis, and prediction of time series values each
feature is rather treated separately.

2.2.1.1 Stationarity
This property of a random process is related to the mean value and variance of
observation data, both of which should be constant over time, and the covariance
between the observations xt and xt-d should only depend on the distance between
the two observations and does not change over time, i.e. the following relationships
should hold:

 Traditional Problem Definition 19

{ }tE x , t = 1, 2, …

2
0Var() {() }t tx E x , t = 1, 2, …

 Cov(,) {()()}t t d t t d dx x E x x ,

with t = 1, 2, …, d = ..., -2, -1, 0, 1, 2, ..., and where , 0 , and d are some

finite-value constants.
In statistical terms, a time series is stationary when the underlying stochastic

process is in a particular state of statistical equilibrium, i.e. when the joint
distributions of X(t) and X(t-) depend only on but not on t. Consequently, the
stationary model of a time series can be easily built if the process (or the dynamics
generating the time series) remains in the equilibrium state for all times around a
constant mean level.

It is difficult to verify whether a given time series meets the three stationarity
conditions formulated above simultaneously. In earlier practice, the stationarity of
a time series was roughly checked by inspection of the time series pattern. A given
time series was recognized as stationary when it is represented by a flat-looking
pattern, with no trend or seasonality, and with time-invariant variance and
autocorrelation structure. When the time series model is available, the stationarity
of the process generating the time series observation values can be easily checked.
For instance, for the first-order autoregressive process

1t t tx x

the stationarity condition requires that the condition

1Var() Var()t tx x

or the equality

2 2
1 2{[] } {[(1)] }t tE x t E x t

holds. Therefore, because of mutual independence of t and tx , the equality

2
1Var() Var() Var()t t tx x

follows, and finally the equality

2 2
0 0 , < < 1

where 0 does not depend on time t.

20 Computational Intelligence in Time Series Forecasting

Although for the majority of time series used in practice the stationarity is a
common assumption, forecasting of nonstationary time series is still of
considerable importance. For instance, in engineering, business, and economics the
collected observation data are better represented through nonstationary time series.
Also, nonstationary time series can be transformed into the equivalent stationary
time series by taking the differences between the successive data values along the
time series pattern, i.e. by simple or multiple differencing the given time series
data. This approach is generally recommended, because some stationary looking
time series can still be nonstationary. To resolve the stationarity problem
experimentally, the time series should first be partitioned into two or more “long
enough” segments that are apparently stationary, then the autocorrelation and
spectrum properties of each segment are checked and the results compared.

2.2.1.2 Linearity
Linearity of a time series indicates that the shape of the time series depends on it’s
state, so that the current state determines the local time series pattern. If a time
series is linear, then it can be represented by a linear function of the present value
and the past values. Example of linear representations are the AR, MA, ARMA,
and ARIMA models (see Section 2.5), based on autoregression and/or on a moving
average technique. Nonlinear time series can be represented by the corresponding
nonlinear or bilinear models.

Time series represented by the linear model

t i t i
i

X Z ,

generally describe a linear process, where i is a set of constants that satisfies the

condition

i
i

,

and tZ is white noise with a zero mean value and variance 2.

The multivariable form of a linear process is statistically defined by the relation

t i t i
i

X C Z ,

where iC represents a series of n n matrices with the absolutely summable

elements, and tZ is the white noise with zero mean value and covariance matrix

.

2.2.1.3 Trend
The trend component of a time series is its long-term feature that is manifested
through the local or global increase or decrease of data values as a consequence of

 Traditional Problem Definition 21

superposition of true time series values and a disturbance with upward or
downward trend. The presence of a disturbing component is detectable by pursuing
the changes in the mean values in certain successive time intervals across the time
series pattern.

Trend analysis is important in time series forecasting. In practice, it is
accomplished using linear and nonlinear regression technique that satisfactorily
helps in identifying non-monotonous trend component in the time series. For
instance, for identifying the character of the trend present in a time series, the
linear, exponential, or polynomial relation

2

exp()
t t

t t

t t

x t

x t

x t t

is used for fitting the collected data.

2.2.1.4 Seasonality
The seasonality component of a time series is demonstrated through its periodically
fluctuating pattern. This feature is more common in economic time series and in
time series in which the observations are taken from real life, where the pattern
may repeat hourly, daily, weekly, monthly, yearly, etc. Thus, the main objective of
seasonal time series analysis is focused on the detection of the character of its
periodical fluctuations and on their interpretation. In engineering, seasonal time
series are found in the problems of power, gas, water, and other distribution
systems, where the prediction of consumer demands represents the basic problem.

2.2.1.5 Estimation and Elimination of Trend and Seasonality
When two or more time series with different features are superimposed, or when a
time series is superimposed by trend and/or seasonality component, decomposition
analysis is needed to discriminate and separate individual components involved.
More frequently, decomposition analysis is used for de-trending and de-
seasonalizing the time series data. A classical decomposition example is complex
decomposition, where a time series could be made up of various components, such
as trend, random, seasonal, and cycling components. In this context, the seasonal
component S(t) is viewed as a periodic component with a fixed cycling period
corresponding to the individual seasons. In practice, it is convenient to combine the
trend and the cyclical components into a trend-cycle component TC(t), so that the
observed resulting value of the time series X at time t can be written as

X(t) = S(t) + R(t) + TC(t),

where R(t) is the random component. This is the additive representation model of a
multi-component time series. The corresponding multiplicative representation
model is

22 Computational Intelligence in Time Series Forecasting

Time series
data Data

Smoothing
Ratio

Building
Regression

Methods

Trend
Removal

Seasonal
Removal

Cycling
Removal

T, S, R, C

 () () () ()X t S t R t TC t .

Both models are useful because, in some real-life cases, time series made up of
values collected in trade or in commerce, the seasonal and trend-cycle components
can add their values to the main component or to multiply them as interrelated
factors.

Anyhow, to make a proper forecast when a multi-component time series is
given, it must first be identified to what extent the individual components are
present in the time series data. This needs the decomposition of time series data to
identify and extract the partial data superimposed to the main time series data. The
time series decomposition process can be presented as shown in Figure 2.1.

Figure 2.1. Time series decomposition process

For solving the decomposition problem, two methods have been mostly used.

Census I method, to eliminate the variability within the individual seasons.
This uses the moving average windows for calculating the average time
series values within the windows. The windows have a width equal to the
length of the season. This enables the removal of both the seasonal and
random components. Depending on the representation model used,
moving-average values are subtracted from the time series values (when an
additive model is used) or the time series values are divided by the moving
average values (when the multiplicative model is used). In the first case the
seasonal component is calculated as the average value.
Census II method, an extended and improved Census I method. This is
predominantly used in financial engineering, trading, and econometrics. It
also relies on additive and multiplicative representation models, but it is
very data-table oriented.

2.3 Classification of Time Series

Depending on the character of data that they carry, the time series could be

stationary and nonstationary
seasonal and non-seasonal
linear and nonlinear
univariate and multivariate

 Traditional Problem Definition 23

chaotic.

Time series encountered in practice can have two or more of the properties listed
above. For instance, linear time series can be stationary, seasonal, and can have the
trend component incorporated. In the following we will mainly focus on linear,
nonlinear, univariate, multivariate, and chaotic time series.

2.3.1 Linear Time Series

Linear time series are generated through observation of linear processes,
mathematically defined by linear models of the form

() ()j
j

y t x t j ,

where the coefficients are subjected to the restriction

i
i

Linear time series could be generated by second-order stationary processes that
are generally linear processes or they can be transformed to linear processes using
World’s decomposition (Brockwell and Davis, 2002) technique for elimination of
its deterministic component.

2.3.2 Nonlinear Time Series

Many time series in engineering and macroeconometrics require nonlinear
modelling (see Section 2.5.8). Some of them are represented as bilinear time
series, modeled as

1 1 1 1

p q r s

t t i t i j t j ij t i t j
i j i j

x z a x b z c x z .

2.3.3 Univariate Time Series

The term univariate time series refers to time series obtained by sampling a single
observation pattern, for instance the values of a single physical variable or of a
single time-dependent signal at equal time intervals. Thus, in univariate time series
the time is an implicit variable that is usually replaced by an index variable. If the
data sampling is equispaced then the index variable can be omitted.

Time series presented here in the majority of cases are univariate time series. In
the case where a univariate time series can be exactly represented by a
mathematical model, the time series is said to be deterministic. Otherwise, if the

24 Computational Intelligence in Time Series Forecasting

time series can only be represented in terms of a probability distribution function,
then the time series is said to be non-deterministic or stochastic.

2.3.4 Multivariate Time Series

Multivariate time series are generated by simultaneous observation of two or more
processes. The observation values collected are represented here as vector values.
These kinds of observation are very common in engineering, where two or more
physical variables (temperature, pressure, flow, etc.) have to be simultaneously
sampled for building the model of a dynamic system.

Multivariate time series are best understood as being a set of simultaneously
built time series, the value of each series – apart from their internal dependency
within the series itself – also have an interdependency with the values of other
component series. Multivariate analysis, a branch of mathematical statistics
qualified for processing of multidimensional sampled data, is used for their
processing (Dillon and Goldstein, 1985; Johnson and Wichern, 1988).

2.3.5 Chaotic Time Series

Random components of a time series mainly fall into one of two categories:

They are truly random, i.e. the observations are drawn from the underlying
probability distribution characterized by a statistical distribution function or
by statistical moments of data, such as mean, variance, skew, etc.
They are chaotic, characterized by values that appear to be randomly
distributed and non-periodic, but are actually resulting from a completely
deterministic process.

The main feature of chaotic time series is that they have no definite periodicity, i.e.
they can be represented by the values that may be randomly repeated several times
without maintaining any definite periodicity. A typical example of a chaotic signal
generator is the nonlinear dynamic oscillating system

22 2 0.5x d x dx dtd t ,

which is sensitive to its initial conditions. This can be presented geometrically by
the trajectory of the system in the phase plane, in which the trajectory of non-
dissipative systems make up a set of nested closed curves, whereas those of
dissipative nonlinear systems for all initial conditions lead to trajectories that
either lie on a single surface or converge to individual points in phase space. The
set of surfaces and points in the phase space to which all trajectories of the system
converge is called the attractor of the system. The attractors of a chaotic system
can have a non-integral, i.e. fractal, dimensions and are called strange attractors.
Such attractors are very important for forecasting of chaotic time series.

 Traditional Problem Definition 25

2.4 Time Series Analysis

Time series analysis deals with the problems of identification of basic
characteristic features of time series, as well as with discovering - from the
observation data on which the time series is built - the internal time series
structure.

2.4.1 Objectives of Analysis

The main objectives of time series analysis are

building of input-output models that represent the equivalent transfer
functions of processes behind the time series
forecasting the future time series values from the past values using the
models developed
control systems design, based on the result of analysis.

Depending on the origin of the observation data, forecasting of future values of
time series can also provide support in efficient process and production monitoring
and failure diagnosis, in product quality inspection, etc., using the time-domain or
frequency-domain approach.

Once the time series model has been developed and tested it can be used for
forecasting the future time series values at various time distances d. Of course, the
forecasting does not deliver the exact future values of data that the given time
series will really have, but rather their estimates. For example, using the auto-
regressive model

1 1 2 2t t t tx x x

based on a one-step movement along the time series

1 1 2 1 1t t t tx x x ,

we can formally write the predicted value to be

1 1 2 1ˆt t tx x x .

For the two-steps ahead prediction, based on a two-steps movement along the
time series, we can also formally write

2 1 1 2 2 ,t t t tx x x

or

2 1 1 2 1 1 2 2() ,t t t t t tx x x x

26 Computational Intelligence in Time Series Forecasting

and the predicted value to be

2 1 1 2ˆ ˆt t tx x x

or

2 1 1 2 1 2ˆ () .t t t tx x x x

2.4.2 Time Series Modelling

In engineering, modelling of dynamic phenomena has long been seen as a valuable
support tool for winning a deep insight into the structure and behaviour of dynamic
systems. Much research and development efforts have been made in development
and application of system models. In control engineering, system models have
been widely used for design and implementation of advanced control strategies,
such as adaptive, predictive, and self-tuning control. In business and financial
engineering, as well as in water, gas, fuel, and electrical power distribution
systems, the mathematical models have for a long time been used for quantity
demand forecasting. This is, in fact, the most significant aspect of time series
analysis, which also helps to reduce, or even to eliminate, the inherent disturbances
or fluctuating components present in observed or in measured values.

2.4.3 Time Series Models

In statistics, two basic mathematical system models are used:

deterministic models, mathematically viewed as analytical models
represented by deterministic relations like

 ()tx f t ,

or by recurrence equations like

1 2(, ,...)t t tx f x x

stochastic models, statistically viewed as functions of random variables.

Mathematical models used for time series analysis are generally

regression models
time-domain models
frequency-domain models,

whereas, again, the time-domain models could be

transfer function models

 Traditional Problem Definition 27

state-space models.

In the following, various approaches for building stationary models of time
series are presented.

2.5 Regressive Models

Regressive models are built using regression analysis, which is a collection of
methods for the study of relationships between the variables and for estimation and
prediction of values of one variable using the values of other variables incorporated
in a joint time series (Drapper and Smith, 1981). For instance, to implement an
efficient predictor for a variable of interest, the measurable variables representing
the strong indicators for the same variable should first be identified.

The most popular regression models in engineering are the

autoregression model (AR)
moving-average model (MA)
ARMA model
ARIMA model
CARIMA models.

2.5.1 Autoregression Model

Autoregression models express the current value of a time series by a finite linear
aggregate of previous values and by a shock t

1 1 2 2 ...t t t t tx x x x ,

where 1 to are the autoregression parameters, t is the white noise and is

the model order. The validity of an autoregressive model assumes that the time
series to be modeled is stationary. Also, because of some possible internal
cumulative effects, the autoregressive process will only be stable if the values of
parameters are within a certain range.

It is common to write the autoregressive equation in terms of deviations
,t t tx x generally using the variable Z and its deviation .Z Z The

individual terms of the time series now become 1 2 3, , , ,t t t tZ Z Z Z , resulting in the

autoregressive model

1 2 31 2 3 ,tt t t t t pp aZ Z Z Z Z

where 2
2 31 a, , ,..., ,, q are unknown parameters to be estimated from the

observation data. Introducing the autoregressive operator

28 Computational Intelligence in Time Series Forecasting

2 3
1 2 31 p

pB B B B B

the autoregressive model can be written in the compact form

.ttB aZ

The model contains (p+2) unknown parameters, i.e. p internal parameters and two
additional parameters: the variance a

2 and the white noise at.
A crucial problem in modelling of autoregressive time series is the selection of

the order of the model to be built. A useful approach in this case is the analysis of
the related partial autocorrelation function and the inverse autocorrelation
function, because using the autocorrelation function itself is computationally
complicated in the case of building of higher order models. Alternatively, fitting
the time series shape by models of progressively higher order can be used, along
with the analysis of the residual sum of squares for each order.

2.5.2 Moving-average Model

Another approach frequently used in modelling of univariate time series is based
on the moving-average model

1 1 2 2 3 3t t t t q t qt a a a a aZ

which expresses tZ in terms of an infinite weighted linear sum of

21, , , ..., .t t t qta a aa Introducing the moving-average operator of order q

2 3
1 2 31 q

qB B B B B

the moving-average model can be written in the compact form as

 ()t tz B a

The model contains (q+2) unknown parameters 2
2 3 a1, , , , ,, q to be

estimated from the observation data.

2.5.3 ARMA Model

The combination of the AR and MA models makes up the ARMA model

1 1 2 2 1 1 2 2...t t t p t p t t t q t qZ Z Z Z a a a a

Rewriting the model as

 Traditional Problem Definition 29

1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qZ Z Z Z a a a a

and rearranging it as

2 2
1 2 1(1 ...) (1 ...)p q

p t q tB B B Z B B B a

the model can finally be written in compact form as

 () ()t tB Z B a ,

where B is a delay operator. The derived compact model contains (p+q+2)
unknown parameters 1 2, , ,..., p and 2

1 2 a, ,..., ,q that are to be estimated from

the given time series data. In practice, for the representation of actually occurring
stationary time series, it is frequently adequate enough to take p and q not greater
than 2. The presence of both autoregressive and moving-average terms in the
ARMA model enables the representation of complex time series with fewer
parameters than would be needed using a corresponding AR model.

2.5.4 ARIMA Model

This Box-Jenkins variant of the ARMA model is predestinated for applications to
nonstationary time series that become stationary after their differencing.
Differencing is an operation by which a new time series is built by taking the
successive differences of successive values, such as X(t) – X(t-1) along the
nonstationary time series pattern. In the acronym ARIMA, the letter I stands for
integrated.

The widely accepted convention for defining the structure of ARIMA models is
ARIMA(p, q, d), where p stands for the number of autoregressive parameters, q is
the number of moving-average parameters, and d is the number of differencing
passes. For instance, the ARIMA(2, 3, 1) model has two autoregressive parameters,
three moving-average parameters, computed after the series have been differenced
once.

A variety of time series encountered in industry and business exhibit
nonstationary behaviour. In particular, they do not vary about a fixed mean
because of the possible presence of a drift component. Such time series may,
nevertheless, exhibit homogeneous behaviour of a kind. In particular, although the
general level about which fluctuations are occurring may be different at different
times, the broad behaviour of the series, when differences in level are allowed for,
may be similar. It can be shown that such behaviour may be represented by a
generalized autoregressive operator

,1
d

B B B

30 Computational Intelligence in Time Series Forecasting

where is the stationary autoregressive operator and is the generalized
autoregressive operator. One or more of the zeros of the polynomial (i.e. one
or more of the roots of the equation () 0B) is unity.

The general form of a model to represent the homogeneous nonstationary
behaviour of the time series is given by

 () () ()(1) ()dB x t B B x t

or,

 () () () .tB x t B a

Defining now

 () (1) ()dw t B x t ,

we get

 () () () .tB w t B a

Introducing the operator

 (1)B

the last equation becomes

() ().dw t x t

where,

 () () (1) (1) ().x t x t x t B x t

The homogeneous nonstationary behaviour can therefore be represented by a
model which calls for the dth difference of the process to be stationary. In practice,
it is mostly d = 0 or 1 but not greater than 2.

 Traditional Problem Definition 31

Figure 2.2. Block diagram of an ARIMA model

From the above it follows that the general ARIMA process may be generated from
white noise at by means of three filtering operation, as shown by the block diagram
in Figure 2.2, where the first filter has the input at, the transfer function (B), and
output

 ()t te B a ,

where

2
1 2() (1 ...)q

qB B B B

is the moving-average operator.

Table 2.1. Summary of properties of AR, MA and ARMA processes

Sl. No. Description AR MA ARMA

1. Model in

terms of x

tt
B x a 1

tt
B x a 1

tt
B B x a

2. Model in

 terms of a

1
t tx a t tBx a 1

t
t

x B B a

3. = weights Infinite series Finite series Infinite series

4. Stationary
condition

Roots of
0B lie

outside

unit circle

Always
stationary

Roots of 0B

lie outside unit

circle

White
noise

First Filtering
Third

Filtering
Second
Filtering

Inverse AR
Sum

(Integration)

at

MA

et wt xt

32 Computational Intelligence in Time Series Forecasting

The second filter has the input et, transfer function (B), and output wt

1
t tBw e ,

and the third filter has the input wt, the transfer function sd (i.e. it is a nonstationary
summation filter) and the output tx

d
t tx s w

or

1() .d
t tB Bx s a

Table 2.1 summarizes some features of AR, MA, and ARMA model.

2.5.5 CARMAX Model

In systems and control theory the CARMAC model is used for design of minimum
variance and predictive control (see Section 2.10.3). For deterministic dynamic
systems with an input signal u(t) and a disturbance e(t) the CARMA or CARMAX
model is defined as

1 1 1() () () () () ()A z y t B z u t C z e t ,

where

1

0
()

n
i

i
i

A z a z 0 1i

1

1
()

m
j

j
j

B z b z

1

0
()

p

C z c z 0 1c .

The acronym CARMAX stands control autoregressive moving-average model
with auxiliary inputs. This has analogy with the Kalman notation of a state-space
model of the filter.

 Traditional Problem Definition 33

2.5.6 Multivariate Time Series Models

The observation values of some time series are multivariate, made up of
components that themselves are observations of some time series. Such
multivariate values are presented as vector values 1 2[, ,...]T

nx x x x , and the entire

set of multiple values as a matrix made up of individual observation vectors

11 12 1

21 22 2

1 2

...

...

...

...

n

n

n n nn

x x x

x x x
x

x x x

Multivariate time series are processed using multivariate analysis, which is the
statistical methodology for processing of multidimensional data.

Model building of multivariate time series is required when the values of one
variable of an individual time series are dependent on the values of variables in
other related time series. For better modelling and for more accurate analysis, all
values concerned should be taken into account simultaneously. For instance, the
corresponding joint observations of two mutually dependent variables have to be
modeled under consideration of the components of a two-dimensional observation
vector (,)i i ix y z , for i=1, 2, 3, … etc. Thus, a bivariate time series has to be

modeled based on two-dimensional observation vectors of the interdependent
univate time series. But, before building the model it should be checked whether

the two time series (represented by y and z values) mutually correlate, in
which case only the correlation analysis has to be carried out, or
the two series are causally related, in which case the time series model
should be built.

In practice, the number of time series to be considered simultaneously can be larger
than two, so that multivariate time series have to be built using the observation
vectors and the related observation matrix. Using this presentation approach, the
great majority of basic theory of univariate time series can formally be extended to
the multivariate time series. For instance, in an analogous way the equivalent
ARMA model for a stationary multivariate time series, with zero mean vector, can
be written as

1 1 2 2 1 1 2 2... ...i t t t t t t n t nx x x x n

where tx and t are n-dimensional column vectors, t being the multivariate

white noise, and i and i are the elements of the corresponding [n n] matrix of

ARMA model parameters

,{ }j j kk , for j = 1, 2, …,

34 Computational Intelligence in Time Series Forecasting

,{ }j j kk , for j = 1, 2, … , n.

It is usually supposed that the mean value of expectation is

 { } 0jE , for all j

and the condition that the covariance matrix of j

2{ }j j kE , for k = 0.

Finally

1 1 2 2 ...t t t tx x x x ,

where the values of parameters 1 to and those of the covariance matrix should

be estimated. This is rather mathematically complicated and requires computer
support.

For dimensionally reduced modelling of multivariable time series, the method
of principal components analysis is used (Jolliffe, 1986). The analysis helps to
reduce the initial number of correlated variables to a small number of variables, i.e.
to the principal factors that still contain (with minimal loss) the essential
information of the initial number of variables. This reduces the computational
effort needed for further time series data processing.

However, the reduction in the number of initial variables is not a process of
simple elimination of some non-relevant variables, as the eliminated variables still
have an influence, or “echo”, on the remaining variables. This is because the
principal components are first determined using a smaller number of linear
combinations of the initial variables that are still able to reproduce the entire
collection of observed variables within a relatively good accuracy. Applying
principal component analysis, the optimal number of linear combinations can be
found that are best predictors of the entire set of variables. The prediction accuracy
achieved is considered as the best performance measure. It is also to be noted that -
after transforming the initial variables to the reduced number of variables using
linear combinations - the back-transformation of the reduced variables to the
initial variables is not possible.

Consider now the five observations of each of three variables 1 2 3, ,x x x

presented in matrix form

11 21 31

12 22 32

15 25 35

x x x

x x x
x

x x x

 Traditional Problem Definition 35

The components of the corresponding mean vector, made up of the mean of each
variable, are calculated as

3

1

1

5mi ij
j

x x , where i = 1, 2, 3, …

The elements of the corresponding variant-covariant matrix, or dispersion, made
up of the variances of the variables along the main diagonal and the covariances
between each pair of variables in the remaining location, are given by

,

1
()() ,

5
T

i jij i mi j mj
s x x x x , where i, j = 1, 2, 3.

Principal components, which are linear combinations of random variables with
some characteristic properties with respect to the variances, play a key role in the
analysis of multivariate time series. For instance, the first principal component is
the sum of squares of the coefficients having the maximal variance. Furthermore,
the principal components are in fact the characteristic vectors of the covariance
matrix, so that they help in the study of the characteristic vectors and characteristic
roots.

2.5.7 Linear Time Series Models

Linear models of time series are based on linear relationships between the observed
values. Typical examples of linear models are the AR, MA, ARMA, and ARIMA
models.

2.5.8 Nonlinear Time Series Models

The difficulty in testing for nonlinearity in a given set of observation values calls
for special approaches to building adequate time series models. The observation set
of nonlinear time series may contain various shocks of different form and of
different intensity. In financial engineering practice, it is common to check the time
series nonlinearity using first a linear time series model. If the linear model does
not fit the major part of observation data, then a nonlinear model is built and tested.
However, the problem then is what nonlinear model should be selected that will
best fit the collected data (Casdagli and Eubank, 1992). There are some traditional
examples of such models like STAR (smooth transition autoregression model),
ARCH (autoregressive conditional heteroskedasticity) and the bilinear model,
widely used in econometrics and financial forecasting. Recently, the Markov
switching model, threshold autoregression model, and smooth transition
autoregression model are also becoming popular.

For STAR models there have been some nonlinear alternatives like

0 1 1 1()() ,t t t d t tx x f x x

36 Computational Intelligence in Time Series Forecasting

with tx as a transition variable that can be described by an AR(1) model with the

parameters 0 and 1 and with the nonlinear component 1()().t d tf x x

There is also the ESTAR model

2() 1 exp[()]t d t df x k x k

with k > 0, and the LSTAR model

2

1
()

1 exp[()]t d
t d

f x
k x k

.

State-space modelling of nonlinear time series relies on the theory of first-
order Markov chains in the n-dimensional state space, where the observation
vector is represented by 1 1(, ,...,) ,T

t t t t nx x x x and the nonlinear time series model

is represented by the stochastic difference equation

1(,).t t tx S x .

Alternatively, the nonlinear state space can be used for modelling the nonlinear
time series, relying on transition probability

1, 1 1 1, 1{ , , }t i i t t j tP x x x x x x j i

where 1, 1t ix denotes the (i+1)th component of 1.tx

2.5.9 Chaotic Time Series Models

In the last two decades or so, research in the field of chaotic time series analysis
has steadily grown and it is today an interesting field of work for mathematicians
and engineers. Initially, the research interest was in estimating the dimension of the
underlying attractor and the Liapunov exponents of the chaotic systems that
characterize the space-filling properties and the stability of dynamic systems. The
attention was later focused on the techniques of chaotic time series modelling and
on prediction of future time series values using most frequently the nonlinear
autoregressive model for the state vector x(t).

1 2 1() [(), (), (),..., ()]nx t d F x t x t d x t d x t d

where d is the delay factor between the individual observations and n is the
number of observations considered. Here, the nonlinear time series model is
required when the model should hold globally. Otherwise, for local considerations,
a local linear model is preferred.

 Traditional Problem Definition 37

In reality, the output system signals are corrupted by noise, as well as by
chaotic signals generated by dynamic systems. Therefore, for modelling noise-
corrupted chaotic signals it should first be established whether the noise present
corrupts the systems state vector (like the system noise) in the form

y(t+1) = F [x(t) +n(t)]

or, like the measurement disturbances, whether it only adds to the output signal

ˆ() () ()y t y t n t .

The generation of chaotic signals by dynamic systems is based on the
phenomena of initial-value sensitivity of the corresponding differential equations.
This was first pointed out by Poincare´. For instance, the sequence

1 14 (1)n n nx x x

for any initial value 00 1x and for any n = 0, 1, 2, … etc., produces the solution

2 1
0sin [sin ()]nx x ,

which is highly sensitive to the initial value selected, because it determines the
value of the arcsin function. A small deviation 0x contributes here the

02n x changes in 0 0arcsin x x .

2.6 Time-domain Models

Two typical time series modelling approaches in the time domain are to build the

transfer function model
state space model

Both models are of fundamental importance in traditional and modern control
theory.

2.6.1 Transfer-function Models

Transfer-function models are the extension of regression models in which the
transfer function of a dynamic system is integrated into the model. This is used in
systems theory for representation of relationships between the systems input and
output variables.

Building transfer-function models is based on experimental records of input
and output time series. In engineering practice, transfer-function estimation is
preferred because it does not require any system disturbance, say by step, pulse, or

38 Computational Intelligence in Time Series Forecasting

sinusoidal test signal. Statistical estimation methods largely rely on normal
operating records and are robust against the noise.

Consider the multivariate time series in which supposedly a single output

ty depends on some lagged values ,t ix i = 0, 1, 2, …, of the input time series in

the following way:

0 1 1 2 2 ...t t t t ty c x c x c x

where (t) is the output noise component of y. After introducing the unit delay
operator D this becomes

2
0 1 2[...]t ty c c D c D ,

which finally results in

 []t t ty cD x ,

where []cD represents the transfer function model of the system. It is supposed that
the input series and the noise component (t) are mutually independent.

In systems engineering, the ARMA(n, m) model

1 1() (1) ... () () () ... ()n my t a y t a y t n e t c e t c e t m

plays a key role in model building. The compact form of the above model is

1 1() () () (),A z y t C z e t

where the polynomials A(z-1) and C(z-1) are the respective operators, i.e. the
polynomials in z-1. The corresponding transfer function of the system is

1

1

() ()

() ()

y t C z

e t A z
.

2.6.2 State-space Models

In systems theory, the widely preferred class of models are the state-space models.
The models are made of two sets of equations. One set represents the state-space
model of the system

1 ,t t t t t tx A x B u w

 Traditional Problem Definition 39

based on state vector tx and the system disturbance vector ,tw and the other set

models the systems output

t t ty C x v ,

based on the observability vector ty at system output and on the system output

disturbances vector .tv In the two sets of equations, , ,t tA B and tC represent the

system matrix, control matrix, and observation matrix respectively, all at the
instant t. In addition, the covariance matrices of the disturbance vectors are
supposed to be

cov{ }

cov{ }

t t

t t

w Q

v R

The objective of state-space modelling (Aoki, 1990) is to estimate the values of
the state vector and to forecast its future values based on observations .ty

2.7 Frequency-domain Models

In analogy with the signal representation in the frequency domain, also a time
series can be represented in the same domain. This is because the time series
values are generated by equidistant sampling of signals. Therefore, a time series
made up of sampled values can also be presented as a collection of sine and cosine
waves with different frequencies and be processed using spectral analysis
(Warner, 1998).

A device that was designed to represent the given time series visually in the
frequency domain is the periodogram. It is a simple spectral analysis facility made
up of mixtures of sine and cosine components within a frequency spectrum.

To illustrate the calculation of the periodogram, suppose that the number of
observations is odd, say N = 2q+1, and the Fourier series model to be fitted using
the observation data is given as

0
1
() ,

q

t i it i it t
i

x a a C b S e

where

cos(2),

sin(2),

.

it i

it i

i

C f t

S f t

i
f

N

40 Computational Intelligence in Time Series Forecasting

If if is the ith harmonic of the fundamental frequency 1/N, then the least square

estimates of the coefficients 0a and (,)i ia b will be

0

1

1

,

2
,

2
.

N

i t it
t

N

i t it
t

a x

a x C
N

b x S
N

The periodogram then consists of q = (N-1)/2 values

2 2

1
() ()

2

N

i i i
t

N
I f a b i = 1, 2, …, q,

called intensities at frequency values .if

However, for an even value N, which should be set equal to 2q, the above
equation holds for i = 1, 2, 3, ..., (q-1), and the last coefficients are

1

1
(1) ,

0,

N
t

q t
t

q

a x
N

b

and correspondingly

2() (0.5) .q qI f I Na

Because in a given time interval the highest frequency is 0.5 cycles per interval,
in the definition of sample spectrum - if fi is the ith harmonics of the fundamental
frequency (1/N) - the definition of the periodogram is modified to

2 2() ()
2 f f

N
I f a b

where 0 0.5.f In this case I(f) is referred to as the sample spectrum.

Example

The simplest Fourier model

0 cos sint tX a a t b t Z

can, in the case of multidimensional analysis, be represented in matrix form as

 Traditional Problem Definition 41

E(X) = A ,

with,

1 2

0

(, ,...,)

(, ,)

T
nX X X X

a a b

and

 A =

1 cos sin

1 cos 2 sin 2

...

1 cos sinn n

.

Minimizing the least-squares

2
0

1
(cos sin)

n

t
t

X a a t b t

the can be estimated using the pseudo inverse relation

1ˆ ()T TA A A X .

In order to use the spectral expansion technique for forecasting purposes, we
need first to observe the given time series carefully to check whether it contains
any trend and/or seasonality. This can, for instance, be identified by visual
inspection of the graph of the given series.

Trend removal from the time series can be carried out in two ways:

by taking the first or the second difference of the given time series data
by fitting a polynomial to it and then by subtracting the fitted polynomial
from the given time series data.

The coefficients of the fitted polynomial can be estimated by a least-squares fitting
method which minimizes the sum of squares of the difference between actual data
and the polynomial data to be fitted.

The first difference is taken as (xt - xt+1) for t ranging from 1 to N-1, and where
xt is the actual time series data at time instant t and N is the total number of
observations in the given time series. Similarly, the first difference applied to the
resulting first difference will give rise to the second difference. Once the series is
de-trended, we have to check for various frequency components present in the
residual of the time series. This is accomplished by first transforming the signals
from the time domain into the frequency domain using a fast Fourier transform

42 Computational Intelligence in Time Series Forecasting

(FFT), and then by computing the power spectral density function as a measure of
the energy at various frequencies

 *yyP Y Y

where “*” represents the one-to-one multiplication of vector components or of
matrix elements, and Y represents the complex conjugate of Y. The calculated
values yyP are then plotted against the frequencies. From the resulting plot, the

major frequency components present in the residual time series signal can be
identified.

The FFT is a computational technique that substantially reduces the time
required to perform Fourier transformations on a digital computer. Introduced in
the 1960s by Cooley and Tukey (1965), the transformation has steadily increased
its popularity.

2.8 Model Building

The Box and Jenkins methodology (Box and Jenkins, 1976) for building time
series models includes a

model identification phase, in which – apart from some preliminary
statistical calculations – the number of model parameters is determined that
are needed to ensure that the mathematical model to be built matches the
collected time series data with the desired accuracy
model estimation phase, in which the values of model parameters are
estimated by minimizing the sum of squares of residuals
model validation phase, in which the model accuracy is checked and the
possible model improvement is established
model forecasting phase, in which the model is used to establish the
confidence limits of the forecast.

The above methodology, however, is not a straight-forward process, rather it is a
chain of iterative actions that Box and Jenkins described using the flow chart
shown in Figure 2.3.

 Traditional Problem Definition 43

Model Postulation
(Heuristic)

Model Identification

Model Estimation

Model Evaluation

Model Application

Model
Acceptable

?

Yes

No

Figure 2.3. Box-Jenkins methodology of model building

The Box-Jenkins model building process assumes that the time series to be
modeled is stationary. Otherwise, it should be differenced several times until it
becomes stationary. In some cases the time series values should be manipulated so
that their mean becomes zero. Further to this, the seasonality of the time series has
to be removed, which complicates the related calculations, particularly when
building ARIMA models.

2.8.1 Model Identification

Box and Jenkins defined the model identification phase as a rough procedure for
laying down the initial model structure that matches good enough with the
collected observation data. The essence of the identification process was first
demonstrated on the example of an ARMA model, for which the required number
of parameters for both the autoregressive and the moving-average parts of the
model have been determined. This could be done using the autocorrelation
approach, usually by determining the sample autocorrelation function and the
sample partial autocorrelation function.

The sample autocorrelation function is defined as the ratio

ˆ()
ˆ ()

ˆ(0)

d
d ,

where

44 Computational Intelligence in Time Series Forecasting

1

1
ˆ() ()(())

n d

t
d t d x x t x

n

is the corresponding sample autocovariance function for – n < d < n.
In contrast with the autocorrelation function, which is infinite in extent, the

partial autocorrelation function is described in terms of N non-zero
autocorrelation functions

1

N

i jN i j
j

, 1, 2,...,i N ;

which can be described in a compact form by the Yule-Walker equation

N N N ,

using the vectors

1 2

1 2

, , ...,

, , ...,

N

T

N

T

N N N NN

and the matrix

1 2 1

1 1 2

1 2

1 ...

1 ...

...

... 1

N

N
N

N N

Solving the Yule-Walker equation for N = 1, 2, 3, …, one gets

11 1,

1

1 2
22

1

1

1

,
1

1

1 1

1 2

2 1 3

33

1 2

1 1

2 1

1

1

1

1

1

,

etc. The last equality, NN , represents the partial autocorrelation function. Here,

the sample autocorrelation function for an AR(1) process should have mixed

 Traditional Problem Definition 45

exponentially decaying and damped sinusoidal components. In addition, for higher
order autoregressive processes the sample partial autocorrelation function should
also be considered, which becomes zero when more model parameters are involved
than needed.

The partial autocorrelation function is not helpful for identifying the order of
the moving-average process because if the number of model parameters is higher
than required, then the autocorrelation process becomes zero. Nevertheless, the fact
that both the sample autocorrelation functions and the partial autocorrelation
functions are random variables makes the model identification generally difficult,
particularly the identification of a mixed ARMA model. Also, developing time
series models using sample plots of both autocorrelation functions involves
multiple trial-and-error iterations, which is time consuming. Akaike (1974)
proposed the information criterion, known as the Akaike information criterion
(AIC):

2() log () 2eAIC n v ml n ,

with ml = RSS/ and RSS being the residual sum of squares. By minimizing the
criterion with respect to n, the model order can be determined, which helps
automate the model identification process. For instance, in the case of two
equivalent models being found, with both having acceptable residuals, the one
having a lower AIC(n) value can be taken as the better one.

A similar criterion was proposed by Schwarz, known as the Bayesian
information criterion (BIC), defined as

2() log () log .e eBIC n v ml n v

It delivers a lower order model than the AIC, which is an argument for its
preference. But also here, in the initial phase of the model identification process,
the stationarity, seasonality, etc. of the given time series have to be checked and
removed by de-trending and de-seasonalization of time series data.

A successful identification phase of model building is to a great extent a matter
of knowledge and practical experience, rather than the matter of some given rigid
instructions about how to do it. Yet, some recommendations related to the initial
parameter estimation of a pure AR process are still available, relying on the use of
the Yule-Walker approach. Much more difficult is to model the MA part of an
ARMA model, where a system of nonlinear equations has to be solved.

2.8.2 Model Estimation

Once the preliminary time series model has been identified, i.e. the number of
required model parameters has been determined, the actual model parameter values
have to be estimated using the observation data. This is a nonlinear estimation
problem that needs some special statistical procedures, like the maximum
likelihood method or nonlinear least-squares estimation. The parameter values
estimated at this stage of model building should minimize the sum of squared

46 Computational Intelligence in Time Series Forecasting

residuals. The estimated values are usually called most likelihood parameter
values or the least-squares parameter values.

The maximum likelihood method applied to the ARMA(p, q) process with the
sampled values arranged as the components of the vector 1 2,[, ...,]T

ny y y and with the

non-zero mean µ starts with the extended model

1 1
()

p q

i i t i t j t j
i j

Y Y z z

with p+q+2 parameters 2
,, VAR()i j z , and { }.iY A matrix V(,)

should now be defined so that the relation

 VAR(Y) = 2 ,V ,

holds, where

1 2

1 2

1 2

1 2

[, ,...,]

[, ,...,]

[, ,...,]

[, ,...,]

T
p

T
q

T
n

T
n

y y y y

Y Y Y Y

with the elements of V(,) being proportional to the autocorrelation coefficients
of { iY }.

Supposing now that iz values are normally distributed, so will Y also be

normally distributed, so that the log-likelihood function will be defined by

2 2 1 21
(, , ,) [log log (,) () [(,)] () /]

2
TL n V y I V y I

where I is the identity vector [1, 1, ..., 1]TI .

Given initial values of and , the maximum estimate of µ and 2 are

1 1

2 1

ˆ (,) { [(,)] }/{ [(,)] }

1
ˆ ˆ(,) [(,)] /{[(,)] [(,)]

T T

T

I V y I V I

y I V y I
n

This, after substituting in the above likelihood equation, gives

2
0

1
(,) [log (,) log (,)]

2
L n V .

 Traditional Problem Definition 47

The maximum likelihood estimates ˆ and ˆ can now be determined in the
conventional way.

Parameter estimation of autoregressive models can, based on the Yule-Walker
approach, be managed in a relatively direct way. Multiplying the autoregressive
model

1

p

t i t i t
i

X X Z

by t jX , j > 0, and calculating the expectation of each term of the resulting

equation, we obtain

1

p

t t j i t i t j t t j
i

X X X X Z X .

Taking into account that tZ and t jZ are statistically independent, the relation

1

p

j i j i
i

,

is obtained, which after division by 0 becomes the relation of autocorrelation

functions

1
.

p

j i j i
i

Subsequently, by substituting the values j = 1, 2, …, p in the last equation a set of
linear equations can be built, the matrix form of which will be

1ˆ ,R

where 1 2ˆ ˆ ˆ ˆ[, , ...,]T
p is the parameters vector, 1 2[, , ...,]T

p is the

autocorrelations vector, and

1 1

1 2 2

1 2

1, , ...,

, , ...,

...

, , ...,1

p

p

p p

R

is the corresponding matrix. The parameters of the autoregressive models can now
be determined by solving the above matrix equation.

48 Computational Intelligence in Time Series Forecasting

2.8.3 Model Validation and Diagnostic Check

In the last phase of model building the model validity or the model adequacy
should be verified, i.e. it should be checked how good the developed model fits the
collected time series data and how close the predicted future values are close to the
actual future values of the time series itself. If the model built fits the time series
data satisfactorily, then the residuals should behave consistently with the model.

The model diagnostic check on the other side, includes checking the model
sensitivity to the characteristics of the input data. For this, Box and Jenkins
proposed the overfitting procedure, which starts with an identified and estimated
low-order model and continues with the fitting of more-elaborate models by
augmenting the model dimension. If the augmented model is overfitted, then the
previous model is taken as the better one. Alternatively, in starting with a high-
order model, if the previous model is already overfitted, then the diagnostic check
continues with checking of lower order models, the dimensions of which are
reduced and repeatedly checked against overfitting.

Anyhow, although the overfitting approach to model diagnostic checks appears
to be rather simple, it still presumes the normality of the statistical distribution and
is strongly influenced by the correlation structure of the data. For instance, taking
the ARMA(p, q) model for overfitting and repeating the fitting procedure for
ARMA(p+1, q) and ARMA(p, q+1), we will get the maximum log-likelihood
values, say 0 1 2, , .L L L If the initial ARMA(p, q) model is adequate, then the

generalized likelihood ratio test procedure expects that each of the statistics

1 0()L L and 2 0()L L is chi-squared distributed.

A simplified approach to verifying the minimum number of model parameters
really needed to represent the observation data is the check of the mutual non-
correlation of residuals. If the residuals correlate, then the number of model
parameters should be increased. For verifying this correlation the residual
diagnostic methods are appropriate, and for detection of parameters that are
irrelevant for model presentation the parameter diagnostics approaches are
recommended. Both approaches support finding the alternative models that, again,
can help in improving the current model.

Residual diagnostics includes statistical calculations of

mean percentage error and the residual mean, i.e. the average of all the
computed residuals
autocorrelation of residuals
closeness-of-fit statistics.

If the value of the residual mean deviates significantly from zero, then this
indicates that the fitted values deviate from the original time series values or that
the residuals are not balanced out, in the sense that the positive or the negative
residuals are predominant. The unbalanced residuals represent a kind of bias, so
that in this case the biased forecasts are determined. The mean percentage error is
similar to the residual mean.

 Traditional Problem Definition 49

For checking the mutual correlation of residuals the correlogram of residuals is
evaluated. The presence of spikes in the correlogram indicates that the residuals
might be correlated and that the model developed is not adequate.

The residual values 1 2, ,..., nz z z of the noise sequence 0 1, ,..., nZ Z Z of an ARMA

process are obtained by substituting in the likelihood function all the estimated
values of and into each of the related time series y(t), y(t+1), y(t+2), ..., y(t+n-
1) and by solving the resulting system of equations. This is generally a difficult
issue. It is much easier to extract the residual sequence for the AR(p) and the
MA(q) part of the ARMA(p, q) process separately. For instance, in the case of an
AR(p) model

1
() [() ()]

p

i
i

Y t Y t i Z t ,

for t = p+1, …, n, the residuals are

1
ˆ ˆ ˆ() [()] [()]

p

i
i

z t y t y t i ,

whereby for t p the residuals are not defined. In the case of an MA(q) model

1
() () ()

q

i
i

Y t Z t i Z t ,

that can be rewritten as

1
() [()] ()

q

i
i

Z t Y t Z t i ,

and the residuals are defined as

1 1

2 2 1 1

1

ˆ

ˆ

...
q

t t i t i
i

z y

z y Z

z y Z

where the last equality holds for t > q.

2.9 Forecasting Methods

Once the time series model has been built, it can be employed in forecasting the
future values using an adequate forecasting method. Viewed historically, the term

50 Computational Intelligence in Time Series Forecasting

forecasting is closely linked with the term prediction. The earliest researchers
working on methods of determination of future values of empirical functions,
based on a set of collected values, coined the term prediction, rather than
forecasting. Forecasting is predominantly associated with the problem of time
series analysis. The term prediction, however, is still preferably used in systems
and control engineering.

2.9.1 Some Forecasting Issues

Forecasting the future values of a time series is defined in the following way:

given a set of observed values x1, x2, x3, ..., xn of a time series, the future
value xn+1, xn+2, …, should be estimated
q-steps ahead prediction xn+q, calculated at time point n, is denoted by

(),ˆ n qx where the integer q is called the lead time.

Generally, the forecasting approaches can be classified into

objective forecasts, made on a subjective basis using judgement, intuition,
commercial knowledge and any other relevant information
univariate forecasts, based entirely on fitting a one-dimensional model to
the collected data and on extrapolation of the time series pattern
multivariate forecasts, based on simultaneous observation of two or more
variables and on models of multivariate time series.

In practice, a forecasting approach can include a combination of two of the above
approaches. For example, univariate forecasts – after being carried out – can be
adjusted subjectively. Or, put in another way, the marketing forecast based on
various predictions developed statistically from the past data can be combined with
the experience or knowledge of people deeply involved in the market. Finally, the
simplest way of more reliable forecasting takes into account the combination of
two or more weighted objective forecast estimations to calculate the final forecast
value (see Section 2.9.6).

Before selecting a forecasting method it is essential to consider how this is to
be used, what forecasting accuracy is expected, what computational resources are
available, how many items are to be forecast, how much data are available, and
how far ahead forecasts are needed. Furthermore, the forecasting method may
somehow depend on the required lead time, although in engineering it is mainly
short-term forecasts that are of interest, whereas in management it is mostly lead
time of nine months that may be of interest. For example, in stock control, the lead
time for which forecasts are required is the time between ordering an item and its
delivery, which is usually a few weeks or a few months.

Apart from this, some forecasting methods simply produce point forecasts. But
in some cases it is desirable to produce interval forecasts. Some procedures, such
as the one from Box-Jenkins, enable one to do this by addressing the upper and
lower limits on a subjective basis.

Basically, for all forecasting approaches, plotting the time series data is
recommended as the first step of data analysis. This is because much useful

 Traditional Problem Definition 51

information can often be obtained from a visual examination of the plots, which
helps in selecting the most appropriate forecasting procedure. In addition to
calculating the best forecasts, it is also important to specify the accuracy with
which the forecasts are to be determined, so that the risk associated with decisions
based upon the forecasts may be calculated.

2.9.2 Forecasting Using Trend Analysis

For trend forecasting, linear or nonlinear regression is mostly used. This is based
on trend line fitting of time series data using a linear, quadratic, or exponential
function

2

exp[]

p

p

p

x ax b

x ax bx c

x ax b

2.9.3 Forecasting Using Regression Approaches

Regression analysis is a mathematical tool that supports the study of relationships
among the observed variables. Its main objective is to estimate and predict the
value of one variable by taking into account the values of the possibly related other
observed variables. Thus, before using the regression technique for prediction of a
specific variable, all variables related to this variable should be identified. For
prediction

simple regression
multiple regression
nonlinear regression

can be used.
Forecasting using simple regression is based on the equation

0 1i i iY a a X , where i = 1, 2, …, n;

where the mean value of the error i is supposed to be zero, and its variance is

one. The unknown values of parameters a0 and a1 should be estimated so that

2
0 1

1
()

n

i i
i

y a a x

is minimized. This can be achieved in a straight-forward way by differentiating the
above sum with respect to the parameters a0 and a1.

In the majority of practical cases, multiple regression is used as a mutual
relation

52 Computational Intelligence in Time Series Forecasting

0 1 1 2 2 ... n ny a a x a x a x

between the observed variables ,ix i = 1, 2, …, n, and the resulting variable to be

estimated y. Also here, using the above equation and the collected data, the
problem is to determine the values of the coefficients a0, a1, a2, ..., an that will
guarantee the best fitting of the regression line to the experimental data. This is
verified through correlation analysis.

The compact form of multiple regression is

y Ax

where

1 2

1 2

1 2

[, ,...,]

[, ,...,]

[, ,...,]

T
n

T
n

T
n

y y y y

x x x x

are the corresponding vectors and

11 12 1

21 22 2

1 2

...

...

...

...

n

n

n n nn

a a a

a a a
A

a a a

the corresponding parameter matrix.
To apply the least-squares estimator to find the best estimation value of ˆ,x we

first build the error value

(x̂) = ˆ()y Ax

and try to find the x̂ value that minimizes the product

ˆ()Ty Ax ˆ()y Ax .

Using the least-squares estimation procedure with respect to ˆ,x the equation

ˆ2 2 0T TA Ax A y

is obtained, from which the estimated value of x̂

 Traditional Problem Definition 53

1ˆ [] ,T Tx A A A y

follows.
The generalization of the least-squares estimator consists of minimization of

the linear form

ˆ ˆ() ()Ty Ax B y Ax

with the diagonal positive definite matrix

B = diag [nccc ,...,, 21]

playing the role of a weighting matrix. Using the above calculations, the
corresponding generalized least-squares formulation

1ˆ [] ,T Tx A CA A Cy

is achieved.
The mathematical model on which the nonlinear regression relies has the

general form

 (,) ,i iy f x

where yi is the ith observation of dependent variable y, xi is the ith observation of x,
and f is a selected nonlinear function. In practice, the polynomial

0

n
i

i
i

y x

is frequently selected as the nonlinear function.

2.9.4 Forecasting Using the Box-Jenkins Method

Box and Jenkins have developed a general forecasting methodology for time series
generated by a stationary autoregressive moving-average process. In the following,
the methodology is explained on regressive models described in Section 2.4.

2.9.4.1 Forecasting Using an Autoregressive Model AR(p)
The autoregressive model

1

p

t i t i
i

x a X

can be used to estimate the forecasts for any number of steps ahead. For example,

54 Computational Intelligence in Time Series Forecasting

the one-step prediction

1 1
1

ˆ
p

t i t t
i

x a X .

2.9.4.2 Forecasting Using a Moving-average Model MA(q)
For the moving average model

1

q

t i t i t
i

x e e

the estimated optimal linear forecast of j steps ahead is given by

1
ˆ

q

t j i t i j
i

x e

2.9.4.3 Forecasting Using an ARMA Model
The general form of an ARMA process is written as

1 1
() () () ()

p q

i i
i i

y t y t i y t i Z t ,

with Z(t) as white noise. For simplicity, the transcription

 () () () ()B y t B Z t ,

is preferred, where ()B and ()B are the corresponding polynomials.
Considering now the general form of a linear process

0
() ()i

i
y t Z t i (2.1)

the estimated forecast can be built as

1

0
ˆ() ()

t

i
i

y t k w y t i . (2.2)

Combining the last two equations we get the estimated forecast as

1

0 0
ˆ() ().

t

i j
i j

y t k w Z t i j

 Traditional Problem Definition 55

or in final form as

0
ˆ() .j t j

j
y t k W Z (2.3)

The next objective is to estimate the mean squared forecast error (MSE) from the
difference

2ˆMSE {[() ()] }y t k y t k

2

0 0
MSE {[() (] }i j

i j
Z t k i W Z t j

or,

 MSE
1

2

0
{[() () ()] }.

k

i i i
i i k

Z t k i W k Z t j i

Assuming that the tZ are mutually independent with a mean of zero and

variance 2 , the last equation of mean square error becomes

1
2 2 2

0
[()]

k

i i i k
i i k

MSE W .

From this it follows that the mean square error is minimized by taking

 () 0,i i kW

wherefrom it follows that

 .i i kW

This, when introduced into the k-step forecast (or k-step prediction) equation (2.3),
gives

1
ˆ() i k t i

i
y t k Z

which can also be expressed as

ˆ() .i t k i
i k

y t k Z (2.4)

56 Computational Intelligence in Time Series Forecasting

2.9.4.4 Forecasting Using an ARIMA Model
The forecasting approaches presented so far refer only to stationary models. In
practice, however, many important time series are not stationary, so that they have
to be transformed to stationary time series. For instance, the generalization of an
ARMA model can be modified to provide a model for a time series that is
nonstationary in the mean (see Section 2.4.4). The modified version of an ARMA
is known as ARIMA (i.e. the autoregressive integrated moving average). The term
integrated indicates the fact that the model is produced by repeated integrating or
summing of the ARMA process. For example, by multiple summing the ARMA
process we get the ARIMA model

1 1

p q

n i n i j n j
i j

y a y Z

for 0n , where

1
.

n

n i
i

x y

Using the last equation we can build

1n n nx x y

which, after applying the z-transformation, results in

1() (1) ()y z z x z ,

so that the z-transformed ARIMA model is

1()(1) () () ()a z z x z z Z z .

Again, after d successive integrations, the last equation is converted to

1()(1) () () ()da z z x z z Z z ,

This is the ARIMA(p, d, q) model with p and q as the degrees of polynomials a(z)
and (z) respectively.

We now consider the ARMA value

0
() ()i

i
y t Z t i (2.5)

and the prediction

 Traditional Problem Definition 57

ˆ() i t k i
i k

y t k Z (2.6)

and build the prediction error

0
ˆ() () () ,i i t k i

i i k
y t Z t i y t k Z

or definitely

1

0
() .

k

i t k i
i

y t Z

2.9.4.5 Forecasting Using a CARIMAX Model
The predictive capability of the CARIMAX model is discussed in detail, along
with its application to predictive control, in Section 2.10.6.

2.9.5 Forecasting Using Smoothing

Processing of sampled signals mainly includes

signal smoothing, i.e. optimal estimation of a signal value within a given
time interval, based on signal values within the interval
signal filtering, i.e. optimal estimation of actual signal value at the present
point based on the past and the present sampled values of the signal
signal prediction, i.e. optimal estimation of future signal values based on
the past and the present sampled values

In time series analysis, smoothing is a technique focused on reduction of
irregularities or random fluctuations in time series data in order to provide a clean
time series pattern out of contaminated observation data. The simplest smoothing
technique used is moving-average smoothing, as well as its more advanced
modification, i.e. exponential smoothing.

2.9.5.1 Forecasting Using a Simple Moving Average
Moving averages are used for prediction of future values based on weighted
averages of the past values. They are useful in reducing the random variations
present in observation data. For example, the moving average that uses n past
observations and the most recent one to calculate the next time series value is

() (1) ... ()
(1)m

x t x t x t n
x t

n
.

Some modifications of the moving average are

58 Computational Intelligence in Time Series Forecasting

centred moving average, a modification of a simple moving average in
which the average is placed in the middle of an interval of n periods, i.e. at
the n/2 point, which holds for odd numbers n
weighted moving average, an averaging algorithm that discriminates the
participation of individual observations according to their “age”, as shown
in the following equation:

1 2(1) () (1) ... ()w nx t w x t w x t w x t n .

From the equation it is evident that more recent observations could be given higher
weights by greater values of weights w than the older ones. However, the sum of
all weights used should be equal to one.

The moving average is easy to understand and simple to use, but it gives equal
weight to all past data, of which a large number have to be stored and used for
forecasts. This also holds for the weighted moving average, for which it is difficult
to select the optimal values for individual weights.

Therefore, a more advanced version of the weighted moving average is an
alternative like exponential smoothing, a version with exponentially decreasing
weights as the observation data become older.

2.9.5.2 Forecasting Using Exponential Smoothing
The exponential smoothing approach is particularly convenient for short-time
forecasting. Although it also employs weighting factors for past values, the
weighting factors here decay exponentially with distance of the past values of the
time series from the present time. This enables a compact formulation of the
forecasting algorithm in which only a few most recent data are required and less
calculations are needed, which is highly relevant to on-line applications in
industrial automation, where programmable controllers and signal processors are
used.

Smoothing of observation data is basically required when the data are to a
certain degree erroneous due to the superposition of some error component (t) and
the exact value x(t), i.e. when the measured signal ()ex t is expressed as

 () () ()ex t x t t .

In exponential smoothing, the concept of a weighted moving average is used. In
using exponentially decaying coefficients not all past values are used for
prediction; rather, a reduced number of measured and calculated data are used,
represented by the iterative exponential smoothing algorithm

 () () (1) (1),e ex t x t x t

with the forecast

(t + k) = ()ex t k .

 Traditional Problem Definition 59

Here, ()ex t is the exponentially smoothed value, ()x t is the observed value at the

same point of time, is the smoothing constant value, and (1)ex t is the previous

exponentially smoothed value.
The value of the smoothing constant depends on the properties of the given

time series. Values between 0.1 and 0.3 are most commonly used because they
produce a forecast which depends on a large number of past observations. Values
close to one are rarely used because they give forecasts which depend much more
on recent observations. For instance, when smoothing constant = 1, the forecast
is equal to the most recent observation.

The term exponential can be understood from the result of iterative calculation
of ()ex t using (1)ex t , (2)ex t , (3)ex t , etc., which results in

() (1)[(1) (1) (2)]

() (1){ (1) (1)[(2) (1) (3)]}
e

e

x t x t x t

x t x t x t x t

or generally

2() () (1)[(1) (1) (2) ... (1) (0)]t
ex t x t x t x t x ,

from where the exponentially decreasing value of weights is evident.
In addition, because the expression in the second term on the right-hand side of

the last equation within the bracket is equal to (1),ex t it can be rewritten as

 () () (1) (1)e ex t x t x t

From this equation it follows that in order to estimate the smoothed value ()ex t of

the time series at the time point t, we need the current value ()x t and the estimate
of the smoothed value (1)ex t at the previous time point (t-1), supposing that the

value of the constant is time invariant.
Prior to applying exponential smoothing algorithm it should be decided

how to initialize the exponential smoothing process
how to select the value of smoothing constant .

For simplicity, the algorithm is initialized by setting (2) (2)ex x . With regard the

value of exponential smoothing constant , it can generally be arbitrarily selected
within the interval [0, 1]. Its optimal value depends largely on the time series
pattern and on the smoothing objectives. Since the value of determines how
strong the older observations are dampened, selection of higher values dampens
the old values more strongly than the selection of lower values. There is also a
direct experimental way to evaluate the optimal value of in which the values =
0.1, 0.2, …, 0.9 are taken and for each value the efficiency of estimation is
calculated. In this way the value of giving the best efficiency is found.

60 Computational Intelligence in Time Series Forecasting

The value of can also be calculated directly from the past data values using
the sum squared prediction errors (SSE) for different values of . The value of
which minimizes the SSE is taken for forecasting. For instance, given the value of
search step 0.1 , the following algorithm can be used to select the best value
for starting with any initial value of within 0 < < 1:

Algorithm 2.1. Algorithm for selection of best smoothing constant

Given a time series X = {X1, X2, X3,…., Xn},

 for t ={1, 2, 3, …,n}.

 Set:

1

2 2

ˆ (1,1)

ˆ (1,1)

X X

e X X

 Then:

3

3 3

ˆ ˆ(2,1) (1,1)

ˆ (2,1)

...

ˆ (1,1)n n

X X X

e X X

e X X n

 Calculate:

2

2
SSE

n

i
i

e

 Repeat:

 the same procedure for other values
 of 0 < < 1, say in steps of 0.1

 Select:
 the value for which SSE computed
 is the minimum
 End:

Because the surface of SSE near its minimum is quite flat, the choice of is not
very critical and can be found very easily.

The considerable disadvantage of so-called single exponential smoothing
described above is that it does not work efficiently when a remarkable trend
component is present in the time series pattern. This can be improved by upgrading
the single exponential smoothing algorithm to the double exponential smoothing

 Traditional Problem Definition 61

algorithm, which simultaneously considers the trend components by processing the
equations

() () (1) (1)

() [() (1)] (1) (1)
e e

t e e t

X t X t X t

X t X t X t X t

in which the constant can (under certain boundaries) be freely selected. In this
case the resulting estimated forecasting value for steps ahead is defined by

() () ()f e tx t x t x t

The double exponential smoothing algorithm can also be extended to deal with the
time series containing trend and seasonal components. The extended algorithm is
the triple exponential smoothing algorithm or Holt-Winter algorithm, based on
simultaneous consideration of the following three equations:

() [/ ()] (1)[(1) (1)]

() [() (1)] (1) (1)

() [/ () (1) ()

e s t e t

t e e t

s e s

x t x t x x t x t

x t x t x t x t

x t x t x t

from which the estimated value for steps-ahead forecast is defined as

() [() ()] ()f e t sx t x t x t x t

Also here, the constant value , under certain limits, can be freely selected.
For assessment of forecasting results the MAE criterion

1
MAE (1/)

n

i
i

n e

can be used, or alternatively the RMSE criterion

2

1
RMSE

n

i
i

e ,

or the MAPE criterion

1
MAPE (1/) 100%

()

n
i

i f

e
n

x i
.

For estimation of the confidence intervals for the forecast (1)fx t the criterion

62 Computational Intelligence in Time Series Forecasting

CI 2RMSE ()n n p

is preferred, where p represents the number of parameters estimated in the
forecasting method.

2.9.5.3 Forecasting Using Adaptive Smoothing
In adaptive smoothing, which is a more advanced version of exponential
smoothing, the smoothing constant is adjusted on-line according to the actual
value of the forecast error. This is presented below on the example of the k-step
prediction equation

y(t + k) =
1

1

()

()

C z

A z
(t +k) (2.7)

with the polynomial operators

 A = ()
m

j
j

j o
a z , with 0 0a

 C =
0

n
i

i
i

c z , with 0 0c

and (t) as a white noise. The prediction is qualified as good if it minimizes the
cost function

2{ ()}kV E y t k

Introducing the output prediction error

ˆ() () ()y t k y t k y t k t ,

where ˆ()y t k t is the predicted value

ˆ() { () }y t k t E y t k t

 = E
1

1

()
()

()

C z
t k t

A z

of the real future value y(t + k) using the minimum mean square error MMSE.
Introducing now the Diophantine equation

1 1 1 1() () () ()kC z A z F z z G z (2.8)

 Traditional Problem Definition 63

where,

F(z 1) =
1

0

k
i

i
i

f z (2.9)

G(z 1) =
1

0

m
j

j
j

g z (2.10)

With 0 0f and 0 0g , and assuming that the noise (t) is time-independent, i.e.

that the equality

{ ()} { () }E t E t t

holds for any positive , the polynomial ratio C/A in Equation (2.7) can be written
as

1 1
1

1 1

() ()
()

() ()
kC z G z

F z z
A z A z

. (2.11)

Now, inserting Equation (2.11) into Equation (2.7) we get the expected values

E{y(t+k) t} = E
1

1

()
()

()

G z
t t

A z
 (2.12)

Equation (2.7) can now be rewritten to give the expected values

1

1

()
() { () }

()

A z
y t k E t k t

C z
 (2.13)

for 0. Finally, from the last two equations follows the expected value

E{y(t+k)|t} =
1

1

()
()

()

G z
y t

C z
.

The cost function to be minimized now becomes

1

01

()
ˆ() ()

()k

G z
V E t y t k t k

A k

with

0k = 2 2
if , 0 0f ,

64 Computational Intelligence in Time Series Forecasting

where 2 is the variance of noise .
Finally, the minimum of kV is

1

1

()
ˆ() ()

()

G z
y t k t y t

C z

Taking into account the k-step prediction defined by Equation (2.7) and the
Diophantine Equation (2.8), this result is now used to find the predictor value
ˆ()y t k t from the relation

y(t+k) = 1ˆ() () ()y t k t F z e t k ,

which is equivalent to

1() () ()y t F z e t .

This finally results in

1

1) 1

()
ˆ() ()

() ()

G z
y t k t y t

A z F z
.

2.9.5.4 Combined Forecast
Thus far, various traditional methods available for time series forecasting have
been presented. It was mentioned that, unfortunately, there are no specific
guidelines for selection of a best forecasting method to solve a forecasting
problem. Besides, not each available method, applied to the same problem, delivers
the forecasting results with the same accuracy. For example, to forecast a
nonstationary, non-seasonal time series one can use the autoregressive method,
Holt-Winter’s exponential smoothing technique, the Box-Jenkins ARMA/ARIMA
method, Kalman filtering, etc. Different methods will, for a given time series,
provide different forecasting results, so that, after comparing the individual
forecasting results, a decision has to be made about what prediction method should
be ultimately selected for further considerations. This is a difficult task requiring
much professional experience. As a way out of the selection dilemma the
nonlinear combination of forecasts has been advocated, as described below.

The need for combined forecast of a time series has been well understood for a
long time. Many studies have been done and revealed that not any arbitrary
combination of methods is decisive for an improved forecast, but it is essential that
the combination is nonlinear. Only the nonlinearity provides a combination with
better forecasts than either of the combination components separately, due to a
kind of synergic effect generated. It was also revealed that the forecasting results

 Traditional Problem Definition 65

generally improve as more methods are included in the combination. This is shown
in the following example.

Let the forecasts f1, f2, f3, ..., fk, of the random variable z be given and let them
be linearly combined to give the resulting forecast fc, defined as

1
(),

k

c i i
i

f w f z

where ,iw i = 1, 2, …, k, are the assigned weights to the individual forecasts. The

main problem is how to select the individual weights optimally. The simplest way
would be to select an equal weighted combination based on the arithmetic average
of the individual forecasts. This has proven to be relatively robust and accurate,
which is evident when two unbiased forecasts f1 and f2 of a given time series are
linearly combined as

1 2(1)cf kf k f ,

which will have a minimum mean square error for suitably chosen k. The
corresponding forecast errors for the combination, ec, is defined using the
individual errors e1 and e2 as

c 1 2(1)e ke k e .

For the two mutually independent forecast errors the value

2 2 2 2 2 2
2 1 2 2 1 2k E E Ee e e e e e

delivers the minimum value of 2
cE e , 2e being the local estimate of the expected

error squared.
Anyhow, the linear combination of forecasts is not likely to be the appropriate

in forecasting practice, as the following example shows, in which k different
forecast methods are given, the ith individual forecast having an information set {Ii

: Ic , Isi }, Ic being the common part of the information used by all k models and Isi

the special information for the ith forecast only. Denoting the ith forecast by fi =
Fi(Ii), the linear combination of forecasts can be expressed as

c ()i i iF w F I ,

where wi is the weight of the ith forecast. On the other hand, every individual
forecasting model given can also be regarded as a subsystem for information
processing, while the combination method

c c 1 2,(, ,...,)kf F I I I

66 Computational Intelligence in Time Series Forecasting

is regarded as such a system. It follows that the integration of forecasts is more
than their sum, because the performance of the integrated system is more than the
sum of the performances of its subsystems. So, the trustworthiness of the linear
forecast combination is quite questionable. Rather, more trust should be paid to a
nonlinear interrelation between the individual forecasts, such as

c 1 1 2 2[(), (),..., ()]k kf F I F I F I

where is a nonlinear function. While the given information is processed by
individual forecasting models, it is likely that the parts of the entire information
can be lost. For instance, it could happen that the information set Ii is not used
efficiently, or different forecasts may have different parts of information lost. This
is why as many different forecasts should be present in the combination as
possible, even when the individual forecast depends on the same set of
information. What still remains is how to determine the form of the nonlinear
relationship .

2.10 Application Examples

In the following, some examples are given of practical applications of time series
analysis and forecasting in business and industry.

2.10.1 Forecasting Nonstationary Processes

As the first example, forecasting of a nonstationary non-seasonal time series is
taken, based on collected equidistantly spaced temperature values of an
uncontrolled chemical plant (Box and Jenkins, 1976). For forecasting, the ARMA
process model and the Holt-Winter exponential smoothing technique are used. It is
an experiment based on 226 time series data, approximately fitted by the model

1 1 2 1 1 10.8 1.8t t t tz z z a

or by

1ˆ (1) 0.8 1.8t t tz z z

where the time t is the origin at which the forecast ˆtz l is made and l is the lead

time of forecast, representing the number of time steps ahead the forecast should be
made with respect to origin, and a lt is the random shock. Based on the above

model, the forecast has been made with the lead time l = 1 at different origins t = 2,
3, 4, ..., 225. Consequently, a total of m = 224 data have been generated as a Box
and Jenkins forecast series.

 Traditional Problem Definition 67

Similarly, the Holt-Winter exponential smoothing technique has been applied
to generate the second forecasts of the same temperature series

1 0 1 1 2 2ˆ () ...t t tz t c z c z c z

where

 (1)i
ic , where i = 0, 1, 2, …

 and is a constant value within the interval 0 1 . This results in

1ˆ ˆ(1) (1) (1).t t tz z z

The two forecast series are then arranged as columns 1 and 2 and the actual
temperature series as column 3 of an HBXIO matrix

1 1 1

2 2 2HBXIO
...

B H

B H

Bm Hm m

f f d

f f d

f f d

The sum squared error (SSE) of the generated forecast has been also computed
as SSE = 0.5 TE E , where E is the column vector of errors ei = (fi – di), with fi, di

representing the forecast at ith instant and actual value of the time series at ith
instant and ET is the transposition of E. Consequently, the sum squared error for the
Box-Jenkins forecast is 2.0080 and that of the Holt-Winter forecast is 1.1688,
computed for the entire forecast series (Palit, 1999).

It is important to note that in the above example of Holt-Winter’s smoothing
technique the smoothing constant = 1.6 has been selected because that gave the
minimum value of SSE for generated forecasts, which is quite unusual.

2.10.2 Quality Prediction of Crude Oil

In the following example, time series analysis is applied to crude oil physical and
chemical qualities prediction (Debska and Ivasczek, 2001). The observation data
are collected from oil fields within time period of 5 years and first analyzed
statistically for estimation of values of the most relevant chemical physical
parameters, such as specific gravity, density, colour, viscosity, relative and
kinematic viscosity, drip and set point, etc. The statistical methods used for these
purposes are: preprocessing and smoothing of data, partial and autocorrelation
calculation, seasonality and trend-analysis, decomposition, etc. For decomposition

68 Computational Intelligence in Time Series Forecasting

of complex time series with cyclic components and for extraction of underlying
sine and cosine functions of different frequencies, frequency analysis has been
employed, supported by building and analysis of corresponding periodograms for
interpretation of the data. Finally, for prediction of crude oil properties the Fourier
transformation has been used as a nonlinear, parametric model that can forecast
future values by processing the past values.

2.10.3 Production Monitoring and Failure Diagnosis

Production monitoring and failure diagnosis are the major objectives in on-line
observation of overall performance of a production plant. In manufacturing, the
major attention is paid to the monitoring and diagnosis of numerical machines and
of machine tools. In both cases – apart from modern approaches relying on
intelligent technology – statistical methods, based on time series analysis, are still
used. The main reason is that, for monitoring purposes, an abundant number of
observation data are collected on-line to be processed statistically.

Damiano et al. (1999) reported on the use of nonlinear time series to form a
one-step prediction map for machine monitoring and failure diagnosis in which the
sequence of previously collected observation data helped in the estimation of the
next time series data point. The map built in this way models efficiently the
dynamics of the system generated by a time series. Applying nonlinear time series
analysis, the optimum time delay is determined to be used for reconstruction of the
attractor, required for creation of the map that approximates the attractor. For
reconstruction of a multidimensional attractor, the method of delays was used,
where the vector components were created from the given time series using time
series values mutually separated by the delay time.

The one-step prediction is now applied to the machinery diagnosis. A baseline
time series is built out of data collected from the machine under normal operating
conditions and the nonlinear time series analysis used to build the corresponding
one-step prediction map. Using the map, the average map error is calculated for the
baseline time series. The calculated error and the map built are then employed for
machine monitoring by calculating the average absolute map error using the
current time series. The calculation results are then compared with the map error
for baseline time series and the difference between the two types of map error is
finally used to detect the possible changes in the machine being monitored.

2.10.4 Tool Wear Monitoring

In the following example, the most significant problem in flexible manufacturing
systems, the problem of monitoring of tool wear during the cutting and drilling
process, is assessed. This monitoring task is needed to maintain constant quality of
products and to avoid damage to the workpiece. To achieve this, a set of versatile
nondestructive sensing elements have to be installed for on-line tracing of the
status of tool wear during normal operation. The objective is to detect and replace
the tool when worn beyond the tolerable limits. In practice, acoustic emission
sensors are regularly used instead of power- or force-based sensors, because of

 Traditional Problem Definition 69

their close relationship between the generation of the emission signal and the wear
condition of the tool.

The acoustic emission technique used is an adequate means for monitoring the
cutting tool wear condition (Liang and Dornfeld, 1989), because the frequency
band emitted by tool wear is much higher than the machine vibration frequency
band. Thus, the two frequency bands can be easily separated by a high-pass filter.
Also, the frequency signal emitted can be picked up directly from a sensor installed
on the tool holder.

Once the measured signal is obtained, the time series data sets can be built by
sampling the acoustic emission signal and thereafter its prediction can be made by
processing the time series data. The main difficulty here, however, is the high
sampling frequency required to build the time series of the emitted acoustic signal
having a frequency band of 100 kHz to 1 MHz and requiring a sampling frequency
of over 2 MHz.

2.10.5 Minimum Variance Control

Time series analysis and forecasting have been, since the earliest days of
engineering, powerful tools for problem solving in signal and system analysis and
prediction. Initially, the application of vibration analysis to machines and like
objects was the essential field of application, but later this was extended to
encompass most various application fields, including systems identification,
parameter estimation, and in self-tuning and predictive control.

An excellent representative application example is found in model building,
parameter estimation, and predictive control of dynamic systems. For this purpose,
the modifications of ARMA and ARIMA models are used, known as CARMA (or
CARMAX) and CARIMA (or CARIMAX), where C stands for control and X for
auxiliary input signal.

We would first like to use the CARIMA model

1 1 1() () () () () ()kA z y t z B z u t C z e t (2.14)

to implement minimum variance control, designed to keep the output of a
stochastic system to the set point value. This requires that, for each time instant t,
the value of the control signal u(t) should be determined to minimize the output
variance

2{ ()}J E y t k

Introducing the Diophantine equation

kC AF z G (2.15)

with the polynomials

70 Computational Intelligence in Time Series Forecasting

1

0
,

k
i

i
i

F f z 0 0f (2.16)

0
,gn

j
j

G g z (2.17)

and g a cmax(1,)n n n k , the CARMA equation becomes

() () () ()
B G

y t k u t e t Fe t k
A A

. (2.18)

Taking e(t + k) from Equation (2.14) as

() () ()kA B
e t k y t k z u t k

C C

and using the Diophantine equation, Equation (2.18) becomes

() () () ()
BF G

y t k u t y t Fe t k
C C

 (2.19)

or
ˆ() () ()y t k y t k t Fe t k . (2.20)

The resulting output variance

2ˆ{[() ()] }J E y t k t Fe t k

is now minimized for ˆ() 0y t k t , to become

2
min .eJ F

From Equations (2.19) and (2.20) it follows that

() () 0
BF G

u t y t
C C

or,
 () () 0BFu t Gy t

which finally results in

 Traditional Problem Definition 71

() ()
G

u t y t
BF

.

2.10.6 General Predictive Control

General predictive control (Hueseyin and Karasu, 2000) is based on the CARIMA
model

1 1

1 1

() ()
() (1) ()

() ()

B z C zy t u t e t
A z A z

, (2.21)

where,
11 .z

Introducing the term

1

()
()

()

e t
t

C z

and presuming that

1() 1C z ,

the CARIMA model (2.21) takes the form

1 1() () () (1) () /A z y t B z u t t . (2.22)

Based on this model, the predictive control (Camacho and Bordons, 1999; Clarke
et al., 1987) is implemented through the following steps and should be repeated for
every sample instant:

prediction of output value using the CARIMA model and the observation
data collected up to time t
determination of control signal value that produces the future output value
close to the predicted output value
closing the control loop using the above results.

To determine a d-step predictor for y(t), i.e. y(t+d) using the Equation (2.22), the
Diophantine equation

1 1 1() () () 1d
d dP z A z z Q z

72 Computational Intelligence in Time Series Forecasting

is introduced in which the polynomials P and Q are uniquely determined given the
polynomial A and number of prediction steps d. Now, multiplying the above
CARIMA model (2.22) by d

dP z and using the Diophantine equation, the

predicted value will be

 () (1) () ()d d dy t d P B u t d Q y t P t d . (2.23)

Next, to determine the predictive control law, the future set-points w(t+d), d =
1, 2, … should be given, or it is supposed that they have a constant value w. The
control objectives would then be to find the control law that will drive the system
output y(t+d) as close as possible to the set points w(t+d). This value is obtained
by minimizing the cost function

2 2

1

2 2
1 2

1
(,) [() ()] ()[(1)]

n n

d n d
J n n y t d w t d d u t d ,

which is the expectation value, in which (d) is a weighting factor of control
sequences, and 1 2,n n are the minimum and maximum cost horizons. But still, the

solution found in this way is the open-loop feedback-optimal control. To find the
corresponding closed-loop control we will proceed as follows.

The CARIMA Equation (2.23), after ignoring the future noise component
(t+d), is written as

() (1) ()d dy t d G u t d Q y t

where,

d dG P B

with

1 2
0 1 2 ...d d d dG g g z g z

Writing now the above equation for d = 1, 2, …, n, the set of generated prediction
equations will be

1 1(1) () ()y t G u t Q y t

2 2(2) (1) ()y t G u t Q y t

 … … ...

() (1) ()n ny t n G u t n Q y t

 Traditional Problem Definition 73

In the above equations the right-hand terms should be taken for further processing.
These obviously depend only on the past values, so that they produce the set of
equations written in matrix form as

y = Gu + f,

where,
[(1), (2)..., ()]

[(), (1),..., (1)]

[(1), (2),..., ()]

T

T

T

y y t y t y t n

u u t u t u t n

f f t f t f t n

and G is the lower triangular n n matrix

0

1 0

1 2 0

0............0

..........0

....................

....n n

g

g g
G

g g g

.

Introducing now the set-point sequence

[(1), (2),..., ()]Tw w t w t w t n

and minimizing the expected value of

() ()T TJ E y w y w u u ,

or, of
 {() () }T TJ Gu f w Gu f w u u

the projected control increment vector

1() ()T Tu G G I G w f

is determined with the unit vector I. From the last result, only the first element of
u is taken as the next control value

() (1) ()Tu t u t g w f

where Tg is the first row of

1

() .T TG G I G

74 Computational Intelligence in Time Series Forecasting

References

[1] Akaike H (1974) A new look in the Statistical Model Identification, IEEE Trans. on
Automatic Control 19: 716-723.

[2] Aoki M (1990) State Space Modelling of Time Series, Springer-Verlag, Berlin.
[3] Box GEP and Jenkins GM (1976) Time Series Analysis: Forecasting and Control,

Revised Edition, Holden-Day, San Francisco.
[4] Brockwell PJ and Davis RA (2002) Introduction to Time Series and Forecasting, 2nd

edition, Springer-Verlag, New York
[5] Camacho EF and Bordons C (1999) Modern Predictive Control, Springer, Berlin.
[6] Casdagli M and Eubank S (1992) Nonlinear Modelling and Forecasting, Reading,

MA, Addison Wesley.
[7] Clarke DW, Mohtadi C, and Tuffs PS (1987) General Predictive Control: Part 1, The

Basic Algorithm., Automatica 23(2): 137-148.
[8] Cooley JW and Tukey (1965) Math. Comp., 19(4): 297-301
[9] Damiano B, Breeding JE, and Tucker RWJr (1999) Machine and Process System

Diagnosis Using One-Step Prediction Maps. Proc. MARCON99 Conf., Gatlingburg,
Tennessee, May 10-12, Vol. 1, Paper 9.02.

[10] Debska B and Ivasczek G (2001) Prediction of Physical and Chemical qualities Of
Crude-Oil Using Statistical Time Series Analysis. Fresenius Journal of Anal. Chem.:
704-708, Springer-Verlag, Berlin

[11] Dillon WR and Goldstein M (1985) Multivariate Analysis: Methods and Applications.
Wiley, New York.

[12] Draper N and Smith H (1981) Applied Regression Analysis. 2nd Ed., Wiley, New
York.

[13] Hueseyin D and Karasu E (2000) Generalized Predictive Control. IEEE Control
Systems Magazine 20(5): 36-47.

[14] Johnson RA and Wichern DW (1988) Applied Multivariate Statistical Analysis. 2nd
Ed., Prentice-Hall, Englewood Cliffs, New Jersey.

[15] Jolliffe IT (1986) Principal Component Analysis. Springer-Verlag, New York.
[16] Liang SY and Dornfeld DA (1989) Tool Wear Using Time Series Analysis of

Acoustic Emission. ASME J. of Engineering for Industry 111:199-205.
[17] Palit, AK (1999) Artificial Intelligent Approaches to Time Series Forecasting, Ph.D

Thesis, University of Bremen, Germany.
[18] Warner RM (1998) Spectral Analysis of Time Serial Data, Guildford Publication.

Selected Reading

[19] Abraham B and Ledolter J (1983) Statistical Methods for Forecasting. Wiley, New
York.

[20] Anderson TW (1984) An Introduction to Multivariate Statistical Analysis. 2nd Ed.,
Wiley, New York.

[21] Brillinger DR (1981) Time Series: Data Analysis and Theory. 2nd Ed., Holden Day,
San Francisco.

[22] Brock W and Potter S (1993) Nonlinear Time Series and Macroeconometrics. In:
Handbook of Statistics, Manddala, G.S. et al. (eds.), North Holland, Amsterdam.

[23] Brockwell PJ and Davis RA (1991) Time Series: Theory and Methods. 2nd Ed.,
Springer-Verlag, New York.

[24] Cohen L (1995) Time-Frequency Analysis. Prentice-Hall, Englewood Cliffs, New
Jersey.

 Traditional Problem Definition 75

[25] Fuller WA (1976) An Introduction to Statistical Time Series. Wiley, New York.
[26] Kendall MG and Stuart A (1976) An Advanced Theory of Statistics. vol. 3, Griffin,

London.
[27] Wellstead PE and Zarrop MB (1991) Self-tuning Systems Control and Signal

Processing. Wiley, New York
[28] Zhongjie X (2003) Case Studies in Time Series Analysis. World Scien. Publ. Co.

Part II

Basic Intelligent Computational Technologies

3

Neural Networks Approach

3.1 Introduction

Neural networks are massively parallel, distributed processing systems
representing a new computational technology built on the analogy to the human
information processing system. That is how we know the neural networks today,
but the evolution of artificial neural networks, from the early idea of neuro-
physiologist Heb (1949) about the structure and the behaviour of a biological
neural system up to the recent model of artificial neural system, was very long. The
first cornerstones here were laid down by the neurologists McCulloch and Pitts
(1943) who, using formal logic, modelled neural networks using the neurons as
binary devices with fixed thresholds interconnected by synapses. Nevertheless, the
list of pioneer contributors in this field of work is long. It certainly includes the
names of distinguished researchers like Rosenblatt (1958), who extended the idea
of the computing neuron to the perceptron as an element of a self-organizing
computational network capable of learning by feedback and by structural
adaptation. Further pioneer work was also done by Widrow and Hoff (1960), who
created and implemented the analogue electronic devices known as ADALINE
(Adaptive Linear Element) and MADALINE (Multiple ADALINE) to mimic the
neurons, or perceptrons. They used the least mean squares algorithm, simply called
the delta rule, to train the devices to learn the pattern vectors presented to their
inputs. In 1969, Minsky and Papert (1969) portrayed perceptron history in an
excellent way but their view, that the multilayer perceptron (MLP) systems had
limited learning capabilities similar to the one-layer perceptron system, was later
disproved by Rumelhart and McClelland (1986). Rumelhart and McClelland in fact
showed that multilayer neural networks have outstanding nonlinear discriminating
capabilities and are capable of learning more complex patterns by
backpropagation learning. This essentially terminates the most fundamental
development phase of perceptron-based neural networks.

After a period of stagnation, the research interest was turned to the possible
alternative network variants that have been found in self-organizing networks

80 Computational Intelligence in Time Series Forecasting

(Amari and Maginu,1988), resonating neural networks (Grossberg, 1988),
feedforward networks (Werbos, 1974), associative memory networks (Kohonen,
1989), counterpropagation networks (Hecht-Nielsen, 1987a), recurrent networks
(Elman, 1990), radial basis function networks (Broomhead and Lowe, 1988),
probabilistic networks (Specht, 1988), etc. Nevertheless, up to now, the most
comprehensively studied and, in engineering practice, most frequently used neural
networks are the multilayer perceptron networks (MLPN) and radial basis function
networks (RBFN), which are frequently the subject of further research and
applications.

Neural networks have, since the very beginning of their practical application,
proven to be a powerful tool for signal analysis, features extraction, data
classification, pattern recognition, etc. Owing to their capabilities of learning and
generalization from observation data, the networks have been widely accepted by
engineers and researchers as a tool for processing of experimental data. This is
mainly because neural networks reduce enormously the computational efforts
needed for problem solving and, owing to their massive parallelity, considerably
accelerate the computational process. This was reason enough for intelligent
network technology to leave soon the research laboratories and to migrate to
industry, business, financial engineering, etc. For instance, the neural-network-
based approaches developed and the methodologies used have efficiently solved
the fundamental problems of time series analysis, forecasting, and prediction using
collected observation data and the problems of on-line modelling and control of
dynamic systems using sensor data.

Generally speaking, the practical use of neural networks has been recognized
mainly because of such distinguished features as

general nonlinear mapping between a subset of the past time series values
and the future time series values
the capability of capturing essential functional relationships among the
data, which is valuable when such relationships are not a priori known or
are very difficult to describe mathematically and/or when the collected
observation data are corrupted by noise
universal function approximation capability that enables modelling of
arbitrary nonlinear continuous functions to any degree of accuracy
capability of learning and generalization from examples using the data-
driven self-adaptive approach.

3.2 Basic Network Architectures

The model of the basic element of a neural network i.e. the neuron, as still used
today was originally worked out by Widrow and Hoff (1960). They considered the
perceptron as an adaptive element bearing a resemblance to the neuron (Figure
3.1). A neuron, as the fundamental building block of a neural information
processing system, is made up of (see Figure 3.1)

a cell body with an inherent nucleus

 Neural Networks Approach 81

Axon

Dendrites

Soma

Neuron

Summing
Element

Nonlinear
Element

x1

xn

x2

w1

w2

wn

:
:

w0

biasInputs weights

y0

outputX0 = 1

Perceptron

dendrites that feed the external signals to the cell body
axons that carry the signals out of the cell to other cell bodies

This configuration was translated in terms of analogue computational technology
as shown in Figure 3.1, where

the core part of the element, called a perceptron, contains a summing
element and a nonlinear element NL
the multiple signal inputs ix are connected via adjustable weighting

elements iw with the core part of the element

the signal output(s) dy

An additional perceptron input 0,w called the bias, is understood as a threshold

(switching) element.

Figure 3.1. Symbolic representation of neuron and perceptron

The output signal is defined as

0 0
1

n

i i
i

y f w x w

and the bias follows the relationship

T
0 0w x w

meaning that the perceptron fires, i.e. it is activated and produces an output signal
when this condition is met, otherwise not.

Our attention should now be shifted to the question of what nonlinear function
should be implemented in the core part of the perceptron as its activation function.
The early attempt of Block (1962) to select the binary step function for this
purpose was later modified in favour of a sigmoid activation function (Figure 3.2).

1
()

1 exp()
f x

x
.

82 Computational Intelligence in Time Series Forecasting

Figure 3.2. Sigmoid activation function

The perceptron basically learns through a training process, based on a set of
collected data. During the training, the perceptron adjusts its interconnection
weights according to the data presented at its input. For adjusting the perceptron
weights, Widrow and Hoff (1960) originally proposed using the delta rule, i.e. the
recursive gradient-type of learning algorithm (the so-called -LMC Algorithm)
that adds to the current weight value w(k) a compensation term (k)x(k), to build
the next weight value

w(k + 1) = w(k) + (k)x(k),

where is a proportionality term, (k) is the error at the adjusting step k, and x(k)
the value of the input signal at the current step k.

Although rather simple, the delta learning rule has, in the majority of cases,
demonstrated a high efficiency and a high convergence speed in perceptron
training. Even so, a single perceptron alone cannot learn enough to be capable of
solving more complex problems because it’s radius of computational action is
rather restricted by the simplicity of it’s structure. This was demonstrated in an
example of a perceptron as a pattern classifier. Owing to it’s restricted structural
capabilities the perceptron can only solve the linearly separable problems. It is
thus far away from being a general-purpose processing device. But, the
fundamental erroneous belief of Minsky was that even multiple perceptron layer
devices cannot build a universal general-purpose processing machine. This was
disproved by building the multilayer perceptrons (MLPs) that, in addition to the
perceptron input layer and output layer, also include so-called hidden layers
inserted between the input and the output layer to form a cascaded network
structure with extended connectionist capabilities (see Section 3.3.1). The term
hidden layer was selected for the intermediate layer because this layer is only
accessible through the input and/or the output layer but not directly. In practice,
one hidden layer is usually sufficient to build the network with the extended

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

si
g

m
o

id
al

 f
u

n
ct

io
n

:
f(

x
)

=
 1

/(
1+

e
x

p
(-

x
))

 Neural Networks Approach 83

xn

y01

Inputs

outputs

ADALINE
(A)

ADALINE
(A)

ADALINE
(A)

ADALINE
(A)

ADALINE
(A)

ADALINE
(A)

ADALINE
(A)

ADALINE
(A)

x2

x1

y02

ADALINE
Layer-1

ADALINE
Layer-2

ADALINE
Layer-3

:
:

computational capabilities for solving the majority of practical problems. Only in
some rare cases some additional hidden layers could be needed. This also holds in
time series analysis and forecasting applications.

Accidentally, the concept of the perceptron emerged at that time when the
difficulties in solving complex intelligent problems using classical computing
automata of John von Neumann had grown to be insurmountable. It was realized
that, for solving such problems, massive, highly parallel, distributed data
processing systems are required. Building of such highly sophisticated
computational systems was already put on the agenda of some leading research
institutions. However, discovery of the perceptron as a simple computing element
that can easily be mutually interconnected with other perceptrons to build huge
computing networks was viewed as a more promising way for development of the
massive parallel computational systems needed at that time. Minsky and Papert
(1969) expected that the use of more complex, MLP configurations could help in
building the future intelligent, general-purpose computers with learning and
cognition capability. This was very soon proven using perceptrons as the basic
elements of ADALINE (A) in single-layer perceptrons to build a multi-layer
MADALINE architecture (see Figure 3.3).

Figure 3.3. ADALINE-based MADALINE

In 1950, Rosenblatt used a single perceptron layer for optical character
recognition. It was a multiple input structure fully connected to the perceptron

layer with adjustable multiplicative constants iw called weights. The input signals,

before being forwarded to the processing elements (i.e. perceptrons) of the single
network layer, are multiplied by the corresponding values of the weighting
elements. The outputs of the processing units build a set of signals that determine
the number of pattern classes that can be distinguished in the input data sets by the
linear separation capability of perceptron layer. For weight adjustment Rosenblatt
used the delta rule.

84 Computational Intelligence in Time Series Forecasting

3.3 Networks Used for Forecasting

Hu (1964) was the first to demonstrate - on a practical weather forecasting example
- the general forecasting capability of neural networks. Werbos (1974) later
experimented with the neural networks as tools for time series forecasting, based
on observational data. However, apart from some isolated attempts to solve the
forecasting problems using the then still poorly developed neural networks
technology, the research work in practical application of neural networks had
generally undergone a long period of stagnation. The stagnation was broken and
the work on neural network applications enthusiastically resumed after the
backpropagation training algorithm was formulated by Rumelhart et al. (1986).
Experimenting with the backpropagation-trained neural networks, Werbos (1989,
1990) also concluded that the networks even outperform the statistical forecasting
methods, such as regression analysis and the Box-Jenkins forecasting approach.
Lapedes and Farber (1988) also successfully used neural networks for modelling
and prediction of nonlinear time series.

In the following, typical neural networks used for forecasting and prediction
purposes will be described.

3.3.1 Multilayer Perceptron Networks

Although in the meantime the variety of proposed neural network structures has
grown, the multilayered perceptron has remained the prevailing one and also the
most widespread network structure. This particularly holds for the three-layer
network structure in which the input layer and the output layer are directly
interconnected with the intermediate single hidden layer. The inherent capability
of the three-layer network structure to carry out any arbitrary input-output mapping
highly qualifies the multilayer perceptron networks for efficient time series
forecasting. When trained on examples of observation data, the networks can learn
the characteristic features “hidden” in the examples of the collected data and even
generalize the knowledge learnt, which will be discussed later in detail.

The multilayer perceptron, because of its cascaded structure, performs the
input-output mapping of nonlinearities. For instance, the input-output mapping of a
one hidden layer perceptron network can generally be written as

0 .T
ih h iy f w f f xw

Relying on the Stone-Weierstrass theorem, which states that any arbitrary function
can be approximated with a given accuracy by a sufficiently large-order
polynomial, Cybenko (1989) and Hornik et al. (1989) proved that a single hidden
layer neural network is a universal approximator because it can approximate an
arbitrary continuous function with the desired accuracy provided that the number
of perceptrons in it is high enough. This network capability is general, i.e. it does
not depend on the shape of the perceptron activation function if it is nonlinear.

 Neural Networks Approach 85

xn

y1

Inputs
outputs

Input
neuron-1

Input
neuron-2

Input
neuron-n

Hidden
neuron-h

Hidden
neuron-2

Hidden
neuron-1

Output
neuron-1

Output
neuron-2x2

x1

y2

Input Layer Hidden Layer Output Layer

:
:

Output
neuron-m

ym

:
:

:
:

:
:

:
:

Multilayer perceptron networks

w1
11

w1
nh

w2
11

w2
hm

Figure 3.4 Multilayer perceptron architecture

Rumelhart and McClelland (1986, MIT book) suggested for multilayer neural
networks the backpropagation learning rule. This has also widely been accepted.
Later, various accelerated versions of the rule have been elaborated that speed up
the learning process. In the meantime, the multilayer perceptron networks trained
to learn using backpropagation algorithm are simply called backpropagation
networks.

The learning capability of backpropagation networks is mainly due to the
internal mapping of the characteristic signal features in the process of network
training onto the hidden layer. The mappings stored in this layer during the training
phase of the network can be automatically retrieved during it’s application phase
for further processing. Although the features-capturing capability of the network
can be extended enormously when a second hidden layer is added, the additional
training and computational time required in this case, however, advises the
network user not to do this, if it is not absolutely required by the complexity of the
problem to be solved.

Training of backpropagation networks (without internal feedback) is a process
of supervised learning, relying on the error-correction learning method in which
the desired, i.e. a given, output pattern is expected to be matched by the final
output pattern of the network within a specified accuracy. This is to be achieved by
adjusting the network weights according to a parameter tuning algorithm,
traditionally performed by a backpropagation algorithm that is considered as a
generalization of the delta rule.

3.3.2 Radial Basis Function Networks

The idea of function approximation using localized basis functions is the result of
the research work done by Bashkirov et al. (1964) and by Aizerman, Braverman
and Rozenoer (1964) on the potential function approach to pattern recognition.
Moody and Darken (1989) used this idea to implement a fast learning neural
network structure with locally tuned processing units. Similarly, Broomhead and
Lowe (1988) have described an approach to local functional approximation based
on adaptive function interpolation. This has found a remarkable resonance within
the researchers working on function approximation using radial basis functions,

86 Computational Intelligence in Time Series Forecasting

that is considered to be the birth of a new category of neural networks, named
radial basis function networks.

The new category of networks was enthusiastically welcomed by the neural
network society because the new networks have demonstrated the improved
capability of solving pattern separation and classification problems.
Backpropagation networks, in spite of their universal approximation capability, fail
to be reliable pattern classifiers. This is because during the training phase
multilayer perceptron networks build strictly separating hyperplanes that exactly
classify the given examples, so that the new, unknown examples are randomly
classified. This is a consequence of using the sigmoidal function as the network
activation function with its resemblance to the unit step function, which is a global
function. Also, the sigmoidal function, since it belongs to the set of monotonic
basis functions, has a slowly decaying behaviour in a large area of it’s arguments.
Therefore, the networks using this kind of activation function can reach a very
good overall approximation quality in the large area of arguments; however, they
cannot exactly reproduce the function values at the given points. For this one needs
locally restricted basis functions, such as a Gaussian function, bell-shaped
function, wavelets or the B-spline functions.

The locally restricted functions can be centred with the exact values at some
selected argument values. The function values around these selected argument
positions can decay relatively fast, controlled by the approximation algorithm.
Powel (1988) suggested that the locally restricted basis functions should generally
have the form

1
()

n

i i
i

F x w x x ,

where ix x is a set of nonlinear functions relying on the Euclidean distance

ix x . Moody and Darken (1989) selected for their radial basis function networks

the exponential activation function

2

2
expi

i

i ix c
F ,

which is similar to the Gaussian density function centred at .ic The function spread

i around the centre determines the ratio of the function decay with its distance

from the centre.
The common configuration of an RBF network firmly consists of three layers

(Figure 3.5): the input layer, the hidden layer, and the output layer. In the neurons
of hidden layer the activation functions are placed. The input layer of the network
is directly connected with the hidden layer of the network, so that only the
connections between the hidden layer and the output layer are weighted. As a
consequence, the training procedure here is entirely different from that in the
backpropagation networks. The most important issue here is the selection for each

 Neural Networks Approach 87

xn

y1

Inputs
outputs

Input
neuron-1

Input
neuron-2

Input
neuron-n

Sum

x2

x1

w11

Input Layer RBF hidden Layer Output Layer

:
:

:
:

:
:

Radial Basis Function Network

w21

whm

Gaussian
Function (RBF)

Sum
ym

wh1

:
:w1mw2m

neuron in the hidden layer the centre ic and the spread around the centre i ; this is

mostly done using the k-means clustering algorithm, which is capable of
determining the optimal position of centres. In addition, the value of the spread
parameter i should be selected small enough in order to restrict the basis

function spreading, but also large enough to enable a smooth network output
through the joint effect with the neighbouring functions.

The network training process mainly includes two training phases:

initialization of RBF centres, for instance using unsupervised clustering
methods (Moody and Darken, 1989), linear vector quantization
(Schwenker et al, 1994), or decision trees (Kubat, 1998)
output weight training of the RBF using an adaptive algorithm to estimate
its appropriate values.

Figure 3.5. Configuration of an RBF network

In some cases, it is recommended to add a third training phase (Schwenker et al.
2001) in which the entire network architecture is adjusted using an optimization
method.

3.3.3 Recurrent Networks

Research in the area of sequential and time-varying patterns recognition has
created the need for time-dependent nonlinear input-output mapping using neural
networks. To achieve this extended network capability, the time dimension has to
be introduced into the network topology, for instance by introducing short-term
memory features, that would enable network to perform time-dependent mappings.
Elman (1990) proposed a kind of globally feedforward, locally recurrent network
using the context nodes as the principal processing elements of the network. Such
nodes have also been the principal processing elements of the network proposed by
Jordan (1986) for providing the networks with the dynamic memory. Both Jordan
and Elman networks belong to the category of simple recurrent networks.

88 Computational Intelligence in Time Series Forecasting

Inputs

y1

outputs

Input
neuron-1

Input
neuron-n

Context
unit-1

Hidden
neuron-h

Hidden
neuron-1

Output
neuron-1

X(t)
w1

11

Input Layer

Elman Network

Output Layer

:
:

:
:

:
:w1

n1

w2
11

Output
neuron-m

ym

w2
h1 :

:w2
1m

w2
hm

X(t-(n-1))

:
:

Z-1

Z-1

Context
unit-m

C
o

n
te

xt
 L

ay
er

:
:

Hidden Layer

An Elman network (Figure 3.6) is a four-layer network made out of input
layer, hidden layer, output layer and the context layer, the nodes of which are the
one-step delay elements embedded into the local feedback paths. In the network,
the neighbouring layers are interconnected by adjustable weights.

Originally, Elman proposed his simple recurrent network for speech processing.
Nevertheless, owing to its eminent dynamic characteristics the network was widely
accepted for systems identification and control (Sastry et al., 1994). This was
followed by applications in function approximation and in time series prediction.

Figure 3.6. Configuration of the Elman network

Independently, Hopfield (1982) reported to the US National Academy of
Sciences about neural networks with emergent collective computational abilities.
In his report, Hopfield (1984) presented the neurons with graded response and their
collective computational properties. He also presented some applications in
neurobiology and described an electric circuit that closely reflected the dynamic
behaviour of neurons, which is known as the Hopfield network (see Figure 3.7).

The Hopfield network is a single-layer fully interconnected recurrent network

with a symmetric weight matrix having the elements jiij ww and zero diagonal

elements. As shown in Figure 3.7, the output of each neuron is fed back via a delay
unit to the inputs of all neurons of the layer, except to its own input. This provides
the network with some auto-associative capabilities: the network can store by
learning, following the Hebbian law or the delta rule, a number of prototype
patterns called fixed-point attractors in the locations determined by the weight
matrix. The patterns stored can then be retrieved by associative recalls. On request
to recall any of patterns stored, the network repeatedly feeds the output signals
back to the neuron inputs until it reaches its stable state.

The recall capability of recurrent networks of retaining the past events and of
using them in further computations is the advantage that the feedforward networks

 Neural Networks Approach 89

neuron-1 Z-1

neuron-2

 neuron-n

Z-1

Z-1

Delay unit-1

Delay unit-2

Delay unit-n

:
:

:
:

Hopfield Network

X1

X2

Xn

y1

y2

yn

In
p

u
ts :

:

o
u

tp
u

ts :
:

w21

w12

w1n

w31

w32

w2n

do not have. This capability enables the networks to generate time-variable outputs
in response to the static inputs.

Because of incorporating internal feedback loops, the critical issue of recurrent
networks is their stability, determined by the time behaviour of the network energy
function. For a binary Hopfield net with a symmetric weights matrix this function
is defined as

1 12

n n

ij i j
i j

i
E w x x .

Figure 3.7. Configuration of a Hopfield network

In the case of a stable network this function must decrease with time and ultimately
reach its minimum, or it’s value remains constant. The minima reached are usually
local minima because there are a number of states corresponding to fixed-point
actuators or stored patterns to which the network must converge. Each finally
reached state of the network has its associated energy defined above.

For the generalized form of binary Hopfield network, in which the sigmoid
function

1
()

1 x
f x

e

is used, the changes in time are continuously described following the equation

j j
ji i j

i j

du u
w y U

dt D
,

90 Computational Intelligence in Time Series Forecasting

where is a constant positive value, iy is the output value of the unit i, jD is the

factor controlling the sigmoid decay resistance, and jU is the external input to the

unit j. The resulting energy function in this case is defined by

1

2 ij i j i i
i j i

E w u u u U

Network stability, as proven by Hopfield (1982), is generally guaranteed by the
symmetric network structure.

For the training of recurrent networks, Rumelhart et al. (1986) proposed a
general framework similar to that used for training feedforward networks, called
backpropagation through time. The algorithm is obtained by unfolding the
temporal operation of the network into a layered feedforward growing with each
time step. This, however, is not always satisfactory. Williams and Zipser (1988)
presented a learning algorithm for continuously running fully connected recurrent
neural networks (Figure 3.9) that adjusts the network weights in real time, i.e.
during the operational phase of the network. The proposed learning algorithm is
known as a real-time recurrent learning algorithm.

There are two basic learning paradigms for recurrent networks:

fixed-point learning, through which the network reaches the prescribed
steady state in which a static input pattern should be stored
trajectory learning, through which a network learns to follow a trajectory
or a sequence of samples over time, which is valuable for temporal pattern
recognition, multistep prediction, and systems control.

For trajectory learning, both the backpropagation through time and the real-
time recurrent learning are appropriate. From the mathematical point of view,
using the backpropagation through time we turn the recurrent network - by
unfolding the temporal operation - into a layered feedforward network, the
structure of which at every time step grows by one layer.

Almeida (1987) and Pineda (1987) have presented a method to train the
recurrent networks of any architecture by backpropagation. Under the assumption
that the network outputs strictly depend only on present and not on the past input
values, Almeida derived the generalized backpropagation rule for this type of
network, and addressed the problem of network stability using the energy function
formulated by Hopfield (1982). Pineda (1987), however, directly addressed the
problem of generalization of the backpropagation training algorithm and it’s
extension to recurrent neural networks. Hertz et al. (1991), based on the results of
this work, have worked out a backpropagation algorithm for networks, the
activation function of which obeys the evolutionary law

()i
i ij j i

j

dv
v g w v x

dt
,

 Neural Networks Approach 91

Z-1

Z-1

Z-1

Z-1

X1(tn)

X2(tn)

X1(tn+1) y(tn)
Bias

Bias

Bias

X2(tn+1)

X3(tn+1)

Inputs

Outputs

that was formulated by Cohen and Grossberg (1983). In the above equation, is the

time constant and ix is the external input to the unit i. Solving this equation and

defining the network equilibrium state for the unit k of the network

k kj j k
j

h w v x ,

the network should relax and ultimately reach the value .ky Thereafter, the weights

are updated using the gradient descent method by

 ()lk l k kw v g h y ,

where and l kv h are the equilibrium values of unit l and the equilibrium net input

to the unit k respectively, and ky is the equilibrium value of the matrix inverse

unit.

Figure 3.8. Fully connected recurrent neural network

A particular type of recurrent networks that do not obey the restrictions of the
Hopfield networks are the dynamic recurrent networks, proposed for
representation of systems whose internal state changes with time. They are
particularly appropriate for modelling of nonlinear dynamic systems, generally
defined by the state-space equations

X(k+1) = f(x(k), u(k))
Y(k) = Cx(k).

92 Computational Intelligence in Time Series Forecasting

X1

X2

Xn

y1

y2

ym

:
:

:
:

:
:In

p
u

ts

O
u

tp
u

ts

K
o

h
o

n
en

L
ay

er

Counter Propagation
network

Input Layer Output Layer

Kohonen Layer

3.3.4 Counterpropagation Networks

A counterpropagation network, as proposed by Hecht-Nielsen (1987a, 1988), is a
combination of a Kohonen’s self-organizing map of Grossberg’s learning. The
combination of two neuro-concepts provides the new network with properties that
are not available in either one of them. For instance, the network can for a given set
of input-output vector pairs 1 1 2 2(,),(,),..., (,)n nx y x y x y learn the functional

relationship y = f(x) between the input vector x = 1 2(, ,...,)nx x x and the output vector

y = 1 2(, ,...,).ny y y If the inverse of the function f(x) exists, then the network can also

generate the inverse functional relationship

x = 1()f y .

When adequately trained, the counterpropagation network can serve as a bi-
directional associative memory, useful for pattern mapping and classification,
analysis of statistical data, data compression and, above all, for function
approximation.

Figure 3.9. Configuration of a counterpropagation network

The overall configuration of a counterpropagation network is presented in
Figure 3.9. It is a three-layer network configuration that includes the input layer,
the Kohonen competitive layer as hidden layer, and the Grossberg output layer.
The hidden layer performs the key mapping operations in a competitive winner-
takes-all fashion. As a consequence, each given particular input vector

1 2(, ,...,)p p npx x x activates only a single neuron in the Kohonen layer, leaving all

other neurons of the layer inactive (see Figure 3.10). Once the competition process
is terminated, a set of weights connecting the activated neuron with the neurons of
the output layer defines the output of the activated neuron (say p) as the sum of
products

 Neural Networks Approach 93

X1p

X2p

Xnp

y1p

y2p

ymp

:
:

:
:

:
:In

p
u

ts

O
u

tp
u

tsK
o

h
o

n
en

L
ay

er

Outstar of Counter Propagation
network

Input Layer Output Layer

Kohonen Layer

1

n

p ji i
i

y w x ,

where n is the number of input layer neurons connected with the activated neuron.
Using the set of weights learnt and stored, the network is capable of recognizing
the pattern once learnt and the patterns in its neighbourhoods because similar
inputs will activate the same Kohonen neuron.

After locating the Kohonen neuron, we turn to the Grossberg layer, i.e. the
output layer of the network, and train it. To produce the desired mapping of the
pattern at the network output using the output of the activated Kohonen neuron, all
we need is to connect this neuron with each neuron in the Grossberg layer using
the corresponding weights. As a result, a star connection between the Kohonen
neuron and the network output, known as Grossberg’s outstar, builds the output
vector 1 2(, ,...,),p p mpy y y as shown in Figure 3.10.

Figure 3.10. Outstar of counterpropagation network

The input vectors of a counterpropagation network should generally be
normalized, i.e. they should satisfy the relation

1x .

The normalization can be carried out by decreasing or increasing the vector length
to be on the unit sphere using the relation

x
x

x
.

The question that remains is how to initialize the weight vectors before the network
training starts. The preference of taking the randomized weight vectors has not
always given reliable learning results. It has in some cases even created serious
solution problems. The way out was found in using the convex combination

94 Computational Intelligence in Time Series Forecasting

X1

X2

Xk

y1

ym

:
:

:
:

:
:

In
p

u
ts

O
u

tp
u

ts

O
u

tp
u

t
U

n
it

Probability network

Input Layer Output LayerPattern Unit

Xp

:
:

:
:

:
:

Summation Unit

method by taking for all the weight vectors the same value 1/ n , where n is the
dimension of weight vectors.

3.3.5 Probabilistic Neural Networks

The idea of probabilistic neural networks was born in the late 1980s at Lockheed
Palo Alto Research Centre, where the problem of special patterns classification
into submarine/non-submarine classes was to be solved. Specht (1988) suggested
using a newly elaborated special kind of neural network, the probabilistic neural
networks. To solve the classification problem, the new type of network had to
operate in parallel with a polynomial ADALINE (Specht, 1990).

Figure 3.11. Architecture of a probability network

Supposing that 1 2, ,..., mP P P are the a priori probabilities for the vector x to belong to

a corresponding category, and denoting by iL the merit of classification loss for the

category i, the Bayesian decision rules ,i i iPL p for i = 1, 2,…, m, can help determine

the largest product value. In case that, say, i i iPL p j j jP L p holds, the input vector x

is assigned to the category i. In this case the decision boundary for the above
decision, that can be a nonlinear decision surface of arbitrary complexity, is
defined by

j j j
i

i i

P L p
p

L P
.

The structure of probabilistic networks is similar to that of backpropagation
networks, but the two types of network have different activation functions. In
probabilistic networks the sigmoid function is replaced by a class of exponential
functions (Specht, 1988). Also, the probabilistic networks require only a single
training pass, in order that - with the growing number of training examples - the
decision surfaces finally reach the Bayes-optimal decision boundaries (Specht,
1990). This is achieved by modelling the well-known Bayesian classifier that

 Neural Networks Approach 95

follows the strategy of minimization of the expected classification risk. The
strategy can be explained in terms of an n-dimensional input vector x belonging to
one of m possible classes with the probability density functions

1 2(), (),..., ()mp x p x p x .

The architecture of a probabilistic network, shown in Figure 3.11, consists of an
input layer followed by three computational layers. It has a striking similarity with
a multilayer perceptron network. The network is capable of discriminating two
pattern categories represented through the positive and negative output signals. To
extend the network capability of multiplying discrimination, additional network
outputs and the corresponding number of summation units are required.

The input layer of a probabilistic network is simply a distribution layer that
provides the normalized input signal values to all classifying networks that make
up a multiple classes classifier. The subsequent layer consists of a number of
pattern units, fully connected to the input layer through adjustable weights that
correspond to the number of categories to be classified. Each pattern unit forms the
product of the input vector x with the weight vector w. The product value, before
being led to the corresponding summation unit, undergoes the initial nonlinear
operation

2

(1)

()
ixw

iF xw e .

However, since both the input pattern and the weighting vectors are normalized
to the unit length, the last relation is to be rewritten as

2

1

2

()

2()

n

j ij
j

x w

iF xw e .

The summation units finally add the signals coming from the pattern units
corresponding to the category selected for the current training pattern.

3.4 Network Training Methods

We now turn our attention to some training aspects of neural networks, particularly
to the aspects of training process acceleration and training process results. Our
primary interests are the supervised learning algorithms, the most frequently used
in real applications, such as the backpropagation training algorithm, also known
as the generalized delta rule.

The backpropagation algorithm was initially developed by Paul Werbos in
1971 but it remained almost unknown until it was “rediscovered” by Parker in
1982. The algorithm, however, became widely popular after being clearly
formulated by Rumelhart et al. (1986), which was a triggering moment for

96 Computational Intelligence in Time Series Forecasting

intensive use of multilayer perceptron networks in many simulated engineering
applications. The real-life application had at that time to be “postponed” due to the
lack of a suitable neuro-technology. In the 1990s Rumelhart put much effort into
popularizing the training algorithm among the neural network scientific
community. Presently, the backpropagation algorithm is also used (in slightly
modified form) for training of other categories of neural networks.

In the following, we will confine our discussion mainly to multilayer
perceptron networks. As mentioned earlier, this kind of networks, based on given
training samples or input-output patterns, implements nonlinear mapping of
functions that is applicable to function approximation, pattern classification, signal
analysis, etc. In the process of training, the network learns through adaptation of
synaptic weights in such a way that the discrepancy between the given pattern and
the corresponding actual pattern at network output is minimized. Because the
synaptic adaptation mostly follows the gradient descent law of parameter tuning,
the backpropagation training algorithm is considered as the search algorithm of
unconstrained minimization of a suitably constructed error function at network
output.

In order to illustrate the basic concept of the backpropagation algorithm, let us
consider its application to the training of a single neuron located in the output layer
of a multilayer perceptron (see Figure 3.12). In addition, let us suppose that as the
nonlinear activation function the hyperbolic tangent function

1 exp
tanh()

1 exp

j

j j

j

u
y f u u

u
 (3.1)

is chosen, where

1

n

j i i j
i

u w x , 0. (3.2)

Furthermore, xi is the ith input with corresponding interconnecting weight wi to the
neuron and j is the bias input to the same neuron. Typically, all neurons in a
particular layer of the multilayer perceptron have the same activation function. The
aim of the learning algorithm is to minimize the instantaneous squared error
function of the network output

2 2
0.5 0.5j j j jS d y e , (3.3)

defined as the square of the difference ()j jd y between the desired output signal

and the actual output signal of the network, by modifying the synaptic weights .iw

The minimization process in parameter tuning steps iw is based on the steepest

descent gradient rule

 Neural Networks Approach 97

bias

In
p

u
ts

weights

output

Learning rate

Summing
Element

x1

xn

x2

w1

w2

wn

:
:

w0

yj

X0 = 1

Training
Algorithm

Summing
Element

dj

desired
output

f'(uj)

Product

-
+

f(uj)
uj

j
i

i

S
w

w
 (3.4)

where is a positive learning parameter determining the speed of convergence to

the minimum.

Figure 3.12. Backpropagation training implementation for a single neuron

Now, taking into account that from (3.3) follows:

,j j j j je d y d f u (3.5)

where

0

n

j i i
i

u w x .

By applying the chain rule

j j
i

j i

S e
w

e w
 (3.6)

to Equation (3.5) we get

j j j
i j j

i j i

e e u
w e e

w u w
 (3.7)

This can further be transformed to

98 Computational Intelligence in Time Series Forecasting

j

j i j j i j i
j

f u
w e x e f u x x

u

where j can be expressed as

.j
j j j

j

S
e f u

u
 (3.8)

The derivation jf u of the selected activation function (3.1) is

221 tanh 1
j

j j j
j

f u
f u u y

u
, (3.9)

and the corresponding weight updates (3.7)

21i j j iw e y x , (3.10)

with 0 .

Note that the weight update stabilizes if jy approaches –1 or +1, since the

partial derivative j jy u , equal to 21 jy , reaches its maximum for 0jy

and its minima for 1 . However, if the sigmoidal activation function is used and if
it is unipolar, described by

1
,

1 exp
j j

j

y f u
y

 (3.11)

then

1 .
j

j j j
j

f u
f u y y

u
 (3.12)

Therefore, the weight increment takes the form

1i j j j iw e y y x . (3.13)

 Neural Networks Approach 99

It should also be noted that in this case the partial derivative j jy u reaches its

maximum for 0.5jy and, since 0 1,jy it approaches its minimum as the

output jy approaches the value zero or the value one.

The synaptic weights are usually changed incrementally and the neuron
gradually converges to a set of weights which solve the specific problem.
Therefore, the implementation of the backpropagation algorithm requires an
accurate realization of the sigmoid activation function and of its derivative.

The backpropagation algorithm described can also be extended to train
multilayer perceptron networks.

3.4.1 Accelerated Backpropagation Algorithm

The backpropagation algorithm generally suffers from a relatively slow
convergence and with the possibility of being trapped at a local minimum. Also, it
can be accompanied by possible oscillation around the located minimum value.
This may restrict its practical application in many cases. Therefore, such unwanted
drawbacks of the algorithm have to be removed, or at least reduced. For instance,
the speed of algorithm convergence can be accelerated:

by selection of the best initial weights instead of taking the ones that are
generated at random
through adequate preprocessing of training data, e.g. by employing the
feature extraction algorithms or some data projection methods
by improving the optimization algorithm to be used.

Numerous heuristic optimization algorithms have been proposed for speed
acceleration; unfortunately, they are generally computationally involved and time
exhausting. In the following, only two of the most efficient are briefly reviewed:

adaptation of learning rate
using a momentum term.

It is usually assumed that the learning rate of the algorithm is fixed and uniform for
all weights during the training iterations. In order to prevent parasitic oscillations
and to ensure the convergence to the global minimum, the learning rate must be
kept as small as possible. However, a very small value of learning rate slows down
the convergence speed of algorithm considerably. On the other hand, a large value
of the learning rate results in an unstable learning process. Therefore, the learning
rate has to be optimally set between the two extreme values of learning rate, e.g. by
using the adaptive learning rate, and in this way the training time can be
considerably reduced. Similarly, the speed up of convergence can be achieved by
extending the training algorithm by a momentum term (Kröse and Smagt, 1996).
In this case the learning rate can be kept at each iteration step as large as possible
within the admitted values, while maintaining the learning process stable.

One of the simplest heuristic approaches of learning rate tuning is to increase
the learning rate slightly (typically by 5%) in an iteration step if the new value of
the output error (sum squared error) function S is smaller than the previous

100 Computational Intelligence in Time Series Forecasting

iteration step. On the other hand, if the new value of the error function exceeds the
value of the previous one, then the learning rate should be decreased by
approximately 30%, and in the latter case the new weight updates and the error
function are discarded, i.e. in this case we set weight update as

1 0,ijw k

and that leads to weights in (k + 1)th iteration as identical as (k - 1)th, i.e.

1 1)ij ijw k w k .

After starting with a small learning rate, the approach will behave as follows:

1

1
0

1

, 1 ,

, 1 ,

, otherwise

k k

k k

k k

a for S w k S w k

b for S w k k S w k (3.14)

with a = 1.05, b = 0.7 and k0 = 1.04 being typical values (Vogl et al. 1988;
Cichocki and Unbehauen, 1993).

In some training applications not all the training patterns are available before
the learning starts. In such situations an on-line approach has to be used.
Schmidhuber (1989) proposed the simple global updates of the learning rate for
each training pattern as

,pk
ij

ij

S
w k

w
 (3.15)

with

max

0

2

2

min , ,pk

p

S S

S
 (3.16)

where the index max indicates the maximum learning rate (typically max = 20)

and 0S is a small offset error function (typically 00.01 0.1S).

Various suggestions have been made for practical use of both adaptable
learning rate and the momentum term, with the best known being the conjugate
gradient algorithm (Johansson et al., 1992). Alternatively, the second-order
derivative-based Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994),
proposed for accelerated minimization of the cost function, is preferably used for
accelerated neural networks training. The key idea of the algorithm is to use a

 Neural Networks Approach 101

search vector Pk to calculate the parameter value 1,kW based on a current value

kW as

1k k k kpW W , (3.17)

where k is a scalar value. The search vector Pk is to be chosen so that the relation

1k kV VW W holds, where V W is the performance index of the network,

generally a sum square error function.
Now, considering the Taylor series expansion of 1kV W at point kW

1 .k kk k

T
k k k kPV V VWW W V PW (3.18)

it is obvious that, in order for the cost function V to decrease and for a positive
value of ,k the second term of (3.18) must be negative. This will be the case if

the steepest descent condition

1k k k kW W W (3.19)

is met. However, the steepest descent method, as discussed earlier, when used in its
original form, exhibits some drawbacks that need to be eliminated for its practical
use. To overcome this, the approximation of the objective function in the
immediate neighbourhood of a strong minimum by a quadratic function with
positive definite Hessian matrix or by using Newton’s method for pursuing the
minimization problem is preferred.

Let us now consider the Taylor series expansion

1
21

2
T

k k k
k k

T T
k kV VW W WV W V WW W (3.20)

where 2
kV W is the Hessian matrix and .kk kW P If the gradient of the

truncated Taylor series expansion (3.20) is taken with respect to kW and set to
zero (since we are looking for the minimum of the cost function), it follows that

12
k k kV VW W W . (3.21)

This reduces the Newton method to

12
1k k k kV W V WW W . (3.22)

102 Computational Intelligence in Time Series Forecasting

Direct practical use of this method, however, is hampered by the need for
Hessian matrix calculation, whose elements are the second derivatives of the
performance index with respect to the parameter vector. To overcome this obstacle,
the first and the second derivatives of the performance index

2

1
()

N
T

i k kk k
i

V W w ee e w w (3.23)

are built and expressed as

T
k k kV w w e wJ (3.24)

and

2 2

1

N
T

ik k k k i k
i

V w J w J w w e we , (3.25)

where J(wk) is the Jacobian matrix and

k ke w T Y w , (3.26)

with the target vector T and the actual output of the neural network Y(wk).
The Gauss-Newton modification of the method assumes that the second term in

the right-hand side expression of (3.25) is zero. Therefore, applying the former
assumption (3.22) yields the Gauss-Newton method as

1

1
T T

k k k k k kJ eW W J w w J w w , (3.27)

An additional difficulty appears here with when the Hessian matrix is not
positive definite, i.e. its inverse does not exist. In this case the modification of the
Hessian matrix

2
kG V Iw (3.28)

should be considered. Suppose that the eigen-values and the eigen-vectors of
2

kV W are the sets i and iz respectively. Multiplying both sides of

(3.28) by zi we have

2
i i i i ik iG V Iwz z z z z (3.29)

i iiGz z (3.30)

 Neural Networks Approach 103

Therefore, the eigen-values and eigen-vectors of G are i and iz

respectively. G can be made positive definite by increasing until 0i for
all i.

Therefore, the Levenberg-Marquardt modification to Gauss-Newton method is

1

1
T T

k k k k k kJ I eW W J w w J w w (3.31)

whereby the parameter µ is multiplied by some factor whenever a step would
result in an increased value of ()kV w . When a step reduces this value, µ is divided

by . Notice that when µ is large the algorithm becomes steepest descent with the
step size approximately 1/ . On the other hand, for small µ the algorithm becomes

Gauss-Newtonian.
Obviously, the calculation of the Jacobian matrix is the key step in applying

this algorithm. At first, all the adjustable parameters of the network should be
arranged in one column vector .kw For a neural network mapping problem the

terms in the Jacobian matrix can be computed by simple modification to the
backpropagation algorithm (Hagan and Menhaj, 1994). In the standard
backpropagation version, partial derivatives of the performance function with
respect to the adjustable parameters are needed, while in Levenberg-Marquardt
algorithm the derivative of the error is needed for the Jacobian matrix. This means
that the Jacobian matrix can be calculated using the sensitivity term of the
performance index derived in the standard backpropagation algorithm with one
modification at the final layer, i.e. by dropping the error term (Hagan and Menhaj,
1994). The Jacobian matrix computation for a neuro-fuzzy network is described in
Chapter 6.

The algorithm described above can easily be extended to train the multilayer
perceptron networks.

3.5 Forecasting Methodology

Forecasting methodology is generally understood as a collection of approaches,
methods, and tools for collection of time series data to be used for forecast or
prediction of future values of the time series, based on past values. The forecasting
methodology includes the following operational steps:

data preparation for forecasting, i.e. acquisition, preprocessing,
normalization, and structuring of data, determination of training and test
data sets, and the like
network architecture determination, i.e. selection of the type of network to
be used for forecasting, determination of number of network input and
output nodes, number of layers, the number of neurons within the layers,
determination of interconnections between the neurons, selection of neuron
activation functions, etc.

104 Computational Intelligence in Time Series Forecasting

design of network training strategy, i.e. selection of training algorithm,
performance index, and the training monitoring approach
overall evaluation of forecasting results using fresh observation data sets.

3.5.1 Data Preparation for Forecasting

Data used for analysis and forecasting of time series are generally collected by
observations or by measurements. In engineering, of major interest is the analysis
of data obtained by sampling of corresponding sensor signals and forecasting their
future behaviour. Therefore, our attention will be primarily focused on forecasting
of experimental data taken from sensing elements placed within the experimental
setups or within the plant automation devices. Here, depending on the nature of
signals provided by sensors, two main critical issues are:

the number of data needed for representative characterization of the
observed signal in view of its linearity, stationarity, drift, etc.
the sampling period required for recording the entire frequency spectrum of
the sampled signal, but that will still considerably limit the noise frequency
spectrum.

In practice, the preprocessing of acquired data, because of the presence of noise,
drift, and sensor inaccuracy, represents a trial-and-error procedure. In the
preprocessing phase it should also be made clear whether data filtering, smoothing,
etc. are needed, or whether mathematical transformation of data will facilitate the
learning process of the network within its training and/or reduce the network
training time.

Data normalization is a process of final data preparation for their direct use for
network training. It includes the normalization of preprocessed data from their
natural range to the network’s operating range, so that the normalized data are
strictly shaped to meet the requirements of the network input layer and are adapted
to the nonlinearities of the neurons, so that their outputs should not cross the
saturation limits.

In practice, the simplest normalization

max

i
ni

x
x

x

and the linear normalization

min

max min

i
ni

x x
x

x x

are most frequently used. Moreover, instead of linear normalization, nonlinear
scaling or logarithmic scaling of input signals is used to moderate the possible
nonlinearity problems during the network training. For instance, logarithmic
transformation can squeeze the scale in the region of large data values, and

 Neural Networks Approach 105

exponential scaling can expand the scale in the region of small data values, etc. But
by far the most critical data preparation issue here is the risk of possible loss of
critical information present within the acquired data.

Structuring of data is needed when preparing the mutually related input and
output data pairs to be used in supervised learning and/or when preparing
multivariate data in general. In the case of training the networks for forecasting

purposes, the next value 1tx of the univariate time series is related to the past

values of the time series up to the present value .tx In the next training step the

value 2tx is related to the past values of the time series up to the value 1,tx etc.

Before structuring the data of a multivariate time series for training of a
network forecaster, the fact should be recalled that this kind of time series is a set
of simultaneously built multiple time series with the values of each individual time
series being related to the corresponding values of other time series. This is
because the multivariate time series are built by simultaneous observation of two or
more processes, so that the resulting observation across all the individual
samplings at a certain time builds an observation vector

1 2[......]i i i inx x x x .

Thus, the resulting multiple time series in fact represents a set of observation

vectors ix , i = 1, 2, …, m, building up the observation matrix

11 12 1

21 22 2

1 2

.....

.....

...

....

n

n

m m mn

x x x

x x x
X

x x x

,

in which the time series of individual processes are represented through the
corresponding matrix columns.

A training set is used to teach the network to behave as a forecaster and the test
set is used, after the training, to test its forecasting capability. Both data sets are to
be built from the entire collected data set. Unfortunately, no selection guide is
available for splitting the prepared data set into two subsets. The recommendations
range from a 90% to 10% ratio, up to a 50% to 50% ratio. Haykin (1995)
advocated that the numbers of patterns N in the training set required to classify the
test examples with an error of should approximately be

W
N ,

where W is the number of weights in the network.

106 Computational Intelligence in Time Series Forecasting

Yet, whatever ratio is selected, attention should be paid to ensuring that the
training data set is large enough to cover all the dominant characteristic features
required for reliable network training as a forecaster. The remaining data set can
then be used for testing the trained network on the data samples never used in the
training. For this reason, it is recommended that the non-training data set should be
large enough to enable building of not only the test data set but also the validation
data set to be used in the overall network evaluation.

3.5.2 Determination of Network Architecture

This is the core task in building the neural network structure optimally adapted to
the specific problem the network should optimally solve. In our case it would be
the optimal predictor or the optimal forecaster. This task, although being very
challenging, is also the most difficult to execute because it requires from the
designer much skill and practical experience. Since being a nontrivial task with a
multiplicity of possible solutions, there are opinions that this work is more a kind
of art than an expert’s routine. The issues addressed in the following present the
activities to be carried out when developing the network architecture. They include
the

determination of input nodes required
determination of output nodes
selection of number of hidden layers
selection of hidden neurons
determination of node interconnection pattern
selection of activity function of neurons.

Determination of the required number of input nodes is a relatively easy task,
because it depends predominantly on the number of independent variables
presented in the data set prepared. As a rule, each independent variable should be
represented by its own input node. In the case of input data prepared for
forecasting, the number of input nodes is directly determined by the number of
lagged values to be used for forecasting of the next value

x(t+1) = f [x(t), x(t-1), x(t-2), … , x(t-n)],

as represented in Figure 3.13.

 Neural Networks Approach 107

X(t)

:
:

:
:

In
p

u
ts

Output

Number of input neurons for one
step ahead prediction

Input Layer Output LayerHidden Layer

X(t-1)

X(t-2)

X(t-n)

X(t+1)

Figure 3.13. Number of input neurons for one-step-ahead forecasting

In practice, the single-step-ahead forecaster is most frequently selected because
it is relatively simple and guarantees the most accurate forecasting results.
Otherwise, when building a multistep predictor, the determination of the required
number of input nodes is a trade-off process in the sense that (following the general
inclination) this number should be selected as small as possible but so that it still
guarantees good forecasting results, and as large as needed for the extraction of all
relevant characteristic features and the autocorrelation structure embedded in the
training data. To solve this problem optimally, some experimental runs could be of
considerable use.

The number of output nodes, again, is also a problem-oriented task. In the one-
step-ahead forecasting it is apparent that only one output node is sufficient as the
forecasting node. Correspondingly, in the case of multistep-ahead forecasting, the
number of output nodes should correspond to the forecasting horizon, i.e. to the
number of forecasts to be simultaneously presented at the network output.
Alternatively, a single output node can be used and all the future forecasts required
determined in the iterative steps.

In most forecasting applications, only one hidden layer is used, although some
aberrations are exceptionally needed. The sufficiency of a single layer is covered
by the Kolmogorov’s superposition theorem, which states that any continuous
function f(x) – which can also be an n-dimensional vector function 1 2(, ,...,)nf x x x –

defined on a closed n-dimensional cube, say [0,1]n , can be represented as

1 2(, ,...,)nf x x x =
2 1

1 1
(())

n n

i ji j
i j

x ,

where i and ji are continuous, single-variable functions. The functions i

depend on the function to be approximated f and the functions ji are

monotonously increasing functions fixed for a given n.
The theorem, as originally formulated by Kolmogorov, is an existence theorem

that does not suggest any particular function to be used for approximation of a

108 Computational Intelligence in Time Series Forecasting

given mapping, so that its relevancy to neural networks was not directly evident.
There were even opposite views to the relevance: one opposing the relevancy
(Girosi and Poggio.1989) and another in favour of it. However, it was the
refinement of the theorem by Sprecher (1965) that motivated Hecht-Nielsen
(1987b) to point out this reliance. He also proposed that the kth processing
elements of the hidden layer should have the activation function

1
()

n
k

k i
i

z x k k ,

where the real constant and the monotonously increasing real continuous function
depend on n, but are independent of f. Furthermore, the rational constant should

satisfy the conditions of the Sprecher theorem 0 < < , > 0. The activation
function of the output layer units should be

2 1

1
()

n

j j k
k

y g z ,

where jg are the real and continuous functions depending on and .

Consequently, as it was shown (Hecht-Nielsen, 1987b), the Kolmogorov’s theorem
can be implemented exactly by a three-layer feedforward neural network having n
input elements in the input layer, (2n+1) processing elements in the hidden layer,
and m processing elements in the output layer. This confirms the statement that
even a single hidden-layer network is sufficient to reveal all the characteristic
features present on the input nodes of the network. Introducing additional hidden
layers increases the feature extraction capability of the network at the cost of the
significantly extended training and operational time of the forecaster.

Lippmann (1987), in his celebrated paper on neurocomputing, stated clearly
that a three-layer perceptron can form arbitrarily complex decision regions and can
separate meshed classes, which means that no more than three network layers are
needed in perceptron-like feedforward nets. This particularly holds for the
networks with one output, as required for one-step-ahead forecasting. Cybenko
(1989), finally underlined that the networks never need more than two hidden
layers to solve most complex problems. Also, the investigation of neural network
capabilities related to their internal structure has proven that two-hidden-layer
networks are more prone to fall into bad local minima. DeVilliers and Barnard
(1992) even pointed out that both the one- and two-hidden-layer networks perform
similarly in all other respects. This can be understood from the comparison of
complexity degree of two investigated networks measured by the Vapmik-
Chervonenkis dimension, as was done by Baum and Hausler (1989).

We now turn to the problem of the number of hidden neurons placed within
the hidden layer. To determine the optimal number of hidden neurons there is no
straight-forward methodology, but some rules of thumb and some suggestions how
to do this have been proposed. For instance, in single-hidden-layer networks, it is
recommended to take the number of hidden-layer neurons in the neighbourhood of
75% of the number of network inputs, or say between 0.5 and 3 times the number

 Neural Networks Approach 109

of network inputs. The geometric pyramid rule, on the other hand, suggests
assigning

h i oN N N ,

hidden neurons to a single hidden layer, where iN is the number of network

inputs, oN the number of its outputs, and is multiplication factor the value of

which, depending on the complexity of the problem to be solved, should be
selected in the range 0.5 < <2. Baum and Haussler (1989) suggested the number
of neurons in the hidden layer be determined as

tr tol
h

dp o

N E
N

N N
,

where trN is the number of training examples, tolE is the error tolerance, dpN is the

number of data points per training example, and oN is the number of output

neurons.
Anyhow, the determination of the optimal number of hidden neurons involves

trial-and-error experimentation: starting with a number of neurons within the layer
to be decided – based on final accuracy of each learning process – to increase or
decrease the number of hidden neurons and to start a new learning process. In this
way the redundant hidden neurons can be deleted and the neurons needed for
optimal performance of the layer added. Here, both starting with a relatively large
or small number of neurons is possible, but starting with a large number of neurons
bears the risk of long-time computation and of getting trapped in local minima.

Khorasani and Weng (1994) have presented an approach to structural
adaptation of feedforward neural networks by neuron pruning, i.e. by addition and
deletion of hidden neurons based on the activity status of individual neurons during
the learning, measured by the variance of the neuron output signal and by the
strength of the backpropagated error. This is a proper indication of neuron activity
that helps decide which low-activity redundant neurons are to be deleted.

There is also a reliable way to determine the number of hidden neurons using
the Akaike’s information criterion (AIC), originally defined as

 AIC = (-2) ln(Maximum likelihood) + 2(number of adjusted parameters).

The criterion statistically evaluates the goodness of a model by combining the
evaluated mean squares error for training data and the number of parameters to be
estimated. Seen otherwise, AIC combines a measure of fit and the penalty term to
account for model complexity. Its potential application suitability for neural
networks model building was recognized by Kurita (1990) and Fogel (1991), who
reformulated the original form of the criterion (for statistically independent,
normally distributed output errors with zero mean and with constant variance) as

110 Computational Intelligence in Time Series Forecasting

2AIC ln() 2Nk K ,

where N is the number of training data, k is the number of output units of the
network, 2 is the maximum likelihood estimate of the mean square error for
training data and K is the number of model parameters.

The application principle of the AIC is that, if two models have the same mean
square error for a training data set, then the smaller sized model should be selected.
Alternatively, from a set of possible models, the model with the smallest value of
AIC is to be selected (Ishikawa and Moriyama, 1996; Anders and Korn, 1999).
This, however, requests a set of models to be built and their parameter estimated
before this application principle is used.

Unfortunately, direct application of the AIC to neural networks is rather
circumstantial. It is, however, facilitated when using the network information
criterion (NIC) of Stone (1977)

11 tr[]
NIC ln ()

BA
L w

T T
,

which is a generalization of the AIC. The first term in the above expression
represents the estimated maximum logarithmic likelihood. The matrices A and B
are defined as

2[ln]

[ln ln].
t

t t

A E L

B E L L

If the classes of models investigated include the true model, then it holds
asymptotically that A = B and

1[] [] ,tr BA tr I K

where K is, again, the number of model parameters. In this case the NIC takes the
form

1
NIC ln ()

K
L w

T T
.

This is similar to the AIC, which in this transcription becomes

2 2
AIC ln ()

K
L w

T T
.

 Neural Networks Approach 111

Murata et al. (1994) used this generalization to determine the number of hidden
units required to mimic the system based on input-output examples only. Attention
was paid to avoiding possible network overfitting by taking a small number of
redundant hidden neurons. A large number of hidden layer neurons could, for the
given training example, deliver better learning results but, due to the increased
network complexity, for some fresh examples could deliver worse results.

What the interconnections of network nodes concerns, full interconnection is
recommended for initial network configuration, in which the output of each neuron
of a layer is connected with the input of each neuron of the subsequent layer.
However, in some applications, deviations from full interconnection have also been
successful.

For activation function selection, there is generally no rich choice left. For
backpropagation networks, mostly the

sigmoid function

1

1 e x
y

is selected as an activation function in numerous applications, including
time series forecasting. But in some applications the

hyperbolic tangent function

e e

e e

x x

x x
y ,

has also been used successfully, for instance when solving the problems
that rely on learning of deviations from average behaviour (Klimasauskas,
1991)

step and ramp function are some additional alternatives favourable for
processing binary variables.

In any case, to avoid functional destruction of the neuron, the function selected
should be limited at its output, usually between the values –1 and +1. Although
there are no guidelines for selecting the activation functions in individual network
layers and for distributing them within the layers, it is still best to build
homogeneous individual layers and for the hidden neurons possibly to use the
sigmoid activation function. But still, some researchers have successfully used the
hyperbolic tangent as an activation function of hidden-layer neurons. Very seldom
heterogeneous network layers have been used. For time series forecasting, the
general experience has shown that for output neurons the linear activation function
delivers the best results. Some theoretical evidence for this has also been given
(Rumelhart et al., 1986). It was shown that only for forecasting of time series with
trend, output neurons with a nonlinear activation function are required.

112 Computational Intelligence in Time Series Forecasting

3.5.3 Network Training Strategy

Network training is a process in which the network learns to recognize the patterns
inherent to the training signals. In network training for time series forecasting all
relevant characteristic features embedded in the training data that reflect the
autocorrelation structure of the time series should be revealed and learnt. The
training is usually carried out in off-line mode using an unconstrained nonlinear
minimization algorithm, most frequently a gradient descent method, for tuning the
interconnection weights of the network. The objective is to achieve the optimal
network behaviour across the training set.

Network learning can generally be executed in supervised mode (Hopfield
model) or in unsupervised mode (Kohonen model). For supervised learning the
network is provided by data examples that include the desired output. For
unsupervised learning the desired output values are not required because the
network finds the adequate output values itself.

The objective of training is to find the set of most suitable values of
interconnecting weights through their tuning during the network training. By doing
so, the network should still attain the highest generalization attribute. This,
however, can be aggravated if, instead of the global minimum, only a local
minimum has been found. So, particular precautions should be provided to avoid
pitting into one of the local minima. Such and similar issues seriously affect the
training success, so that some careful considerations are required when preparing
the experiment design for network training. This includes some decisions to be
made concerning the network initialization for training, selection of the appropriate
training algorithm, monitoring the training process using an appropriate
performance index, formulation of training stopping criteria, etc.

Network initialization is a decision that is to be made before the weights tuning
process starts. This is a difficult decision, because the training speed and the total
training time required are strongly influenced by this decision. To circumvent this,
various suggestions have been made, the most popular being that, in order to
prevent neuron saturation and other unpleasant phenomena, some small, randomly
distributed parameter values should initially be taken. However, setting all weights
initially at the same small value should be avoided because it could possibly
hamper the tuning process to start and/or to learn. This definitely does not hold for
unsupervised training, like it holds for training of a Kohonen layer of a
counterpropagation network, where the competition process take place. Here, the
unique value 1/ N is initially taken for all weights, N being the number of
network inputs. This is required because by starting the competition process it is
advantageous that all competitors have the same initial parameter values for every
training run.

Hebb (1949) has proposed the simplest training algorithm for neural networks,
known as the Hebb learning rule. A neurophysiologist himself, he enunciated the
learning principle of natural neurons: if two interconnected neurons at the same
time fire, then the strength (weight) of the synapse connecting them increases.
Extended to artificial neural networks, this principle states that the common weight

 Neural Networks Approach 113

pi pjwij

yi xj

w1

y

x1

x2

xn

w2

wn

:
:

:
:

:
:

ijw connecting the output of the perceptron i and the input of the perceptron j will

increase by an amount

ij j iw x y ,

where jx is the output of the perceptron j, iy the output of the perceptron i, and is

a measure controlling the learning step size (Figure 3.14). Accordingly, the
Hebbian learning updating the weights, or the Hebbian learning rule, can be
expressed as

 (1) () () ()ij ij j iw t w t x t y t .

Figure 3.14. Interconnected perceptrons

Figure 3.15. Multiple interconnected perceptron

The rule can be generalized and applied to a multiple-input perceptron as

(1) () Tw t w t x wx ,

where the relation

1

n
T T

j j
j

y w x w x x w

is taken into account (Figure 3.15).
Nevertheless, the direct application of the Hebbian rule bears the risk of an

endless increase of weight values, which could saturate the output neurons. As a

114 Computational Intelligence in Time Series Forecasting

remedy, an increase in the normalization of weights at every iteration step is
necessary. Oja (1982) proposed using for this the normalization relationship

2

() () ()
(1)

[() () ()]

i
i

i i
i

w t x t y t
w t

w t x t y t
,

derived through modification of the Hebbian rule itself. The modification
normalizes the weight vector size to the value 1 by decreasing the values of all
other weight vectors if one of its components increases, in this way keeping the
total length of the vector constant.

The above rule modification can, for a small value of and after power
expansion, be approximated as

 (1) () ()[() ()]i i i iw t w t y t x y t w t ,

which is known as Oja’s rule.
Yet, the fact that the application of the Hebbian rule is considerably limited to

single-layer neural networks, the original version of the backpropagation
algorithm is favoured for training of multilayer networks. The training is
performed off-line in a supervisory learning mode, which is convenient because, in
practice, a large number of data are available that have to be processed prior to
their application for training. Besides, for forecasting purposes the pairs of related
input and output data also have to be built and processed. Finally, the supervisory
mode of learning facilitates the implementation of monitoring of training
performance and the determination of the training stopping point.

When applying the backpropagation algorithm, which is a typical gradient
steepest descent method, decisions have to be made concerning the

learning rate, i.e. the step size or the magnitude of weight updating
momentum, which is required for escaping the trapping in local minima.

An appropriate selection of learning rate is particularly important because the
steepest descent method suffers from slow convergence and weak robustness.
Convergence acceleration by taking a larger learning rate bears the danger of
network oscillatory behaviour around the minimum. To avoid this, and still to take
a larger learning rate, addition of a momentum parameter was recommended
(Rumelhart et al., 1986). By doing this, the original learning step according to the
delta rule

 (1) () () ()p pw t w t t x t

is extended by the momentum term to result in

 (1) () () () [() (1)]ij ij i j ij ijw t w t t x t w t w t ,

 Neural Networks Approach 115

where is the momentum constant, with the value 0.5 < < 0.9. The added term
represents the memorized value of the last increment so that the next weight
change keeps approximately the same direction as the last one. This stabilizes the
learning convergence.

An alternative way for speeding up and stabilizing the convergence was found
in adaptive step size implementation. Silva and Almeida (1990) recommend the
following weight update strategy

() (1) () ()ij ij ij ijw t w t t C t ,

where () ()ij t C t are the gradient components of individual iteration steps

1

()
()

N

ij
ij

J
C t

w
,

with N as the number of training set samples. In the above updating relation, ()ij t

is taken as

1() (1)ij ijt c t if () (1) 0ij ijC t C t

1

1
(1)ij ij t

c
 if () (1) 0ij ijC t C t ,

where 1c is a positive constant.

To circumvent the problem of avoiding the numerous flat and steep regions of
the error surface Yu et al. (1995) advocated the dynamic learning rate to be
imbedded into the backpropagation algorithm, based on information delivered by
the first and the second derivatives of the objective function with respect to the
learning rate. The clue to the proposed strategy is that it avoids the calculation of
the values of the second derivative in weight space, using the information collected
from the training instead. To bypass the calculation of the pseudo-inverse Hessian
matrix that is inherent in second-order optimization methods, the conjugate
gradient method is used.

The overwhelming number of upgraded learning algorithms are mainly focused
on learning velocity increase and search stability improvement by adding a term
containing the derivatives in weight space. But, some improvements of both
objectives, namely of learning velocity and of convergence stabilization, are also
achievable by manipulating the parameters of the neuron transfer function. Such an
updating proposal was made for supervised pattern learning that adaptively
manipulates the learning rate by updating neuron internal nonlinearity (Zhou et al.,
1991). Using some simulated data sets, it was shown that the updating law
proposed increases the learning speed and is very suitable for identification of
nonlinear dynamic systems.

116 Computational Intelligence in Time Series Forecasting

3.5.4 Training, Stopping and Evaluation

Originally, the simple principle was accepted that the network should be trained
until it has learnt it’s task. This is certainly difficult to find out, because there is no
direct approach how to do this. The general statement that a high enough number
of iterations, or training steps, is good enough, in the sense that the network has
learnt well enough to be a qualified expert in a specific domain, say in forecasting,
does not hold. Thus far, at least theoretically, reaching the global minimum of the
objective function is accepted as the training efficiency merit, so that by
approaching this minimum the error function will steadily decrease until the
minimum has been reached. Finding out that there is no further decrease of the
error function would then be an indication to stop the training process.

In practice, to find the global minimum, network training can require a number
of repeated training trials with various initial weight values. After each training run
the training results have to be evaluated and compared with the results achieved in
the previous runs, this in order to select the best run. Some researchers have here
centred their attention on the problem of a priori determination of a maximum
number of training runs required for the training. Iyer and Rhinehart (2000) have
developed an analytical procedure for determining the desirable lower number of
training runs, sufficient - within a certain level of confidence - that the best one is
within them. The procedure is based on the weakest-link-in-the-chain analysis
described by Bethea and Rhinehart (1991).

The authors use the cumulative distribution function for the weakest link in a
set of N training, with runs starting with the random initial weight values

 () 1 [1 ()]N
w xF a F a .

This, rearranged as

1

() 1 [1 ()]N
x wF a F a ,

represents the probability that any single optimization has an error value .x a
The two relations, simultaneously taken, define the required number of random
starts as

ln[1 ()]

ln[1 ()]
w

x

F a
N

F a
.

For example, if, at the confidence of 99% level, the best of random starts should
result in one of the best 20% values for the sum of squared errors, then the required
number of random starts will be

ln(1 0.99)
20

ln(1 20)
N .

 Neural Networks Approach 117

A more recent approach to solving the problems of appropriate training termination
departs from some stopping criteria. For instance, based on the automated stopping
criterion of Natarajan and Rhinehart (1997), Iyer and Rhinehart (2000) take as the
stopping criterion the performance-to-cost ratio of the network. Assuming that the
entire cost of a validation set consisting of N data points is C CN , where C is

the cost of single data points, and assuming that the cost of training and test data
sets are CNt and cCN respectively, then the corresponding performance-to-cost

ratio is

1

()ce t cE C N N N
,

where ceE is the cumulative error on the test set for a trained network. Setting this

result in relation to the total costs for training termination has reached the
minimum RMS error without the validation cost will become

1

()T CC N N
,

so their ratio

T C

t c

N N

N N N
,

with

ceE
.

However, even when using the predetermined number of training steps, there will
generally be no guarantee that the network parameters will be adequately tuned.
The optimal stopping strategy is to stop training after the network has learnt all
about the problem class it has to solve. This happens when the training stopping is
effected at the point where the network has reached the maximal generalization.
For the practising expert, this means that the stopping should be triggered exactly
at the point where the network output error has reached its minimal value, This is
known as early stopping. If the training is continued beyond this point, then the
result could be the network overtraining or network overfitting.

118 Computational Intelligence in Time Series Forecasting

Epoch

SSE-Vs-Epoch
with training data set

SSE-Vs-Epoch with
Validation data set

S
S

E

0

Early Stopping

Figure 3.16. Early stopping of training

But still, the dilemma remains: in order to stop the training process, how do we
realize that the network has learnt all the required knowledge from the training data
and has reached its maximum generalization? Then, from learning theory we know
that after reaching the point of maximum generalization, the network – although
learning more and more from the training set - will start impairing the related test
set performance (Figure 3.16) due to its overtraining (Vapnik, 1995). To prevent
this, the method of early stopping with cross-validation has been suggested by
Prechelt (1998).

Cross-validation is a traditional statistical procedure for random partitioning of
collected data into a training set and a test set, and for further partitioning of the
training set into the estimation set and the validation set. It is obvious that, if only
a restricted data set is available, the partition of the entire set reduces the size of the
training set. This, again, makes the location of the early stopping point difficult.
For managing this problem, a predicate or a stopping criterion should be found
that can indicate when to stop the training.

Prechelt (1998), using the error function (or the objective function) E, training
error Etr (as the average error per example across the training set), and the test and
validation errors Et and Ev respectively, has defined three possible stopping
criteria:

Stop as soon as the generalization loss exceeds a threshold value , i.e.
when ()lossg t , where the error function ()lossg t is based on the lowest

validation set error optE and the validation error vE .

Stop as soon as the quotient

()

()
loss

tr

g t

P t
,

where)(tPtr is the training progress defined by

 Neural Networks Approach 119

tr
tr

tr

()
() 1000

min ()

t
t

t
t

E t
P t

k E t
,

with 1,t t k and the training strip length k.

Stop when the generalization error increased in successive strips.

Prechelt (1998), in order to interrogate the validity of the criteria, conducted 1296
training runs, producing 18144 stopping criteria. In the experiments, 270 of the
records from 125 different runs reached automatically the 3000 epoch limit without
using stopping criteria.

We will now consider the problem of network overtraining or network
overfitting in more detail. Both the problem of overfitting and the opposite
problem of underfitting arise as a consequence of improper training stopping.
Therefore, both of them should be prevented because each of them lowers the
generalization capability of the trained network. For example, if a network to be
trained is less complex than the task to be learnt, then the network - after being
trained - can suffer from underfitting and can, therefore, poorly identify the
features within a large training data set. On the contrary, a too complex network
can, after being trained, suffer from overfitting and can, therefore, extract the
features within the training set along with the superposed noise. As a consequence,
a complex network can produce predictions that are not acceptable.

Network complexity is primarily related to the number of weights. The term is
used in connection with the model selection for prediction in the sense that the
prediction accuracy of a network determines its complexity. This is the starting
point of network model selection: how many and of what size of weights (and how
many hidden units) should the model have in order to implement the wanted
prediction accuracy without (or at least with a low) overfitting?

From the statistical point of view, the underfitting and overfitting are related to
the statistical bias and the statistical variance they produce. They strongly
influence the generalization capability of the trained network as follows:

the statistical bias is related to the degree of target function fitting and
restricts the network complexity, but does not care about the trained
network generalization
statistical variance, which is the deviation of network learning efficiency
within the set of training data, cares about the generalisation of the trained
network.

For instance, underfitting produces a very high bias at network outputs, whereas
overfitting produces a large variance. The difficulty of their simultaneous reduction
or their balancing in the process of learning, which is essential for achieving the
highest possible degree of generalization, is known as the bias-variance dilemma.
The dilemma is to be understood as follows: the bias of a neural network with a
high fitting performance across the given training set of data is very low, but its
variance is very high. By reducing the variance the network data fitting
performance of the network will decrease. As a consequence, a trade-off between

120 Computational Intelligence in Time Series Forecasting

x

f (
x)

0

*

**
*

*

*
*

*

*

A

B

the low bias and the low variance is necessary, as demonstrated in Figure 3.17 on
the example of polynomial curve fitting of a set of given data points.

Figure 3.17. Polynomial curve fitting of data

A polynomial of degree n can exactly fit a set of (n + 1) data points, say
training samples. If the degree of the polynomial is lower, then the fitting will not
be exact because the polynomial (as a regression curve A) cannot pass through all
data points (Figure 3.17). The fitting will be erroneous and will suffer from bias
error, formulated as the minimized value of the mean square error. In the opposite
case, if the degree of the polynomial is higher than the degree required for exact
fitting of the given training data set, the excess number of it’s degrees will lead to
oscillations because of missing constraints (curve B in Figure 3.17). The
polynomial approximation will, therefore, suffer from variance error.
Consequently, a polynomial of the optimal degree should be chosen for data fitting
that will provide a low bias error as well as a low variance error, in order to resolve
the bias-variance dilemma.

Translated in terms of neural network training, polynomial fitting is seen as an
optimal nonlinear regression problem (German et al., 1992). This means that, in
order to fit a given data set optimally using neural network, we need a
corresponding model implemented as a structured neural network with a number of
interconnected neurons in hidden layer. If the size of the selected network (or the
order of its model) is too low, then the network will not be able to fit the data
optimally and the data fitting will be accompanied by a bias error that will
gradually decrease with increasing network size until it reaches its minimal value.
Increasing the network size beyond this point, the network will also start learning
the noise present in the training data, because there will be more internal
parameters than are required to fit the given data. With this, also the variance error
of the network will increase. The cross-point of the bias and the variance error
curve will guarantee the lowest bias error and the lowest variance error for fitting
the given data set. The corresponding network size (i.e. the corresponding number
of neurons) will solve the given data fitting problem optimally. At this point the
network training should be stopped, which is known as early stopping or stopping
with cross-validation. The network trained in this way will guarantee the best
generalization.

For probabilistic consideration of polynomial fitting, the expected value of the
minimum square error across the set of training data

 Neural Networks Approach 121

2{[() ()] }D DMSE E p x f x

is taken, where the training points are represented by the function f(x) and the
fitting polynomial or the actual network output by p(x). Expanding the DMSE

formally as

2{[() { ()} { ()} ()] }D D D DMSE E p x E p x E p x f x

and rearranging its expansion as

2 2{[() { ()}] } { { ()} ()] }D D D D DMSE E p x E p x E E p x f x ,

one gets the sum of the statistical variance

2{[() { ()}] }D D DVAR E p x E p x

and the statistical bias

2{ { ()} ()] }D D DBIAS E E p x f x .

In summary, the optimal network size is essential for optimal problem solving
because a relatively small network will not be able to fit the given data accurately
and thus will not be able to learn the most important features incorporated in the
data. For this reason, the network size should be increased. On the other hand,
because a large-sized network tends to learn not only the characteristic features of
the given data, but also the accompanying noise and other non-relevant
components’ idiosyncrasies hidden in the data, its size should be reduced. In both
cases, a network size reduction and/or an increase in optimal network size should
be found that ensures the optimal network performance. In practice, this is usually
achieved by balanced network growing and/or by network pruning.

Network growing is a process of successive addition of new neurons and their
related interconnections to the initial small-sized network until the optimal network
performance is reached. This is a common way of designing optimal-sized radial
basis function networks.

Network pruning, again, is a process of successive elimination of less relevant
interconnections between the neurons within the large-sized network until the
further elimination essentially worsens the network performance. A survey of
algorithms to be used for network pruning was given by Reed (1993), who
distinguished two major pruning methods:

sensitivity calculation methods, based on the sensitivity of the error
function of the trained network with respect to the removal of individual
weight connections as the indication of their pruning
penalty term methods, based on modification of the error function of a
trained network by a penalty term.

122 Computational Intelligence in Time Series Forecasting

Mozer and Smolensky (1988) used as a measure of relevancy, defined as the
difference between the error after removing a unit and the error before removing a
unit. Karinin (1990), however, considers the error sensitivity with respect to
removal of individual connections and removes the low-sensitivity connections. Le
Cun et al. (1990), again, proposed the optimal brain damage procedure under the
condition that the Hessian matrix H is diagonal and estimated the saliency of the
weights and the second derivative of the error with respect to the weights. Hassibi
et al. (1992) removed the diagonallity restriction of the Hessian matrix and
considered the general case of an arbitrary form of Hessian matrix, which they
termed the optimal brain surgeon. Both approaches are based on consideration of
sensitivity of weights perturbation on the error function E using the Taylor series

31

2
TE

E w w H w w
w

,

where

 ()E E w w

and

2

2

E
H

w

is the corresponding Hessian matrix.
Now, knowing that for a network trained to the local minimum in error, the

partial derivative

0
E

w

holds. Neglecting all higher order terms in the corresponding Taylor series and
eliminating a specific weight, say ,ijw measures should be undertaken to minimize

the increase in error ,E taking into account the condition of weight elimination
as given by

 0ij ijw w .

The condition of weight elimination in vectorial form is given by

0T
ij ije w w ,

 Neural Networks Approach 123

where T
ije is the unit vector in the weight space and ijw is the weight connecting

the ith input of the jth hidden unit.
To solve the minimization problem, we form the corresponding Lagrangian

1
()

2
T T

ij ijL w H w e w w ,

where is the Lagrange multiplier. The derivative of the Lagrangian with respect
to w and the equation

 0T
ij ije w w ,

define the optimal weight change

1
1[]
ij

ij
ij

w
w H e

H
.

Correspondingly, the related optimal value of Lagrangian L for the weight ijw is

2

1

1

2 []
ij

ij
ij

w
L

H
,

where 1[]ijH is the ith element of the inverse Hessian matrix H. The ijL value of

the Lagrangian determined in this way represents the increase of mean square error

caused by the removal of the weight ijw , known as saliency of the weight ijw . It

is obvious that, because the saliency depends on the square value of ,ijw the small

values of weights have a low influence on the mean square error. However,
because the saliency is inversely proportional to 1[]ijH , small values of 1[]ijH

can also have a strong influence on the mean square error.
Although pruning methods, such as optimal brain damage, and optimal brain

surgeon, rely on the weight ranking with respect to saliency, i.e. on changes in
training error caused by pruning an individual weight, there is still an essential
difference between them: the optimal brain damage procedure does not require
retraining of the network after removing a weight element, whereas the optimal
brain surgeon procedure requires this.

The disadvantage of both methods is that, if no stopping criterion is built, the
removal of the least significant weights can lead to network overfitting. As an
efficient stopping criterion, the calculation of the test error using Akaike’s (1970)
final prediction error (FPE) estimation and its modification is used to cover the
estimation of average generalization error in regularized networks (Moody, 1991).

124 Computational Intelligence in Time Series Forecasting

In practice, to apply the above procedures, the second derivative (Buntine and
Weigend, 1994) of the inverse of Hessian matrix (Hassibi et al.,1992) has to be
calculated anew for every weight to be eliminated. Stahlberger and Riedmiller
(1996) proposed a fast network pruning method, called Uni-OBS, that still relies on
the optimal brain surgeon procedure but it requires only a single calculation of the
inverse Hessian matrix to eliminate a group of weights. This certainly simplifies
the calculation of net pruning. For accelerated calculations of matrix
multiplication, some fast computational algorithms are required or some algebraic
transformations that also accelerate the calculation process. An amendment of the
Uni-OBS method, called G-OBS (generalised optimal brain surgeon), can
simultaneously eliminate, say m, weights in one step with slight increase in error
given as

1

2
TE w H w ,

The related elimination condition is given by

()T
mw w S ,

mS being the selection matrix that determines the m weights to be removed

simultaneously. Using the above weights elimination conditions and the
corresponding Lagrange method, we get for the resulting error the relation

1 1()T Tw H S S HS S w

and

11
()

2
T T TE w S S HS S w .

For acceleration of the pruning process, Levin et al. (1994) proposed a method for
elimination of excess weights.

Another way was followed by Jollife (1986). To improve the network
generalization capability, he used the method of principal component analysis.
This is a valuable mathematical tool for reducing a system’s dimensionality by
eliminating it’s redundant variables. This method transforms the variables to a
basis in which the system covariance is diagonal and the projection is in the low
variance directions. To detect the variables that have a low significant influence on
the error function, a salience measure is used, which demonstrates the
relationships between the proposed methods and the optimal damage and optimal
surgeon procedures of network pruning. The pruning consists in removing the
eigen-nodes with low saliency to reduce the effective number of network
parameters. In contrast to the optimal brain damage and optimal brain surgeon
procedures, which reduce the rank by eliminating actual weights, the proposed

 Neural Networks Approach 125

method reduces the rank of weights in each layer by deletion of the smallest salient
eigen-nodes. Finally, the proposed method does not require network training.

A network pruning approach is preferably used in designing networks with a
high generalization capability, i.e. networks that are not only good enough to solve
the prediction or classification problems present in the training set, but also some
similar problems using some fresh, never seen and not previously known training
sets of data. This is achieved through a trade-off between the intention that the
trained network should be capable of learning a broad spectrum of similar problem
categories, which would require a large-sized network, and the requirement that the
network should be as simple as possible, in order to avoid the overtraining.

In practical application of a trained network, there is a fundamental
recommendation, i.e. where several trained networks have approximately the same
final performances, the structurally simplest network should be selected as the best
generalized one. This recommendation reflects Occam’s razor philosophy, which
recommends that a scientific model should favour simplicity.

Many training strategies have been interrogated for network simplification at
lower training cost. Such strategies have been discovered within the framework of
minimization of the error function extended by a penalty term. To this category of
strategies belong:

the weight decay approach (Hinton, 1989), a subset of regularization
approaches based on minimization of the weight tuning rule augmented by
a complexity penalty term

 (1)ij i j ijw t x w

that penalizes the large weight values.

the weight elimination approach (Weigend et al., 1991), based on
minimization of network training cost function to which a term is added
that accounts for the number of parameters:

2 2

()
(1)

[1 ()]
ij

ij i i
ij

w t
w t x

w t
,

where represents the weight decay constant, i is the local error, jx is

the local activation, and is the learning rate.

In contrast to weight decay, which shrinks large values of weights more than small
ones, the weight elimination shrinks predominantly the small weight values and is
to a certain degree similar to the pruning process. Hansen and Rasmussen (1994)
have demonstrated that network pruning may result when the weight decay
parameter is determined by data. The added term punishes the large weight values
and forces them to obtain small absolute values and simultaneously retains the
other values unchanged. This, however, is favourable in preventing worsening of

126 Computational Intelligence in Time Series Forecasting

the network generalization capability. Therefore, care should be taken in selecting
the decay constant , because an inappropriate value can deteriorate the
generalization capability of the weight decay process. As a remedy, Weigend et al.
(1991) recommend updating the value on-line during the network training in
iterative steps.

Adding the penalty function in the weight decay and optimizing the augmented
performance index corresponds to the regularization method in which the penalty
term is added to the cost function to act as a restriction to the subsequent
optimization problem. In approximation theory, the added term penalizes the
curvature of the original solution, seeking for a smoother solution of the
optimization problem.

The regularization method is generally used to solve ill-posed problems. In the
theory of learning, the problems of learning smooth mappings from examples are
mostly ill-posed problems. For their solution Tikhonov (1963) proposed
optimization of the cost function I extended by a term J, which also represents a
cost function. Thus, the resulting cost function to be optimized becomes

Ires = I + J,

where represents the regularization parameter, which determines the degree of
regularization in the sense of balancing the degree of smoothness of the solution
and its closeness to the training data. The regularization helps in stabilizing the
solution of the ill-posed problem because the added term, representing the penalty
to the original optimization problem, smoothens the cost function (Morozov,
1984).

The regularization approach determines the so-called Tikhonov functional

22

1
() (())

n

res i i
i

I f y f x Pf ,

the first term of which represents the closeness to the data, and in the second term f

is the input-output function, P is a linear differential constraint operator, and
2
 is

a norm on the function space to which Pf belongs. This operator also embodies the

a priori knowledge about the problem solution.

To solve the regularization problem we proceed with the minimization of
extended cost function Ires, using the resulting partial derivatives with respect to f in
order to build the Euler-Lagrange equation

1

1ˆ () (()) (),
n

i i
i

PPf x y f x x x

in which the operator P and its adjoint operator P̂ build the differential operator
ˆ .PP Therefore, the above Euler-Lagrange equation is a partial difference equation.

Its solution can, therefore, be expressed as the integral transformation of the right-

 Neural Networks Approach 127

hand side of the equation, with the kernel defined by Green’s function of the

differential operator P̂P

ˆ (,) ()i iPPG x x x x .

Bearing in mind the definition of Green’s function and taking into account the
presence of the delta function on the right-hand side of the equation, the integral
transformation will generate a discrete sum of terms, so that the function f can be
defined as

1

1
() (()) (,)

n

i i i
i

f x y f x G x x ,

where G(x,xi) is Green’s function centred at xi. The last equation represents the
solution of the regularization problem as a linear combination of n Green’s
functions with the expansion centre xi and expansion coefficients (yi f(xi)).
Consequently, the solution of the regularization problem lies in the n-dimensional
subspace of the space of smooth functions, with the n Green’s functions as its basis
(Poggio and Girosi, 1990). Furthermore, the basis function depends on stabilizer P,
that represents the a priori knowledge of the problem domain as a kind of
constraint.

Introducing the definition of the expansion weights as

()i i
i

y f x
w ,

the above solution equation becomes

1
() (,)

n

i i
i

f x w G x x .

Now, to determine the expansion weights iw , the last two equations have to be

written in matrix form as

1
()w y f

and

f Gw

which result in

128 Computational Intelligence in Time Series Forecasting

w1

f(x)

x1

x2

xn

w2

wn

:
:

:
:

:
:

G

G

G

:
:

 () .G I w y

Here, I represents the n-dimensional identity matrix and G is the corresponding
Green’s matrix

1 1 1 2 1

2 1 2 1 2

1 2

(,) (,) ... (,)

(,) (,) ... (,)

... ...

(,) (,) ... (,)

n

n

n n n n

G x x G x x G x x

G x x G x x G x x
G

G x x G x x G x x

,

which is a symmetric matrix with the property

 (,) (,)i j j iG x x G x x

because the identity matrix I is also symmetric.
From the solution equation

1
() (,)

n

i i
i

f x w G x x

the corresponding regularization network (Figure 3.18) can be structured. The
input layer of the network has an equivalent number of units to the dimension of
the input vector, i.e. to the number of independent variables of the problem to be
solved. The subsequent hidden layer, fully connected with the input layer with the
fixed value weights, has the same number of nonlinear units as the number of data
points and the activation function in the form of a Green’s function with the output

(,).iG x x It does not participate in the training process. Finally, the output layer,

also fully connected to the hidden layer, contains one or more linear units with the

weights iw that correspond to the unknown coefficients of the above solution

equation.

Figure 3.18. Regularization network

 Neural Networks Approach 129

Obviously, the structure of the regularization network is mainly determined by the
problem to be solved, with the exception of the weights between the input layer
and the hidden layer, which are fixed. The main attributes of the network are:

the regularization network is an optimal network because it minimizes the
performance index that defines the proximity of the elaborated solution to
the real solution defined by the training data
the regularization network represents the best approximator (Girosi and
Poggio, 1990) in the sense that for a given function there always exists a
number of coefficients that approximate the given function better than any
other set of coefficients and – by properly defining the stabilizer –
guarantee that the regularization network has the desirable degree of
smoothness
the regularization network is a universal approximator that, given a
sufficiently large number of hidden neurons, can approximate any
continuous multivariate function arbitrarily well on a compact domain, a
property that is based on the classical Weierstrass theorem.
when it is used for simplification of linear networks, particularly of basis
function networks, this corresponds to the ridge regression method.

The above objectives can, at least in principle, be reached by “extensive”
network training. Although this might lead to network overfitting, this can be
prevented by training stopping with cross-validation and by network structure
reduction, for which various approaches have been suggested.

3.6 Forecasting Using Neural Networks

Unlike the traditional approaches to time series analysis and forecasting, neural
networks need a reduced quantity of information to forecast the future time series
data. Based on the available time series data, network internal parameters are tuned
using an appropriate tuning algorithm. This can, if necessary, also include the
modification of the initially chosen network architecture to better match the
architecture required by the problem at hand. The related issues have been
discussed extensively in this chapter, so that our attention will be focused on the
comparison of the traditional approach to time series forecasting and on the
approach using neural networks. This will be followed by pointing out the benefits
of forecasting by merging both kinds of approaches and by building a nonlinear
combination of forecasts. Finally, some issues related to the forecasting of
multivariable time series using neural networks will be presented.

3.6.1 Neural Networks versus Traditional Forecasting

Comparison of forecasting performance of traditional statistical methods and of
neuro forecasters has, since the early 1990s, attracted the attention of many
researchers. Their reports have, however, been inconsistent because they were
based on experimental investigations using various network configurations with

130 Computational Intelligence in Time Series Forecasting

various performance quality. Added to this came that the experiments used
different time series data. For instance, forecasting collected linear data using
nonlinear mapping of neural networks cannot give better results than the
forecasting using linear statistical algorithms. In the reverse case, when dealing
with considerably nonlinear time series data, forecasting using nonlinear neural
networks could definitely deliver better results than the traditional algorithms.
Consequently, when dealing with mixed linear/nonlinear time series data a
combination of the traditional and the neural approach could be optimal.

Lapedes and Farber (1988) were the first to report that simple neural networks
can outperform traditional methods by up to many orders of magnitude. This was
radically investigated by Sharda and Patil (1990) on a set of 75 different time series
with the objective to compare the forecasting accuracy of the Box-Jenkins method
and of a neuro forecaster. Using a subset of 14 time series of Sharda and Patil,
Tang et al. (1991) extended the comparative analysis to some additional aspects
and identified a number of facts that make neural networks or traditional
approaches deliver better forecasting results. They found by experiments that,
generally:

for time series with long memory, both approaches deliver similar results
for time series with short memory, neural networks outperform the
traditional Box-Jenkins approach in some experiments by more than 100%
for time series of various complexity, the optimally tuned neural network
topologies are of higher efficiency than the corresponding traditional
algorithms.

As typical examples for experimental study

international airline passenger data
domestic car sales data in the US and
foreign car sales data in the US

were used.
For experiments, the most typical traditional forecasting approach, the ARMA

model of Box-Jenkins approach

 () ()(1) (1) () ()L L D d L
p p t q Q tB B B B y B B a

was used with the autoregressive operator , moving-average operator , and the

back shift operator B. In the model equation, at, yt, and represent the white
noise, the time series data, and a constant value respectively.

To simplify matters, in all experiments with neuro forecasters, one-hidden-layer
networks and networks without a hidden layer were used alternatively. The
experimental results showed that hidden-layer networks have a better forecasting
performance.

Hill et al. (1996) compared six traditional methods with the neuro forecaster on
111 different time series and found that neuro forecasters are significantly better
than the statistical methods taken into consideration. However, Foster et al. (1992)
came to the opposite conclusion. After extensive analysis of forecasting accuracy

 Neural Networks Approach 131

of neuro and traditional forecasters, they concluded that linear regression and the
simple average of the exponential smoothing method are superior to a neuro
forecaster. Denton (1995), again, demonstrated that, under standard statistical
conditions, there is only a slight difference in prediction accuracy between the
regression models and neural models. Some additional results of comparative
analysis have been communicated by Nelson et al. (1994), Gorr et al. (1994),
Srinivasan et al. (1994), and Hann and Streurer (1996).

3.6.2. Combining Neural Networks and Traditional Approaches

Application of hybrid, i.e. combined neural networks and traditional approaches, to
time series forecasting was a challenging attempt to increase forecasting accuracy
beyond the limits that either one of the two approaches used alone would be able to
reach. In the following, we will consider the advantages of combining the neural
and ARIMA model approach in time series forecasting. Voort et al. (1996) used
for this combination the Kohonen self-organizing map as the neural network part
for short-term traffic-flow forecasting. Sue et al. (1997) used this type of hybrid
combination to forecast a time series of reliability data and showed that the hybrid
model produced better forecasts than either the ARIMA model or the neural
network by itself could produce. Tseng et al. (2002) investigated the combination
of a seasonal time series model SARIMA and a backpropagation network, resulting
in a SARIMABP hybrid combination. They found that the combination
outperforms the SARIMA model used alone and the backpropagation model with
the de-seasonalized or differentiated data.

For experimental purposes, the time series , 1, 2,3,..., ,iz i k is generated by a

SARIMA (p, d, q)(P, D, Q) process with mean µ and modeled by

 () ()(1) (1) () () ()S d S D S
t tB B B B z B B a ,

where S is the periodicity, d and D are the number of regular and seasonal
differences respectively, B is the polynomial degree, and at is the estimated
residual at time t. The experimental results show that the SARIMABP method
benefits from the forecasting capability of the SARIMA and from the capability of
backpropagation to reduce the residuals further, which guarantees a lower
forecasting error. As forecasting accuracy evaluation criteria, the mean square error
(MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
have been used.

For a real-life application example, time series data of the total production
revenues of the Taiwanese machinery industry were taken for various periods of
time. For instance, a five-year data set has been used as the input of the ARIMA

12(0,1,1)(1,1,1) model

12 12 12(1 0.309)(1)(1) (1 0.7159)t tB B B z B a

and for a three-year data set as the input of the ARIMA 12(0,1,1)(0,1,0) model

132 Computational Intelligence in Time Series Forecasting

12(1)(1) (1 0.88126)t tB B z B a .

In both cases the experiments were carried out with two, three, and seven neurons
in the network hidden layer.

Hybrid ARIMA-neural network methodology was also the subject of an
experimental study by Zhang (2003), whose objective was to identify whether the
given time series data were generated by a linear or a nonlinear process. This is
essential for making a decision on whether, in a given case, the use of a linear (i.e.
the traditional) or a nonlinear (i.e. a neural network) approach will be more
appropriate. Here, the combined approach could ease the problem solution. After
all, because real-world time series are seldom purely linear or nonlinear, it is
favourable to use a hybrid approach.

In experimental practice, the assumption is made that a time series to be
processed is composed of a linear autocorrelation structure tL and a nonlinear

component tN :

t t tz L N .

The linear component of the time series can be processed using an ARIMA model,
and the residuals

t t te z L ,

containing only the nonlinear relationships, can be processed by neural networks.
This can be done using a residual model, e.g.

1 2(, , ...,)t t t t n te f e e e ,

which corresponds to a neural network with n input nodes and the nonlinearity
function (.).f In the above residual model, t represents the random error. The

benefits of the proposed hybrid methodology approach have been confirmed on
three real-life examples from different application areas.

A remarkable contribution was reported by Wedding and Chios (1996), who
combined the Box-Jenkins model and an RBF network.

3.6.3 Nonlinear Combination of Forecasts Using Neural Networks

Because a large number of time series forecasting methods are available, it makes
sense for the application expert to select the best one among them in each
particular case. Thus, it becomes interesting to combine a group of forecast
methods and to examine the forecasting accuracy of the combination. The issue
was discussed in Section 2.8.6 from the traditional point of view. It was shown that
the best forecasting results are achievable when the combination of traditional
forecasting methods is nonlinear. In the meantime, various combination techniques

 Neural Networks Approach 133

have been suggested and examined using different intelligent technologies,
primarily with neural networks.

In engineering practice, choosing the “best” forecasting method means
choosing a method that is the best in the given circumstances. For instance
(McNees, 1985), experience has shown that no forecasting model retains its
accuracy for all values of variables all the time. Also, it has been experimentally
proven that if for a forecasting method the short run is good, then there is no
guarantee that the long run will also be good. Therefore, it is worthwhile seeking
for an adequate combination for each application situation. This is because the
combination of methods incorporates different cognition capabilities and can, in a
specific case, produce better forecasts than either of methods within the
combination itself. Moreover, experimental investigations confirm (Winkler and
Markridakis, 1983) that the resulting accuracy of combined forecasts increases
with the increase in the number of forecasting methods involved. Mahmoud (1984)
also came to a similar conclusion, that the accuracy of the combined forecast
improves as more methods are included in the combination.

In forecasting non-stationary, non-seasonal time series one can evaluate the
forecast values subsequently generated by a Box-Jenkins ARMA or ARIMA
model, Holt-Winter’s exponential smoothing, extrapolation of trend curve, Kalman
filtering, etc. and mutually compare the results achieved. Out of the possible
forecasting methods the analyst may prefer to use his own favourite methods that
will produce different forecasts of a given time series. Moreover, using a particular
method (say, ARMA/ARIMA) different analysts may come up with a different
order of the models required for forecasting and, again, with different forecast
results. Therefore, forecast models developed using different methods and by
different analysts will rarely be identical. This may be very confusing to someone
who wants to take a decision on the basis of various forecasts suggested by various
analysts.

From the above, it follows that it is inadvisable to prefer one particular
forecasting method over another, because no single forecasting method will in
every situation produce forecasts of the same accuracy. Rather, it is more advisable
to take a combination of a few forecasts generated by different methods. This was
even clearly formulated by Bates and Granger (1969).

A number of advanced approaches have been suggested for nonlinear
combination of forecasts using neural networks (Shi and Liu, 1993; Harald and
Kamastra, 1997). The problem is defined here starting with the availability of k
different forecasts f1, f2, f3, ..., fk, of some random variable z, that should be
combined into a single forecast fc. The straight away step would be to form a linear
combination of forecasts

() ()c i if z w f z

where wi is the assigned weight of ith forecast fi.
The simplest approach to determine the weights wi of the combination would be

to take equal weights for each term. This has proven to be relatively robust and
accurate. But still, in practice, the linear combination of forecasts is not likely to be

134 Computational Intelligence in Time Series Forecasting

the optimal combination like the nonlinear combinations are. This can be
demonstrated on the following example.

Suppose that k different forecast models are available and the ith individual
forecast has an information set {Ii : Ic, Ii}, where Ic is the common part of
information used by all k models and Ii is the specific information for the ith
forecast only. Denoting the ith forecast by fi = Fi(Ii), we can express the linear
combination of forecasts as

Fc = wiFi(Ii),

where wi is the weight of the ith forecast. On the other hand, every individual
forecasting model can also be regarded as a subsystem for information processing,
while the combination model fc = Fc(I1, I2, ..., Ik) is regarded as such a system. It
follows that the integration of forecasts is more than their sum, i.e. the performance
of the integrated system is more than the sum of its subsystems. So, the
trustworthiness of the linear forecast combination is quite questionable. More trust
should be paid to a nonlinear interrelation between the individual forecasts, such as

fc = F1(I1), F2(I2), F3(I3), ..., Fk(Ik)

where is a nonlinear function. While the given information is processed by
individual forecasting models, it is likely that parts of the entire information can be
lost, which means that, say, the information set Ii is not being used efficiently.
Furthermore, different forecasts may have different parts of information lost. This
is why it is preferable that as many different forecasts as possible should be present
in the combination, even when the individual forecasts depend on the same set of
information.

As a forecasting example (Palit and Popovic, 2000), a 2-6-6-1 feedforward
network, i.e. a network with two inputs, and two hidden layers with each layer
containing six neurons and one output, is used, as shown in Figure 3.19b. The
network is trained using the Levenberg-Marquardt algorithm, which guarantees
much faster learning speed than the standard backpropagation method, and hence
requires less training time. The algorithm also uses the gradient descent method,
based on Jacobian matrix, according to which the update is

1

() () () ()TTw w J w I w e xJ J

or

1

(1) () ()

(1) () () () () ()TT

w k w k w k

w k w k w J w I w e wJ J

where J(w) is the Jacobian matrix with respect to network-adjustable parameters w
(all weights and the biases) of dimension (q×Np), and q being the number of

 Neural Networks Approach 135

training sets, Np being the number of adjustable parameters in the network, and I is
the identity matrix of dimension ()p pN N .

Table 3.1. Nonlinear combination of two forecasts of a temperature series using an artificial
neural network (ANN: Neural networks combined forecast; BJ: Box-Jenkins forecast, HW:
Holt-Winters exponential smoothing)

The parameter is multiplied by some factor inc whenever an iteration step
increases the network performance index (i.e. sum squared error) and it is divided
by dec whenever a step reduces the network performance index. Usually the factor

inc = dec and in our case it is selected as 10.

Figure 3.19(a). The combination of forecasts using a 2-2-6-1 artificial neural network

Serial

No.

Forecast Data sets from HBXIO

matrix

SSE RMSE

1. BJ 151 to 224 (column-1) 0.4516 0.112

2 HW 151 to 224 (column-2) 0.3174 0.0933

3 ANN (2-6-6-1) 1 to 150 (training)

4 ANN (2-6-6-1) 151 to 224 0.1306 0.0594

5 ANN (2-2-6-1) 151 to 224 0.2425 0.0810

136 Computational Intelligence in Time Series Forecasting

Figure 3.19(b). The combination of forecasts using a 2-6-6-1 artificial neural network

In our practical example, the first 150 input-output samples were used to train
the network. Thereafter, the values of the interconnecting weights and biases are
saved for network performance testing using the remaining 151 to 224 samples of
data. From the experimental results shown in Figure 3.19(a) and Figure 3.19(b) and
Table 3.1, it is obvious that the network output very closely matches the actual
time series, indicating that a nonlinear combination of the forecasts is better than
the individual forecasts.

3.6.4 Forecasting of Multivariate Time Series

Chakraborty et al. (1992) conducted experimental investigations on forecasting of
multivariate time series using neural networks. They focused their attention on the
statement that, in the case of substantial cross-correlation of individual variables of
multivariable time series data, the forecasting accuracy of each variable can be
improved when simultaneously changing the values of other variables within the
time series is taken into account. This has been observed in multivariate statistical
analysis when, based on observation data, identifying the interdependencies of
variables involved in a multivariate system. To prove this, Chakraborty et al.
(1992) analyzed the one-step and multistep prediction behaviour of a trivariate
time series 1 2 3[, ,]t t t tx x x x in the interval of t = 1–100 samplings using

separate modelling of each component of the multivariable time series,
interpreted as mutually independent univariate time series
combined modelling, by simultaneous consideration of all three variables
statistical modelling, using the statistical model developed by Tiao and
Tsay (1989).

 Neural Networks Approach 137

The analysis of separate modelling was carried out using alternatively 2-2-1, 4-4-1,
6-6-1, and 8-8-1 networks and by evaluating the results for each time series
component using the mean square error as the performance indicator. The analysis
has shown that a combined modelling approach is superior to separate modelling,
and that both of them are superior to statistical modelling. In addition, the
experiments with the 2-2-1 backpropagation networks have delivered, in one-step
and multistep cases, the best forecasting accuracy, which shows that the 4-4-1 and
6-6-1 networks are oversized for this purpose.

The experimental investigations presented above deliver forecasting results that
depend considerably on the art of experiment design used for this purpose. For this
reason the results are not coherent and are sensitive to the application field. We are
still short of a general theoretical formulation of this phenomenon, but some
encouraging trials have been made in this direction (reported by Yang, 2000),
related to methods of combining forecasting procedures for forecasting continuous
random univariate time series.

References

[1] Aizerman MA, Braverman EM, and Rozenoer LI (1964) Theoretical foundation of
potential function method in pattern recognition. Automation and Remote Control 25:
917–936.

[2] Akaike H (1970) Statistical predictor identification, Annals of the Institute of
Statistical Maths., 22: 202–217.

[3] Almeida LB (1987) A learning rule for asynchronous perceptrons with feedback in a
combinatorial Environment. IEEE 1st International Conf. on Neural Networks, San
Diego, CA II:609–618.

[4] Amari S and Maginu K (1988) Statistical neurodynamics of associative memory,
Neural Networks 1: 63–73.

[5] Anders U and Korn O (1999) Model selection in neural networks. Neural Networks
12: 309–323.

[6] Bashkirov OA, Braverman EM, and Muchnik IB (1964) Potential function algorithms
for pattern recognition learning machines. Automation and Remote Control 25:692–
695.

[7] Bates JM and Granger CWJ (1969) The combination of forecasts, Operation Research
Quart. 20: 451–461.

[8] Baum EB and Haussler D (1989) What Size Net Gives Valid Generalisation? Neural
Computation 1:151–160.

[9] Bethea RM and Rhinehard RR (1991) Applied Engineering Statistics. Marcel Dekker,
New York.

[10] Block HD (1962) The Perceptron: a model of brain functioning. Review of Modern
Physics, 34:123–135.

[11] Broomhead DS and Lowe D (1988) Multivariable functional interpolation and
adaptive networks. Complex Systems 2: 321–355.

[12] Butine WL and Weigend AS (1994) Computing Second Derivatives in Feedforward
Networks: A Review. IEEE Trans. on Neural Networks 3: 480–488.

[13] Chakraborty K, Mehrotra K, Mohan ChK, Ranka S (1992) Forecasting the behavior of
Multivariate Time Series Using Neural Networks. Neural Networks 5: 961–970.

[14] Cichocki A and Unbehauen R (1993) Neural Networks for Optimization and Signal
Processing. Wiley, Chichester, West Sussex, UK.

138 Computational Intelligence in Time Series Forecasting

[15] Cohen MA and Grossberg S (1983) Absolute Stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Trans. on Systems,
Man, and Cybernetics 13: 815–826.

[16] Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Mathematical Control Signals Systems 2:303–314.

[17] Denton JW (1995) How good are neural networks for causal forecasting? J. of
Business Forecasting 14(2):17–20.

[18] Elman JL (1990) Finding structure in time. Cognitive Science 14: 179–211.
[19] Fogel DB (1991) An Information Criterion for Optimal Neural Network Selection.

IEEE Trans. On Neural Networks 2: 490–497.
[20] Forster WR, Collopy F, Ungar LH (1992) Neural network forecasting of short, noisy

time series. Computers and Chemical Engineering 16(2): 293–297.
[21] German SE, Bienenstock, and Doursat R (1992) Neural networks and the

bias/variance dilemma. Neural Computation 1: 1–58.
[22] Girosi F and Poggio T (1989) Representation Properties of Networks: Kolmogorov’s

Theorem is Irrelevant. Neural Computation 1: 465–469.
[23] Girosi F and Poggio T (1990) Networks and the best approximation properties.

Biological Cybernetics:169–176.
[24] Gorr WL, Nagin D, Szczypula J (1994) Comparative study of artificial neural network

and statistical models predicting student grade point averages. Intl. J. of Forecasting
10: 17–34.

[25] Grossberg S (1988) Competitive Learning: From interactive activation to adaptive
resonance, Neural Networks and Neural Intelligence, Grossberg S. (Eds.), MIT Press,
Cambridge, MA.

[26] Hagan MT and Menhaj MB (1994) Training feedforward networks with the
Marquardt algorithm, IEEE Trans. on Neural Networks, vol. 5(6): 989–993.

[27] Hann TH and Steurer E. (1996) Much ado about nothing? Exchange rate forecasting:
Neural networks vs. linear using monthly and weekly data. Neurocomputing 10: 323–
339.

[28] Hansen IK and Rasmussen CE (1994) Pruning from adaptive regularization. Neural
Computation 6: 1223–1232.

[29] Harald PG and Kamastra M (1997) Evolving artificial neural networks to combine the
financial forecasts, IEEE Trans. on Evolutionary Computation, vol. 1(1): 40–51.

[30] Hassibi B, Stork DG, and Wolff GJ (1992) Optimal brain surgeon and general
network pruning. IEEE Intl Conf on Neural Networks, San Francisco 1:293–299.

[31] Haykin S (1994) Neural Networks: a comprehensive foundation. McMillan, USA
[32] Hebb DO (1949) The organisation of behaviour. Wiley, New York.
[33] Hecht-Nielsen R (1987a) Counterpropagation Networks. Applied Optics 26(23):

4979–4984.
[34] Hecht-Nielsen R (1987b) Kolmogorov’s Mapping Neural Network Existence

Theorem, IEEE Conf. On Neural Networks; San Diego, CA. III: 11–14.
[35] Hecht-Nielsen R (1988) Application of counterpropagation networks, Neural

Networks 1: 131–139.
[36] Hertz J, Krogh A, and Palmer RG (1991) Introduction to theory of neural

computation, Addison-Wesley, Reading, MA.
[37] Hill T, O’Connor M, Remus W. (1996) Neural network models for time series Models

forecasts. Management Sciences 42(7): 1082–1092.
[38] Hinton GE (1989) Connectionist learning procedures, Artificial Intelligence, 40: 185–

243.
[39] Hopfield JJ (1982) Neural Networks and physical systems with emergent collective

computational abilities. Proc. of the Nat. Acad. of Sciences, USA, 79: 2554–2558.

 Neural Networks Approach 139

[40] Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. of the Nat. Acad. of Sciences, USA
81: 3088–3092.

[41] Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are
Universal approximators. Neural Networks 2(5): 359–366.

[42] Hu MJC (1964) Application of the ADALINE system to weather forecasting. Master
Thesis, Technical Report 6775–1, Stanford El. Lab., Stanford, CA.

[43] Ishikawa M. and Moriyama T (1996) Prediction of time series by a structural learning
of neural networks. Fuzzy Sets and Systems 82: 167–176.

[44] Iyer MS and Rhinehart RR (2000) A novel method
[45] Iyer MS and Rhinehart RR (2000) A Novel Method To Stop Neural Network

Training. 2000 American Control Conference, paper WM17–3
[46] Johanson EM, Dowla EU, and Goodman DM (1990) Backpropagation learning for

multi-layer feedforward neural networks using the conjugate gradient method, Report
UCRL-JC–104850, Lawrence Livermore National Laboratory, CA.

[47] Jollife IT (1986) Principal Components Analysis. Springer-Verlag.
[48] Jordan M (1986) Attractor dynamics and parallelism in a connectionist sequential

machine. Proc. of the Eight Annual Conference on Cognitive Science Society :532–
546.

[49] Karnin ED (1990) A simple procedure for Pruning back-propagation trained neural
networks. IEEE Trans on Neural Networks 2: 188–197.

[50] Khorasani K and Weng W (1994) Structure Adaptation in Feedforward Neural
Networks. Proc. IEEE Internat. Conf. on Neural Networks, III: 1403–1408.

[51] Klimasauskas CC (1991) Applying Neural Networks. Part 3: Training a Neural
Network. PC-AI, May/June: 20–24. B,

[52] Kohonen T (1989) Self-Organisation and Associative Memory. 3rd Edition, Springer,
Berlin, NY.

[53] Kröse B and Smagt P (1996) An introduction to neural networks, The University of
Amsterdam, Eighth edition, November, http://www.fwi.uva.nl/research/neuro.

[54] Kubat M (1998) Decision trees can initialise radial-basis-function networks. IEEE
Trans. on Neural Networks. 9: 813–821.

[55] Kurita T (1990) A method to determine the number of hidden units of three-layered
neural networks by information criteria, Trans. of Inst. of Electronics, Information and
Commun. Engineers, J73-D-II–11: 1872–1878 (in Japanese).

[56] Lapedes A and Farber R (1988) Nonlinear signal processing using neural networks:
Prediction and system modelling. Technical Report LA-UR-87-2662, Los Alamos
National Laboratory, Los Alamos, NM.

[57] Le Cun Y, Denker JS, and Solla SA (1990) Optimal Brain Damage. In: Touretzky S
(Ed.). Advances in Neural Information Processing Systems 2, San Mateo, CA,
Morgan Kaufman.

[58] Levin AU, Leen TK, and Moody JE (1994) Fast pruning using principle components,
In: Advances in Neural Information Processing Systems 6, Covan JD, Tesauro G and
Alspector J, Editors: 35–42, Morgan Kaufman Publi. Inc., San Mateo, CA.

[59] Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP
Magazine (April): 4–22

[60] Mahmoud E (1984) Accuracy in forecasting: A survey. J. of Forecasting 3:139–159.
[61] McClelland JL and Rumelhart DE (1988) Exploration in Parallel Distributed

Processing. Cambridge, MA, MIT Press.
[62] McCulloch WS, Pitts W, (1943) A logical Calculus of the ideas Immanent in nervous

activity. Bulletin of Mathematical Biophysics 5:115–133.
[63] McNees SK (1985) Which forecast should you use. New England Economic Review,

July/August: 36–42.

140 Computational Intelligence in Time Series Forecasting

[64] Minsky ML and Papert S, (1969) Perceptrons. MIT Press, Cambridge MA.
[65] Moody JE (1991) Note on Generalization, Regularization and Architecture Selection

in Nonlinear Systems, Proc. of the IEEE-SP Workshop : 1–10.
[66] Moody JE and Darken CJ (1989) Fast learning in networks of locally-tuned

processing units. Neural Computation 1: 281–294.
[67] Morozov VA (1984) Methods for Solving Incorrectly Posed Problems. Springer-

Verlag, Berlin.
[68] Mozer MC and Smolensky P (1990) Skeletonization: A technique for trimming the fat

from a network via relevance assessment. In: Advances in Neural Information
Processing 1, Touretzky DS (Ed.) : 107–115.

[69] Murata N, Yoshizawa S, and Amari S (1994) Network Information criterion –
Determining the number of Hidden Units for an Artificial Neural model. IEEE Trans.
On Neural Networks 6: 865–871.

[70] Natarajan S and Rhinehart RR (1997) Automated Stopping Criteria For Neural
Network Training. Proc. of the 1997 American Control Conf., paper #TP09–4.

[71] Nelson M, Hill T, O’Connor M (1994) Can a neural network be applied to time series
forecasting and learn seasonal patterns: An empirical investigation. Proc. of the 20th

Annual Hawaii Intl. Conf on System Sciences: 649–655.
[72] Oja E (1982) A simplified neuron model as a principal component analyzer. Journal

of Mathematical Biology 15: 267–273.
[73] Palit AK and Popovic D (2000) Nonlinear combination of forecasts using artificial

neural network, fuzzy logic and neuro-fuzzy approaches, FUZZ-IEEE, 2: 566–571.
[74] Pineda FJ (1987) Generalisation of back-propagation to recurrent neural networks.

Physical Review Letters 59: 2229–2232.
[75] Poggio T and Girosi F (1990) Networks for Approximation and Learning. Proc. IEEE

78:1481–1497.
[76] Powel MID (1988) Radial basis function approximation to polynomials, Numerical

Analysis Proceedings, Dundee, U.K.: 223–241.
[77] Prechelt L (1998) Early Stopping – but when? In: Orr GB and Moeller K-R (Eds.),

Neural Networks: Tricks of the Trade. Springer, Berlin: 55–69.
[78] Reed R (1993) Pruning Algorithms – A Survey. IEEE Trans. on Neural Networks 4:

740–747.
[79] Rosenblatt F, (1958) The Perceptron: A probabilistic model for information storage

and organisation of the brain. Psych. Review 65: 386–408.
[80] Rumelhart DE and McClelland (1986) Parallel Distributed Processing: Explorations

in the Microstructure of Cognition MIT Press, Cambridge, MA.
[81] Rumelhart DE, Hinton GE, and Williams RJ (1986) Learning internal representation

by back-propagation errors. In: Rumelhart DE, McClelland JL, the PDP Research
Group(Eds.), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. MIT Press, MA.

[82] Sastry PS, Santharam G, and Unikrishnan KP (1994) Memory neuron networks for
identification and control of dynamic systems. IEEE Trans. on Neural

[83] Schmidhuber J (1989) Accelerated learning in backpropagation net, In:
Connectionism in Perspective, Elsevier, North Holland, Amsterdam, pp. 439–445.

[84] Sharda R and Patil RB (1990) Neural Networks as Forecasting Experts: An Empirical
Test, Proc. of the IJCNN Meeting, Washington: 491–494.

[85] Shi S and Liu B (1993) Nonlinear combination of forecasts with neural networks.
Proc. of Intl. Joint Conf. on Neural Networks ’93 (IJCNN ’93), Nagoya, Japan, 952–
962.

[86] Silva FM and Almeida LB (1990) Speeding-up backpropagation, In: Advances of
Neural Computers, Eds. Eckmiller R, Elsevier Science Publish. BV., North Holland,
pp. 151–158.

 Neural Networks Approach 141

[87] Specht DF (1988) Probabilistic neural networks for classification, or associative
memory, Proc. of IEEE Intern. Conf. on Neural Networks, San Diego, 1: 525–532.

[88] Specht DF (1990) Probabilistic neural networks and the polynomial ADALINE as
complementary techniques for classifications. IEEE Trans. on Neural Networks, 1:
111–121.

[89] Sprecher DA (1965) On the Structure of Continuous Functions of Several Variables.
Trans. Amer. Math. Soc. 115:340–355.

[90] Srinivasan D, Liew AC, Chang CS (1994) A neural network short-term load
forecaster. Electric Power Systems Research 28: 227–234.

[91] Stahlberger A and Riedmuller M (1996) Fast network pruning and feature extraction
using the Unit-OBS algorithm. Advances in Neural Information Processing systems
(NIPS’96), Denver.

[92] Stone M (1977) An asymptotic equivalence of choice of model by cross-validation
and Akaike’s criterion cross validation. J. of the Royal Statistical Soc. B36:44–47.

[93] Sue CT, Tong LI, and Leou CM (1997) Combination of time series and neural
network for reliability forecasting modelling. J. Chin. Inst. Ind. Eng. 14(4): 419–429.

[94] Tang Z, Almeida de Ch, and Fishwick, PA (1991) Time series forecasting using
neural networks vs. Box-Jenkins methodology. Simulation 57(5): 303–310.

[95] Tiao GC and Tsay RS (1989) Model specification in multivariate time series. J. of the
Royal Statistical Society B 51: 157–213.

[96] Tikhonov AN (1963) On solving incorrectly posed problems and methods of
regularisation. Docklady Akademii Nauk USSR 151: 501–504.

[97] Tseng F-M, Yu H-Ch, and Tzeng G-H (2002) Combining neural network model with
seasonal time series ARIMA model. Technological Forecasting.

[98] Vapnik V (1995) The Nature of Statistical Learning Theory, Springer-Verlag, NY.
[99] Villiers de J and Bernard E (1992) Backpropagation Neural Nets with one and Two

Hidden Layers. IEEE Trans. On Neural Networks : 136–141.
[100] Vogl TP, Mangis JK, Rigler AK, Zink WT and Allcon DL (1988) Accelerating the

convergence of backpropagation method, Biological Cybernetics, vol. 59: 257–263.
[101] Voort VD, Dougherty M, and Watson M. (1996) Combining Kohonen Maps with

ARIMA time series models to forecast traffic flow. Transp. Res. Circ. (Emerg.
Technol.) 4C(5): 307–318.

[102] Wedding II DK and Cios KJ (1996) Time series forecasting by combining RBF
networks certainty factors, and the Box-Jenkins model. Neurocomputing 10: 149–168.

[103] Weigend AS, Rumelhart DE, and Huberman BA (1991) Generalisation by weight-
elimination with application to forecasting. Adv. In Neural Information Processing
Systems, Morgan Kaufmann, San Mateo, CA 3: 875–882.

[104] Werbos P (1990) Backpropagation through time what it does and how to do it, Proc.
of IEEE, 78(10):1550–1560.

[105] Werbos PJ (1974) Beyond Regression: New Tool for Prediction and analysis in the
Behavioural sciences. Ph.D. Thesis, Harvard University, Cambridge, MA.

[106] Werbos PJ (1989) Backpropagation and neural control: A review and prospectus.
Internat. Joint Conf. of Neural Networks, Washington, 1: 209–216.

[107] Widrow B and Hoff ME (1960) Adaptive Switching Circuits. In: Anderson J and
Rosenfeld E. (eds.) Neurocomputing. MIT Press, Cambridge, MA, 126–134.

[108] Williams RJ and Zipser D (1989) A learning algorithm for continually running fully
recurrent neural networks. Neural Computation 1: 270–280.

[109] Winkler R and Makridakis S (1983) The combination of forecasts, Journal of the
Royal Statistical Society, Series A: 150–157.

[110] Yang Y (2000) Combining different procedures for adaptive regression, J. of
Multivar. Analysis, 74: 135–161.

142 Computational Intelligence in Time Series Forecasting

[111] Yu X-H, Chen G-A, and Cheng S-X (1995) Dynamic Learning Rate Optimization of
the Backpropagation Algorithm. IEEE Trans. on Neural Networks 3: 669– 677.

[112] Zhang PG (2003) Time series forecasting using a hybrid ARIMA and neural network
models. Neurocomputing 50:159–175.

[113] Zhou S, Popovic D, and Schulz-Ekloff G (1991) An Improved Learning Law for
Backpropagation Networks. IEEE Int. Conf. on Neural Networks, San Francisco:
573–579.

Selected Reading

[114] Anderson JA (1972) A Simple Neural Network Generating an Interactive Memory,
Mathematical Biosciences 14: 197–220.

[115] Cybenko G (1988) Continuous valued neural networks with two hidden layers are
sufficient. Technical Report, Taft University.

[116] Kohonen T (1972) Correlation Matrix Memories. IEEE Transactions on Computers
21: 353–359.

[117] Kolmogorov AI (1957) On Representation of Continuous Function of Many Variables
by Superposition of Continuous Functions of One Variable and Addition. Dokl. Akad.
Nauk USSR 114:953–956.

[118] Kurkova V (1991) Kolmogorov’s Theorem is Relevant, Neural Computation, 3: 617–
622.

[119] Kurkova V (1992) Kolmogorov’s Theorem and Multilayer Neural Networks, Neural
Networks 5: 501–506.

[120] Moody JE (1992) The Effective Number of Parameters: An Analysis of
Generalization and Regularisation in Nonlinear learning Systems. In: Advances in
Neural Information Processing 4 (Moody JE, Hanson SJ, and Lippmann RP (Eds.),
Morgan Kaufman Publ., San Mateo, CA.

[121] Schwenkler F, Kestler H, Palm G (2001) Three learning phases for radial-basis-
function networks. Neural Networks 14: 439–458.

[122] Schwenkler F, Kestler H, Palm G, and Höher M (1994) Similarities of LVQ and RBF
learning, Proc. IEEE International Conference SMC: 646–651.

[123] Xiaosong D, Popovic D, and Schulz-Ekloff G (1995) Oscillation-Resisting in the
Learning of Backpropagation Neural Networks. 3rd IFAC/IFIP Workshop on
Algorithms and Architectures for Real-Time Control, 31 May – 2 June, Ostend,
Belgium.

4

Fuzzy Logic Approach

4.1 Introduction

The term “fuzzy” was introduced by Zadeh (1965) in his paper on fuzzy sets,
where a new mathematical discipline, fuzzy logic, based on the theory of fuzzy
sets, was presented. The proposed logic was aimed at supporting of presentation
and consideration of inexact or imprecise concepts by fuzzy sets. The imprecision
is to be understood as grouping of set members into classes, the boundaries of
which are not sharply defined. It was expected that the theory of fuzzy sets should
become a novel methodology suitable enough to help formulate and solve complex
problems in engineering and science that are difficult to handle using “precise”
crisp logic, such as binary logic, where the variables can be either true or false.
The theory of fuzzy sets allows the concept of partial belongingness of an object or
a variable in a fuzzy set and, therefore, allows a gradual transition from a full
membership to a totally non-membership. Thereby, in fuzzy logic an object or a
variable within a domain may partially belong to several fuzzy sets in the same
domain simultaneously and, thus, it provides a framework for a multivalued logic.
This is essential for capturing the vagueness in a natural linguistic description of
any system. Moreover, the underlying fuzzy logic incorporates a variety of rules
with the premises containing fuzzy propositions generally defined using linguistic
terms, such as low and high (temperature, pressure, flow, frequency, voltage, etc.),
old, older, very old (person, engine, sensor, measured value, etc.). The related
linguistic rules are of the IF-THEN art.

The linguistic rules enable the use of both numerical information represented
by numerical values, obtained from the various sensors, or given as set point
values, and linguistic information represented by words such as high, medium,
low, or fast, moderate or slow, etc., obtained from an experienced plant operator or
a human expert. They replace the traditional approach to modelling of dynamic
systems based on differential equations, and the like, that is unsuccessful in
modelling of nonlinear and complex systems. Moreover, traditionally modeled
engineering systems cannot directly integrate human expert’s linguistic knowledge.

144 Computational Intelligence in Time Series Forecasting

It has frequently been reported that the design approaches of fuzzy-logic-based
systems have been found to be very robust when embedded in control and signal-
processing systems. However, the development of fuzzy logic systems, based on
human expert’s knowledge, is not an easy attempt, primarily because it is very
difficult to extract the complete and consistent human expert’s knowledge correctly
by interviewing him or her.

The objective of this chapter is to develop some suitable fuzzy logic systems
capable of efficiently modelling time series data and forecasting their values.
Because the efficient functioning of fuzzy logic systems depends primarily on
fuzzy rules used for modelling, and because the automated generation of such rules
is rather difficult, various data-driven algorithms for automated rule generation are
presented.

4.2 Fuzzy Sets and Membership Functions

The membership function is the key idea introduced in fuzzy set theory to measure
the degree to which the fuzzy set elements meet the specific properties, i.e. to
measure the degree of belongingness of an element in a specific fuzzy set.
Consequently, the propositions used need not be true or false, but can be to any
degree partially true.

Using a membership function µ, we can define a fuzzy set F on a universe of
discourse U as

: 0,1F x U ,

which is nothing but a mapping from the universe of discourse U into the unit
interval [0, 1] and F x represents the extent (degree/grade) to which x belongs

to fuzzy set F. The concept of membership functions allows any element within the
universe of discourse to have partial membership to a specific fuzzy set and also to
have partial membership to other fuzzy sets. In order to demonstrate the idea of
membership functions, two examples are given, one each for a crisp set and a fuzzy
set.

Let C be a crisp set and x be any element of the set C such that ,x X where X
is the universe of discourse (domain), then the degree of membership of x in crisp
set C will be 1 and 0 respectively if the element x belongs to C completely (full
member) or it does not belong to it at all. Mathematically, this is stated as

1; if
0; ifC

x Cx
x C

Let us now consider that F be a fuzzy set and x be any element of the fuzzy set F
such that ,x X where X is the universe of discourse (domain), then the degree of
membership of x in fuzzy set F will be 1 and 0 respectively if the element x
belongs to F completely (full member) or it does not belong to it at all. However, if

 Fuzzy Logic Approach 145

x belongs to F partially, then the degree of membership of x in fuzzy set F can have
any intermediate value, such as 0.5, 0.9, etc., within 0 and 1. Mathematically, this
is stated as

1, if (completely)

0,1 , if (partially)

0, if totally non-member
F

x F

x x F

x F

Figure 4.1. (a) Crisp (ordinary) set; (b) fuzzy set

Figure 4.1(a) shows an example of two crisp sets, “short” and “tall”, where it is
shown that even if the height of a person is 1.7999 m then that person definitely
belongs to the “short” category only. This is because the crisp set “short” includes
heights up to 1.8 m. In contrast, if the height of the same person had been just
1.8011 m, as per the same Figure 4.1(a), then the person would belong to the
category “tall”, as in this case the height is 0.0001 m greater than 1.801 m and that
categorizes the person into the crisp set “tall”. This is obviously quite impractical.

Similarly, Figure 4.1(b) shows the example of two fuzzy sets, “short” and
“tall”, where it is shown that if the height of a person is less than or equal to 1.5 m,
then the person belongs to the category “short”, whereas if the height is say 1.8 m
then the person belongs to the category “short” with a degree of membership 0.5
and at the same time the person is considered as “tall” with a degree of
membership equal to 0.5.

In order to explain the importance of fuzzy sets or membership functions,
Boyle’s law, as a practical example, is considered, that states that the pressure (P)
of a given mass of gas varies inversely proportional to the volume (V) of the gas,
provided the gas temperature (T) remains constant.

Using the fuzzy linguistic rules, Boyle’s law can be stated as:

Rule-1: IF pressure is high and temperature is constant THEN volume is
low

Rule-2: IF pressure is medium and temperature is constant THEN volume is
medium

Rule-3: IF pressure is low and temperature is constant THEN volume is
high.

Height

1.8m

Short Tall

D
eg

. o
f M

F

1.0

2.1m1.801m

a

Short Tall

D
eg

. o
f M

F

Height

1.0

1.5m 2.1m

0.5

1.8m

b

146 Computational Intelligence in Time Series Forecasting

The same fact can be written mathematically as PV = constant.
The above three IF-THEN rules are sufficient to model Boyle’s observations

and is in fact very similar to the way we understand a system or describe our
observations and experience about any system in day-to-day life. In the above three
rules, pressure, temperature and volume are the linguistic variables, whereas (fuzzy
sets) high, medium, low, etc. are the linguistic terms or linguistic labels, generally
represented by triangular or trapezoidal or even by Gaussian membership
functions (fuzzy sets).

For example, in the above rules, say 0.9 to 1.5 bar represents high pressure, 0.4
to 1.0 bar represents medium pressure and 0 to 0.5 bar represents low pressure, etc.
Note that, here, instead of exact and specific values of pressure we used a range to
specify high, low and medium, and also note that ranges are partially overlapping.

So, from the above example it is clear that fuzzy logic (IF-THEN linguistic
rules) is a very convenient mathematical tool to describe our observations or
experiences about any system for system modelling with the application of fuzzy
sets.

4.3 Fuzzy Logic Systems

Fuzzy logic systems have a direct relationship with fuzzy concepts, such as fuzzy
sets, linguistic variables, and fuzzy logic. Fuzzy systems are unique in the sense
that they can simultaneously process numerical data and linguistic knowledge.
From the mathematical point of view, a fuzzy logic system is a nonlinear mapping
of an input feature (data) vector into a scalar output.

Figure 4.2. Block diagram of a fuzzy logic system

The block diagram of a fuzzy logic system is shown in Figure 4.2. From the figure
it is seen that the fuzzy logic system takes the crisp input value (X) and this is then
fuzzified (converted into corresponding membership grade in the input fuzzy sets),
thereafter, it is fed to the fuzzy inference engine. Using the stored IF-THEN fuzzy
rules from the rule base the inference engine produces a fuzzy output that
undergoes further defuzzification to result in crisp output (Y).

In artificial intelligence, fuzzy logic systems were first styled as fuzzy rule
systems and fuzzy expert systems.

Fuzzy sets can be involved in a fuzzy logic system in a number of ways:

in system description

DefuzzifierFuzzifier
Fuzzy

inference
engine

Fuzzy
rule base

Crisp
input

X

Crisp
output

Y

 Fuzzy Logic Approach 147

in specification of system parameters
in representation of input, output and system states.

When involved in system description, fuzzy sets appear as linguistic terms or
labels to represent the state of the linguistic variable in the fuzzy rule. An
illustration of the first case can be presented considering once again Boyle’s
observations, which are described by three IF-THEN rules, as stated in the Section
4.2. In fact, any system can be described by a collection of such types of IF-THEN
linguistic rules, also known as fuzzy rules. The fuzzy logic systems are actually a
rule-based system and usually defined using the IF-THEN rules. The general form
of such an IF-THEN rule is: IF antecedent propositions THEN consequent
propositions. The example of fuzzy (antecedent) propositions can be “Pressure is
High” or even “x is A”. Here, the term “High” is a linguistic term or label, also
called a fuzzy term, represented by a fuzzy set (membership function) on the
universe of discourse (UD) of the linguistic variable “Pressure”. Similarly, fuzzy
set A is a representative of a linguistic label/term. Sometimes linguistic hedges
(modifier) are used to modify the linguistic label/fuzzy set without redefining the
fuzzy set completely. An example of the latter can be “very A” or “more or less A,”
etc.

When involved in specification of system parameters, fuzzy sets may appear as
fuzzy numbers. Similarly, as an example of the second case, let us consider a
system that can be described by algebraic or differential equations in which the
parameters are approximate (fuzzy) numbers instead of exact real numbers. For
instance, a linear system of the form y f x , where x is the input to the system

and y is the corresponding output from the system, can be represented by a linear

equation, but one with fuzzy numbers such as 2 3y x , where the numbers 2

and 3 (with tilde symbol) represent the fuzzy numbers approximately 2 and
approximately 3 respectively.

Finally, fuzzy sets may appear as the only means to express human perceptions
or even noisy or uncertain data or information that have to be used as system input,
output, and system state. As an illustration of the latter, consider the input of a
system that can be noisy data (reading from unreliable sensors/transducers), or
even human perceptions such as hot, warm, comfortable, uncomfortable, beautiful,
and tasty, etc. Fuzzy-logic-based system can process such types of information by
defining their suitable ranges and criteria with fuzzy sets.

A fuzzy inference system is the core part of a fuzzy logic system. In practice,
the following fuzzy inference systems have most frequently been employed and
have most frequently been the subject of theoretical study:

Mamdani type fuzzy inference systems
Takagi-Sugeno type fuzzy inference systems
Relational (Pedrycz) fuzzy logic systems.

148 Computational Intelligence in Time Series Forecasting

4.3.1 Mamdani Type of Fuzzy Logic Systems

Mamdani (1977) proposed the first fuzzy inference system with the objective to
control a combination of a steam engine and a boiler, based on a set of linguistic
control rules built as the extracted knowledge of a human expert.

When applied to Boyle’s law, as described in Section 4.2, the following fuzzy
linguistic rules can be written:

Rule-1: IF the pressure is HIGH and the temperature is CONSTANT, THEN
the Volume is LOW.

Rule-2: IF pressure is MEDIUM and the temperature is CONSTANT, THEN
the volume is MEDIUM.

Rule-3: IF the pressure is LOW and the temperature is CONSTANT, THEN
the volume is HIGH.

These rules are known as Mamdani-type fuzzy rules (first introduced and used by
Mamdani in 1977). The main features of such rules are that both the IF
(antecedents) parts and the THEN (consequents) parts of the rules are fuzzy
(imprecise) in nature. That is, fuzzy sets are used here in order to describe both the
input and the output variables of the system.

As another example of the Mamdani-type fuzzy rules, consider a single input–
single output system that describes the relationship between the heater current and
the temperature trend as follows:

IF the heater current is HIGH, THEN the temperature rise is FAST
IF the heater current is MEDIUM, THEN the temperature rise is
MODERATE
IF the heater current is LOW, THEN the temperature rise is SLOW.

Note that in the above Mamdani-type fuzzy rules the heater current and
temperature rise are the two linguistic variables (input and output of the system
respectively), whereas HIGH, MEDIUM, and LOW are the three fuzzy sets,
represented by suitable (triangular/Gaussian) membership functions and provide
the means to express the states of the linguistic input variables. Similarly, FAST,
MODERATE, and SLOW are the three output fuzzy sets – also represented by
suitable membership functions – representative of the states of linguistic output
variables of the systems.

4.3.2 Takagi-Sugeno Type of Fuzzy Logic Systems

With Takagi-Sugeno (TS) type fuzzy rules the IF (antecedent) part is fuzzy in
nature, whereas the THEN (consequent) part is a crisp function of an antecedent
variable (as a rule, a linear equation) rather than a fuzzy proposition. The example
presented above for Boyle’s law could be written correspondingly as:

Rule-1: IF P is LOW and T is CONSTANT, THEN V = a1P + b1T + c1

Rule-2: IF P is HIGH and T is CONSTANT, THEN V = a2P + b2T + c2

Rule-3: IF P is MEDIUM and T is CONSTANT, THEN V = a3P + b3T + c3.

 Fuzzy Logic Approach 149

where al, bl, and cl parameters with l = 1, 2, 3 corresponding to Rule-1, Rule-2, and
Rule-3 are constants.

As another example, we again take a single input–single output system and
present it using Takagi-Sugeno rules:

IF heaterCurrent is HIGH,
THEN temperatureRise = aH(heaterCurrent) + bH

IF heaterCurrent is MEDIUM,
THEN temperatureRise = aM(heaterCurrent) + bM

IF heaterCurrent is LOW,
THEN temperatureRise = aL(heaterCurrent) + bL

Using similar kinds of rules, many real systems can be described and modeled very
accurately, where each rule represents a local linear model of the system. Also,
these types of rule enable the system output variables (real valued/crisp valued) to
be very easily inferred, which is an advantage of the presentation.

Note that in the above rules if the first constant parameters are all set to zero
(i.e. aH = 0, aM = 0, aL = 0), then the rule’s consequents are singleton fuzzy sets.
Similarly, with Mamdani-type fuzzy rules if the consequent fuzzy sets are
singleton type (a real value) then they are identical to the Takagi-Sugeno type
fuzzy rules with singleton consequents (i.e. when aH = 0, aM = 0, aL = 0).

4.3.3 Relational Fuzzy Logic System of Pedrycz

In relational fuzzy logic systems, similar to Mamdani-type fuzzy logic system,
both the IF (antecedent) parts as well as the THEN (consequent) parts are fuzzy.
However, there is a slight difference in the rule’s representation: in this case, one
particular antecedent proposition is allowed to be associated with several different
consequent propositions via a fuzzy relation (Pedrycz, 1984). This can be
explained, again, on the above single input–single output system, which is
described now by the following rules:

IF heater current is HIGH,
THEN temperature rise is SLOW (0.0), MODERATE (0.1), FAST (0.9)
IF heater current is MEDIUM,
THEN temperature rise is SLOW (0.1), MODERATE (0.95), FAST (0.0)
IF the heater current is LOW,
THEN temperature rise is SLOW (1.0), MODERATE (0.1), FAST (0.0).

In the first relational fuzzy rule the consequent fuzzy set FAST (0.9) represents the
output variable (temperature rise) belonging partially to the fuzzy set FAST with
degree of affiliation (also called degree of membership) equal to 0.9. Similarly
SLOW (0.0) and MODERATE (0.1) represent respectively that the same output
variable does not belong to fuzzy set SLOW at all (as the degree of membership in
SLOW is 0.0), whereas the same output belongs a little to fuzzy set MODERATE
(partially with degree of membership 0.1). Following the same argument, one can
see that in the third rule SLOW (1.0) indicates that the output variable (temperature
rise) belongs fully to fuzzy set SLOW (as the degree of membership in SLOW is
1.0), whereas it (output) simultaneously belongs to the fuzzy set MODERATE

150 Computational Intelligence in Time Series Forecasting

partially with degree of membership equal to 0.1, but it does not belong to the
fuzzy set FAST at all. It is important to note that in any of the above rules the
summation of degree of membership of output variable in the consequent fuzzy
sets need not always be 1.0. From the above three rules it is easy to understand that
relational fuzzy rule can be regarded as a generalization of the Mamdani-type
fuzzy rules.

4.4 Inferencing the Fuzzy Logic System

Inferencing refers to the process of generating the output fuzzy set when the fuzzy
rules and the input set are given. Usually, inferencing of Mamdani-type linguistic
fuzzy rules and relational (Pedrycz) fuzzy rules produces an output fuzzy set that is
not directly compatible with a real-world signal (such as a control signal for an
actuator within the range 4 to 20 mA) as it is fuzzy in nature. If a crisp (numerical)
output value is required, which is directly compatible with a real-world signal, then
the output fuzzy set must be defuzzified. Defuzzification is a transformation
process that translates the output fuzzy set into a single numerical value
representative of that fuzzy set. For this purpose, preferably the centre of gravity
(COG) method is used.

Given a fuzzy set F represented in the point-wise form as

1 1 2 2, , ,F F F p pF x x x x x x ,

the COG method helps in computing the x coordinate of the centre of gravity of the
fuzzy set F as follows:

1

1

p

i iF
i

p

iF
i

x x
x

x

In contrast, fuzzification translates a crisp value into a corresponding fuzzy
value (degree of membership). If the computed degree of membership of the crisp
input in a fuzzy set F is exactly 1 or close to 1 or greater than some threshold value
the input (crisp) is considered to be equivalent to that fuzzy set F.

4.4.1 Inferencing a Mamdani-type Fuzzy Model

Inferencing the Mamdani type of fuzzy model basically consists of four steps. For
a single-input single-output model, however, if an input fuzzy set is given instead
of a crisp input value, then the procedure is slightly altered, as shown below. Given
the rule base, for instance with M fuzzy rules, as

 Fuzzy Logic Approach 151

R1: IF x is 1
1G , THEN y is 1

1F
R2: IF x is 2

1G , THEN y is 2
1F

: : : :
RM: IF x is 1

MG , THEN y is 1
MF

Now, if x is 1
1G , is given as the input fuzzy set and 1 1

1 1G G , then the objective is
to determine the corresponding output fuzzy set through the Mamdani rule
inferencing mechanism. The procedure is as follows.

Each fuzzy rule above can be regarded as a fuzzy relation:

: 0,1lR X Y

computed as

11
,l llR G FX Y I x y ,

where the operator I can be either a fuzzy implication or a conjunction operator
such as a t-norm. It is to be noted that .,.I is computed on the Cartesian product

space X Y , i.e. for all possible pairs of x and y from the domain, using the
Mamdani implication

1 11 1
, min ,l ll l

G GF FI x y x y .

Once the fuzzy relation (lR) is computed for each rule l = 1, 2, 3, ..., M, the fuzzy
relation R for the entire rule base is computed taking the element-wise maximum
of all (lR) i.e. R is the union of all (lR), for l = 1, 2, 3, ..., M. From this fuzzy
relation the output fuzzy set is computed directly by applying a max-min
composition and written as

11

l l
out RF G .

Using the minimum t-norm operator, the max-min composition is obtained as

yxxy RGYXXF l
out

,,minmax
1
11 ,

The final result of this max-min composition is nothing but the desired output
fuzzy set. The COG of the output fuzzy set gives the equivalent crisp output (y
coordinates).

The procedure described above can be circumvented by the following few
steps:

152 Computational Intelligence in Time Series Forecasting

Step 1: compute the degree of fulfilment of each rule by

1
1 1

, 1max l
l

X G Gx x l M ,

where is the min operator. For a crisp input 0 ,x x which is equivalent

to a singleton fuzzy set, i.e.

1
1

01, for ;G x x x

and for all other points

1
1

0 , 0.Gx x x

So the degree of fulfilment of the lth rule is reduced to

1
0l

l

G x .

Step 2: compute the each rule consequent set as given by

11
l

ll FF

Step 3: aggregate all consequent fuzzy sets as shown by

1 2
1 1 1 1

1

M
l M

aggr
l

F F F F F

Step 4: defuzzify the aggregated fuzzy set aggrF using the COG method.

The inferencing mechanism of the Mamdani type of fuzzy logic system can easily
be explained on an n-input single-output system described by M numbers of
Mamdani-type fuzzy rules

R1: IF x1 is 1
1G and… and xn is 1

nG , THEN y is 1
1F

R2: IF x1 is 2
1G and… and xn is 2

nG , THEN y is 2
1F

: : : : : :
RM: IF x1 is 1

MG and… and xn is M
nG , THEN y is 1

MF .

For a given set of rules and inputs xi, with 1,2, , ;i n (also called the training
sample), the objective is to determine the crisp output value which is the
defuzzified value of the output fuzzy set. The inferencing of such a rule-based
fuzzy system proceeds as follows.

 Fuzzy Logic Approach 153

Step 1: compute the degree of fulfilment of each rule for any given input
set (crisp) by

1 2
1 2l l l

n

l
nG G Gx x x ,

where is the min or product operator

Step 2: compute the each rule consequent set as given by

11
l

ll FF

Step 3: aggregate all consequent fuzzy sets as shown by

1 2
1 1 1 1

1

M
l M

aggr
l

F F F F F

Step 4: defuzzify the aggregated fuzzy set aggrF using the COG method.

The defuzzified value of the aggregated fuzzy set is the crisp output value from the
Mamdani-type fuzzy model in response to the given input value. In Step 3 the
aggregation is the union (standard/Zadeh’s union) of the consequent fuzzy sets.

4.4.2 Inferencing a Takagi-Sugeno type Fuzzy Model

The inference formula of the Takagi-Sugeno model is only a two-step procedure,
based on a weighted average defuzzifier. In the first step the degree of fulfilment,
or firing strength (also called the degree of activation), of each rule is computed
using the product operator. In the second step, the final output value of the system
is calculated using the weighted average defuzzifier. This can, for the inference
process of a Takagi-Sugeno type fuzzy logic system consisting of M rules, be
presented as

R1: IF x1 is 1
1G and … and xn is 1

nG THEN 1 1 1 1
0 1 1 n nTSy x x

R2: IF x1 is 2
1G and … and xn is 2

nG THEN 2 2 2 2
0 1 1 n nTSy x x

: : : : :
RM: IF x1 is 1

MG and … and xn is M
nG THEN

0 1 1
M M M M

n nTSy x x

The degree of fulfilment is now calculated using the product operator, as was
done when the set of Takagi-Sugeno rules with antecedent fuzzy sets and
parameters are known for a given set of inputs

154 Computational Intelligence in Time Series Forecasting

1 2
1 2

1
l l l l

i n

nl
i n

i G G G Gx x x x ; 1, 2, , .l M

The output value of the system is then given by

0 1 1
1 1

0

1 1

M Ml l l l l l
n nTS

l l
M Ml l

l l

y x x
y

Alternatively, the final output of the system is represented by the normalized
degree of fulfilment (normalized degree of activation) as

0 1 10
1 1

;
M Ml l l l l l

n nTS
l l

y y x x

where
1

Ml l l

l
 is the normalized degree of fulfilment (activation).

4.4.3 Inferencing a (Pedrycz) Relational Fuzzy Model

The inference process of a relational (Pedrycz) fuzzy model

R1: IF x1 is 1
1G … and xn is 1

nG , THEN y is 1 1 11 1 1
1 21 2, , , k kF F F

R2: IF x1 is 2
1G … and xn is 2

nG , THEN y is 2 2 22 2 2
1 21 2, , , k kF F F

: : : : : :
RM: IF x1 is 1

MG … and xn is M
nG , THEN y is

1 21 2, , ,M M MM M M
k kF F F .

consists of the following three steps:

Step 1: compute the degree of fulfilment of each fuzzy rule by

1 2
1 2l l l

n

l
nG G Gx x x ,

where is the minimum or product operator.

Step 2: apply the max-min relational composition operator to compute the
relational composition R , where

1 2, , , M ,

 Fuzzy Logic Approach 155

1
min , , 1,2, , .max

lj
lj

l M
j KR

1 2, , , K

with l
j M k

R , a relational matrix of size M k , M is the number of

given fuzzy rules and k is the number of output fuzzy sets/membership
functions that make the partitioning of the output domain or output
universe of discourse.

Step 3: defuzzify the consequent fuzzy set by COG method to compute the
crisp output value

0
1 1

k kjj j

j j
y y ,

where COG ,j l l
j jy F F jth output fuzzy set for the lth rule, and

1,2, , .j k

To illustrate the above inference mechanism of a relational fuzzy model, let us
again consider the n-input, single-output system described by the relational fuzzy
rule- based model

R1: IF x1 is 1
1G and… and xn is 1

nG ,
THEN y is HIGH (0.9), y is MEDIUM (0.1), y is LOW (0.0)

R2: IF x1 is 2
1G and… and xn is 2

nG ,
THEN y is HIGH (0.1), y is MEDIUM (0.8), y is LOW (0.0)

R3: IF x1 is 3
1G and … and xn is 3

nG ,
THEN y is HIGH (0.0), y is MEDIUM (0.7), y is LOW (0.2)

If the antecedent’s fuzzy sets, i.e. l
iG with 1, 2, , ;i n 1, 2, , ;l M and M = 3,

are given, then for given values of input variables ; 1, 2, , ;i i nx we first

determine the output fuzzy set through the inferencing mechanism as stated in the
above three steps.

Now, the degree of fulfilment of the lth rule is computed using the product
operator

1 2
1 2

1
l l l l

i n

nl
i n

i G G G Gx x x x

Therefore,

1 1 1 1
1 2

1
1 2

1 i n

n

i n
i G G G Gx x x x = 0.5 (say).

156 Computational Intelligence in Time Series Forecasting

Similarly, let the computed values of 2 and 3 for the second and the third

rules, using a similar procedure, be 0.6 and 0.7 respectively. Therefore, the

computed row vector will be 1 2 3, , 0.5,0.6,0.7 . Furthermore, for

this example the relational matrix R is of size M k , where the number of rules

M = 3 and the number of output fuzzy sets (e.g. HIGH, MEDIUM, and LOW) k =
3. The relational matrix is formulated using the degree of membership of each rule
output in the output fuzzy set. Therefore,

0.9 0.1 0.0

0.1 0.8 0.0

0.0 0.7 0.2

R ,

l
j

lj F yR and 1, 2, , ; 1, 2, , .l M j k

Now applying the max-min relational composition, the output fuzzy set can be
computed as follows:

max min 0.5,0.9 ,min 0.6,0.1 ,min 0.7,0.00.9 0.1 0.0

0.5 0.6 0.7 0.1 0.8 0.0 max min 0.5,0.1 ,min 0.6,0.8 ,min 0.7,0.7

0.0 0.7 0.2 max min 0.5,0.0 ,min 0.6,0.0 ,min 0.7,0.2

T

.

This finally results in 0.5 0.7 0.2 .

Supposing now that the COGs of the output fuzzy sets are known, i.e. if the
1 2 3COG ; 1,2, , ; and noting that ;l

j j j jj kF F F F are given respectively as
1 2 330, 20 and 10,y y y then the crisp output from the inference of the

relational fuzzy-rule-based system will be

0

0.5 30 0.7 20 0.2 10 31

0.5 0.7 0.2 1.4
y 22.142.

The various fuzzy inferencing mechanisms described in the Sections 4.4.1 to 4.4.3
can similarly be applied to time series forecasting applications when the
corresponding fuzzy model (fuzzy rules) of a given time series is available.

 Fuzzy Logic Approach 157

4.5 Automated Generation of Fuzzy Rule Base

From the description of the various fuzzy logic systems it is well understood that
the fuzzy inference system, i.e. the fuzzy inference engine requires a fuzzy rule
base containing a complete set of well-consistent rules that model the system to be
investigated. The automated generation of such a rule base, based on the time
series data, and later its application to time series forecasting is our prime interest.

4.5.1 The Rules Generation Algorithm

The idea of data-driven automated rule generation, presented in this section,
originates from Wang and Mendel (1992), who have proposed an adequate
procedure for it’s practical implementation. In addition, we have proposed a few
modifications of those described by Wang and Mendel (1992), based on scaled and
normalized time series data, partitioned into multi-input single-output data sets.

For example, for a two-input one-output fuzzy logic system using the Wang
and Mendel’s approach the input-output partitioning would be

1 1 1
1 2 1 2, , ; ; , ,k k kX X Y X X Y etc.

To generate the fuzzy rules automatically from these input-output partitioned data
that represent the mapping of the input values to the respective output values, each
X and Y domain will be divided into fuzzy regions and for each variable the
universe of discourse (UD) obtained by considering the values [Min (X), Max (X)]
or, [Min (Y), Max (Y)] of that variable. Thereafter, the UD is divided into a number
of overlapping (fuzzy) regions and to each region a membership function, usually
one of the triangular form, is assigned. This is followed by the fuzzification of
crisp input-output values, in which a mapping of crisp input/output value from the
domain into the unit interval is performed, and consequently for each membership
function the corresponding label or the membership grade is obtained. Owing to
overlapping of the fuzzy sets, more than one grade of membership may exist for
each input or output value, out of which the fuzzy set with maximum grade is
selected. The fuzzy input-output data pair, obtained for an individual input-output
data set when connected through fuzzy logic operators, define the corresponding
fuzzy rule. Here, however, conflict situations can arise when rules with the same
antecedents, i.e. the same IF parts, but with different consequents (the THEN
parts), are generated. To overcome this, to each conflicting rule a degree or a grade
is assigned, for instance,

1 2A B CD Rule X X Y ,

for the given

 Rule: IF (X1 = A) AND (X2 = B), THEN (Y = C).

158 Computational Intelligence in Time Series Forecasting

Thereafter, the combined rule base and the rule grade table (RGT) are built, but the
conflicting rules with the maximum value of D(Rule) are selected, whereas the
conflicting rules with the lower value of D(Rule) are all rejected. It is to be noted
that besides the conflicting rules the redundant rules, that have both identical IF
parts as well as THEN parts, are also generated by this rule generation algorithm.

Since our final aim is to develop a fuzzy-logic-based predictor, or a fuzzy
model that is capable of forecasting the future values of a given time series, in the
following we will describe a fuzzy-rules generation algorithm based on a multi-
input single-output partitioning of the time series data.

Given a time series X = {X1, X2, X3, ..., Xq}, at time points t = 1, 2, 3, . . . , q; our
objective is to forecast the future values of this time series using a fuzzy-logic-
based predictor. For this forecasting problem, usually a set of known values of the
time series up to a point in time, say t, is used to predict the future value of the time
series at some point, say (t+L). The standard practice for this type of prediction is
to create a mapping from D sample data points, sampled every d units in time, to a
predicted future value of the time series at time point (t+L). Therefore, for each t,
the input data for the fuzzy logic predictor to be developed is a D-dimensional
vector of the form:

XI(t)=[X{t-(D-1)d}, X{t-(D-2)d}, ….., X{t}]

Following the conventional settings (for predicting the Mackey-Glass time series),
D = 4 and d = L = 6 have been selected and, therefore, the input data of the fuzzy
predictor is a four-dimensional vector, i.e.

XI(t)=[X(t-18), X(t-12), X(t-6), X(t)].

The output data of the fuzzy predictor is a scalar and corresponds to the trajectory
prediction:

XO(t)=[X(t+L)]

Therefore, for a four-input one-output fuzzy logic system the time series partition
can be obtained as:

 (X11, X12, X13, X14, Y1); ….; (Xk1, Xk2, Xk3, Xk4, Yk); etc.

which can be represented in XIO matrix (multi-input single output) form as

11 12 13 14 1

1 2 3 4k k k k k

X X X X Y

XIO

X X X X Y

 (4.1)

where, Xk1, Xk2, Xk3, Xk4 are input values and Yk as the corresponding output value
for k = 1, 2, 3, ..., m. Note that XIO stands for the time series data

 Fuzzy Logic Approach 159

1.0
0.8
0.6
0.4
0.2
0.0

S2 S1 CE B1 B2

Xhi
Xlo X11 X12 X13 X14 Y1

D
eg

. o
f

M
F

Xki

1 2, , , qX X X X are represented in input and output form. The objective is to

generate, from the above data set, the IF-THEN rules that will construct the rule
base of a fuzzy predictor system. This is carried out in the following steps.

Step 1: formation of fuzzy input and output regions

Suppose that the domain interval of Xki is [Xi_lo, Xi_hi] and that of (Yk) is [Ylo, Yhi],
where k = 1, 2, 3, ... , m; and i = 1, 2, 3, 4; corresponding to the four inputs
respectively.

Figure 4.3(a). Division of input and output range in fuzzy regions

Taking into account that all input values and the output value belong to the same
time series X = {X1, X2, X3, ..., Xq}, for t = 1, 2, 3, ... , q, the domain intervals of all
inputs and the output can be taken to be the same, say [Xlo , Xhi] or [Ylo , Yhi], for i =
1, 2, 3, 4. Each domain interval can be divided into (2N + 1) fuzzy regions (see
Figure 4.3(a) and 4.3(b)) like

SN(Small N), ..., S2(Small 2), S1(Small 3), CE(Center), B1(Big 1), B2(Big
2), ..., BN(Big N).

Step 2: data fuzzification and rules generation

This includes the determination of the degrees of membership of Xk1, Xk2, Xk3, Xk4,
Yk in different fuzzy regions and assignment of a given Xk1, Xk2, Xk3, Xk4, Yk for k =
1, 2, ... , m; to the region with the maximum degree. For example, for k = 1, Xk1 in
Figure 4.3(a) has degree of membership 0.8 in S1, 0.2 in S2 and 0 degrees in all
other regions. Similarly, for k = 1, Xk2 in Figure 4.3(a) has degree of membership
0.6 in CE, 0.4 in S1 and 0 degrees elsewhere. Again, for k = 1, Xk1 in Figure 4.3(a)
is considered to be S1 and Xk2 in Figure 4.3(a) is considered to be CE.

Similarly, the fuzzy regions with maximum degree should be assigned to the
Xk3, Xk4, Yk for k = 1. Now, the corresponding rules can be obtained from the input-
output data sets. According to Figure 4.3(a), for k = 1, Xk1, Xk2, Xk3, Xk4, and Yk give
[X11 (0.8 in S1, max), X12 (0.6 in CE, max), X13 (0.8 in CE, max), X14 (0.8 in B1,
max); Y1 (0.6 in B2, max)], and rule R1 is

160 Computational Intelligence in Time Series Forecasting

Xki

1.0
0.8
0.6
0.4
0.2
0.0

S2 S1 CE B1 B2

Xhi
Xlo X21 X22 X23 X24 Y2

D
eg

. o
f

M
F

R1: IF X11 is S1 AND X12 is CE AND X13 is CE AND X14 is B1 THEN Y1 is B2.

Note that in the above rule X11, X12, X13, and X14 actually represent the first,
second, third and fourth inputs respectively of the system, whereas Y1 represents
the corresponding single output from the system.

Figure 4.3(b). Division of input and output range in fuzzy regions

Furthermore, according to Figure 4.3(b), this gives [X21 (0.6 in S1, max), X22 (0.8 in
S1, max), X23 (0.8 in CE, max), X24 (0.6 in B1, max); Y2 (0.8 in B2, max)], i.e. rule
R2 is

R2: IF X21 is S1 AND X22 is S1 AND X23 is CE AND X24 is B1 THEN Y2 is B2.

Note that, as in the previous rule, here also X21, X22, X23, and X24 actually represent
the first, second, third and fourth inputs respectively to the system, and Y2

represents the corresponding single output from the system.

Step 3: rules degree assignment

The large number of data pairs available generate a large number of rules, some of
them being conflicting rules. To each rule the degree will be assigned and the
conflicting rules with the highest degree retained. For example, the degree of the
rule

Rule: IF x1 is A AND x2 is B AND x3 is C AND x4 is D, THEN y is E

 is as follows:

 D(Rule) = A(x1). B (x2). C (x3). D (x4). E (y),

so that the rules R1 and R2 above have the degrees:

 D(Rule 1) = S1(X11). CE(X12). CE(X13). B1(X14). B2(Y1)

 = (0.8).(0.6).(0.8).(0.8).(0.6) = 0.18432,

 Fuzzy Logic Approach 161

Xk1

S1 S2 CE B1 B2

Xk2

S1

S2

CE

B1

B2

S1

S1

S2

CE

S2

S2

S2

S2

S2 S2S2

B1

S2

 D(Rule 2) = S1(X21). S1(X22). CE(X23). B1(X24). B2(Y2)

 = (0.6).(0.8).(0.8).(0.6).(0.8) = 0.18432

respectively, and both are found to be same in this example. However, they are
usually different for realistic time series data.

Step 4: building of combined fuzzy rule base

A combined fuzzy rule base, built in the following way, is shown in Figure 4.3(c).
It is a lookup table to be explained on the example of a two inputs [Xk1, Xk2], one
output Y1 system for simplicity. Individual boxes are filled with fuzzy rules
generated from input-output data, whereby the AND-rules fill only one box and the
OR-rules fill all the boxes in the rows and/or columns corresponding to the regions
of their IF parts. If there is more than one rule in one box, then the rule with the
maximum degree is taken. For example, the rule

Rule: IF Xk1 is B1 OR Xk2 is B2 THEN Y1 is S2

fills five boxes in the column of B1 and five boxes in the row of B2 with S2. The
degrees of all the S2’s in these boxes are equal to the degree of the OR-rule,
whereas the same rule with AND, instead of OR, fills only the intersection of
column B1 and row B2 with S2

Figure 4.3(c). Look-up table for fuzzy rule base

The combined rule base of Figure 4.3(c) describes the following fuzzy rules:

IF Xk1 is S2 AND Xk2 is S1 THEN Y1 is S1
IF Xk1 is CE AND Xk2 is S2 THEN Y1 is B1
IF Xk1 is S1 AND Xk2 is B1 THEN Y1 is CE
IF Xk1 is S2 AND Xk2 is CE THEN Y1 is S1
IF Xk1 is B1 OR Xk2 is B2 THEN Y1 is S2

It is to be noted that for a system with more than two inputs the above table would
require a multidimensional space for its presentation.

162 Computational Intelligence in Time Series Forecasting

4.5.2 Modifications Proposed for Automated Rules Generation

The described rules generation algorithm requires much manual effort in handling
the numerous data sets (say 500) and the large number of triangular membership
functions (say 20 to 50). To reduce this, the modification of some of the
operational steps and the use of Gaussian membership functions of the following
form are proposed (Palit and Popovic, 1999):

2 2(; ,) exp (2)i j j i j jjf x c x c (4.2)

for simplification of computation of degree of membership for all values of Xi.
Dividing the domain interval [Xlo, Xhi] into (n-1) overlapping fuzzy regions,

with 2 1n N , N is some integer value, and assigning to each region a Gaussian
membership function, the mean C and the variance will also have 2 1n N
values, such as C1 to Cn and 1 to n respectively. For ease of computer program
implementation, the domain interval is divided into (n-1) equal regions such that

1 ,loC X 2 1 2 ,hi loC C X X N 3 2 2 ,hi loC C X X N ..., n hiC X and

1 ,n a 2 3 1 .n b For forecasting of Mackey-Glass chaotic

time series, for example, n = 17, a = 0.08, b = 0.04, and the domain interval [0.4,
1.4] were selected. The fuzzy regions in this case are denoted by G1, G2, G3, ..., Gn,
etc. for convenience and G indicates the Gaussian membership functions (GMFs).
For any input Xi within the domain interval the degree of membership

jG i j iX f X will be within [0, 1], for j = 1, 2, 3, ..., n. If i jX C then

1,
jG iX whereas the degree of membership

jG i j iX f X will be zero

only if iX and for other values of Xi in the domain interval the degree of

membership can assume any value between 0 to 1. The fuzzy rules can now be
generated in the usual way.

With the above modifications and after preprocessing the time series data, the
automated fuzzy rules generation continues with fixing the domain interval as

, min , maxlo hiX X X X and with dividing the domain interval into (n-1)

equal regions, where 2 1n N , and N is any suitable integer value such that each
segment is of length 1hi loS X X n , on which the accuracy of the forecast

depends.
Now, the total number 2 1n N of GMFs G1 to Gn, over the entire domain

with 1 loC X , 2 1 ,C C S 3 2 1 3 1 ,C C S C S ..., 1 1 ,rC C r S ...,

1 1 ,n hiC C n S X and 2 3 1n b , whereas 1 n a ,

are assigned with suitably selected values of a and b. The integer n and, hence,
the C2 to Cn-1 and values are chosen such that two consecutive membership
functions partially overlap. The forecasting accuracy also depends greatly on the
extent of overlapping. It has been observed that the overlaps that are too large or
too narrow may deteriorate the forecasting accuracy of the time series.

 Fuzzy Logic Approach 163

In the next step, the crisp input and output values are fuzzified. For any input
value Xki, or output value Yk, the f(Xki), or f(Yk), is calculated such that

22

22

() () exp (2 ,)

() () exp (2)

ki ki ki jGj j

k k k jGj j

j

j

f cX X X

f cY Y Y
 (4.3)

where i = 1, 2, 3, 4 (corresponding to the first, second, third and fourth inputs in
our case), j = 1, 2, 3, ..., n (corresponding to G1 to Gn), k = 1, 2, 3, ..., m/2 (i.e.
corresponding to the kth row of the XIO matrix and m being the total number of
rows in XIO matrix in Equation (4.1)), and

jG kiX is the degree of membership

 of Xki in the jth Gaussian fuzzy set Gj. Hence, for any particular Xki (or Yk), i.e.

for input X11 (or output Y1), when i = k = 1, then 11jG X will have n values

(because j = 1, 2, ..., n) within the range [0, 1] and the same should be arranged in a
column vector form of size 1n .

Similarly, the same procedure should be adopted for other inputs and output
X12, X13, X14 and Y1, i.e.

jG kiX should be computed for all i = 1, 2, 3, 4, and,

thereafter, should also be arranged in 1n column vector form. When such

column vectors, each of size 1n for all the inputs (X11, X12, X13, X14) and output

(Y1), are arranged side by side sequentially, this results in a Mu-matrix of size

max 1n i , i.e. of 5n size for our four-inputs one-output system. Now, the

maximum value of degree of membership from each column of the Mu-matrix is
selected and the corresponding row number is recorded.

For example,
rG kiX is to be found out such that 0 1

rG kiX and

max
r jG ki G kiX X , for all j = 1, 2, 3, ..., n, the integer value of r (1 r n)

should then be recorded, which is the key point of the automated rules generation
algorithm. Once the r values are computed for all Xki and Yk , for i = 1, 2, 3, 4 and k
= 1, 2, 3, ..., m/2, they should be recorded. For instance, it may be the case that

G3
(X11) = max(Gj(X11)) = 0.95, i.e. r = 3 implies G3

G5(X12) = max(Gj(X12)) = 0.80, i.e. r = 5 implies G5

G2(X13) = max(Gj(X13)) = 0.98, i.e. r = 2 implies G2

G6(X14) = max(Gj(X14)) = 0.90, i.e., r = 6 implies G6

G2(Y1) = max(Gj (Y1)) = 0.97, i.e. r = 2 implies G2

In the next step, the fuzzy rules are built based on the values of r and degrees of
membership. For instance, in the above example the degree of membership () of
X11 assumes a maximum value of 0.95 in G3 (because r = 3). Similarly, the degrees
of membership () of X12, X13, X14 and Y1 assume maximum values of 0.8 in G5

164 Computational Intelligence in Time Series Forecasting

(because r = 5), 0.98 in G2 (because r = 2), 0.9 in G6 (because r = 6), and 0.97 in
G2 (because r = 2) respectively. Hence, the corresponding fuzzy rule R3 will be:

R3: IF X11 is G3 AND X12 is G5 AND X13 is G2 AND X14 is G6 THEN Y1 is G2

The same fuzzy rule can also be written as [3 5 2 6 2 Drule FOP], where the
numbers correspond to G3, G5, G2, G6, G2 of the rule respectively whereas, (Drule)
and FOP stand for the degree of the rule and fuzzy operator (AND) respectively.
Drule = 1 if no degree of rule is specified or all rules have the same degree. If only
the AND operator is used, then FOP has the value 1. Otherwise, for the OR
operator the value 0 is used. Thus, for no degree of rule and for the AND operator
the same rule is rewritten as [3 5 2 6 2 1 1]. The rules built in this way are used
to build the rule list of the fuzzy system. If any two rules in the rule list create a
conflict situation, the rule with the higher Drule value is taken and the other one is
rejected from the rule list. For example, for the conflicting rules

 [3 5 2 6 2] and [3 5 2 6 4]

 Drule3 = G3(X11). G5(X12). G2(X13). G6(X14). G2(Y1)
 = (0.95).(0.80).(0.98).(0.90).(0.97) = 0.65 (say),

 Drule4 = G3(X21). G5(X22). G2(X23). G6(X24). G4(Y2)
 = (0.90).(0.50).(0.80).(0.60).(0.70) = 0.15 (say),

so that because Drule3 > Drule4 the rule3 is selected and the second one rejected.
However, for redundant (duplicate rules) rules from a list of several such rules any
one is selected. Rules generated in this way are actually Mamdani-type fuzzy rules
and the complete procedure of such automated rule generation is summarized in
Algorithm 4.1.

However, a small modification in the final stage will also generate fuzzy
relational rules (fuzzy relational model/Pedrycz model), i.e. to generate the fuzzy
relational rule, the r values from the Mu-matrix are recorded for all four inputs as
mentioned earlier and these generate as usual the antecedent part of the fuzzy
relational rule. Now, the consequent part of the fuzzy relational rule is generated
from the complete last column (fifth column) of the Mu-matrix that contains the
degree of membership of output Yk in the G1 to Gn fuzzy sets. Note that for the
last column of the Mu-matrix we do not record the r value for the output Y,
whereas the entire column is recorded for rule generation. Therefore, the
corresponding fuzzy relational rule can be written as

R5: IF Xk1 is G3 AND Xk2 is G5 AND Xk3 is G2 AND Xk4 is G6

 THEN Yk is G1 (µG1
(Yk)), Yk is G2 (µG2

(Yk)), ..., Yk is Gn (µGn
(Yk)).

Similarly, the antecedent part of the Takagi-Sugeno fuzzy rule is also generated in
the same way, whereas the linear consequent parameters of the TS rules are
generated by least squares error (LSE) estimation as described in Section 4.5.3.

 Fuzzy Logic Approach 165

Algorithm 4.1. Automated rules generation algorithm for time series prediction

Given the time series X = {X1, X2, X3,…, Xq} for t = {1, 2, 3, …., q}, the
Mamdani-type fuzzy rules are generated as follows:

Step 1. Partition the time series data into MISO form
XI(t) = [X{t-(D-1)d}, X{t-(D-2)d}, …., X{t-d}, X{t}]
XO(t) = [X(t+L)],
For four-inputs system D = 4, and select sampling interval d = 6, and
lead time of forecast L = 6.
Step 2. Divide the domain interval [Xlo, Xhi]
into (n-1) = 2N overlapping fuzzy regions.
Xlo = min(X), Xhi = max(X).
Assign to each region a GMF and
denote them as G1, G2, …., Gn.
Step 3. Compute S = (Xhi - Xlo)/2N, so that the
mean parameters of GMFs are:
C1= Xlo, C2 = C1 + S, ..., Cr = C1 + (r-1)S, ...,
Cn = C1 + (n-1)S = Xhi .
and variance parameters of GMFs are:
Sigma_G1 = Sigma_Gn = Sigma1 ,
Sigma_G2 = Sigma_G3 =, ..., = Sigma_G(n-1) =Sigma2.
Select two suitable values for Sigma1, Sigma2, so that
two adjacent fuzzy regions partially overlap.
Step 4. Fuzzify all the crisp inputs and output.
For any input Xki or output Yk compute the degree of membership in
all Gaussian regions.
0 < µGj

(Xki) = fj(Xki) = exp(-0.5.(Xki-Cj)
2/(Sigma_Gj)

2) 1.
Say, for i = 1, k = 1, and for j = 1, 2, 3, ..., n.
Step 5. Arrange all degrees of membership in an (n×1) column
vector.
Similarly, compute the degree of membership for i= 2, 3, 4 and
for Yk, etc., when k = 1, and j =1,2, 3, …,n; etc.
Arrange them all in a column vector form of size (n×1).
When all such column vectors each of size (n×1) are arranged side by
side sequentially they result in a Mu-matrix of size {n×(imax+1)}. For
four-inputs and one-output system the Mu-matrix is of size (n×5).
Step 6. Select the maximum value of degree of membership from each
column and record the corresponding row number i.e. integer value of
r, such that 0 <µGr

(Xki) = max(µGj
(Xki)) 1, j = 1, 2, 3, …, n and 1 r

 n.
Note the value of r from each column of the Mu-matrix, such that
1 r = integer n. This is the key step of the automated rule
generation algorithm. Now create the fuzzy rule based on the r values
and the corresponding degree of membership.
Step 7. Create the rule list and solve the rule conflict problems (if
any) using the degree of rule. Also remove the redundant rule from the
rule list (if any).

166 Computational Intelligence in Time Series Forecasting

Once the fuzzy rule base with well-consistent and non-redundant rules is
determined, the final step is to check the quality of the rule base generated. For this
purpose, the first 50% data from the remaining data sets (XIO matrix) are used as
validation data and, thereafter, by applying the Mamdani rules inferencing
mechanism described above, the corresponding crisp output values for the given
input data sets are determined. The crisp values generated are then compared with
the desired output data and, consequently, the SSE or RMSE values are computed
for these validation data sets. If the computed values of SSE or RMSE are less than
the acceptable limit, then the rule base generated is considered as final and is
stored for the forecasting test. Otherwise, with finer or coarser partitioning of
universes of discourse of inputs and outputs and adopting a similar procedure, a
new rule base is built.

Alternatively, after the rule generation, in the final step the defuzzification
strategy recommended by (Wang and Mendel, 1992), usually the center of area
strategy, can be selected and, consequently, the output control Y for given inputs
(Xk1, Xk2, Xk3 ,Xk4) is determined by computing the degree of fulfilment of rule or,
degree O of the output control corresponding to (Xk1, Xk2, Xk3, Xk4) as:

µ l
Ol = µI l

1 (Xk1). µI l
2 (Xk2). µI l

3 (Xk3). µI l
4 (Xk4). (4.4)

where Ol denotes the output region of rule l, and I l
i represents the input region for

ith component of the rule l. For example,

µB2= µS1(X11). µCE(X12). µCE(X13). µB1(X14). (4.5)

represents the degree of fulfilment of the Rule-1. The crisp output value y is then
determined using the center average defuzzification formula

1 1

M Ml l l
l l

l l
y y O O (4.6)

where yl is the center value of region Ol and M represents the number of fuzzy
rules in the combined fuzzy rule base.

4.5.3 Estimation of Takagi-Sugeno Rule’s Consequent Parameters

Using Wang and Mendel’s approach, or it’s proposed modifications, the
antecedent’s fuzzy sets of the Takagi-Sugeno rules similar to Mamdani rules can
be determined easily. Once the IF parts (antecedents) of the Takagi-Sugeno type of
fuzzy rules are determined, the linear rule’s consequent parameters of the Takagi-
Sugeno rule can be estimated by applying the least squares error (LSE) technique.

In order to describe the LSE method for rule’s consequent parameter
estimation, Takagi-Sugeno type of fuzzy rules of a multi-input single-output
system are once again considered:

R1: IF x1 is G
1

1 and and xn is G
1

n

 Fuzzy Logic Approach 167

THEN 1 1 1 1
0 1 1 n nTS x xy

R2: IF x1 is G
2

1 and and xn is G
2

n

THEN 2 2 2 2
0 1 1 n nTS x xy

 : : : : :

RM: IF x1 is G
M

1 and and xn is G
M

n

THEN 0 1 1
M M M M

n nTS x xy

Therefore, for a given set of inputs the corresponding Takagi-Sugeno inference
will be

1 1 2 2

1
0 1 2

1

M l l M M
Ts Ts Ts Tsl

M Ml

l

y y y y
y (4.7)

where
l
 is the degree of fulfilment or firing strength of the lth rule, which is

computed for the n-(multiple) input system using the product operator as

1 2
1 2

1
.l l l l

i n

nl
i n

i G G G Gx x x x (4.8)

Therefore,

1 1 2 2
0

M M
TS TS TSy y y y , (4.9)

where the normalized degree of fulfilment for lth rule is

1 2

1

l l
l

M Ml

l

, (4.10)

or the corresponding Takagi-Sugeno inference for sth training sample will be

1 1 1 1
0 1 1_ _0 ns n ss s x xy

 2 2 2 2
0 1 1_ _ns n ss x x (4.11)

 0 1 1_ _ .M M M M
ns n ss x x

Now, by appending 1 along with n inputs in XIes, which takes care of 0
l from the

rule consequent, the sth extended training sample is given as (4.12)

168 Computational Intelligence in Time Series Forecasting

1_ 2 _ _1, , , ,s s s n sXIe x x x (4.12)

and the consequent’s parameters as

0

0 1, , ,

l

Tl l l l
n

l
n

, (4.13)

then in the matrix form the corresponding Takagi-Sugeno inference, for 1 through
N extended training samples, can be written as

1 2 1
1 1 11 1 101

1 2 2
02 2 2 22 2 2

1 2
0

M

M

MM
N N N NN N N

XIe XIe XIey

y XIe XIe XIe

y XIe XIe XIe

 (4.14)

 where the corresponding vectors and matrices are of the dimensions

1, 1 , 1 1.Y N XIe N n M n M

It is, therefore

Y XIe , (4.15)

or,

T T
XIe XIe XIe Y ,

or finally

1
TTXIe XIe XIe Y . (4.16)

Note that in this case the dimension of

1 1 1 1M n N N M n .

For instance, when the rule base has M = 7 rules and the system has n = 4 inputs,
the resulting dimension is

 Fuzzy Logic Approach 169

7 4 1 1 7 4 1 1 35 1N N .

and the resulting column vector

1 1 1
0 1 0 1, , , ; ; , , ,

TM M M
n n .

So, it is to be noted that once the parameters of antecedent fuzzy sets (using the
Wang-Mendel’s approach, or its modification, or by fuzzy clustering) are
determined, which are required for computation of degree of fulfilment of each
rule for a given set of (N training samples) inputs, the linear TS rule’s consequent
parameters can be determined easily by LSE technique as described above.

4.6 Forecasting Time Series Using the Fuzzy Logic Approach

In the forecasting examples described below, the shifted values X(t + L) are the
predicted values based on sampled past values of a time series up to the point t, i.e.
[X{t-(D-1)d}, X{t-(D-2)d}, ..., X(t-d), X(t)]. Therefore, the predictor to be
implemented should map from D sample data points, sampled at every d time
units, as its input values to the predicted value as its output. Depending on the
availability of the time series data and on its complexity, the D, d, and L values are
selected. In our case D = 4 and d = L = 6 have been selected, corresponding to a
four-inputs system, and to a sampling interval of six time units.

Hence, for each t > 18, the input data represent a four dimensional vector and
the output data a scalar value

 XI(t) = [X(t-18), X(t-12), X(t-6), X(t)]
 XO(t) = [X(t+6)].

Supposing that there are m input-output data sets, we generally use the first m/2
input-output data values (training samples) for fuzzy rule generation and the
remaining m/2 input data sets for verification of forecasting accuracy with the
fuzzy logic approach.

4.6.1 Forecasting Chaotic Time Series: An Example

As an example, forecasting of a chaotic time series is considered in this section.
The chaotic series are generated from deterministic nonlinear systems that are
sufficiently complicated as they appear to be random, however, because of the
underlying nonlinear deterministic maps that generate the series, chaotic time
series are not random time series (Wang and Mendel, 1992). The chaotic series, for
our experiment, is obtained by solving the Mackey-Glass differential equation
(Junhong, 1997; MATLAB, 1998). Lapedes and Farber (1987) also used
feedforward neural networks for the prediction of the same chaotic time series and
reported that the neural network gave the best predictions in comparison with

170 Computational Intelligence in Time Series Forecasting

550 600 650 700 750 800 850 900 950 1000

0

0.5

1

1.5
mcgtry0.m: fuzzy-forecast of Mackey-Glass-Series

time(Second)-(nMF=17 & Training Data =1 to 500)

fu
zz

y-
fo

re
ca

st
 (

bl
u e

)
&

 A
ct

ua
l (

d o
tt

e d
-b

la
ck

)

550 600 650 700 750 800 850 900 950 1000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
mcgtry0.m: fuzzy prediction errors for Mackey-Glass Chaotic Series)

time(Second)-(nMF=17 & Training Data= 1 to 500)

fu
zz

y-
fo

re
ca

st
 e

rr
o r

s

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

0.2

0.4

0.6

0.8

1

input1,x(t-18)

D
eg

re
e

of
 m

em
be

rs
hi

p

G G G G G G G G G G G G G G G G G

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

0

0.2

0.4

0.6

0.8

1

output1,x(t+6)

D
eg

re
e

of
 m

em
be

rs
hi

p

G G G G G G G G G G G G G G G G G

Figure 4.4(a). Input and output domains partitioning by 17 GMFs for rule generation

Figure 4.4(b). Forecasting chaotic series with fuzzy predictor with n = 27 GMFs

 Fuzzy Logic Approach 171

Figure 4.4(c). Forecasting chaotic series with fuzzy predictor with n = 27 GMFs

Figure 4.4(d). Forecasting chaotic series with fuzzy predictor with n = 37 GMFs

550 600 650 700 750 800 850 900 950 1000

0

0.5

1

1.5
mcgtry2.m: fuzzy-forecast of Mackey-Glass-Series

time(Second)-(nMF=37 & Training Data =1 to 500)

fu
zz

y-
fo

re
ca

st
 (

bl
u e

)
&

 A
ct

ua
l (

d o
tt

e d
-b

la
ck

)

550 600 650 700 750 800 850 900 950 1000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
mcgtry2.m: fuzzy prediction errors for Mackey-Glass Chaotic Series)

time(Second)-(nMF=37 & Training Data= 1 to 500)

fu
zz

y-
fo

re
ca

st
 e

rr
o r

s

550 600 650 700 750 800 850 900 950 1000

0.5

1

1.5
mcgtry1.m: fuzzy-forecast of Mackey-Glass-Series

time(Second)-(nMF=27 & Training Data = 1 to 500)

fu
zz

y-
fo

re
ca

st
 (

bl
u e

)
&

 A
ct

ua
l (

d o
tt

e d
-b

la
ck

)

550 600 650 700 750 800 850 900 950 1000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
mcgtry1.m: fuzzy prediction errors for Mackey-Glass Chaotic Series)

time(Second)-(nMF=27 & Training Data= 1 to 500)

fu
zz

y-
fo

re
ca

st
 e

rr
o r

s

172 Computational Intelligence in Time Series Forecasting

Figure 4.4(e). Forecasting chaotic series with fuzzy predictor with n = 51 GMFs

Table 4.1. Forecasting performance comparisons for various fuzzy predictors with 500 to
1000 input data sets (evaluation data) for Mackey-Glass chaotic series

Sl. No. No. of GMFs SSE RMSE

1. 17 0.1252 0.0224,

2. 27 0.0389 0.0125

3. 37 0.0255 0.0101

4. 51 0.0164 0.0081

conventional approaches, like the linear predictive method and Gabor polynomial
method, etc. Here, we apply the fuzzy predictor to forecast the future values of
Mackey-Glass chaotic time series data that were directly obtained from MATLAB
version 5.2 as “mgdata.dat” (MATLAB, 1998).

From the numerical data of the chaotic series, a fuzzy logic system capable of
forecasting the future values of the above time series was developed. For this
purpose, neglecting the first 100 transient data points of the chaotic series, with the
remaining data 1000 rows of the XIO matrix have been built, out of which the first
500 rows (training data) are used for rules generation and the remaining 500 rows

550 600 650 700 750 800 850 900 950 1000

0

0.5

1

1.5
mcgtry3.m: fuzzy-forecast of Mackey-Glass-Series

time(Second)-(nMF=51 & Training Data =1 to 500)

fu
zz

y-
fo

re
ca

st
 (

bl
u e

)
&

 A
ct

ua
l (

d o
tt

e d
-b

la
ck

)

550 600 650 700 750 800 850 900 950 1000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
mcgtry3.m: fuzzy prediction errors for Mackey-Glass Chaotic Series)

time(Second)-(nMF=51 & Training Data= 1 to 500)

fu
zz

y-
fo

re
ca

st
 e

rr
or

s

 Fuzzy Logic Approach 173

(validation data) are used for verification of forecasting accuracy, and for all four
inputs and for the output the domain interval [Xlo, Xhi] [0.4, 1.4] have been
selected. Four different fuzzy logic systems with 17, 27, 37, and 51 Gaussian
membership functions (GMFs) have been investigated.

For the fuzzy predictor, the Mamdani-type fuzzy rules were initially generated
using the first 500 rows (training data) of the XIO matrix; thereafter, redundant and
conflicting rules were removed from the rule list. For that purpose, only c1 = 0.4
and cn = 1.4 were selected and the values c2, c3,..., cn-1 were calculated for equal
divisions of all (n-1) intervals. For the first system, i.e. with n = 17 GMFs, a =
0.08 and b = 0.04 were selected. Similarly, a = 0.08 and b = 0.02 were selected
for the second and third systems (with n = 27 and 37 GMFs), whereas a = b =
0.02 were selected for the fourth (with n = 51 GMFs) fuzzy predictor. Figure 4.4(a)
shows the partitioning of universes of discourse for the first input and output of the
predictor with the n = 17 GMFs, and Figure 4.4(b) through Figure 4.4(e) show the
results of forecasting, along with the forecasting errors, for the investigated
systems. Note that, because of good prediction accuracy, forecasted series can
hardly be distinguished from the original chaotic series except for Figure 4.4(b).

The performance functions like SSE (0.5ET.E), with E as a column vector of
errors and T indicating transposition of the E vector, and RMSE indicating the
efficiency of the individual fuzzy system investigated, are also computed and listed
in Table 4.1 for mutual comparison. The results from the Table 4.1 confirm the
high suitability of the proposed approach, based on automatically generated fuzzy
rules for forecasting of Mackey-Glass chaotic time series. From Table 4.1 it also
follows that, when the number of GMFs is increased from 17 to 51, the forecasting
accuracy is significantly increased.

4.7 Rules Generation by Clustering

Automated data driven rule generation, as described above, works considerably
well for nonlinear time series modelling and forecasting. However, the fuzzy rule
base generated in this way is generally very large, because each set of input-output
pair generates a fuzzy rule. This is true even after the removal of redundant and
conflicting rules from the rule base generated. For instance, using the first 500
input-output data sets of Mackey-Glass chaotic time series and using 27 number of
GMFs, which are used for partitioning of input and output universes of discourse,
the generated fuzzy rules, after the removal of conflicting and redundant rules, are
still of the order of 350. This definitely imposes a large amount of computational
load for fuzzy inferencing. To avoid this, an alternative approach, based on a fuzzy
clustering algorithm was proposed that, for instance, uses only a few fuzzy rules
for nonlinear time series modelling and forecasting.

4.7.1 Fuzzy Clustering Algorithms for Rules Generation

Clustering algorithms are mathematical tools useful in identifying the natural
groupings of data, based on common similarities, from a large data set to produce a

174 Computational Intelligence in Time Series Forecasting

concise representation of a system’s behaviour. Most clustering algorithms are
unsupervised and do not rely on assumptions common to statistical classification
methods, such as the statistical data distribution. They are, therefore, very
appropriate for situations where little a priori knowledge exists. The data
classification capability of clustering algorithms has been widely exploited in
pattern recognition, image processing, and nonlinear system modelling. In what
follows, we will introduce the reader to the clustering theory and present some
fuzzy clustering algorithms, based on the c-means functional. For an in-depth
treatment of fuzzy clustering, readers may refer to the classical monograph by Jain
and Dube (1988); for an overview of different clustering algorithms, refer to
Bezdek and Pal (1992), Babuška (1996), and Setnes (2000).

4.7.1.1 Elements of Clustering Theory
Clustering techniques essentially try to group data samples in feature space and
they form the basis of many classification and system modelling algorithms. They
are applied to data that could be numerical (quantitative), qualitative (categorical),
or a mixture of both. Our attention here will be focused on clustering of
quantitative data, which might be observations of some physical process, such as
time series data. It will be supposed that each observation consists of n variables,
grouped into an n-dimensional column vector

1 2, , , ,
T n

s s s ns sZ Z ZZ Z .

A set of N observations is described by

1,2, ,sZ s NZ ,

and is represented by n N pattern matrix Z:

11 12 1

21 22 2

1 2

N

N

n n nN

z z z

z z z
Z

z z z

.

The rows and columns of the pattern matrix, in pattern recognition terminology,
are respectively called features (or attributes) and patterns (or objects). The
pattern matrix Z is also called the data matrix, and in control engineering, for
example, each row of a data matrix may represent one of the process variables like
pressure, temperature, flow, etc., whereas the columns may indicate the time point
of sampling.

Clusters are usually defined as groups of objects mutually more similar within
the same groups than with the members of other clusters (Bezdek,1981; Jain and
Dube, 1988), whereby the term “similarity” should be understood as mathematical
similarity, measured in some well-defined sense. In metric spaces, similarity is

 Fuzzy Logic Approach 175

often defined by means of a distance norm that is measured among the data vectors
themselves, or as a distance from a data vector to some prototypical object or
center of the cluster. The cluster centers are usually not known beforehand and are,
therefore, determined simultaneously by the clustering algorithm while partitioning
the data. The prototypes may be a vector of the same dimension as the data objects,
and they can also be defined as geometrical objects, such as linear or nonlinear
subspaces or functions. Data can reveal clusters of different geometrical shapes,
sizes, and densities, such as spherical, ellipsoid, or as linear and nonlinear
subspaces of data space.

Various clustering algorithms have been proposed in the literature, and these
can be classified according to whether the clusters – seen as subsets of the entire
data set - are fuzzy or crisp. Clustering algorithms, based on classical set theory,
classify the individual objects according to their belonging or not belonging to a
cluster, which is known as hard clustering. Here, the partitioning of data is such
that any particular object can be a member of only one particular subset of data or
of a particular cluster.

Fuzzy clustering algorithms, however, allow the objects to belong to several
clusters simultaneously, but with different degrees of membership, which in many
situations is more natural than hard clustering. For instance, in this case the objects
on the boundaries between several clusters are not forced to belong fully to one of
the classes, but rather are assigned membership degrees between 0 and 1,
indicating their partial membership.

On the other hand, the discrete nature of hard partitioning also causes
difficulties with algorithms based on analytic functionals, since these functionals
are not differentiable. Clustering algorithms may use an objective function to
measure the desirability of partitions. Nonlinear optimization algorithms are used
to search for local optima of the objective function. The concept of fuzzy partition
is essential for cluster analysis, and consequently also for the identification
techniques based on fuzzy clustering.

4.7.1.2 Hard Partition
A hard partition can be considered as a group of subsets formulated in terms of
classical sets. The objective of hard clustering is to partition the given data set

1 2{ , , , }NZ z z z into c clusters, also called groups or classes. We initially

assume that the number of clusters, i.e. c is known a priori, based on some prior
knowledge about the dynamics of the system that generated the data set Z. Using
classical sets, a hard partition of Z can be defined as a family of subsets

1gA g c with the following properties (Bezdek, 1981):

1
,

0, 1 ,

0 , 1 .

c

g
g

g h

g

A Z

A A g h c

A Z g c

 (4.17)

176 Computational Intelligence in Time Series Forecasting

The first of the above equations implies that the union of all subsets Ag contains
all the data. The second and third equations respectively suggest that the
intersection of the subsets must be a void set, i.e. subsets are disjoint, and none of
the subsets is empty or contains all the data contained in Z. In terms of membership
functions, a partition can be conveniently represented by the partition matrix:

g s c N
U .

That is, the gth row of this partition matrix contains the values of the membership
function g of the gth subset Ag of Z. Therefore, it can be represented as

11 12 1

21 22 2

1 2

N

N

c c cN c N

U (4.18)

It follows from the above equation that the elements of the U partition matrix must
satisfy the following conditions:

{0,1}, 1 ;1 ;gs g c s N (4.19a)

1
1, 1 ;

c

gs
g

s N (4.19b)

1
0 , 1 .

N

gs
s

N g c (4.19c)

The space of all possible hard partition matrices for Z, called the hard partitioning
space (Bezdek, 1981), is thus defined by

1 1
0,1 , , ; 1, ;0 , .

c N
c N

hc gs gs gs
g s

M U g s s N g

In the following, let us illustrate the hard partitioning concept by an example with
the given data set 1 2{ , , , }NZ z z z , where N = 10. Suppose that the given data

set is hard partitioned into three clusters A1, A2 and A3. The partition matrix U in
this case may look like:

1,1,1,0,0,0,0,0,0,0

0, 0, 0,1,1,1,0,0,0,0

0, 0, 0,0,0,0,1,1,1,1

U

 Fuzzy Logic Approach 177

From the U matrix it is seen that the elements z1, z2, and z3 possibly belong to
cluster A1 (as the first three entries in the first row are 1), and z4, z5, and z6 belong
to cluster A2, whereas the remaining data elements z7 to z10 belong to cluster A3.
Here, note that the sum of each column of the partition matrix U is always 1.

4.7.1.3 Fuzzy Partition
A fuzzy partition can be considered as a generalization of the hard partition and
this follows directly by allowing gs to attain any real values within [0,1]

(Babuška, 1996). Similar to hard partitioning the conditions for a fuzzy partition
matrix are described by Ruspini (1970):

0,1 , 1 ;1 ;gs g c s N (4.20a)

1
1, 1 ;

c

gs
g

s N (4.20b)

1
0 , 1 .

N

gs
s

N g c (4.20c)

Similar to hard partitioning, the gth row of the partition matrix U contains the
values of the membership function g of the gth subset Ag of Z. The fuzzy

partitioning space for Z is the set

1 1
0,1 , , ; 1, ;0 , .

c N
c N

fc gs gs gs
g s

M U g s s N g

Let us now illustrate the fuzzy partitioning concept by an example with the same
data set 1 2{ , , , }NZ z z z , where N = 10, as used in the hard partitioning example.

Suppose that the given data set is fuzzy partitioned into three clusters A1, A2 and A3.
The partition matrix U in this case may look like

0.82, 0.90, 0.96, 0.20, 0.10, 0.02, 0.03, 0.05, 0.1, 0.02

0.05, 0.06, 0.02, 0.75, 0.85, 0.90, 0.17, 0.25, 0.3, 0.08

0.13, 0.04, 0.02, 0.05, 0.05, 0.08, 0.80, 0.70, 0.6, 0.90

U .

Here, the elements in the first row of the matrix correspond to the degrees of
membership of the elements z1, z2, ..., z10 respectively in the cluster or subset A1.
Similarly, entries in the second row and third row of the U matrix represent the
degrees of membership of the data elements z1, z2, ..., z10 in the clusters A2 and A3

respectively. In addition, the entries in the U matrix are not restricted to 0 and 1 but
can take any real value within 0 and 1. Moreover, the sum of each column of the U
matrix is also equal to 1 in this case. If this restriction is relaxed, i.e. the sum of
degrees of membership of any particular data element in the various clusters need
not be 1, then we have possibilistic partition, a special case of fuzzy partition and
very useful in identifying outliers. Outliers are data points that are neither a

178 Computational Intelligence in Time Series Forecasting

member of any cluster nor are they in the boundary of any cluster, but they are far
apart from any cluster. These can be easily detected from the partition matrix of a
possibilistic partition, as the member element of a particular cluster will have
degree of membership 1.0 and the boundary points of two clusters may have a
degree of membership close to 0.5 for both the two clusters, whereas outliers may
have degree of membership as low as 0.01 in all clusters, indicating that the said
data point (probably noise) is far off from all clusters.

4.7.2 Fuzzy c-means Clustering
The fuzzy c-means clustering algorithm is one of the most popular clustering
algorithms used for data-driven automated fuzzy rules generation. The
minimization of the c-means functional (4.21) represents a nonlinear optimization
problem that can efficiently be solved using genetic algorithms; here, however the
method chosen is a simple Picard iteration through the first-order conditions for
stationary points of (4.21), known as the fuzzy c-means (FCM) algorithm.

The stationary points of the objective function (4.21) can be found by adjoining
the constraint (4.20b) to J by means of Lagrange multipliers

2

1 1 1 1
; , , 1 ,

c N N cm

gsA s gs
g s s g

gsJ Z U V D (4.21)

and by setting the gradients of J with respect to U, V and to zero. It can be proven
that if 2 0, , and 1,gsA g s mD then , n c

fcU V M may minimisz (4.21)

only if

2 1

1

1
,1 ;1 ;gs c m

gsA hsA
h

g c s N
D D

 (4.22a)

and

1

1

; 1 .

mN

s
s

g mN

s

gs

gs

Z
v g c (4.22b)

It is to be noted that this solution also satisfies the remaining constraints (4.20a)
and (4.20c). Equations (4.22a) and (4.22b) are first-order necessary conditions for
stationary points of the functional (4.21). The FCM algorithm iterates through
Equations (4.22a) and (4.22b). Sufficiency of (4.21) and the convergence of the
FCM algorithm is reported by Bezdek (1980). Also, note that Equation (4.22b)
gives Vg as the weighted mean of the data items that belong to a cluster, where the
weights are the membership degrees in the clusters. This being the reason why the
algorithm is called “fuzzy c-means.” The FCM algorithm is described next.

 Fuzzy Logic Approach 179

4.7.2.1 Fuzzy c-means Algorithm
Given the data set 1 2, , , NZ Z Z Z , select the number of clusters 1 ,c N the

weighting exponent (also called fuzziness exponent) m > 1, the termination
tolerance 0 and the norm-inducing matrix A. Initialize the partition matrix
randomly, such that

0l
fcU M .

Repeat for iterations l = 1, 2, 3,

Step 1: compute the cluster prototypes or cluster centres (means)

1

1

1

1
; 1 .

m
N

s
sl

g m
N

s

l
gs

l
gs

Z
g cv

Step 2: compute the distances:

2 , 1 ;1 ;
T

l
gsA gs

l
s gZ A Z g c s Nv vD

Step 3: update the partition matrix

 if 0,gsAD for all g = 1, 2, 3,, c.

2 1

1

1
, 1 ;1l

gs c m

gsA hsA
h

g c s N
D D

,

else,

1
0 and 0,1 , with 1

cl ll
gs gs gs

g

until

1 .l lU U

Listed below are a few general remarks on the fuzzy c-means algorithm.
1. The “if and else” branch at step 3 takes care of singularity that occurs in

fuzzy c-means when the distance term 0gsAD for some Zs and certain

180 Computational Intelligence in Time Series Forecasting

cluster prototypes vg. In such case, the membership degree cannot be
computed at all and, therefore, zero is assigned to that gs and the

memberships are distributed arbitrarily among other clusters subject to the
constraint that the sum of the degree of membership in each column of the
U partition matrix must be one.

2. The fuzzy c-means algorithm converges to a local minimum of the c-means
functional. Therefore, different initialization may lead to different results.

3. While steps 1 and 2 are straightforward, step 3 is a bit more complicated, as
a singularity in the fuzzy c-means occurs when distance 0gsAD for some

Zs and one or more vg, though it is very rare in practice.

4. In the above iterative optimization scheme used by fuzzy c-means loops
through the estimates,

 U(l-1) v(l) U(l)

and terminates as soon as

 U(l) - U(l-1) < .

Alternatively, the algorithm can be initialized with v(0), loop through

1 ,l l lv vU

and terminate when

1l lv v .

The error norm (termination tolerance) in the termination criterion is
usually chosen as

l l
gs gs

gs
absMax .

Different results may be obtained with the same values of termination
tolerance, since the termination criterion used in the algorithm requires that
more parameters become close to one another.

4.7.2.1.1 Parameters of Fuzzy c-means Algorithm
The following parameters must be specified before the fuzzy c-means algorithm is
executed: the number of clusters c, the fuzziness exponent m, the termination
tolerance and norm-inducing matrix A. Moreover, the fuzzy partition matrix U
must be initialized. The choices for these parameters are now described next.

 Fuzzy Logic Approach 181

Number of clusters
The total number of clusters c is the most important parameter, as the remaining
parameters have little influence on the resulting partition: when clustering real data
without any prior information about the structures in the data, one usually has to
make assumptions about the number of underlying clusters. The clustering
algorithm chosen then searches for c clusters regardless of whether they are really
present in the data or not. Two main approaches to determining the appropriate
number of clusters in the data can be distinguished:

A. Validity measures
Validity measures are scalar indices that assess the goodness of the partition
obtained. Clustering algorithms generally aim at locating well-separated and
compact clusters. When the number of clusters is chosen equal to the number of
groups that are actually present in the data, it is expected that the clustering
algorithm will identify them correctly. When this is not the case, misclassifications
appear, and the clusters are not likely to be well-separated and compact. Hence,
most cluster validity measures are open to interpretation and can be formulated in
different ways. Consequently, many validity measures have been introduced in the
literature (Bezdek, 1981; Gath and Geva, 1989; Pal and Bezdek, 1995). For the
FCM algorithm, the Xie-Beni index (Xie and Beni, 1991)

2

1 1

2
min

; ,

c N
m
gs s g

g s

s g
g h

Z v
Z U V

c Z v
 (4.23)

has been found to perform well in practice. This index can be interpreted as the
ratio of the total within-group variance and the separation of the cluster centers.
The best partition minimizes the value of ; ,Z U V .

B. Iterative merging
In the iterative cluster merging, one starts with a sufficiently large number of
clusters and successively by merging clusters, that are similar (compatible) with
respect to some well-defined criteria (Krishnapuram and Freg, 1992; Kaymak and
Babuška, 1995), the number of clusters is reduced. One can also adopt the opposite
approach, i.e. start with a small number of clusters and iteratively insert clusters in
the region where the data points have a low degree of membership in the existing
clusters (Gath and Geva, 1989).

Fuzziness parameter
The fuzziness exponent or weighting exponent m is a rather important parameter
that is to be selected properly as well. This is because it significantly influences the
fuzziness of the resulting partition. As m approaches to one, the partition becomes
hard partition (gs {0,1}) and vg are ordinary means of the clusters. On the other

hand, as m , the partition becomes completely fuzzy (gs = 1/c) and the

182 Computational Intelligence in Time Series Forecasting

cluster means are all equal to the mean of Z. These limit properties of fuzzy c-
means functionals are independent of optimization method used (Pal and Bezdek,
1995). Usually, m is selected as 2.

Termination criterion
The FCM algorithm stops iterating when the norm of the difference between U in
two successive iterations is smaller than the termination tolerance parameter. The
usual choice of a termination tolerance is 0.001. The termination tolerance of 0.01
also works well in most cases, while it drastically reduces the computing times.

Norm-inducing matrix
The shape of the clusters is dependent on the choice of the norm-inducing matrix A
in the distance measure. A common choice of the norm-inducing matrix A is the
identity matrix I, which gives the standard Euclidean norm:

2
T

gs s gs g vvD ZZ .

Another choice of the norm-inducing matrix A is a diagonal matrix that
accounts for different variances in the directions of the coordinate axes of Z:

2
1

2
2

2

0 0

0 0

0 0 n

A

This matrix induces a diagonal norm on n . Finally, A can be defined as the

inverse of the covariance matrix of Z: A = R -1, with
1

1
.

N T

s s
s

R Z Z Z Z
N

Here, Z denotes the mean of the data. In this case A induces the Mahalanobis
norm on n . The norm influences the clustering criterion by changing the
measure of dissimilarity. The Euclidean norm induces hyperspherical clusters
(hyperspheres are surfaces of constant memberships). Both the diagonal and the
Mahalanobis norm generate hyperellipsoidal clusters. With the diagonal norm, the
axes of the hyperellipsoids are parallel to the coordinate axes, while with the
Mahalanobis norm the orientation of the hyperellipsoids is arbitrary. A common
limitation of clustering algorithms based on a fixed distance norm is that it forces
the objective function to prefer clusters of a certain shape even if they are not
present in the data.

Initial partition matrix
The partition matrix is usually initialized at random, such that fcU M . A simple

approach to obtain such U is to initialize the cluster centers vg at random and

 Fuzzy Logic Approach 183

compute the corresponding U by computing the distance and, thereafter, using the
last step of FCM algorithm.

4.7.3 Gustafson - Kessel Algorithm

In order to detect clusters of different geometrical shapes in one data set, the
standard FCM clustering algorithm is extended by employing an adaptive distance
norm (Gustafson and Kessel, 1979). In this case, each cluster has it’s own norm-
inducing matrix Ag, which yields the following inner-product norm:

2 , 1 ;1 ;
g

T

ggsA g ss gZ v vD A Z g c s N (4.24a)

The matrices Ag are used as optimization variables in the c-means functional, thus
allowing each cluster to adapt the distance norm to the local topological structure
of the data. The objective functional of the Gustafson-Kessel algorithm is defined
by:

2

1 1
; , ,

g

c N m

gsAg
g s

gs DJ Z U V A (4.24b)

This objective function cannot be directly minimized with respect to Ag, since it is
linear in Ag. To obtain a feasible solution, Ag must be constrained in some way. The
usual way of accomplishing this is to constrain the determinant of Ag:

det , 0, .g g gA g (4.24c)

Allowing the matrix Ag to vary, with it’s determinant fixed, corresponds to
optimizing the cluster’s shape while it’s volume remains constant. By using the
Lagrange-multiplier method, the following expression for Ag is obtained
(Gustafson and Kessel, 1979):

1/ 1
det

n

g ggg FFA (4.24d)

where Fg is the fuzzy covariance matrix of the gth cluster given by

1

1

; 1 .

mN T

g gs s
s

g mN

s

gs

gs

Z Zv v
F g c (4.24e)

Note that the substitution of Equations (4.24d) and (4.24e) into (4.24a) gives a
generalized squared Mahalanobis distance norm, where the covariance is weighted
by the membership degrees in U. The Gustafson-Kessel algorithm is given in next
section. The Gustafson-Kessel algorithm is computationally more expensive than

184 Computational Intelligence in Time Series Forecasting

FCM, since the inverse and the determinant of the cluster covariance matrix must
be calculated in each iteration.

4.7.3.1 Gustafson-Kessel Clustering Algorithm
Given the data set 1 2, , , NZ Z Z Z , select the number of clusters 1 ,c N the

weighting exponent or fuzziness exponent parameter m > 1, the termination
tolerance 0 and the cluster volumes g . Initialize the partition matrix

randomly, such that

0l
fcU M .

Repeat for iterations l = 1, 2, 3, ...

Step 1 compute the cluster prototypes or cluster centres (means)

1

1

1

1
; 1 .

mN

s
l s

g mN

s

l
gs

l
gs

v

Z
g c

Step 2 compute the cluster covariance matrices

() ()

1

1

1

1
; 1 .

mN Tl l
g gs s

s
g mN

s

l
gs

l
gs

v vZ Z
F g c

Step 3 compute the distances

1/ 12 det ,
g

T
n l

gggsA s

l
gs ggZ Fv vD F Z

 1 ;1 ;g c s N

Step 4 update the partition matrix:

 for 1 s N

 if 0 for all 1, 2, , ;gsAD g c

 Fuzzy Logic Approach 185

2 1

1

1
,1 ;1 ;

g g

l
gs c m

gs hs
h

D D
g c s N

A A

else

1
0 and 0,1 , with 1

cl ll
gs gs gs

g
.

until

1 .l lU U

4.7.3.1.1 Parameters of Gustafson-Kessel Algorithm
The same parameters must be specified beforehand in the Gustafson-Kessel (GK)
clustering algorithm as for the fuzzy c-means algorithm (except for the norm-
inducing matrix A, which is automatically adapted): the number of clusters c, the
fuzziness exponent m, and the termination tolerance parameters. Additional
parameters are the cluster volumes g . Without any prior knowledge, the cluster

volumes is simply fixed at 1 for each cluster. Due to this constraint, the Gustafson-
Kessel algorithm can only find clusters of approximately equal volumes. This is a
drawback of this setting.

4.7.3.1.2 Interpretation of Cluster Covariance Matrix
The cluster covariance matrix provides important information about the shape and
orientation of the cluster. The ratio of the lengths of the cluster’s hyperellipsoids
axes is given by the ratio of the square roots of the eigenvalues of the covariance
matrix. The directions of the axes are given by the eigenvectors of covariance
matrix. The Gustafson-Kessel algorithm can be used to detect clusters along linear
subspaces of the data space. These clusters are represented by flat hyperellipsoids,
which can be regarded as hyperplanes. The eigenvector corresponding to the
smallest eigenvalue determines the normal to the hyperplane, and can be used to
compute optimal local linear models from the covariance matrix.

4.7.4 Identification of Antecedent Parameters by Fuzzy Clustering

Using the given data, the identification of antecedent parameters of the Takagi-
Sugeno model is usually done in two steps. In the first step, the antecedent fuzzy
sets of the rules are determined. This can be done manually, from knowledge of the
process, by interviewing the human experts, or by some data-driven technique,
such as a neuro-fuzzy technique, or by the fuzzy clustering method described
earlier, which produces a partitioning of the antecedent (input) space. Once the
fuzzy antecedent parameters are determined, the LSE estimate described earlier is
then applied in order to determine the consequent parameters of the Takagi-Sugeno

186 Computational Intelligence in Time Series Forecasting

rules. After obtaining both the antecedents fuzzy sets and rule’s consequent
parameters, the corresponding fuzzy rule base can be built easily. When
observations have been obtained from a system or a process, an input matrix X and
an output vector y can be constructed as follows:

1 2 1 2, , , , , , ,
s s

T T

N NX x x x y y y y

where Ns is the number of training data samples available for fuzzy identification.
Now, for correct selection of input and output variables, the unknown nonlinear
function y f X can be learnt from the data samples by means of regression

techniques. The variables 1 2, , ,
T n

nx x x x and y are called the

regressor and regressand respectively. In order to determine the antecedent fuzzy
sets of the Takagi-Sugeno rules, Babuška and Verbruggen (1995) proposed to
apply either of the fuzzy clustering methods mentioned above in the Cartesian
product space of X y in order to partition the training data into characteristic

regions, where the system’s behaviours are approximated by a local linear model
(rules). The pattern matrix Z to be clustered is formed by X and y as follows:

,TZ X y

Given the data Z and the number of clusters c, the fuzzy clustering algorithm can
be applied to obtain the partitions of Z into c fuzzy clusters. A fuzzy partition can
be represented as a sc N matrix U, whose entries are 0,1gs as described

earlier. For the computation of the fuzzy partition matrix and the corresponding
cluster prototypes (centers) GK clustering algorithm is usually applied, as it applies
adaptive distance norms in order to detect clusters of different geometrical shapes,
unlike the popular fuzzy c-means algorithm, which always identifies spherical-
shape clusters in the data because of it’s fixed distance norm. Because each cluster
has it’s own distance norm, induced by the fuzzy covariance matrix, that allows to
adapt the local structures of the data. This evidently makes Gustafson-Kessel
clustering superior for identifying subspaces of data (hyperplanes) that can be
effectively modeled by the rules in the Takagi-Sugeno model.

Each cluster represents a certain operating region of the system, and the number
of cluster centers or clusters c sought in the data equals the number of fuzzy rules
implemented. Often, this number is not known a priori; thus, the optimum number
of clusters is determined using suitable cluster validity measures.

The membership functions of the fuzzy sets in the premise of rules are obtained
from the fuzzy partition matrix U, whose (g,s)th element 0,1gs is the

membership degree of the input-output combination in the sth column of Z in
cluster or data group g. To obtain the one-dimensional fuzzy set Ggj, the
multidimensional fuzzy sets defined point-wise in the gth row of the partition
matrix U are projected onto the space of input variables xj:

 Fuzzy Logic Approach 187

1.0

x

Mu(x)

0.5

1proj ,n

gjG js j gsx

where “proj” is the point-wise projection operator (Kruse et al., 1994). The point-
wise fuzzy sets Ggj are typically non-convex. However, the core and the
corresponding left and right parts of the set can be recognized.

Figure 4.5. Parametric function fitting (solid line) to obtain one-dimensional antecedent
fuzzy sets from point-wise projection (dots) of rows of fuzzy partition matrix

To obtain convex (unimodal) fuzzy sets, for the computation of
gjG jx for any

value of xj, the fuzzy sets are approximated by fitting suitable parametric
membership functions (say, Gaussian type) to the point-wise projection (Babuška,
1996) as illustrated in Figure 4.5. After determination of the antecedent fuzzy sets,
the LSE estimate is applied, as usual, to determine the rule consequent parameters.

4.7.5 Modelling of a Nonlinear Plant

In order to demonstrate the efficiency of the clustering-based fuzzy model, the
second-order nonlinear plant (4.25) that was studied by Wang and Yen (1999) and
Roubos and Setnes (2001) is considered here.

1 , 2y k g y k y k u k ,

with,

2 2

1 2 1 0.5
1 , 2

1 1 2

y k y k y k
g y k y k

y k y k
 (4.25)

The goal is to approximate the nonlinear component g(y(k-1), y(k-2)) of the
plant with the fuzzy model. For this experiment, 400 data points were available, of
which 200 samples of identification data were obtained with a random input signal
u(k) uniformly distributed in [-1.5, 1.5], followed by 200 samples of evaluation
data obtained by using a sinusoidal input signal.

188 Computational Intelligence in Time Series Forecasting

Table 4.2(a). Cluster centers (V) generated by Gustafson-Kessel algorithm

v1 for input u, or
X1

v2 for input y, or
X2

v3 for output g

-0.4099

-0.8820

1.1066

1.0024

-0.8681

-0.1326

0.2146

-0.3636

-0.0055

Table 4.2(b). Variance parameters of GMFs determined from fitting the projected data

Serial number of
antecedent GMFs

For input u, or X1 For input y, or X2

First GMF

Second GMF

Third GMF

2.1398

1.0178

0.9319

1.5698

1.6112

2.4221

Table 4.2(c). Consequents’ parameters of Takagi-Sugeno rules

Theta0 Theta1 Theta2

-0.4706

 0.5056

-0.1839

0.0750

0.1282

0.4057

-0.0765

 0.1685

 0.3783

Here, we apply the Gustafson-Kessel clustering algorithm to construct the
desired fuzzy model using the first two columns of the XIO = [u, y , g] matrix as the
input data and the third column as desired output data, i.e. the data (pattern) matrix
here is constructed as Z = [XIO]T. The first 200 (training) samples (rows of XIO
matrix) were used for fuzzy rules generation by applying the Gustafson-Kessel
clustering algorithm using the following parameter settings: number of clusters c =
3, fuzziness exponent m = 2 and termination tolerance = 0.001. Accordingly, three
clusters with cluster centers V = [v1, v2, v3] and partition matrix U of size 3 200
were obtained. Projecting the first two rows of the U matrix on to the input
dimension and, thereafter, by fitting the Gaussian function of the form

2 2exp 4 log(2) () / ,iy x v three antecedent fuzzy membership functions for each

input were obtained (Figure 4.6(a)).

 Fuzzy Logic Approach 189

Figure 4.6(a). GMFs (three antecedent fuzzy sets) for input u (top) and input y (bottom).

Figure 4.6(b). Actual output and fuzzy model predicted output with training data (top),

Thereafter, using the antecedent fuzzy sets and LSE estimation on the training
data Takagi-Sugeno-type fuzzy rules’ consequents were determined. Finally, the
efficiency of the model was tested by applying the generated fuzzy rules on the
evaluation data. The simulation results achieved are illustrated in Table 4.2(a) to
Table 4.2(e) and in Figure 4.6(a) to Figure 4.6(c).

190 Computational Intelligence in Time Series Forecasting

Figure 4.6(c). Performance of the Gustafson-Kessel clustering-based fuzzy model with
evaluation data (top) and prediction error (bottom)

Table 4.2(d). Simulation results for nonlinear plant modelling

With training data With evaluation data

SSE(train) = 0.3973

MSE(train) = 0.0040

SSE(eval.) = 0.1215

MSE(eval.) = 0.0012

It is to be noted that the fuzzy model generated used only three Takagi-Sugeno
fuzzy rules and six antecedent fuzzy sets (for two inputs), which are much less than
that generated by the Wang-Mendel method or its modified approach.

4.8 Fuzzy Model as Nonlinear Forecasts Combiner

The need to combine forecasts of a time series has been well understood for a long
time. It has already been mentioned in Chapter 3 that not just any arbitrary
combination of forecasts is decisive in providing an improved forecast, but it is

 Fuzzy Logic Approach 191

essential that it is a nonlinear combination of various forecasts of a given time
series. The latter has been reconfirmed by many studies, which have revealed that
only the nonlinearity provides the combination with the guarantee to produce better
forecasts than either of the combination components separately. This is mainly
because, here, we have a kind of synergic effect.

In this section we describe an application example where a fuzzy model has
been used as a nonlinear forecasts combiner. For this purpose, we consider once
again the temperature series discussed in Chapter 3, along with its two forecasted
series. The temperature series selected is a non-stationary, non-seasonal time
series. Moreover, the original temperature series with 226 observations was
obtained from a chemical process by temporarily disconnecting the controllers
from the pilot plant involved and recording the subsequent temperature fluctuation
every minute (Box and Jenkins, 1976).

The two separate forecasts of the selected temperature time series were made,
one by applying the Box-Jenkins ARMA/ARIMA method (Box and Jenkins, 1976)
and the other by applying Holt’s exponential smoothing technique (Chatfield,
1980). In order to utilize the fuzzy model as a nonlinear forecasts combiner, here,
we used both the forecasted series as two inputs to the fuzzy model to be
developed, and the original temperature series as the desired output from the fuzzy
model. The two forecasted series and the original time series have been rearranged
as the first, second and the third columns respectively of a HBXIO matrix.
Thereafter, the first 150 rows from the HBXIO matrix were used as training data
and the remaining rows, i.e. 151 to 224 rows of HBXIO matrix were used as test
samples to evaluate the efficiency of the combination approach described (Palit
and Popovic, 2000). It is to be noted that by applying conventional forecasting
methods on the original temperature series we obtained only 224 data points in
both cases.

Using the modified and automated rule-generation algorithm, Mamdani-type
fuzzy rules were generated from the training data based on the implemented n = 21
GMFs, and fixing Xlo = 18, Xhi = 28, 0.4,a and 0.2.b Care has been taken
to make the rule base somewhat compact by eliminating the conflicting rules and
unnecessary redundant rules. Thereafter, a nonlinear combination of forecasts with
the fuzzy model was generated, based on the above rule base and utilizing only the
input data from the validation data sets (see Figure 4.7(b)). Finally, the
performance of the approach was measured by computing performance indices,
such as SSE, RMSE etc., for the validation data set as illustrated in Table 4.3.
From Table 4.3 it can be seen that the SSE and RMSE achieved with the proposed
fuzzy model is much better than the individual forecast generated either by the
Box-Jenkins method or by Holt’s exponential smoothing technique. The reported
result obviously confirms the high suitability of the fuzzy logic approach as a
nonlinear forecasts combiner.

192 Computational Intelligence in Time Series Forecasting

Figure 4.7(a). Nonlinear combination of forecasts using fuzzy model (with training data).
Dots: fuzzy model output; solid line: desired output (upper part), prediction error (bottom)

Figure 4.7(b). Nonlinear combination of two forecasts using fuzzy model (with test data).
Dots: fuzzy model output; solid line: desired output (upper part), prediction error (bottom)

160 170 180 190 200 210 220

19

20

21

22

23

24

25

fuzcomb1.m:-fuzzy-combn-of-forecast-Vs-Actual-(Temp-series)

time(min)-(nMF=21, training data = 1 to 150

F
uz

zy
-c

om
bn

 (
do

t-
bl

ac
k)

 &
 A

ct
ua

l (
so

lid
-b

lu
e)

160 170 180 190 200 210 220
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
fuzcomb1.m:-fuzzy-combn-of-forecast-errors-(Temp-series)

time(min)-(nMF = 21, training data = 1 to 150)

F
uz

zy
-c

om
bn

-e
rr

or
s

20 40 60 80 100 120 140

19

20

21

22

23

24

25

26

27

fuzcomb1.m:-fuzzy-combn-of-forecast-Vs-Actual-(Temp-series)

time(min)-(nMF=21, training data = 1 to 150

F
uz

zy
-c

om
bn

 (
do

t-
b l

a c
k)

 &
 A

ct
ua

l (
so

lid
-b

lu
e)

20 40 60 80 100 120 140
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
fuzcomb1.m:-fuzzy-combn-of-forecast-errors-(Temp-series)

time(min)-(nMF = 21, training data = 1 to 150)

F
uz

zy
-c

om
bn

-e
rr

or
s

 Fuzzy Logic Approach 193

Table 4.3. Performance of the fuzzy model generated as nonlinear forecasts combiner

Sl.
No.

Forecasts Data from
HBXIO matrix

SSE / RMSE

1. Box and Jenkins 151–224
(column-1)

SSE = 0.4516

RMSE = 0.112

2. Holt’s method 151–224
(column-2)

SSE = 0.3174

RMSE = 0.0933

3. Fuzzy model

(Mamdani), 21 GMFs

1– 150

(training data)

SSE = 0.5155

RMSE = 0.0832

4. Fuzzy model

(Mamdani), 21 GMFs

151–224

(validation data)

SSE = 0.1680

RMSE = 0.0678

4.9 Concluding Remarks

In this chapter, various fuzzy models, such as the Mamdani model, the Takagi-
Sugeno model and the relational fuzzy model, along with their corresponding
inferencing mechanisms have been described. As the fuzzy inferencing mechanism
relies on a well-consistent set of fuzzy rules, in order to generate the proper output
in response to an unknown input set from the universe of discourse, various rule-
generation algorithms based on Wang and Mendel’s approach, or it’s modification,
and fuzzy clustering have also been presented in the chapter. The effectiveness of
the fuzzy models generated has been tested on two application examples, namely
the forecasting of chaotic time series and nonlinear plant modelling. In addition, a
fuzzy model has also been applied as a nonlinear forecasts combiner. It is
important to note that the primary objective of using a fuzzy model is to achieve an
inspectable or interpretable model, unlike the black-box model of neural networks.
However, it should be emphasized here that the fuzzy modelling approach
described in this chapter rather primarily focuses on the function approximation
accuracy than the inspectability of the model and, in fact, none of the methods
presented in the chapter can guarantee model transparency issues. Therefore, the
fuzzy model generated is eventually nothing but a replica of a neural-networks-like
model, and needs to be treated further as discussed in Chapter 7, where the primary
attention is paid to the improvement of model transparency.

References

[1] Babuška R (1996) Fuzzy Modelling for control, Ph.D thesis, Delft University of
Technology, Netherlands.

[2] Babuška R and Verbruggen HB (1995) Identification of composite linear models via
fuzzy clustering, Proc. of European Control Conference, Rome, Italy, pp. 1207-1212.

194 Computational Intelligence in Time Series Forecasting

[3] Bezdek JC (1980) A convergence theorem for the fuzzy isodata clustering algorithms,
IEEE Trans. Pattern Analysis Machine Intelligence, PAMI-2(1): 1-8.

[4] Bezdek JC (1981) Pattern recognition with fuzzy objective functions, Plenum Press,
New York.

[5] Bezdek JC and Pal SK (Eds.) (1992) Fuzzy models for pattern recognition, IEEE
Press, New York.

[6] Box GEP and Jenkins GM (1976) Time series analysis, Forecasting and Control,
Holden Day.

[7] Chatfield C, (1980) The analysis of time series: An Introduction, Chapman and Hall,
London, Second edition.

[8] Gath I and Geva AB (1989) Unsupervised optimal fuzzy clustering, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 11(7): 773-781.

[9] Gustafson and Kessel (1979) Fuzzy clustering with a fuzzy covariance matrix. In
proceedings IEEE CDC, San Diego, CA, USA, pp. 761-766.

[10] Jain AK and Dubes RC (1988) Algorithm for clustering data, Prentice Hall,
Englewood Cliffs.

[11] Junhong N (1997) Nonlinear time series forecasting: A fuzzy-neural approach,
Neurocomputing, Elsevier, vol. 16, 63-76.

[12] Kaymak U and Babuška R (1995) Compatible cluster merging for fuzzy modelling, In
Proc. of FUZZ-IEEE/IFES’95, Yokohama, Japan, pp. 897-904.

[13] Krishnapuram R, Freg CP (1992) Fitting an unknown number of lines and planes to
image data through compatible cluster merging, Pattern Recognition, 25(4): 385-400.

[14] Kruse R, Gebhardt J and Klawonn F (1994) Foundations of fuzzy systems, John
Wiley and Sons, Chichester.

[15] Lapedes A and Farber R (1987), Nonlinear signal processing using neural network:
prediction and system modelling, LA-UR-87-2662.

[16] Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using
linguistic systems, Fuzzy Sets and Systems 26: 1182-1191.

[17] MATLAB (1998), Fuzzy Logic Toolbox, User’s guide, version 2, revised for Matlab
5.2, The Math Works Inc., Natick, MA.

[18] Pal NR and Bezdek JC (1995) On cluster validity for the fuzzy c-means model, IEEE
trans. Fuzzy Systems, 3(3): 370-379.

[19] Palit AK and Popovic D (1999) Fuzzy logic based automatic rule generation and
forecasting of time series, Proc. of FUZZ-IEEE, 1: 360-365.

[20] Palit AK and Popovic D (2000) Nonlinear combination of forecasts using artificial
neural networks, fuzzy logic and neuro-fuzzy approaches, Proc. of FUZZ-IEEE, San
Antonio, Texas, 2: 566-571.

[21] Pedrycz W (1984) An identification algorithm in fuzzy relational systems, Fuzzy Sets
and Systems, 13: 153-167.

[22] Roubos JA and Setnes M (2001) Compact and transparent fuzzy models and
classifiers through iterative complexity reduction, IEEE Tran. Fuzzy Syst. 9: 516-524.

[23] Ruspini E (1970) Numerical methods for fuzzy clustering, Inform. Scien., 2: 319-350.
[24] Setnes M (2000) Supervised fuzzy clustering for rule extraction, IEEE Trans. on

Fuzzy Systems, 8(5): 509-522.
[25] Wang L and Yen J, (1999) Extracting fuzzy rules for system modelling using a hybrid

of genetic algorithms and Kalman filters. Fuzzy Sets and Systems 101:353-362
[26] Wang LX and Mendel JM (1992) Generating fuzzy rules by learning from examples,

IEEE Trans. on Systems, Man and Cybernetics, 22(6): 1414-1427.
[27] Xie XL and Beni GA, (1991) Validity measure for fuzzy clustering. IEEE Trans. on

Pattern Analysis and Machine Intelligence. 3(8): 841-846.
[28] Zadeh LA (1965) Fuzzy Sets, Information and Control 8: 338-353.

5

Evolutionary Computation

5.1 Introduction

The study of evolutionary behaviour of biological processes has produced a
constructive impact on development of a new intelligent computational approach
for solving complex optimization problems in mathematics, natural sciences,
engineering and in real-life in general. The algorithms developed under the
common term of evolutionary computation are mainly based on selection of a
population as a possible initial solution of a given problem. Through stepwise
processing of initial population using evolutionary operators, such as crossover,
recombination, selection, and mutation, the fitness of the initial population
steadily improves. Following this evolutionary concept, various computational
algorithms have been elaborated, such as genetic algorithms, genetic
programming, evolutionary strategies, and evolutionary programming, that are
capable of solving complex problems, where the traditional mathematical methods
cannot be applied easily. Depending on the nature of the problem in hand, the most
adequate algorithm is to be selected.

The primary application area of evolutionary algorithms that we are interested
in concerns the forecasting of time series data, but also evolving neural networks
and fuzzy logic systems. It will be shown that the synergetic effects of
combinations of different computational technologies – the neural networks, fuzzy
logic, and evolutionary computation – help in designing the improved intelligent
systems and also help in improving the accuracy and the convergence speed of
evolutionary algorithms themselves. This will be discussed in Part 3 of the book,
which is dedicated to the hybrid computational technologies.

It is well known that evolutionary computation is a category of algorithms,
based on Darwin’s idea of evolution of living creatures. According to this idea,
every living creature has a single predecessor that has to adapt steadily to the
changing environment in the attempt to survive. According to Darwin, the idea of
adaptation is strongly connected with the principle of natural selection, because the

196 Computational Intelligence in Time Series Forecasting

creatures that adapt best to the changed environment will be selected by nature to
survive.

5.1.1 The Mechanisms of Evolution

The subject of evolutionary theory is actually the genetic evolution of individuals
within a population. The population stores multiple solutions of the given problem,
with each solution being a member of this population.

Associated with each member is its fitness, which is simply a measure of how
well this solution solves the problem. Throughout the search for the optimal
solution, a survival of the fittest procedure is used, which means that a solution
with a high fitness is chosen over one with a lower fitness. The main difference
between individual evolutionary algorithms is the way in which new solutions (or
offspring) are generated from the existing members. There are two possible ways:
two solutions are mated to form two new solutions or each member of the
population generates an offspring by mutation.

Genetic operators are operators (or mechanisms) that produce a change in the
genetic code of genes. The most common of them is mutation in its various forms
causing various effects like:

Deletion, i.e. a part of the code is deleted. Deletions in genes usually cause
genetic disaster.
Duplication, i.e. a part of the code is actually duplicated. Again, this also
causes some major problems.
Cross-over, i.e. the physical exchange of parts of a gene for parts of
another gene. This is more commonly known as the exchange of genetic
material and, much like mutation, promotes variation in an individual. In
fact, this is the principle way in which children often get a combination of
genes from both parents.
Reproduction, i.e. the most important genetic operation described below.

In nature, there are two types of reproduction: asexual reproduction and sexual
reproduction. Asexual reproduction is actually the splitting of a single individual
into two new individuals, e.g. as with bacteria. In sexual reproduction, two
individuals of the same species, the male and the female, produce an offspring.
The key difference between these two types of reproduction is that sexual
reproduction includes the exchange of genetic material of both parents, whereas
asexual does not, because the daughter cells, produced by splitting into two new
cells, are genetically identical with the original cells of the mother. Hence, in
sexual reproduction the offspring is a combination of its parents, having some traits
from its father and some from its mother, and even some traits that are the
combination of traits from both mother and father.

5.1.2 Evolutionary Algorithms

The study of evolutionary behaviour of biological processes has produced a
qualitatively new background knowledge and a constructive impact on
development of new intelligent computational approaches to solving complex

 Evolutionary Computation 197

optimization problems, valuable in mathematics, natural sciences, and engineering.
The earliest attempts to map Darwin’s ideas on to real-life problems was made by
John Holland and David Goldberg, who modeled many such problems. They
developed classifier systems, which are the predecessors of evolutionary systems.
Thereafter, accelerated work on evolutionary methods across the world was started.

The algorithms developed under the common term of evolutionary computation
generally start with the selection of an initial population as a possible initial set of
the problem solution. This is followed by stepwise iterative changing of the
selected population by random selection and use – in each iteration step – of
evolutionary operators like crossover, recombination, selection, and mutation in
order to improve the fitness of initial individual population members. Although
simple in principle, the evolutionary concept of computation has proven to be very
efficient in solving complex application problems that are not easily solvable using
traditional mathematical approaches.

In the meantime, depending on the nature of the problem to be solved, adequate
evolutionary algorithms have been developed, such as

genetic algorithms (Holland, 1975), related to direct modelling of genetic
evolutionary processes
genetic programming (Koza, 1992 and 1994), an extension of genetic
algorithms in which the population individuals are replaced by programs
evolutionary strategies (1973), which model the evolution of evolution by
tuning the strategic parameters that control the changes in the evolutionary
process
evolutionary programming (Fogel et al., 1966), based on simulation of
adaptive behaviour of the evolution process
differential evolution (Storn and Price 1995, 1996), a population-based
search strategy for optimizing real-valued, multi-modal objective functions.

As shown in this chapter, evolutionary algorithms are a special category of random
search algorithms. In contrast to traditional search algorithms like gradient
methods, which become impractical with the growing size of the search space,
evolutionary algorithms, because they are based on the population concept and are
operating with the genetic terms and operators, retain more or less the same size of
population over the generations and remain mathematically well manageable.

5.2 Genetic Algorithms

Genetic algorithms (GAs) are gradient free, parallel, robust search and
optimization techniques based on the laws of natural selection and genetics. The
GAs have confirmed their application power in solving practical problems which
are generally ill-defined, complex, and with multimodal objective functions. This
optimization technique is similar to its associated algorithms, such as simulated
annealing and other guided random techniques. GAs employ random search
algorithms aimed at directed location of the global optimum of the solution. The
algorithms are superior to the “gradient descent” methods that are not immune

198 Computational Intelligence in Time Series Forecasting

against being trapped in local minima. On the other hand, GAs differ from pure
random search algorithms in that they, from the very beginning, search for the
relatively “prospective” regions in the search space.

Typically, GAs are characterized by the following features:

genetic representation, i.e. encoding of the feasible solutions of given
optimization problems
a population of encoded solutions
a fitness function that evaluates the optimality or quality of each solution
genetic operators that generate a new population from the existing
population
control parameters.

A typical execution of a GA involves the following steps:

Random generation of an initial population X(t): = (x1, x2, . . . , xN) with N
individuals at t = 0.
Computation of fitness F(xj) of each individual xj in the current population
X(t).
Checking whether the termination condition is met.

1. If YES, then pick up the best individual, i.e. the one with the highest
fitness value and stop the search process.

2. If NO, then create new population X(t+1) with N new individuals,
applying the reproduction, mutation and crossover genetic operators,
from the current population X(t) and start the new iteration step with a
fitness computation.

In the recent past, GAs have been used, along with other evolutionary
algorithms, to train neural networks (Harrald and Kamastra, 1997) and neuro-fuzzy
networks (Palit and Popovic, 2000), as well as for the design of fuzzy-rule-based
systems through fuzzy clustering (Klawonn, 1998), for identification, modeling
and classification (Roubos and Setnes, 2001), etc. In the following, the application
of binary-coded GA in training neuro-fuzzy networks is presented. The simple
two-step approach that combines fuzzy clustering for initial modeling and a real-
coded GA for fine-tuning and optimization of the fuzzy rule base can be found in
detail in Panchariya et al., (2004).

The structure of the GA implemented for the neuro-fuzzy network training is
shown in Figure 5.1, in which P(C), P(M), and P(R) stand for operators of the
adaptive genetic algorithm (AGA) as described in Chapter 9.

5.2.1 Genetic Operators

In what follows, a short description of individual GA operators is given.

 Evolutionary Computation 199

5.2.1.1 Selection
Individuals or chromosomes are selected from the mating pool, based on a roulette
wheel (RW) selection procedure. This selection emulates the survival-of-the-fittest
mechanism in nature. It is expected that a fitter chromosome will give rise to a
higher number of offspring and thus will have a higher chance of surviving in the
subsequent generation. There are many ways to achieve effective selection,
including ranking, tournament, and proportionate schemes (Tang et al., 1996), but
the key assumption is to give preference to fitter individuals. The RW selection
procedure commonly used to implement the proportionate scheme can be described
as follows.

Sum the fitness of all population members, termed total fitness Fs.
Generate a random number r between 0 and 1 and multiply this by the total
fitness, i.e.

 0 < r <1 and 0 < rFs < Fs (5.1a)

Pick up the ith population member whose fitness added to the sum of the
fitness of the preceding population members is greater than or equal to rFs,

as expressed by

1

1

i

s i j
j

r f fF , popi N (5.1b)

5.2.1.2 Reproduction
In the reproduction process, once an individual is selected, this is simply
reproduced (copied) into the next generation’s population if a certain test condition
is satisfied. For example, the individual j selected from the mating pool is simply
copied into the next generation if a random number generated is greater than the
probability of reproduction (a small number less than 1). If a new individual is
generated through reproduction then the population counter is incremented by 1
starting with a 0 value. Using the reproduction operator, only 20% of the total
population is created for the next generation.

5.2.1.3 Mutation
Mutation is an operator that introduces variations into the chromosomes. The
variation can be global or local. The operation occurs occasionally (usually with
small probability P(M)) but randomly alters the value of the string position. In the
mutation process, any particular bit location of an individual is changed to 1 if it
was 0, or vice versa. Once an individual is selected, then the particular bit of the
same chromosome is simply mutated if a certain condition is satisfied, i.e. if it
passes the probability test condition. For example, the bit location 1 of an
individual j will undergo mutation if a random number generated is greater than
probability of mutation (a very small number less than 1). Otherwise, that
particular bit remains unaffected. The same process is continued from bit location

200 Computational Intelligence in Time Series Forecasting

1 to the last bit of the same individual. Since the probability of mutation is
generally very low, only a very few bits may undergo mutation of an individual.

If a new individual is generated through mutation then the population counter is
incremented by 1, starting with pop0.2 N , where popN is the total number of the

population in a particular generation. Otherwise the population counter remains the
same. Using the mutation operator, only 30% of the population, in our case, is
created for next generation (see Figure 5.1).

Figure 5.1. Structure of the GA implemented for neuro-fuzzy network training

Npop-counter = 0

Npopcounter = Npop ?

Generation = 0

Generate the initial
population randomly

Calculate the fitness of the
chromosomes

Terminate the GA run ?
Output the

best
chromosome

Chromosome selection for Genetic operation with probability
P(C), P(M), P(R) for crossover, mutation, reproduction resp.

Select two
chromosomes

through RW

Select one
chromosome
through RW

Select one
chromosome
through RW

Produce two new
offspring through

crossover

Produce one new
offspring through

mutation

Produce one new
offspring through

reproduction

Inset two new
offspring into new

population

Inset the new
offspring into new

population

Inset the new
offspring into new

population

Npop-counter = ++2 Npop-counter = ++1 Npop-counter = ++1

Genr = Genr+1

Yes

No

Yes

No

 Evolutionary Computation 201

5.2.1.4 Crossover
Crossover is a recombination operator that combines subparts of two parent
chromosomes to produce offspring that contain some parts of both parents’ genetic
material. A crossover probability term P(C) is set to determine the operation rate.
Many GA practitioners consider the crossover operator to be the determining factor
that distinguishes the GA from all other optimization algorithms.

The power of a GA arises from crossover, which causes a structured, yet
randomized exchange of genetic materials between solutions, with the possibility
that “good” solutions can generate the “better” ones. In the crossover process, two
individuals called parent 1 and parent 2 are required. A crossover operation
between parent 1 and parent 2 takes place with respect to a particular bit location
(called the crossover point) selected randomly and the portions of the
chromosomes beyond this point are exchanged to form offspring. Hence, a
crossover generates two new individuals of the next generation.

In our experiment, the best individual or chromosome from all generations is
always selected as parent 1. Parent 2 is selected through the RW selection
procedure from the mating pool. The crossover operation between two individuals
takes place if a certain condition is satisfied. For example, two individuals undergo
a crossover operation if a random number generated is greater than the probability
of crossover (a small number). Otherwise, both individuals remain unaffected. If
two new individuals are generated through crossover, then the population counter
is incremented by 2, starting with pop0.5 N . Otherwise the population counter

remains the same. In our case, using the crossover operator, only 50% of the
population is created for the next generation (see Figure 5.1).

5.2.2 Auxiliary Genetic Operators

In addition to the above standard genetic operators, the following operators are
also used in the GA experiment.

5.2.2.1 Fitness Windowing or Scaling
Regulation of the number of copies of superfit or extraordinary individuals is
especially important in small-population GAs. At the beginning of the GA runs it is
common to have a few extraordinary individuals in a population of mediocre
colleagues. However, if left to the normal proportionate selection rule, say to the
RW, the extraordinary individuals would take over a significant proportion of the
finite population in a single generation, and this is undesirable, as it leads to
premature convergence. This is because without the fitness scaling during the
matured run of the GA most of the individuals may converge and maintain a small
diversity, giving rise to a small difference between their fitness value even though
the GA run may not have located the desired global optimum. Therefore, the
crossover operation in this case produces new offspring practically without much
improvement in their fitness value during the matured run of the GA. Only the
mutation operator tries to maintain a small diversity and explores the new region
randomly. As a remedy for this premature convergence, fitness scaling or fitness
windowing can generally be applied. This prevents any super-fit individual from
always taking over and suppressing the lower fitness individual during the RW

202 Computational Intelligence in Time Series Forecasting

selection. Hence, scaling involves a readjustment of fitness values to sustain a
steady selective pressure in the population and to prevent the premature
convergence of the populations.

Various techniques are available for fitness scaling or fitness windowing. Let
us assume that the objective value of the worst chromosome in the population is fw,
and that each chromosome can be assigned a fitness value proportional to the cost
difference between the chromosome i and the worst chromosome w, i.e.

i f i wk f fV k (5.2)

where fi is the objective value or raw fitness of ith chromosome, fw is the raw
fitness of the worst chromosome, k and kf are two constants. If a maximization
problem is encountered, then a positive sign is adopted in Equation (5.2), whereas
for the minimization problem negative sign is adopted. In our experiment we set
the value of k = 10 and kf = 2.

Alternatively, the fitness scaling can be implemented using linear scaling, i.e.
the linear relationship between f and V

i ia bfV (5.3)

where f is the raw fitness and V the corresponding scaled fitness. The coefficients a
and b may be chosen in a number of ways; however, in all cases, the average
scaled fitness is equal to the average raw fitness, i.e. Vavg = favg.

In the following example we use Vmax = Cmult fmax, select Cmult = 2, and Vmin =
fmin. Towards the end of a GA run, this choice of Cmult stretches the raw fitness
significantly. In turn, this may cause difficulty in applying the above linear
relationship, when we cannot scale to the desired multiple Cmult; in this case,
scaling is performed still keeping Vavg = favg and then stretching the fitness until the
minimum value maps to zero, i.e. fmin = 0. The entire scaling procedure is
performed in three routines, namely pre-scale, scale, and scale-pop. This includes
calculation of fmax, fmin, favg, etc.

Now, we check the following relation (Goldberg,1989):

mult multmin avg max 1f f fC C . (5.4)

If the last relationship holds, then the calculation of a and b will be

mult avg max avg1a f f fC (5.5)

avg1b a f . (5.6)

Otherwise, if relationship (5.4) does not hold then calculation of a and b will be
as follows:

 Evolutionary Computation 203

01001000 01111000 11001100 010011

01001000 01111000

Chromosome

Genes from chromosome

0 1 0 0 1 Gene elements

01100101

GA Binary Coding

2.5673 0.1492 1.4352 0.1191370.12

2.5673 0.1492

Chromosome

 Gene / elements

GA Real Coding

avg avg mina f f f (5.7)

avg1b a f (5.8)

Once the values of a and b are calculated, the scaling is done as per Equation
(5.3). In order to avoid the division by zero situation, when the denominator of
(5.5) and (5.7) are close to zero during the matured run of the GA, a very small
constant (k1) of the order of k1 = 0.0001 can be added to their denominators.

5.2.3 Real-coded Genetic Algorithms

Genetic algorithms, being gradient-free and parallel optimization algorithms, have
immense advantages over the conventional search methods.

Figure 5.2. Coding in genetic algorithms

Genetic algorithms, like other parallel optimization algorithms, use a
performance criterion for evaluation and a population of possible solutions to
search for a global optimum (Michalewicz, 1994). In each search step, the
algorithms select the prosperous solutions and manipulate them using appropriate
genetic operators to achieve new, and possibly better solutions. The manipulations
are carried out on chromosomes in which the parameters of possible solutions are
encoded. In each generation of the GA, the new population replaces the solutions
in the population that are selected for deletion.

The chromosomes can be represented or encoded either by binary values
(Goldberg, 1989) or by real numbers (Michalewicz, 1994). The genetic algorithms
with binary coded chromosomes, when applied to multidimensional, high-precision
or continuous complex problems, are less efficient because, in such situations, the
bit-strings can become very long. Furthermore, CPU time is lost for the conversion
between the binary and real representation. Here, other alphabets, like real-coding,
can favourably be applied to parameters’ or variables’ presentation in the
continuous domain of values.

204 Computational Intelligence in Time Series Forecasting

For instance, in real-coded GAs the parameters (such as mean and variance
parameters of Gaussian membership functions, and singleton rule consequents in
the training of a neuro-fuzzy network) or the variables appear directly in the
chromosomes (see Figure 5.2) and are modified using special genetic operators.
Various real-coded GAs were recently reviewed by Herrera et al. (1998). The main
aspects of the proposed GA are discussed below, and implementation for compact,
transparent and accurate fuzzy models is also summarized.

5.2.3.1 Real Genetic Operators
Two classical operators, simple arithmetic crossover and uniform mutation, and
four special real-coded operators are used in this GA application. These operators
have been successfully applied by Michalewicz (1998), Setnes and Roubos (1999),
and Roubos and Setnes (2001).

In the following, 0,1r is a random number (uniform distribution), g = 0, 1, 2,

..., G is the generation number, l = 1, 2, 3, …, Npop is the chromosome number in a
generation, Sa and Sb are two chromosomes selected for operation, chrom1, 2, ,k L

is the position of an element in the chromosome, and maxmin,k kaa and maxmin,k kbb

are the lower and upper bounds of the parameter encoded by the kth element of
chromosomes Sa and Sb, respectively.

5.2.3.1.1 Selection Function
The purpose of the selection function is to create a steady evolutionary pressure;
this, to some extent, favours the well-performing chromosome to have a higher
chance of survival. The RW selection method is used to select cn chromosomes for

various genetic operations (Michalewicz, 1994). The chance of winning on a spin

of the RW is given by
pop

1

N

l l
l

f f , implying that the higher the ratio of fitness fl of

the chromosome Sl is with respect to total fitness of all chromosomes in the
population, then the larger is the chance that chromosome Sl will be selected
through the RW. The fitness fl of the chromosome Sl is defined as

2
1 , 1, 2, ,l l popf J l N ,

where Jl is the performance of the model encoded in chromosome lS measured in

terms of the mean-squared error (MSE):

2

1

1
ˆ

sN

i i
is

J y y
N

,

where y is the desired output, ŷ is the model output, and Ns is the number of
training samples. Notice that because of the reciprocal form and square term in
right-hand side of the fitness function, a small difference in MSE values will be
greatly amplified, i.e. if the MSE difference between two chromosomes is 0.1 then
the corresponding fitness difference will be 100. The inverse of the selection

 Evolutionary Computation 205

function is used to select chromosomes for deletion, i.e. cn old chromosomes are

deleted and the population is refilled by cn new chromosomes that are formed by

selection. The best chromosome is always preserved in the population (elitist
selection).

The probability that a selected chromosome will undergo a crossover operation
is 95%, whereas the probability of mutation is selected as 5%. When a
chromosome is selected for crossover (or mutation), one of the crossover (or
mutation) operators described below is applied with equal probability.

5.2.3.1.2 Crossover Operators for Real-coded Genetic Algorithms
For crossover operations, the chromosomes are selected in pairs (sa, sb):

Simple arithmetic crossover, in which g
as and g

bs are crossed over at the kth

position such that the resulting two offspring are:

chrom

1
1 1, , , , ,g

k k La a a b bs and
chrom

1
1 1, , , , ,g

k k Lb b b a as ,

where k is selected randomly from {2, 3, ..., (Lchrom -1)}.

Whole arithmetic crossover, in which a linear combination of g
as and g

bs
results in

1 1g g g
a a br rs s s and 1 1g g g

b b ar rs s s .

Heuristic crossover, in which g
as and g

bs are combined such that

1g g g g
a a b ars s s s and 1g g g g

b b a brs s s s .

It is to be noted that the heuristic crossover described above is very similar to
the trial vector of differential evolution of type one (DE1; see Section 5.5), except
for r, which is a random number within 0 to 1 here, whereas in DE1 it is a constant
within the same 0 to 1 range.

5.2.3.1.3 Mutation Operators
Similar to crossover, there are various mutation operators. However, for the
mutation operation only one chromosome is selected through the RW.

Uniform mutation, in which a randomly selected element ka ,

chrom1,2, , ,k L is replaced by ka , which is a random number in the range
min max,k ka a . The resulting chromosome is

chrom

1
1, , , ,g

a k Ls a a a .

Multiple uniform mutation is a uniform mutation of n randomly selected
elements, where n is selected at random and chrom1,2, ,n L .

206 Computational Intelligence in Time Series Forecasting

Gaussian mutation, in which all elements of a chromosome are mutated
such that

chrom

1
1, , , , ,g

a k Ls a a a where k k kfa a and kf is a random

number drawn from a Gaussian distribution with zero mean and an

adaptive variance
max min

3
k k

k

G g a a
G

. It can be seen that k

decreases as the generation counter g increases. Therefore, parameter
tuning performed by a Gaussian mutation operator becomes finer as the
generation counter g increases.

5.2.4 Forecasting Example

In this section we briefly describe a binary-coded GA that can be used to train a
neuro-fuzzy system that will be considered once again in Chapter 6. For
convenience we restrict our discussion to a Takagi-Sugeno-type neuro-fuzzy
network, but with singleton rules consequent only, which has been used
extensively by Wang (1994) for a variety of identification and modeling
applications. Furthermore, the fuzzy logic system selected is based on GMFs, the
product inference rule and a weighted-average defuzzifier. Mathematically, the
Takagi-Sugeno-type fuzzy logic system selected can be written as

1 1

M M
l l l

l l
y y , where 2 2

1
exp

n
l l l

i ii
i

x c

with

 i = 1, 2, ..., n; and l = 1, 2, ..., M.

Here, we assume that , 0 and ll l
i iiU y Vc , where Ui and V are the input and

output universes of discourse respectively.
The corresponding lth rule of the fuzzy logic system can be written as follows:

Rl: If x1 is 1
lG and x2 is 2

lG and ... and xn is l
nG Then y is y l

where xi with i = 1, 2, ..., n represent the n number of inputs to the system, l = 1, 2,
..., M are the M number of fuzzy rules that construct the fuzzy system, l

iG with i =
1, 2, ..., n and l = 1, 2, ..., M are the GMFs with corresponding mean and variance
parameters andl l

i ic respectively that partition the ith input domain, and yl

represents the (singleton) output from the lth rule. It will be shown in Chapter 6
that a similar fuzzy system can be represented as a three-layer multi-input single-
output feedforward network form. Because of neuro implementation of fuzzy logic
systems, the same feedforward network actually represents a Takagi-Sugeno-type
neuro-fuzzy network.

Given a set of N input-output training samples of the form ,p pX d , where the

input pattern 1 2, ,...,p np p p
nX Ux x x and the corresponding desired output

 Evolutionary Computation 207

pd V and with p = 1, 2, ..., N, the objective is to determine the fuzzy logic
system described above such that the performance function of the network, i.e. sum
square error (SSE) is minimized by optimal settings of the network’s free
parameters ,l l

i ic and yl. The SSE of the network is defined as

2
T

1
0.5 0.5 .

N
p

p
S e E E

where, p p pe y d , represents the approximation error of the network and yp

represents the output y of the network due to the presentation of pth input pattern
X

p
. We further assume that M, which corresponds to the number of implemented

GMFs for the partitioning of the input domain and also the number of implemented
fuzzy rules, is already given. Therefore, in order to train the network, i.e. for the
optimal settings of the network’s free parameters, the binary-coded GA can be
applied.

For this purpose all the free parameters of the network are encoded in a binary
bit string or chromosome. For M fuzzy rules and n inputs to the system the total
number of mean parameters plus variance parameters of the GMFs along with
singleton rules’ consequents will be of size 2 1M n M . Therefore, for a

network with n = 2 inputs and with M = 5 rules, each chromosome must encode
2 5 2 5 1 25 parameter values.

Now if each parameter (say mean parameter of the GMF) of the network is
represented by Np bits, which include the first one bit as a sign bit, followed by Nc

characteristic bits and Nm mantissa bits, then Np = (1 + Nc + Nm) and in this case Np

= 12 bits is selected.
Therefore, the entire bit length of each chromosome will be

p2 1L M n M N = 300 bits. For example, if a parameter l
ic assumes a

decimal value -2.4256, then the first digit (2) before the decimal point is known as
the characteristic part and the remaining four digits (4256) after the decimal point
represent the mantissa part. Therefore, in order to represent any decimal number
within +3.99 to -3.99 we can use a 12-bit binary number, where the first bit, say 0,
will represent the “+ve” sign and 1 will represent the “-ve” sign, followed by the
next two bits, which can represent only four decimal numbers 0, 1, 2 or 3, and the
remaining nine bits represent the mantissa part.

For instance, the 12-bit number (1111 1111 1111) can represent the parameter
value (1*21+ 1*20 + 1*2-1 + 1*2-2 + ... + 1*2-9) = -3.9980, whereas the 12-bit
number (0111 1111 1111) represents the decimal number +3.9980. Similarly, any
other combination of such 12 bits will represent any number between -3.9980 and
+3.9980.

Alternatively, the parameters within the above range can be encoded as
equivalent binary numbers as follows. Suppose the number -2.55 or +2.55 has to be
encoded into the equivalent 12-bit binary number, then just represent the -255 as
(1000 1111 1111) and similarly +255 as (0000 1111 1111), neglecting the
position of the decimal point during the encoding. However, during decoding

208 Computational Intelligence in Time Series Forecasting

10 20 30 40 50 60 70

0

1

2

3

4

5

Trnfzwga.m:SSE-Vs-Generation

No-of-Generations

S
S

E
-(

re
d)

10 20 30 40 50 60 70

0

2

4

6

8

Trnfzwga.m:fitness-Vs-Generation

No-of-Generations

fit
ne

ss
-(

bl
)-

&
-d

av
gf

it-
(r

)

20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Trnfzwga.m:Neuro-fuzzy.op-Vs-Actual

No-of-Generations

N
N

-F
L(

gr
),

 A
ct

ua
l(b

l),
E

rr
or

(r
)

multiply all the decoded numbers by 0.01, which will once again set all the
parameters with signs and decimal points. In the following example, however, the
first kind of encoding was found to give better results.

Therefore, for a chromosome (binary string) of total bit length L, the first
M*n*Np bits represent the mean parameters (of the GMFs) in the order of each
rule, and the next M*n*Np bits similarly represent the variance parameters of the
GMFs; lastly, the remaining M*1*Np bits represent the M centres of fuzzy regions
(singleton consequents). It is assumed that the total number of populations Npop (i.e.
total number of chromosomes in each generation) is fixed and is selected as 20 for
our experiment.

Hence, at the beginning of the GA run, Npop = 20 chromosomes or binary
strings, each of length L bits, are generated randomly, which all represent the
potential solutions of the network optimum parameter settings. Then the fitness of
each chromosome is computed as the reciprocal of the SSE of the network for a
given set of network training samples. Therefore, mathematically, the fitness is
computed as

 Fitness = (1/ SSE).

In order to compute the fitness function of each chromosome, the binary data are
decoded and rearranged into the corresponding parameter matrix of mean, variance
and centres of fuzzy regions; the SSE, and hence the fitness, is computed for the
above parameter values.

Figure 5.3. Training of neuro-fuzzy network with binary-coded GA

Once the fitness values are computed for all the chromosomes they are
arranged in descending order. If the best fitness is greater than or equal to the

 Evolutionary Computation 209

a

+

bc

LISP program chunk: a+b*c

desired fitness, then the corresponding chromosome is picked and, thereafter, is
decoded into network parameter values. The network parameters generated are the
final output of the GA run and a further GA run is not required (Figure 5.1).
However, if the best fitness is less than the desired fitness, then the GA run is
further continued as per Figure 5.1. Once the fitness values are all arranged in
descending orders, the best 70% population are collected to form the mating pool
in this example. Now, from the mating pool, the next-generation populations are
created by applying the various genetic operations as described earlier in this
chapter.

In order to test the efficiency of the GA-based neuro-fuzzy network training the
Mackey-Glass chaotic time series was considered. The network in this case, as
usual, had four inputs and only five rules were implemented. As described above,
only 20 populations were selected in each generation. It can be seen from the
Figure 5.3 that in only a few generations the GA could improve the fitness function
to 8.4149, which corresponds to SSE = 0.1188 or MSE = 0.0012. However,
because of the very slow progress of the generation run, the GA run was
terminated after only a few generations. If a higher fitness value (say, a few
hundred) is required, then the GA run may have to be continued for several
thousands of generations so that the network can correctly approximate the
nonlinear chaotic time series model.

5.3 Genetic Programming

Koza (1992) proposed an evolutionary algorithm for solving intelligent
computational problems by automated generation of computer programs required
for problem solution. He viewed the new algorithm as a model for machine
learning in the space of programs and, therefore, named it genetic programming.

Figure 5.4. Example of a LISP program “a + b*c”

Instead of operating with individuals, genetic programming operates with the
computer programs and uses computer languages, preferably functional
programming languages, for its implementation. Functional programming
languages are based on syntax suitable for presenting parse trees used in genetic

210 Computational Intelligence in Time Series Forecasting

+

1 2 IF

> 3 4

Time 10

Tree structure for (+ 1 2 (IF (> Time 10) 3 4))

programming algorithms. This is due to the tree forms of LISP S-expressions
which are equivalent to parse trees. For example, the LISP program chunk “a+b*c”
is presented as a parse tree in Figure 5.4.

Koza gives a program example that presents the LISP expression

 (+ 1 2 (IF (> TIME 10) 3 4))

as the corresponding tree structure (Figure 5.5).

Figure 5.5. Tree structure of a LISP expression (+ 1 2 (IF (> TIME 10) 3 4))

Genetic programs run by executing program induction, i.e. they automatically
learn within the search space what programs are required in order to improve the
problem solution and in this way finally find the best one. The search space here is
the space of all possible programs, including the user-defined function set
(programming or arithmetic operations, mathematical, logic, and other domain-
specific functions) and the terminals set (containing variables and constants
appropriate to the problem domain). While searching for the best solution, the
genetic programming algorithm makes use of the statistical closure property of
functions to accept as arguments the function return values of any other functions
and the data from the terminal set.

5.3.1 Initialization

The first operational step of genetic programming is its initialization, which mainly
includes generation of the initial population, i.e. of the random composition of the
function and terminal sets. In fact, at this point a collection of random trees is
generated representing the initial program configurations. Later, the trees will be
the subject of specific successive handling by genetic operators (reproduction,
crossover, etc.) They are generated by firm allocation of the function root node.
Thereafter, the children are created and a recourse through the tree carried out

 Evolutionary Computation 211

during which the functions and terminals are randomly picked from their sets, until
all branches end in terminals.

5.3.2 Execution of Algorithm

Once the initial population is obtained, the execution of the kernel algorithm
procedure starts with the execution of all programs of the initial population
generated, assigning the fitness values according to the fitness measures.
Thereafter, a new population of programs is created through

reproduction of existing programs and by their copying into a new
population
crossover of new programs generated from existing programs by genetic
recombination of their randomly chosen parts, and by executing the
crossover operation on two recombined programs
mutation of a randomly chosen part of the program created from an
existing program.

After the run of genetic programming the best computer program in the population
is, for the time being, considered as the best, or nearly best one for the problem
solution. The program run can be finished or continued in order to check whether a
still better program can be found.

However, it should also be mentioned here that, like in genetic algorithms, the
mutation operation is very sparingly used.

5.3.3 Fitness Measure

So far, we have not considered one of the most principal issues in genetic
programming applications, i.e. the fitness measure. It is a tool that helps calculate
how well the individual programs of the population contribute to the evolutionary
progress of finding the problem solution. In practice, the fitness measure is
determined subjectively, so that it is viewed as a more obscure action than as an
exact definition. Also, formulation of the fitness measure is strongly problem
dependent. For the majority of problems it is understood as the error delivered by
the programs after their execution. This is true for every program run, so that it is
expected that the initial programs will most probably produce the lowest fitness
value, but some among them could have higher values than the rest of the
population. This triggers the evolutionary process. The offspring population, after
undergoing treatment through genetic operational steps, could replace the parent
population and undergoes a fitness check that is the basis for the next evolutionary
step. This continues until the best solution of the problem is found.

5.3.4 Improved Genetic Versions

Koza (1994) reported about a second, amended version of genetic programming
capable of evolving multipart programs by integrating the reusable, parameterized
subprograms into the main program. The subprograms are termed automatically
defined functions. Each such program can contain function defining branches,

212 Computational Intelligence in Time Series Forecasting

which are capable of communicating with the automatically defined branches, and
result-producing branches, and are also capable of calling the automatically
defined functions. Koza (1994) has shown that genetic programming with
automatically defined functions is scalable, enabling genetic programming to
determine the size and the shape of the problem solution automatically (i.e. of the
program tree).

However, when multipart programs and automatically defined functions are
integrated, the problem arises as to how to tailor the architecture of the evolved
programs. This problem has been solved through dynamic evolutionary selection
of the architecture of the overall program while running the genetic programming.

5.3.5 Applications

Application examples of genetic programming are numerous. Apart from abundant
mathematical applications, such as applications in symbolic regression, many
practical applications have been reported in engineering, particularly in pattern
classification, vehicle control, robotics, etc. For the reader, of direct interest is
genetic programming application in time series prediction (Santini and Tettamanzi,
2001), where two problem solution strategies have mostly been applied:

a neural network model has been optimally tuned by genetic programming
(Zang et al., 1997)
appropriate programs have been evolved using genetic programming for
computing the future values of a given time series, given its last values
(Yoshichra et al., 2000).

The first strategy belongs to the category of evolving neural networks using
evolutionary computation in general, which will be treated in detail in Part 3 of the
book. In the following, our attention will be focused on the strategy used by Santini
and Tettamanzi (2001), mainly achieved by

evolving the individuals made up of some different expressions, one for
each prediction step
developing of special crossover and mutation operators adapted to the
generated individuals of population
calculating the fitness based on given time series data.

Mulloy et al. (1996) used the genetic programming approach in the prediction of
chaotic time series.

5.4 Evolutionary Strategies

Evolutionary approaches that are very similar to genetic algorithms are the
evolutionary strategies developed by Rechenberg and Schwefel (Rechenberg,
1973) while working on the design of an optimal jet nozzle that produces the most
powerful propulsion at the lowest fuel consumption. They came to the idea of
developing a new solution concept that starts with commercially available jet

 Evolutionary Computation 213

nozzles and, using a genetic evolution process, ends with finding the optimal
nozzle shape. The solution concept used by them was termed evolutionary
strategy.

Evolutionary strategy also relies on the mechanism of evolutionary
computation, but it uses it in an original way. In contrast to genetic algorithms,
which aim at solving discrete and integer optimization problems, the objectives of
evolutionary strategies are more focused on solving the problems of continuous
parameter optimization. The evolutionary strategy achieves this through the search
from one population of solutions to another, rather than like genetic algorithms
searching from individual to individual. Also, the evolutionary strategy uses
selection, recombination, and mutation as separate genetic activities for generating
a new solution (i.e. the new generation), which is actually the major difference
with the genetic algorithms.

The basic idea of evolution strategies relies on the hypothesis that, during
biological evolution, the laws of heredity have been developed for rapid
phylogenetic adaptation. This is actually a considerable improvement of the
genetic algorithm concept, which traditionally does not consider the effects of
genetic procedures on the phenotype. The presumption for coding the variables in
the evolution strategy is the realization of a sufficiently strong causality effect (i.e.
that small changes in the cause must create small changes in the effect).

The climax of the theory of evolution strategy is the discovery of an evolution
window, stating that evolutionary progress takes place only within a very narrow
band of the mutation step size. This fact indicates the need for a rule of self-
adaptation of the mutation step size. These genetic operators were taken straight
from biological evolution and rely strongly on the principle of mutation. In the
problem at hand, a mutation was simply a small change in the overall make-up of a
jet nozzle.

In their experiments, Rechenberg and Schwefel tested the performance of the
evolved jet nozzles after every mutation. After many repeated trial runs of this
kind, they succeeded in producing a jet nozzle that was better than any of the jet
nozzles at that time available on the market. It is remarkable that, for jet nozzle
optimization, no mathematics dealing with fluid dynamics and propulsion was
taken into account. For the experiments, some nozzles available on the market
were taken and evolved further in order to produce, with every evolutionary step, a
better problem solution.

5.4.1 Applications to Real-world Problems

Evolutionary strategies, instead of a step-by-step search for a single problem
solution, from the very beginning deal with a set of potential problem solutions.
The strategies start with a set of initial solutions and improve them through
repeated evolutionary steps until the best solution has been found. After every step,
the degree of improvement is evaluated using some fitness criteria. Before
initiating the next evolutionary step, a decision is made as to what genetic
operators should be selected. Two such operators are dominant here, i.e. mutation
and crossover, whereby mutation is the most frequently used because it offers
prospective changes in the problem solution. The crossover operator, however,

214 Computational Intelligence in Time Series Forecasting

promotes the process of reproduction by mating two given solutions and producing
a new one. It is expected that in this way good offspring are generated.

To estimate how far the generated offspring are good, the selected fitness
criteria are used. This process is repeated, producing better and better offspring by
mating and mutation operations. Although the evolutionary strategies are valuable
search concepts, they still have their limitations and drawbacks: in practical
applications, many decisions have to be made in the selection of an initial solution
set, the application of appropriate genetic operators at each evolutionary step, the
definition of an adequate fitness function, etc.

5.5 Evolutionary Programming

L.J. Fogel (Fogel et al., 1966), in his search for a new evolutionary method for
developing artificial intelligence, elaborated a stochastic optimization methodology
relying on genetic principles that was later formulated by D. Fogel (1994) as
evolutionary programming. The new methodology differs substantially both from
genetic algorithms and genetic programming in that it evolves behavioural models
rather than genetic models. Hence, the objective of evolutionary programming is to
find a set of best behavioural models from a space of possible behavioural models.

Like other evolutionary methods, evolutionary programming also relies on
some repeated operational steps that are interrupted (before the next step
commences) by the evaluation of the results achieved using a fitness function. But
still, evolutionary programming is different from other genetic methods in that it
uses a population of parents, each of them producing a single offspring through
mutation, because in evolutionary programming no crossover operator is
implemented.

The algorithm of evolutionary programming can be outlined as follows:

Generate randomly the initial generation as a set of initial problem
solutions and calculate the fitness value of each individual of the
population.
For each individual (problem solution)

generate a new solution set by copying the set and changing it
genetically
calculate the fitness of each individual/new solution
Store the new solution and fitness.

From the new generation select the solution with the largest fitness and
delete the rest.
If the best or nearly the best solution is found, stop the evolutionary
process; otherwise continue.

In practice, before the above search for the optimal solution runs, the population
size and the number of iterations (i.e. number of generations) have to be fixed.
Also, the mutation operator to be used for generation of the next solution is to be
determined. This can be extended by integrating a randomly selected maturation

 Evolutionary Computation 215

operator procedure and eventually by applying the elitist strategy, which could
amend the selection of parents for the next generation.

5.5.1 Evolutionary Programming Mechanism

In evolutionary programming, each offspring is generated from its parent by
changing one or more alleles in the chromosome. In biological terms, this
represents a mutation. Now, because the selection of a new parent is based on the
fitness of the organism, the Darwinian procedure of “survival of the fittest” is
applied. Therefore, the procedure listed above can be described as a living
organism that produces one or more offspring through mutation. A survival-of-the-
fittest procedure helps in selecting the best parents for the next generation, so that
the organism evolves by trying to maximize its fitness (i.e. trying to solve the given
problem as best as possible).

5.6 Differential Evolution

Differential evolution is a population-based search strategy and an evolutionary
algorithm that has recently proven to be a valuable method for optimizing real-
valued multi-modal objective functions (Storn and Price 1995, 1996). It is a
parallel direct search method having good convergence properties and simplicity in
implementation. The method utilizes Npop parameter vectors ,i GX as a population

for each generation G, where pop 10,1, 2, ,i N . The number of parameter vectors,

i.e. Npop, does not change during the optimization (minimization) process and the
initial population is chosen randomly, unless a preliminary solution is available.
Where a preliminary solution is available, then the remaining population of the
starting generation is often generated by adding normally distributed random
deviations to the nominal solution.

The crucial idea behind the differential evolution is a new scheme for
generating trial parameter vectors by adding the weighted difference vector
between two population members to a third member. If the newly generated vector
results in a lower objective function value (higher fitness) than the predetermined
population member, then the resulting vector replaces the vector with which it was
compared. The comparison vector can, but need not essentially, be part of the
above generation process. In addition, the best parameter vector is evaluated for
every generation G in order to keep track of the progress that is made during the
minimization process. Extracting both distance and direction information from the
population to generate random deviations results in an adaptive scheme that has
excellent convergence properties (Storn and Price, 1995).

There are several variants of differential evolution, with the two most
promising variants being

DE1, the first variant of differential evolution
DE2, the second variant of differential evolution.

216 Computational Intelligence in Time Series Forecasting

N

o

o

o
o

o

o

o

o

o

o

o

o

o
o

X1

X2

o

o

N

Vector from generation G

Newly generated vector

X i,G

X a3,G

X a2,G
X a1,G

global minimum

X v,G+1

K.(X a3,G - X a2,G)

5.6.1 First Variant of Differential Evolution (DE1)

The first variant of differential evolution works as follows: for each vector in
generation G, i.e. , pop 1, (0, 1, 2, ,)i GX i N , a trial vector ,v GX is generated as

1 3 2, , , ,v G a G a G a GX X K X X

with 1 2 3 pop 1, , 0,a a a N . The integers a1, a2 and a3 are mutually different from

each other, and K > 0.

Figure 5.6. First variant of differential evolution (DE1)

Furthermore, the integers a1, a2 and a3 are chosen randomly from the interval
[0, Npop-1] such that they are different from the running index i. The real constant

factor K controls the amplification of the differential variation
3 2, ,a G a GX X .

Figure 5.6 shows a two-dimensional example that illustrates the different vectors
and generation of a trial vector which play an important role in DE1.

In order to increase the potential diversity of the perturbed parameter vectors,
crossover is introduced. The crossover operation generates the perturbed vector as
follows:

0 1 (1), 1 , 1 , 1 , 1, , ,
Du G u G u G u GX X X X

with,

, 1

, 1

,

for , 1 , , 1 .

for all other 0, 1 .

j

j

v G D D D
u G

ji G

X j n n n L
X

X j D

 Evolutionary Computation 217

j = 0

j = 4

j = 3

j = 2

j = 1

j = 5

j = 6

j = 0

j = 4

j = 3

j = 2

j = 1

j = 5

j = 6

j = 0

j = 4

j = 3

j = 2

j = 1

j = 5

j = 6

X i,G X v,G+1 X u,G+1

n=3

n=2

n=4

vector containing the parameters
xj , j = 0,1,2,…,D-1

is generated. The angle brackets
D

 denote the modulo function with modulus D.

The starting index n in the above equation is a randomly chosen integer from the
interval [0, D-1]. The integer L, which denotes the number of parameters that are
going to be exchanged, is drawn from the interval [1, D]. The algorithm that
determines L works according to the following lines of pseudo code, where rand()
is supposed to generate a random number within the interval [0, 1]:

L = 0;
do {

 L = L+1;
 } while ((rand() < CR) and (L < D));

Hence, the probability
1

Pr , 0.
v

L v CR v CR is taken from the interval [0,

1] and constitutes a control variable in the design process. The random decisions
for both n and L are always made afresh for each newly generated vector , 1u GX .

Figure 5.7. Crossover process in DE1 for D = 7, n = 2, L = 3 for new vector generation

Note that, in Figure 5.7, since L = 3, three parameters are exchanged; they are
numbered as (n = 2), (n+1 = 3), (n+L-1 = 4), because the modulo function (n and
D) = 2, modulo function (n+1 and D) = 3 and modulo function (n+L-1 and D) = 4,
for D = 7.

To decide whether or not the newly generated vector should become a member
of generation G+1, the new vector , 1u GX is compared with ,i GX . If the newly

generated vector yields a smaller objective value than ,i GX , then , 1i GX is set to

, 1u GX , otherwise the old vector ,i GX is retained.

218 Computational Intelligence in Time Series Forecasting

N

o

o

o
o

o

o

o

o

o

o

o

o

o
o

X1

X2

o

o

N

Vector from generation G

Newly generated vector

X i,G

X a3,G

X a2,G

X v1,G

global minimum

X v,G+1

K.(X a3,G - X a2,G)

X best,G

5.6.2 Second Variant of Differential Evolution (DE2)

Basically the second variant of differential evolution also works in the same way as
the first variant DE1, but it generates a new trial vector , 1v GX according to

3 2, 1 , , , , ,v G i G best G i G a G a GX X X X K X X ,

because 1, 1 , , , ,v G i G best G i GX X X X introducing an additional

control variable .

Figure 5.8. Second variant of differential evolution (DE2)

The idea behind is to provide a means to enhance the greediness of the

scheme by incorporating the best vector from the current generation. In order to
reduce the differential evolution control parameters, K is usually set. This

feature can be useful for non-critical objective functions. Figure 5.8 illustrates the
trial vector generation process for the generation G+1, defined by the above
equation. The construction of perturbed vector , 1u GX through a crossover

operation from trial vector , 1v GX and randomly selected ,i GX vector, as well as

the decision process, are exactly same as the first variant of differential evolution.

References

[1] Fogel DB (1994) Evolutionary Programming: An introduction and some current
directions, Statistics and Computing, vol. 4: 113-129.

[2] Fogel LJ, Owens AJ, and Walsh MJ (1966) Artificial intelligence through Simulated
Evolution. Wiley, New York.

[3] Goldberg DE (1989) Genetic algorithms in search, optimization and machine
learning, Addison-Weseley publishing co. Inc., Reading, MA.

 Evolutionary Computation 219

[4] Harrald PG and Kamastra M (1997) Evolving artificial neural networks to combine
financial forecasts, IEEE Trans. on Evolutionary Computation, 1(1): 40-51.

[5] Herrera F and Locano M (1998) Fuzzy genetic algorithms: Issues and models. Tech.
Report DECSAI-98116, Univ. of Granada, dept. of computer science and AI.

[6] Holland JH (1975) Adaptation in Natural and Artificial Systems. Ann Arbor,
University of Michigan Press.

[7] Klawonn F and Keller A (1998) Fuzzy clustering with evolutionary Algorithms,
Internat. J. of Intell. Systems 13: 975-991. In: Goldberg GA Book, Reading, MA.

[8] Koza JR (1992) Genetic Programming. The MIT Press, Cambridge, MA.
[9] Koza JR (1994) Genetic Programming II: Automatic Discovery of Reusable

Programs. Cambridge, MA: MIT Press, MA.
[10] Michalewicz Z (1994) Genetic Algorithms + Data Structures = Evolution Programs,

second edition, Springer-Verlag, New York.
[11] Michalewicz Z (1998): Real Coded-GA Book, Springer-Verlag. Berlin.
[12] Mulloy BS, Riolo RL, and Savit RS (1996) Dynamics of genetic programming and

chaotic time series prediction. In: Koza JR, Goldberg DE, Fogel DB, and Riolo RL,
editors, Genetic programming 1996: Proc. of the First Annual Conference: 166-174,
MIT Press, MA.

[13] Palit AK, Popovic D (2000), Intelligent processing of time series using neuro-fuzzy
adaptive Genetic approach, Proc. of IEEE-ICIT Conference, Goa, India, ISBN: 0-
7803-3932-0, vol. 1: 141-146.

[14] Panchariya PC, Palit AK, Sharma AL, Popovic D (2004) Rule extraction, complexity
reduction and evolutionary optimization, International Journal of Knowledge-Based
and Intelligent Engineering Systems, 8(4): 189-203.

[15] Rechenberg I (1973) Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart.

[16] Roubos H, Setnes M (2001), Compact and transparent fuzzy models and classifiers
through iterative complexity reduction, IEEE Trans. on Fuzzy Syst., 9(4): 516-524.

[17] Santini M, Tettamanzi A (2001) Genetic Programming for Financial Time Series
Prediction. ECRO GP 2001: 361-370.

[18] Setnes M, Roubos JA (1999) Transparent Fuzzy modeling using Fuzzy Clustering and
GAs, in proceedings of NAFIPS’99, pp. 198-202, New York, June, 1999.

[19] Storn and Price (1995): Differential Evolution- A simple and efficient adaptive
scheme for global optimization over continuous spaces, TR-95-012, ICSI, March
1995. http://http.icsi.berkeley.edu/~storn/litera.html

[20] Storn R, Price K.(1996), Minimizing the real functions of the ICEC’96 contest
Differential Evolution, Int. Conf. on Evol. Comp., Nagoya, Japan.

[21] Storn, R (1995) Constrained optimization, Dr. Dobb’s journal, May, pp. 119-123.
[22] Tang KS, Man KF, Kwong S and He Q (1996) Genetic algorithms and their

applications, IEEE Signal Processing Magazine, November, pp. 22-36.
[23] Voigt, H.M.(1992), Fuzzy evolutionary algorithms, Technical Report TR-92-038 at

ICSI, ftp.icsi.berkeley.edu.
[24] Wang LX (1994) Fuzzy Systems and Control, Design and Stability Analysis, PTR

Prentice Hall, Englewood Cliffs, New Jersey.
[25] Yoshihara I, Aoyama T, and Yasunaga M (2000) Genetic programming based

modeling method for time series prediction with parameter optimization and node
alternation. In: Proc. of Congress on Evolutionary Computation CEC00: 1475-1481.

[26] Zang B, Ohm P, and Mühlenbein H (1997) Evolutionary induction of sparse neural
trees. Evolutionary computation 5(2): 213-236.

Part III

Hybrid Computational Technologies

6

Neuro-fuzzy Approach

6.1 Motivation for Technology Merging

Contemporary intelligent technologies have various characteristic features that can
be used to implement systems that mimic the behaviour of human beings. For
example, expert systems are capable of reasoning about the facts and situations
using the rules out of a specific domain, etc. The outstanding feature of neural
networks is their capability of learning, which can help in building artificial
systems for pattern recognition, classification, etc. Fuzzy logic systems, again, are
capable of interpreting the imprecise data that can be helpful in making possible
decisions. On the other hand, genetic algorithms provide implementation of
random, parallel solution search procedures within a large search space. Therefore,
in fact, the complementary features of individual categories of intelligent
technologies make them ideal for isolated use in solving some specific problems,
but not well suited for solving other kinds of intelligent problem. For example, the
black-box modelling approach through neural networks is evidently well suited for
process modelling or for intelligent control, but less suitable for decision making.
On the other hand, the fuzzy logic systems can easily handle imprecise data, and
explain their decisions in the context of the available facts in linguistic form;
however, they cannot automatically acquire the linguistic rules to make those
decisions. Such capabilities and restrictions of individual intelligent technologies
have actually been a central driving force behind their fusion for creation of hybrid
intelligent systems capable of solving many complex problems.

The permanent growing interest in intelligent technology merging, particularly
in merging of neural and fuzzy technology, the two technologies that complement
each other (Bezdek, 1993), to create neuro-fuzzy or fuzzy-neural structures, has
largely extended the capabilities of both technologies in hybrid intelligent systems.
The advantages of neural networks in learning and adaptation and those of fuzzy
logic systems in dealing with the issues of human-like reasoning on a linguistic
level, transparency and interpretability of the generated model, and handling of
uncertain or imprecise data, enable building of higher level intelligent systems. The

224 Computational Intelligence in Time Series Forecasting

Neural
Network

Fuzzy
Inference

NN-Learning
Algorithm

Perception
as Neural

Inputs

Neural
output

NN-outputs

Linguistic
Statements

synergism of integrating neural networks with fuzzy logic technology into a hybrid
functional system with low-level learning and high-level reasoning transforms the
burden of the tedious design problems of the fuzzy logic decision systems to the
learning of connectionist neural networks. In this way the approximation capability
and the overall performance of the resulting system are enhanced.

A number of different schemes and architectures of this hybrid system have
been proposed, such as fuzzy-logic-based neurons (Pedrycz, 1995), fuzzy neurons
(Gupta, 1994), neural networks with fuzzy weights (Buckley and Hayashi, 1994),
neuro-fuzzy adaptive models (Brown and Harris, 1994), etc. The proposed
architectures have been successful in solving various engineering and real-world
problems, such as in applications like system identification and modelling, process
control, systems diagnosis, cognitive simulation, classification, pattern recognition,
image processing, engineering design, financial trading, signal processing, time
series prediction and forecasting, etc.

6.2 Neuro-fuzzy Modelling

There are several methods for implementing the neuro-fuzzy modelling technique.
An early merging approach was to replace the input-output signals or the weights
in neural networks by membership values of fuzzy sets, along with the application
of fuzzy neurons (Mitra and Hayashi, 2000). Several authors have proposed an
internal structure for fuzzy neurons (Gupta, 1994; Buckley and Hayashi, 1995), as
presented in the following section.

Figure 6.1. (a) Fuzzy-neural system (first model)

In general, neuro-fuzzy hybridization is done in two ways (Mitra and Hayashi,
2000):

a neural network equipped with the capability of handling fuzzy
information processing, termed a fuzzy-neural network (FNN)

a fuzzy system augmented by neural networks to enhance some of its
characteristics, like flexibility, speed, and adaptability, termed a neural-
fuzzy system (NFS).

Neural networks with fuzzy neurons are also termed FNN, because they are also
capable of processing fuzzy information. A neural-fuzzy system (NFS), on the
other hand, is designed to realize the process of fuzzy reasoning, where the

 Neuro-fuzzy Approach 225

f(x1; c11, sig11)

f(x1; c12, sig12)

f(x1; c13, sig13)

f(xn; cn1, sign1)

f(xn; cn2, sign2)

f(xn; cn3, sign3)

:
:

x1

xn

L1

L2
L3

o3

o2

o1

:
:

:
:In

p
u

ts

o
u

tp
u

ts

Neural
Network

Fuzzy
Inference

Knowledge
Base

NN-Learning
Algorithm

Neural
Inputs

Neural
output

Output /
Decisions

connection weights of the network correspond to the parameters of fuzzy reasoning
(Nauck et al., 1997).

Gupta (1994) has presented two additional models for fuzzy neural systems.
The first model (Figure 6.1(a)) consists of a fuzzy inference block, followed by a
neural network block, consisting of a multilayer feedforward neural network, the
input of which is fed by the inference block (Fuller, 1995). The neural network
used can be adapted and adequately trained with training samples to yield the
desired outputs.

In the second model (Figure 6.1(b)), the neural network block drives the fuzzy
inference system to generate the corresponding decisions. Hence, the first model
takes linguistic inputs and generates the numerical outputs, whereas the second
model takes numerical inputs and generates the linguistic outputs.

Figure 6.1. (b) Fuzzy-neural system (second model)

Alternatively, the second approach is to use fuzzy membership functions to pre-
process or post-process signals with neural networks as shown in Figure 6.2. A
fuzzy inference system can encode an expert’s knowledge directly and easily using
rules with linguistic labels (Kulkarni, 2001).

Figure 6.2. Fuzzy-neural model with tuneable membership function

In practice, for optimal tuning of membership functions of the fuzzy logic part
of a neuro-fuzzy system, a reliable skill is required. The incorporated neural
network part of the same system can, using its learning capability, perform on-line

226 Computational Intelligence in Time Series Forecasting

A1

A2

N
1 1

x1

x1 x2

B1

B2

N

1

x2

x1 x2

2 2

y1
TS

y2
TS

2

y

R1: If X1 is A1 and X2 is B1 Then y1
Ts= w1

0+ w1
1X1 + w1

2X2
R2: If X1 is A2 and X2 is B2 Then y2

Ts= w2
0+ w2

1X1 + w2
2X2

Layer 1
Layer 2 Layer 3 Layer 5

L
ay

er
 4

In
p

u
ts

output

tuning of membership functions and gradually improve the performance of the
entire hybrid system. This concept, which became very popular in engineering
applications, was originally proposed and extended to multidimensional
membership functions by Takagi and Hayashi (1991).

Lin and Lee (1991) proposed a neural-network-based model for fuzzy logic
control consisting of a feedforward neural network, the input nodes of which are
fed by input signals and its output nodes delivering the output and decision signals.
Nodes in the hidden layers of the system implement the membership functions and
the fuzzy rules, making up a fuzzy inference system with distributed representation
and learning algorithms of the neural network. Parameters representing
membership functions are determined using any suitable network training
algorithm. Pal and Mitra (1992) proposed a similar model in which inputs are fed
to a preprocessor block, which performs the same functions as that in the above
fuzzy inference system. The output of the preprocessor delivers the fuzzy
membership function values. For each input variable term, linguistic labels such as
low, medium, and high are used. If input consists of n variables, then the
preprocessor block yields m×n outputs, where m represents the number of term
values used in the model. The output of the preprocessor block is then fed to a
multilayer perceptron model that implements the inference engine. The model was
successfully used for classifying vowels in English alphabets. Kulkarni (1998),
again, developed a similar model and successfully used it for multi-spectral image
analysis. Some authors have designed neuro-fuzzy systems incorporating some
processing stages implemented with neural networks and some with a fuzzy
inference system. In another design, a neural-network-based tree classifier was
used. Finally, Kosko (1992) suggested some remarkable neuro-fuzzy models for
fuzzy associative memory (FAM).

Figure 6.3. ANFIS architecture with Takagi-Sugeno-type fuzzy model with two rules

The neuro-fuzzy model ANFIS (adaptive-network-based fuzzy inference system)
of Jang (1993), presented in Figure 6.3, incorporates a five-layer network to
implement a Takagi-Sugeno-type fuzzy system. The proposed model has a
relatively complex architecture for a large number of inputs, and it can process a
large number of fuzzy rules. It uses the least mean square training algorithm in the

 Neuro-fuzzy Approach 227

forward computation to determine the linear consequents of the Takagi-Sugeno
rules, while for the optimal tuning of an antecedent membership function
backpropagation is used (Kim and Kim, 1997).

The neuro-fuzzy model of Chak et al. (1998) can locate the fuzzy rules and
optimize their membership functions by competitive learning and a Kalman filter
algorithm. The key feature is that a high-dimensional fuzzy system can be
implemented with fewer rules than that required by a conventional Sugeno-type
model. This is because the input space partitions are unevenly distributed, thus
enabling a real-time network implementation.

The approach of Nie (1997) concerns the development of a multivariable fuzzy
model from numerical data using a self-organizing counterpropagation network.
Both supervised and unsupervised learning algorithms are used for network
training. Knowledge can be extracted from the data in the form of a set of rules.
This rule base is then utilized by a fuzzy reasoning model. The rule base of the
system, which is supposed to be relatively simple, is updated on-line in an adaptive
way (in terms of connection weights) in response to the incoming data.

Cho and Wang (1996) developed an adaptive fuzzy system to extract the IF-
THEN rules from sampled data through learning using a radial basis functions
network. Different types of consequent, such as constants, first-order linear
functions, and fuzzy variables are modelled, thereby enabling the network to
handle arbitrary fuzzy inference schemes. There is not an initial rule base, and
neither does one need to specify in advance the number of rules required to be
identified by the system. Fuzzy rules are generated (when needed) by employing
basis function units.

Wang and Mendel (1992a) described a fuzzy system by series of basis
functions, which are algebraic superpositions of membership functions. Each such
basis function corresponds to one fuzzy logic rule. An orthogonal least squares
training algorithm is utilized to determine the significant fuzzy logic rules
(structure learning) and associated parameters (parameter learning) from input-
output training pairs. Owing to the possibility of acquiring and interpreting the
linguistic IF-THEN rules by human experts, the fuzzy basis function network
provides a framework for combining both numerical and linguistic information in a
uniform manner.

Zhang and Morris (1999) used a recurrent neuro-fuzzy network to build long-
term prediction models for nonlinear processes. Process knowledge is initially used
to partition the process operation into several local fuzzy operating regions and
also to set up the initial fuzzification layer weights. Membership functions of fuzzy
operating regions are refined through training, enabling the local models to learn.
The global model output is obtained by centre-of-gravity defuzzification involving
the local models.

6.2.1 Fuzzy Neurons

The perceptron or processing unit described in Chapter 3, which employs
multiplication, addition, and the sigmoid activation function to produce the
nonlinear output from the applied input, is generally known as a simple neural
network. However, if their architectures are extended by adding other mathematical

228 Computational Intelligence in Time Series Forecasting

x1

xn

w1

wn

:
: In

p
u

t
n

eu
ro

n

AND-output
neuron

y = T(S(W1,X1), …, S(Wn,Xn))

y

operations, such as triangular-norm, a triangular-co-norm, etc., to combine the
incoming signals to the neuron, the extended networks give rise to a hybrid neural
network based on fuzzy arithmetic operations. The fuzzy neural network
architecture is practically based on such a processing element known as fuzzy
neuron (Fuller,1995).

6.2.1.1 AND Fuzzy Neuron

Consider a perceptron-like structure as shown in Figure 6.4 with n input neurons
acting as fan out elements (i.e. having the same output values as their inputs) and
with one output neuron. The outputs xi of the input-layer neurons are multiplied by
the connecting weights wi and, thereafter, fed to the output-layer neuron. If,
however, the input signals xi and the weights wi are combined by an S-norm, i.e.
the triangular-conorm

, , 1,2, , .i ii S i np w x (6.1)

Figure 6.4. AND fuzzy neuron

and the input information pi is further aggregated by a T-norm, i.e. triangular
norm, to yield the final output of the neuron as

1 2 1 2

1 1 2 2

, , , , , ,

, , , , , , .

n n

n n

y AND Tp p p p p p

T S S Sw x w x w x
 (6.2)

then the configuration in Figure 6.4 will represent the implementation of an AND
fuzzy neuron under the condition that the T-norm represents a min operator and
the S-norm represents a max operator. Then the min-max composition

1 1min max , , ,max , .n ny w x w x (6.3)

can be realized by the AND fuzzy neuron.

 Neuro-fuzzy Approach 229

x1

xn

w1

wn

:
: In

p
u

t
n

eu
ro

n

OR-output
neuron

y = S(T(W1,X1), …, T(Wn,Xn))

y

6.2.1.2 OR Fuzzy Neuron

If a similar configuration to Figure 6.4 is used, but the signals xi and the weights wi

are combined by a triangular-norm (T-norm)

, , 1, 2, , .i ii T i np w x (6.4)

Figure 6.5. OR fuzzy neuron

and, thereafter, the input information pi is further aggregated by a triangular
conorm (t-conorm or s-norm) to yield the final output of the neuron as follows:

1 2 1 2

1 1 2 2

, , , , , ,

, , , , , , .

n n

n n

y OR Sp p p p p p

S T T Tw x w x w x
 (6.5)

So, if the t-norm or the T = min operator and the t-co norm or the s-norm S = max
operator, then the max-min composition can be realized by the OR fuzzy neuron as
follows:

1 1max min , , ,min , .n ny w x w x (6.6)

Both fuzzy neurons realize logic operations on the membership values. The role of
the connections is to differentiate between particular levels of impact that the
individual inputs might have on the result of aggregation. We note that: (i) the
higher the value of wi the stronger is the impact of xi on the output y of an OR
neuron; (ii) the lower the value of wi the stronger is the impact of xi on the output y
of an AND neuron.

The range of the output value y for the AND neuron is computed by letting all xi

equal to zero or one. By virtue of the monotonic property of the triangular norms,
we obtain

1, , ,1 ,ny T w w (6.7)

230 Computational Intelligence in Time Series Forecasting

G1
1

G1
n

X
x1

xn

:
:

z1

:
: +

GM
1

GM
n

X

x1

xn

:
: zM

y1
1/

/

yM
1

yM
m

y1
m

+

+

b

f1

fm

Z1/b

ZM/b

:
: m

o
u

tp
u

tsD
eg

. o
f

fu
lf

ilm
en

t

n
 in

p
u

ts

D
eg

. o
f

fu
lf

ilm
en

t
o

f
M

 r
u

le
s

and for the OR neuron one derives the boundaries as

10, , , .ny S w w (6.8)

Similar to AND and OR fuzzy neurons, several other fuzzy neurons, such as
implication-OR, Kwan and Cai’s fuzzy neuron, etc. have been proposed (Fuller,
1995).

6.3 Neuro-fuzzy System Selection for Forecasting

The most common approach to numerical-data-driven neuro-fuzzy modelling is to
use a Takagi-Sugeno-type fuzzy model along with differentiable operators and
continuously differentiable membership functions (e.g. Gaussian function) for
building the fuzzy inference mechanism, and the weighted average defuzzifier for
defuzzification of output data. The corresponding output inference can then be
represented in a multilayer feedforward network structure, such as the one depicted
in Figure 6.6. In principle, the neuro-fuzzy network’s architecture (Figure 6.6) is
identical to the architecture of ANFIS, as shown in Figure 6.3.

Figure 6.6. Fuzzy system as a multi-input multi-output feedforward neural network

The neuro-fuzzy model presented in Figure 6.6 is based on Gaussian
membership functions. It uses Takagi-Sugeno-type fuzzy rules, product inference,
and weighted average defuzzification. The nodes in the first layer calculate the
degree of membership of the numerical input values in the antecedent fuzzy sets.
The product nodes () in the rectangular blocks (rounded corners) represent the
antecedent conjunction operator and the output of this node is the corresponding
degree of fulfilment ; 1, 2, 3, ,lz l M or firing strength of the rule. The division

nodes / , together with summation nodes (+), help implement the normalized

 Neuro-fuzzy Approach 231

degree of fulfilment lz b of the corresponding rule, which, after multiplication

with the corresponding Takagi-Sugeno rule consequent l
my , is used as input to the

summation block (+) at the final output layer. The output of this summation node is
the final defuzzified output value, which, being crisp in nature, is directly
compatible with the real world data. Once the fuzzy system of the above choice is
represented as a feedforward network, the algorithm used for its training is less
relevant.

A similar fuzzy model with singleton rule consequents, trained with standard
backpropagation algorithm, was used by Wang and Mendel (1992b) for
identification of various nonlinear plants.

Forecasting of time series is primarily based on numerical input-output data. To
demonstrate this for neuro-fuzzy networks, a Takagi-Sugeno-type model, i.e. with
linear rules consequent (and also a singleton model as a special case), is selected
(Palit and Popovic, 1999; Palit and Babuška, 2001). Here, the number of
membership functions to be implemented for fuzzy partitioning of input universes
of discourse happens to be equal to the number of a priori selected fuzzy rules. To
accelerate the convergence speed of the training algorithm and to avoid other
inconveniences, the Levenberg-Marquardt training algorithm (described in the
Section 6.4.2.3) or the adaptive genetic algorithm (AGA) can also be used.

In Chapter 4 it was shown that in forecasting of various nonlinear time series
the fuzzy logic approach with automatically generated fuzzy rules (Wang and
Mendel, 1992c; Palit and Popovic, 1999) works reasonably well. However, it was
emphasized that the performance of fuzzy logic systems depends greatly on a set of
well-consistent fuzzy rules and on the number of fuzzy membership functions
implemented, along with their extent of overlapping. Therefore, determination of
the optimum overlapping values of adjacent membership functions is very
important in the sense that overlapping values too large or too small may
deteriorate the forecasting accuracy. In the absence of firm guiding rules for
optimum selection of overlapping, this selection mechanism was rather seen more
as an art than as a science, mainly relying on a trial-and-error approach.
Alternatively, very time-consuming heuristic approaches, such as the evolutionary
computation or the genetic algorithms (Setnes and Roubos, 2000), can be used for
this purpose.

Fuzzy logic systems encode numerical crisp values using linguistic labels, so it
is difficult and time consuming to design and fine tune the membership functions
related to such labels. However, neural networks’ learning ability can automate this
process. The combination of both fuzzy logic and neural network implementations
can thus facilitate development of hybrid forecasters.

As an example we will consider the neural-networks-like architecture of the
neuro-fuzzy system (Figure 6.6) and the training algorithm selected will fine tune
the randomly generated system parameters. The great advantage of this scheme is
that, apart from the user-selected number of fuzzy rules to be implemented, all
other fuzzy parameters are automatically set by the training algorithm, so that the
user does not need to bother about the optimal settings of fuzzy region
overlappings and the like. Therefore, the approach to be described here is often

232 Computational Intelligence in Time Series Forecasting

referred to as an adaptive neuro-fuzzy approach and the related fuzzy logic system
as an adaptive fuzzy logic system (Wang, 1994).

6.4 Takagi-Sugeno-type Neuro-fuzzy Network

In the recent years much attention has been paid to deriving an effective data-
driven neuro-fuzzy model because of its numerous advantages. For example,
ANFIS-based (neuro-fuzzy) modelling was initially developed by Jang (1993) and
Jang and Sun (1995), and later on widely applied in engineering. Similarly,
singleton-rule-based and data-driven multi-input single output neuro-fuzzy
modelling was initially developed by Wang and Mendel (1992b) and used for
solving a variety of systems identification and control problems. A similar neuro-
fuzzy network, with an improved training algorithm, was later developed and
applied by Palit and Popovic (1999, 2000a, 2002b) and Palit and Babuška (2001)
for time series forecasting. Because of its advantages compared with ANFIS, at
least as far as model accuracy and the training time are concerned, this similar
model, but with multi-input and multi-output structure, will be used in this chapter
as a neuro-fuzzy forecaster. The advantages of this approach, where an explicitly
Takagi-Sugeno-type multi-input multi-output fuzzy model is used, will be
demonstrated on simulation examples of benchmark problems. Furthermore, the
type of network selected can be regarded as a generalization or upgraded version of
both a singleton-consequent-type multi-input single-output neuro-fuzzy network
and the Takagi-Sugeno-type multiple input single output neuro-fuzzy network of
Palit and Babuška (2001).

To avoid the fine tuning difficulties of initially chosen random membership
functions, an efficient training algorithm for modelling of various nonlinear
dynamics of multi-input multi-output systems is proposed that relies on a Takagi-
Sugeno-type neuro-fuzzy network. The algorithm is further used for training the
neuro-fuzzy network with the available data of a nonlinear electrical load time
series. Thereafter, the trained network is used as a neuro-fuzzy model to predict the
future value of electrical load data. In order to verify its prediction capability with
other standard methods, some benchmark problems, such as Mackey-Glass chaotic
time series and second-order nonlinear plant modelling, are considered.

Furthermore, the neuro-fuzzy approach described here attempts to exploit the
merits of both neural-network and fuzzy-logic-based modelling techniques. For
example, the fuzzy models are based on fuzzy IF-THEN rules and are, to a certain
degree, transparent to interpretation and analysis, whereas the neural-networks-
based black-box model has a unique learning ability.

In the following, the Takagi-Sugeno-type multiple-input multiple-output neuro-
fuzzy system is constructed by multilayer feedforward network representation of
the fuzzy logic system, as described in Section 6.4.1, and its training algorithm is
described in Section 6.4.2. Thereafter, some comparisons between the radial basis
function network and the proposed neuro-fuzzy network are made, followed by
similar comparisons of the training algorithm for neural networks and neuro-fuzzy
networks. Neuro-fuzzy modelling and time series forecasting are subsequently
described and then, finally, some engineering examples are presented.

 Neuro-fuzzy Approach 233

6.4.1 Neural Network Representation of Fuzzy Logic Systems

The fuzzy logic system considered here for constructing neuro-fuzzy structures is
based on a Takagi-Sugeno-type fuzzy model with Gaussian membership functions.
It uses product inference rules and a weighted-average defuzzifier defined as

1 1
() ,

M Mlp l l
j j

l l
xf y z z (6.9a)

where j = 1, 2, 3, ..., m; l = 1, 2, 3, ..., M;

0
1

, with 1, 2, 3, , ;
nl l l

j ij ij
i

i ny x (6.9b)

and j = 1, 2, 3, ..., m; l = 1, 2, 3, ..., M;

l l
i i

2 2

1 G G; exp
n

l
i i

i

l l
i i ix x x cz (6.9c)

with i = 1, 2, 3, ..., n.

Here, we assume that 0,, l
ii

l
i Uc and Vy j

l
j , where VU ji and, are the

input and output universes of discourse respectively. The corresponding lth rule
from the above fuzzy logic system can be written as

Rl : If x1 is Gl
1 and x2 is Gl

2 and … and xn is Gl
n

Then xxxy n
l

jn
l

j
l

j
l
j

l

j 2210 1
 (6.10)

where, xi with i = 1, 2, …, n; are the n system inputs, whereas fj, with j = 1, 2, …,
m; are its m system outputs, and Gi

l, with i = 1, 2, …, n; and l = 1, 2, …, M; are the
Gaussian membership functions of the form (6.9c) with the corresponding mean

and variance parameters and l l
i ic respectively and with l

jy as the output

consequent of the lth rule.
It is to be noted that the Gaussian membership functions (Gi

l) actually represent
linguistic terms such as low, medium, high, etc. The rules (6.10), as specified
above, are known as Takagi-Sugeno rules.

In the fuzzy logic system (6.9a) – (6.9c) the Gaussian membership function is
deliberately chosen because the same membership function is continuously
differentiable at all points. This is an essential requirement to apply the gradient-
method-based training algorithm. Furthermore, it is also important to note that the
fuzzy logic system (6.9a) – (6.9c) is capable of uniformly approximating any
nonlinear function to any degree of accuracy over a universe of discourse nU
(Wang, 1994).

234 Computational Intelligence in Time Series Forecasting

By carefully observing the functional forms (6.9a) – (6.9c), it can be seen that
the above fuzzy logic system can be represented as a three-layer multi-input, multi-
output feedforward network as shown in Figure 6.6. Because of the neuro
implementation of the Takagi-Sugeno type fuzzy logic system, Figure 6.6 actually
represents a Takagi-Sugeno-type of multi-input, multi-output neuro-fuzzy network,
where, instead of the connection weights and the biases as in backpropagation

neural networks, we have the mean (cl
i) and the variance (l

i) parameters of

Gaussian membership functions, along with (0 ,l l
j ij), i.e. yl

j from the rules

consequent, as the equivalent adjustable parameters of the network.
If the adjustable parameters of the neuro-fuzzy network are suitably selected,

then the above fuzzy logic system can correctly approximate any nonlinear system
based on given input–output data pairs.

6.4.2 Training Algorithm for Neuro-fuzzy Network

The fuzzy logic system, once represented as the equivalent multi-input, multi-
output feedforward network (Figure 6.6), can generally be trained using any
suitable training algorithm, such as the standard backpropagation algorithm (Palit
et al., 2002) that is generally used for neural networks training. However, because
of its relatively slow speed of convergence, this algorithm needs to be further
improved. Alternatively, a more efficient second-order training algorithm, such as
the Levenberg-Marquardt algorithm described in the Section 6.4.2.3, can also be
used.

6.4.2.1 Backpropagation Training of Takagi-Sugeno-type Neuro-fuzzy Network

Let a set of N input-output data pairs j
pp dx , , with p = 1, 2, 3, ..., N; and

1 2, , ,p npp p
n Uxx x x , and

p m
jjd V is given. The objective is to

determine a fuzzy logic system xf p
j in the form of (6.9a) – (6.9c), such that the

performance function S, defined as

2

1
0.5 0.5

N
T
j jj

p

p
jS e E E (6.11a)

and SSSSS m
m

j
j 21

1
, (6.11b)

is minimized, where Ej is the column vector of errors ()
pp p

j j jdfe x , and p =

1, 2, ..., N; for the jth output from the fuzzy logic system. In addition, we also
assume that the number of fuzzy rules and also the number of membership
functions (to be implemented) M are given. In this way the problem is reduced to

the adjustment of yl
j , i.e. the parameters (l

ij
l

j ,0) from the rules consequent and

 Neuro-fuzzy Approach 235

the mean (cl
i) and variance (l

i) parameters of the Gaussian membership
functions, so that the performance function (6.11a) is minimized. For convenience,

we replace edxf p
jj

pp
j and,, in the above definition of error by fj, dj, and ej

respectively, so that the individual error becomes jjj dfe .

We recall that the steepest descent rule used for training of neuro-fuzzy
networks is based on the recursive expressions

0 0 0(1) ()l l l
j j jk k S (6.12a)

(1) ()l l l
ij ij ijk k S (6.12b)

(1) ()l l l
i i ik k Sc c c (6.12c)

(1) ()l l l
i i ik k S (6.12d)

where S is the performance function (6.11b) at the kth iteration step and

0 , andl l l l
ij i ij k , k , k kc are the free parameters of the network at the

same iteration step, the starting values of which are, in general, randomly selected.
In addition, is the constant step size or learning rate (usually 1), i = 1,

2, ..., n (with n as the number of inputs to the neuro-fuzzy network); j = 1, 2, ..., m
(with m as the number of outputs from the neuro-fuzzy network); and l = 1, 2, 3,
..., M (with M as the number of Gaussian membership functions selected, as well as
the number of fuzzy rules to be implemented).

From Figure 6.6, it is evident that the network output fj and hence the
performance function Sj and, therefore, finally S depends on 0 andl l

j ij only

through yj
l. Similarly, the network output fj and, thereby, the performance functions

Sj and S depend on andl l
i ic only through zl, where, fj, yj

l, b, and zl are

represented by

hyf l
M

l
j
l

j
1

 (6.13a)

xxxy n
l
nj

l
j

l
j

l
j

l

j 2210 1
 (6.13b)

M

l

lll zbbzh
1

and, (6.13c)

2

1
exp

n
l

i

l
i i

l
i

x c
z (6.13d)

Therefore, the corresponding chain rules

236 Computational Intelligence in Time Series Forecasting

l
jj

l
j
l

jjj
l

j yyffSS 00 (6.14a)

l
ijj

l
j
l

jjj
l
ij yyffSS (6.14b)

1

1

m
l ll l
i j i

j

m
ll l
ij j j

j

S c S cz z

S f f cz z

 (6.14c)

1

1

m
l ll l
i j i

j

m
ll l
ij j j

j

S S z z

S f f z z

 (6.14d)

can finally be written as

bzdfS l
jj

l
j0 (6.15a)

xbzdfS i
l

jj
l
ij (6.15b)

2

2l ll
i i i

l
iS A bc x cz (6.15c)

l
i

l
ii

ll
i cxbzAS

32
2 (6.15d)

where,

1

0
1 1

m l
j jj j

j

m n
l l

j ij i jj j
j i

A f dy f

f fx d

 (6.15e)

Using the above results, the final update rules for the networks free parameters can
be written as

bzdfkk l
jj

l
j

l
j 00 1 (6.16a)

xbzdfkk i
l

jj
l
ij

l
ij 1 (6.16b)

2

1 . 2l l l l
i i i i

l
ik k Ac c h x c (6.16c)

32
1 2.l l l l

i i i i
l
ik k A h x c , (6.16d)

 Neuro-fuzzy Approach 237

where
1

, with
M

l l l

l
b bh z z and lh is the normalized degree of fulfilment

(firing strength) of lth rule.
Equations (6.11a) – (6.16d) represent the backpropagation training algorithm

(BPA) for Takagi-Sugeno-type multi-input multi-output neuro-fuzzy networks or
the equivalent fuzzy logic system of form (6.9a) – (6.9c) with linear fuzzy rules
consequent part as

1 2 2 3 3
10

l
l l l

j j nj n
j

l l
j jy x x x x .

In the above Takagi-Sugeno-type fuzzy rules (linear) consequent, if the
coefficients 0,l

ij for i = 1, 2, 3, ..., n; l =1, 2, 3, ..., M; and m = 1, then the

equivalent neuro-fuzzy network is identical with the multi-input, single-output
neuro-fuzzy network described by Wang and Mendel (1992b) and Palit and
Popovic (1999 and 2000a). The resulting fuzzy logic system can be seen as a
special case of both the Mamdani- and -Takagi-Sugeno-type systems, where the

rule consequent is a singleton (constant number) fuzzy set. However, if ,0l
ij for

i = 1, 2, 3, ..., n; l= 1, 2, 3, …, M; and for m = 1, then the resulting fuzzy logic
system is identical with Takagi-Sugeno type multi-input and single-output neuro-
fuzzy network, as described by Palit and Babuška (2001).

It is generally known that the backpropagation algorithm based on steepest
descent rule, in order to avoid the possible oscillations in the final phase of the
training, uses a relatively low learning rate 1 . Therefore, the

backpropagation training usually requires a large number of recursive steps or
epochs. The acceleration of the training process with classical backpropagation,
however, is achievable if the adaptive version of the learning rate or the
momentum version of the steepest descent rule is used:

0 0

0

1 1

(1)

l l l
j j jj

l
j

k k mo bf d z

mo k
 (6.17a)

1 1

(1)

l l l
ij ij j ij

l
ij

k k mo bf d xz

mo k
 (6.17b)

2

1 1 2

1

l l ll
i i i i

l
i

l
ik k mo Ac c x cz

mo kc

 (6.17c)

32
1 1 2

1

l l ll
i i i i

l
i

l
ik k mo A x cz

mo k
 (6.17d)

238 Computational Intelligence in Time Series Forecasting

where,

,11 kkk www (6.17e)

and w represents the networks free parameter vector in general. The momentum
constant is usually less than one. Therefore, we can write mo < 1.

6.4.2.2 Improved Backpropagation Training Algorithm
To improve the training performance of the proposed neuro-fuzzy network, we
have modified the momentum version of the backpropagation algorithm by adding
to it the modified error index term/modified performance index term (6.18a), as
proposed by Xiaosong et al. (1995).

2

1
5.0

N

r
avgrm eeS ww , (6.18a)

where,

w
N

r
ravg e

N
e

1

1
. (6.18b)

and eavg is the average error. Thus, the new error index (new performance index) is
finally defined as

www SSS mnew , (6.19)

where, S(w) is the unmodified performance index as defined in (6.11b). From this,
the corresponding gradient can be defined as

N

r
rr weeS

1
www (6.20a)

N

r
ravgrm weeeS

1
www (6.20b)

N

r
ravgrrnew weeeeS

1
wwww , (6.20c)

where the constant term (gama) < 1 has to be chosen appropriately.

With the modified error index extension as per Equation (6.20c) we need only
to add a new vector term eavgwe with the original error vector we .

Theoretical justification of the improved training performance of the network by
the use of a modified error index term has been described in Xiaosong et al.
(1995).

 Neuro-fuzzy Approach 239

6.4.2.3 Levenberg-Marquardt Training Algorithm
Training experiments with a neuro-fuzzy network using the momentum version of
backpropagation algorithm, as well as its modified error index extension form,
have shown that, with the first 200 training (four inputs- one output) data sets of a
Mackey-Glass chaotic series, backpropagation algorithm usually requires several
hundred epochs to bring the SSE value down to the desired error goal (see Palit
and Popvic, 1999). This calls for an alternative, much faster training algorithm.
Hence, to accelerate the convergence speed of neuro-fuzzy network training, the
Levenberg-Marquardt algorithm (LMA) was proposed.

Although being an approximation to Newton’s method, based on a Hessian
matrix, the Levenberg-Marquardt algorithm can still implement the second-order
training speed without direct computation of the Hessian matrix (Hagan and
Menhaj, 1994). This is achieved in the following way.

Suppose that a function V(w) is to be minimized with respect to the network’s
free-parameter vector w using Newton’s method. The update of w to be used here
is

www VV2 1 (6.21a)

www kk 1 (6.21b)

where wV2 is the Hessian matrix and wV is the gradient of V(w). If the

function V(w) is taken to be the sum squared error function, i.e.

ww
N

r r
eV

1

25.0 (6.22)

then the gradient wV and the Hessian matrix)(2 wV are generally defined

using the Jacobian matrix J(w) as

www eJV T (6.23a)

wwwww eeJJV r

N

r
r

T 2

1

2 , (6.23b)

where

240 Computational Intelligence in Time Series Forecasting

1 1 1

1 2

2 2 2

1 2

1 2

()

p

p

p

N

N

N N N

N

e e e

w w w

e e e

J w w w

e e e

w w w

w w w

w w w

w

w w w

 (6.23c)

and 1 2 pNw , w , ,ww is the parameter vector of network. From (6.23c) it is

seen that the dimension of the Jacobian matrix is (N Np), N and Np being the
number of training samples and the number of adjustable network parameters
respectively. For the Gauss-Newton method the second term in (6.23b) is assumed
to be zero, so that the update according to (6.21a) becomes

wwwww eJJJ
TT 1 . (6.24a).

The Levenberg-Marquardt modification of the Gauss-Newton method is

wwwww eJIJJ
TT 1 (6.24b).

in which I is the (Np Np) identity matrix and the parameter is multiplied by

some constant factor inc whenever an iteration step increases the value of V(w),

and divided by dec whenever a step reduces the value of V(w). Hence, the update

according to (6.21b) is

1

1 .TTk k J I eJ Jw w w w w w (6.24c)

Note that for large the algorithm becomes the steepest descent gradient

algorithm with step size 1 , whereas for small , i.e. 0, it becomes the

Gauss-Newton algorithm. Usually, .inc dec However, in our program we have

selected two different values for them. In order to get even faster convergence, a
small momentum term mo = 0.098 was also added, so that the final update
becomes

1

1

1

TTk k J I eJ J

mo k k

w w w w w w

w w
 (6.24d)

 Neuro-fuzzy Approach 241

It is to be noted that the use of a momentum term is quite usual with the
classical backpropagation algorithm, whereas this may appear to be unusual with
the Levenberg-Marquardt algorithm. However, the latter is justified, as the use of a
momentum term in the backpropagation algorithm is primarily to overcome the
possible trap at local minima and also to prevent small oscillations during the
training of the network; similarly, the use of a small momentum term, as
experimentally verified through simulation, also helps to increase network training
convergence with the Levenberg-Marquardt algorithm. Furthermore, similar to the
backpropagation algorithm, here also the Levenberg-Marquardt algorithm was
extended by adding a modified error index term, as proposed by Xiaosong et al.
(1995), to improve further the training convergence. Therefore, as per (6.20c), the
corresponding new gradient can now be expressed or defined using a Jacobian
matrix as

eJS avg
T

new weweww , (6.25)

where e(w) represents the column vector of errors, and the constant factor 1
(for the Levenberg-Marquardt algorithm) has to be chosen appropriately. Equation
(6.25) suggests that even with consideration of the modified error index extension
of the original performance function the Jacobian matrix remains unaltered and,
with the above modification, we need to add only a new error vector term

avgee w with the original error vector we as we did with the back-

propagation algorithm.

6.4.2.3.1 Computation of Jacobian Matrix
We now describe a simplified technique to compute, layer by layer, the Jacobian
matrix and the related parameters from the backpropagation results. Layer-wise or
parameter-wise computation of the Jacobian matrix is permissible because, as
stated in Equations (6.26a) and (6.26b), the final contents of the Hessian matrix
remain unaltered even if the whole Jacobian is divided into smaller parts.
Furthermore, this division of the Jacobian matrix helps to avoid computer memory
shortage problem, which is likely to occur for large neural networks.

From

wJ

wJ
wJwJwJwJwV TTT

2

1
21

2 , (6.26a)

it follows that

2
1 1 2 2
T TV w w w w wJ J J J . (6.26b)

Computation of the Jacobian matrix is in fact the most crucial step in implementing
the Levenberg-Marquardt algorithm for neuro-fuzzy networks. For this purpose,

242 Computational Intelligence in Time Series Forecasting

the results obtained in the Section 6.4.2.1 will be used, where the derivatives of the
sum square error S with respect to the network’s adjustable parameters (free-

parameters) l
i0 and,,, cl

i
l
ij

l
j for the fuzzy logic system (6.9a) – (6.9c) were

already computed and listed in (6.15a) – (6.15e).
Now, considering the singleton consequent part (constant term) of the rules and

taking into account Equation (6.15a), we can rewrite the gradient SV l
j0 as

jj
ll

j
l

j dfbzSV 00 , (6.27)

where fj is the actual output vector from the jth output node of the Takagi-Sugeno-
type multiple input multiple output neuro-fuzzy network and dj is the
corresponding desired output vector at the jth output node for a given set of input-
output training data. Taking into account Equation (6.27) and comparing it with
(6.23a), where the gradient is expressed using the transpose of the Jacobian matrix
multiplied by the network’s error vector, i.e.

,www eJV T (6.28)

where w is the free parameter of the network, the transpose of the Jacobian matrix
l

j
TJ 0 and the Jacobian matrix l

jJ 0 for the free parameter l
j0 of the neuro-

fuzzy network can be defined by

bzJ ll
j

T
0 (6.29a)

bzJJ l Tl
j

T Tl
j 00 . (6.29b)

This is because the prediction error at the jth output node of the Takagi-Sugeno-
type neuro-fuzzy network is

.j jjfe d (6.30)

However, if we consider the normalized prediction error of the network at the jth
output node, instead of the original prediction error at the jth output node, then by

applying a similar technique, the transposition of the Jacobian matrix l
j

TJ 0 and

the Jacobian matrix l
jJ 0 itself for the free parameter l

j0 will be

zJ ll
j

T
0 (6.31a)

zJJ l Tl
j

T Tl
j 00 , (6.31b)

 Neuro-fuzzy Approach 243

this is because the normalized prediction error at the jth output node of the multi-
input multi-output neuro-fuzzy network is:

bdfe jjj normalized . (6.32)

In the above equation, zl is a matrix of size NM that contains the degree of

fulfilment (firing strength) of each fuzzy rule computed for a given set of training
samples, where M is the number of fuzzy rules (and also the number of Gaussian
membership functions implemented for fuzzy partition of input universes of
discourse) and N is the number of training samples (input-output data samples).

Adopting a similar technique and taking into account Equation (6.28), the
original prediction error (6.30) and Equation (6.15b), which computes the

derivative of S with respect to l
ij , we can get the transposition of the Jacobian

matrix and its further transposition, i.e. the Jacobian matrix itself, for the network’s

free-parameter l
ij using

xbzJ i
ll

ij
T (6.33a)

.
T T

l
ij

lT l
iijJ bJ xz (6.33b)

Also, instead of the original prediction error, if here we consider the normalized
prediction error of Equation (6.32) and, as usual, Equations (6.28) and (6.15b),
then we can get the transposed Jacobian matrix and the Jacobian matrix itself for

the same parameter l
ij as

xzJ i
ll

ij
T (6.34a)

T T
l
ij

lT l
iijJ J xz (6.34b)

Finally, to compute the Jacobian matrices and their transpositions for the

remaining free parameters of the network, i.e. for parameters l
i

l
ic and, , we also

use a similar technique, whereby Equation (6.15e), which computes the term A, has
to be reorganized.

Let us denote

fyD jj
l

j . (6.35)

Using Equations (6.30) and (6.35) we can rewrite (6.15e) as

244 Computational Intelligence in Time Series Forecasting

mm

m

j
jj eDeDeDeDA 2211

1
 (6.36)

Our objective is to find suitable terms Deqv and eeqv such that their product is
equal to

eqv 1 2eqv 1 2 m mA D e D e D e D e (6.37)

where the term eeqv is such that it contributes the same amount of sum squared
error value S of equation (6.11b) as that can be obtained jointly by all the

dfe jjj from the multiple-input multiple-output network. Therefore,

eqv

2 2 2
1 2

p p p p
me e e e , (6.38)

where, p = 1, 2, 3, …, N; corresponding to N training samples. This results in

1

eqv eqvA eD (6.39a)

This can be written in matrix form using the pseudo inverse as

1

eqv eqveqv eqv
T TA ED E E (6.39b)

where Eeqv is the equivalent error vector of size 1N containing
eqv

p
e as its

elements for all (N) training samples. Similarly, Deqv and A are matrices of size
NM and 1M respectively. Once the matrix Deqv and the equivalent error

vector Eeqv are known, we can replace matrix A with their product. Therefore,

eqv eqvA D E (6.40a)

or, equivalently as,

eqv eqvA eD (6.40b)

can be calculated. In the case of a multiple-input single-output neuro-fuzzy
network, i.e. for m = 1 and eDA 11 , eqv 1D D and eqv 1e e hold. This means

that, in this case, Equations (6.37) – (6.40b) need not be computed.
However, for the multiple-input multiple-output case, where 2m , using

(6.37) we can write Equations (6.15c) and (6.15d) as

 Neuro-fuzzy Approach 245

2

eqv eqv 2l ll
i i i

l
iS bc e x cD z (6.41a)

32

eqv eqv 2l ll
i i i

l
iS be x cD z (6.41b)

Now, following the previous technique and realizing that eqv be can be

considered as the normalized equivalent error and, in addition, taking into account
Equation (6.28) and comparing it respectively with (6.41a) and (6.41b), transposed

Jacobian matrix and the Jacobians ,T l l
i iJJ c c and ,T l l

i iJJ for the

network free parameters l
ic and l

i can be computed as:

2

2T l ll
eqvi i i

l
iJ c x cD z (6.42a)

2
2

T
T

l
i

l lT ll
eqv ii i iJ c J c x cD z (6.42b)

32
2T l ll

eqvi i i
l
iJ x cD z (6.42c)

322
T

T
l
i

l lT ll
eqv ii i iJ J x cD z (6.42d)

The above equations describe the Jacobian matrices and their transpositions for the
Takagi-Sugeno-type fuzzy logic systems with the adjustable free parameters l

ic
and l

i when normalized (equivalent) error is considered.
If, however, instead of normalized (equivalent) error only the equivalent error

is considered, then the Jacobian matrices and their transpositions will be the same,
except that in the right-hand sides of Equations (6.42a) – (6.42c) the term lz has to

be replaced by normalized degree of fulfilment of the lth rule ,bzh ll where
M

l

lzb
1

 represents the sum of degree of fulfilment of all rules.

It is to be noted that, while computing the Jacobian matrices, care has to be
taken so that the dimensions of the Jacobians match correctly with NN p ,

where N is the number of training data sets and Np the number of adjustable
parameters in the network’s layer considered. In all our simulation experiments
with neuro-fuzzy networks the normalized prediction error has been considered for
the computation of Jacobian matrices for the network’s free parameters 0

l
j and

l
ij , so that Equations (6.31a), (6.31b) and Equations (6.34a), (6.34b) delivered the

corresponding transposed Jacobian matrices and their Jacobians respectively. In
contrast, normalized equivalent error has been considered for the computation of
transposed Jacobian matrices and their Jacobians respectively for the mean and

246 Computational Intelligence in Time Series Forecasting

variance parameters l
ic and l

i of the Gaussian membership functions; therefore,
Equations (6.42a) – (6.42c) delivered the corresponding transpositions of the
Jacobian matrices and the Jacobian matrices themselves for the Takagi-Sugeno-
type multi-input, multi-output neuro-fuzzy network’s free parameter and gave the
Levenberg-Marquardt algorithm better convergence in most experiments.

6.4.2.4 Adaptive Learning Rate and Oscillation Control
The proposed backpropagation training algorithm and the Levenberg-Marquardt
training algorithm, both with the modified error index extension as performance
function and with the added small momentum term, have proven to be very
efficient, and faster in training the Takagi-Sugeno-type neuro-fuzzy networks than
the standard back-propagation algorithm. But still, the performance function of the
network (if left without any proper care) is not always guaranteed to reduce, in
every epoch, towards the desired error goal. As a consequence, the training can
proceed in the opposite direction, giving rise to a continuous increase of
performance function or to its oscillation. This prolongs the training time or makes
the training impossible. To avoid this, three sets of adjustable parameters are
recommended to be stored for the backpropagation algorithm and two sets for the
Levenberg-Marquardt algorithm. The stored sets are then used in the following
way.

In the case of the backpropagation algorithm, if two consecutive new sets of
adjustable parameters reduce the network performance function, then in the
following epochs the same sets are used and the learning rate in the next step is
increased slightly by a factor of 1.1. In the opposite case, i.e. if the performance
function with the new sets of parameters tends to increase beyond a given limit -
say WF (wildness factor of oscillation) times the current value of the performance
function – then the new sets are discarded and training proceeds with the old sets
of adjustable parameters. Thereafter, a new direction of training is sought with the
old sets of parameters and with lower values of the learning rate parameter, e.g. 0.8
or 0.9 times the old learning rate.

In the case of the Levenberg-Marquardt algorithm, if the following epoch
reduces the value of the performance function, then the training proceeds with a
new set of parameters and the value is reduced by a preassigned factor 1 dec .

In the opposite case, i.e. if the next epoch tends to increase this performance value
beyond the given limits (WF times of current value of performance function) or
remains the same, then the value is increased by another preassigned factor

(inc) but the new set of adjustable parameters is discarded and training proceeds

with the old set of parameters. In this way, in every epoch the value of the
performance function is either decreased steadily or at least maintained within the
given limit values.

 Neuro-fuzzy Approach 247

6.5 Comparison of Radial Basis Function Network and Neuro-
fuzzy Network

There are considerable similarities, as well as dissimilarities, between the RBF-
type neural network and neuro-fuzzy network. In this section we present a few
comparisons between them.

A radial basis function network can be considered as a three-layer network
consisting of an input layer, a hidden layer and an output layer (see Chapter 3 for
details). The hidden layer performs the nonlinear transformation, so that the input
space is mapped into a new space. The output layer then combines the outputs of
the hidden layer linearly. The structure of an RBF network with an input vector

nx and output y is shown in Chapter 3. The output from such a

network can be written as

1
,

N

ii
i

y w Rx x

where iw are the weights and Ri(x) is the nonlinear activation function of the

hidden-layer neurons.
The fuzzy logic system considered in Equations (6.9a) – (6.9c) can be rewritten

as

1 1
() ,where

and 1, 2, 3, , 1, 2, 3, , .

M Mllp l l l
j j

l l
x hf y h z z

j m; l M

noting that, when using the definition of the radial basis function the normalized
degree of fulfilment of the lth rule, i.e. l l

ih h x , is similar to an RBF.

Therefore, the fuzzy logic system can also be represented as an RBF neural
network model. However, the following points have to be carefully noted:

Functions in the form of (6.9a) are just one kind of fuzzy logic system with
a particular choice of fuzzy inference engine with product inference rules,
a fuzzifier, and a weighted-average defuzzifier. If another choice is made,
such as the mean-of-maxima (MOM) defuzzifier, then the fuzzy logic
system will be quite different from the RBF network. Therefore, an RBF
network in fact is a special case of the fuzzy logic system.

The membership functions of the fuzzy logic system can take various
geometric forms (such as Gaussian, triangular, trapezoidal, bell-shaped,
etc.). They can also be non-homogeneous (i.e. the membership functions
that divide the input or output universe of discourse may not all be of the
same functional form), whereas the RBF network takes a lesser number of
functional forms, like a Gaussian function, and are usually homogeneous.
This is due to the different justifications of the neuro-fuzzy network and

248 Computational Intelligence in Time Series Forecasting

the RBF networks. The fuzzy logic systems are justified from the human
reasoning point of view and, therefore, the membership functions can have
any suitable form within the range [0, 1], appropriate to representing the
knowledge of a human expert through IF-THEN rules. On the other hand,
RBF networks are based on biological motivations. Therefore, it is difficult
to justify the use of many different kinds of non-homogeneous basis
functions in a single RBF network.

One of the fundamental differences between a neuro-fuzzy network and an RBF
network is that the former takes the linguistic information explicitly into
consideration and makes use of it in a systematic manner, whereas the latter does
not. Furthermore, while using the neuro-fuzzy network, besides the generated
model accuracy we are also concerned about the transparency of the model,
whereas for the RBF network, and also for other types of neural network, we are
only concerned about the model accuracy (black-box modelling).

6.6 Comparison of Neural Network and Neuro-fuzzy Network
Training

We would now like to compare the back-propagation training algorithms for the
multi-layer perceptron networks and neuro-fuzzy networks described in this
chapter. The training algorithms are similar in the following sense:

Their basic operation, i.e. forward computation and backward training, is
the same, and in order to minimize the sum squared error between the
actual output and the desired output of the network, both of them use either
the same gradient method or the second-derivative-based recursive
algorithm, i.e. the approximate Hessian matrix.

Both of them are universal approximators and, therefore, well qualified to
solve any nonlinear mapping to any degree of accuracy within the universe
of discourse.

However, they differ distinctly in the following:

The parameters (weights and biases) of the neural networks have no clear
physical meaning or interpretation (black-box modelling), which makes the
selection of their initial values difficult; thus, they are chosen rather
randomly. On the other hand, the parameters of the neuro-fuzzy networks
have clear physical meaning (membership functions), so that if the
sufficient knowledge about the system to be modelled by the neuro-fuzzy
networks is available, then a good initial parameter setting procedure can
be developed.

Besides numerical information, linguistic information can also be
incorporated into neuro-fuzzy systems.

 Neuro-fuzzy Approach 249

6.7 Modelling and Identification of Nonlinear Dynamics

We would now like to illustrate the efficiency of the neuro-fuzzy approach
proposed in Section 6.4.1 on some forecasting examples.

6.7.1 Short-term Forecasting of Electrical Load

This application concerns the forecasting the electrical load demand, based on a
time series that predicts the values at time (t + L) using the available observation
data up to the time point t. For modelling purposes the time series data X = {X1, X2,
X3, …, Xq} have been rearranged in input-output form XIO. The neuro-fuzzy
predictor to be developed for time series modelling and forecasting is supposed to
operate with four inputs (i.e. n = 4) and with three outputs (i.e. m = 3). Taking both
the sampling interval and the lead time of forecast to be one time unit, then for
each 4t the input data have to be represented as a four-dimensional vector and
the output data as a three-dimensional vector

 XI = [X(t-3), X(t-2), X(t-1), X(t)],
 XO = [X(t+1), X(t+2), X(t+3)]

Furthermore, in order to have sequential output in each row, the values of t should
run as 4, 7, 10, 13, …, (q-3). The corresponding XIO matrix will then look like
(6.43), in which the first four columns represent the four inputs of the network and
the last three columns represent its output.

1 2 4 63 5 7

4 6 8 1075 9

6 5 4 2 13

, , , , ,

, , , , ,
XIO

, , , , ,q q q q q qq

X X XX X X X

XX XX X X X

XX X X X X X

 (6.43)

In the selected forecasting example, 1163 input-output data were generated, from
which only the first 500 input-output data sets, i.e. the first 500 rows from the XIO
matrix, were used for the multi-input multi-output neuro-fuzzy network training.
The remaining 663 rows of the XIO matrix were used for verification of the
forecasting results. The training and forecasting performances achieved with the
neuro-fuzzy network are illustrated in Figures 6.7(a) – (d) and in Tables 6.1(a) and
6.1(b) respectively.

250 Computational Intelligence in Time Series Forecasting

Figure 6.7(a). Training performance of Takagi-Sugeno-type multi-input multi-output neuro-
fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for short-
term forecasting of electrical load time series when trained with proposed backpropagation
algorithm. Backpropagation algorithm training parameters: = 0.0005, = 0.5, mo = 0.5,
maximum epoch = 300, training (pre-scaled) data = 1 to 500 rows of XIO matrix, initial SSE
= 324.6016 (with random starting parameter), final SSE = 23.8580, data scaling factor =
0.01.

Figure 6.7(b). Forecasting performance of Takagi-Sugeno-type multi-input multi-output
neuro-fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for
short-term forecasting of electrical load when trained with proposed backpropagation
algorithm. Data 1 to 1500 correspond to training data and data 1501 to 3489 (i.e. row 501 to
1163 from XIO matrix) represent the forecasting performance.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0
-5 0

0

5 0

1 0 0

1 5 0
s im fm im o .m : N e uro - fuzzy o u tp u t vs . A c tua l

tim e

N
F

(g
r)

-A
ct

ua
l(b

l)

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0
-1 5 0

-1 0 0

-5 0

0

5 0

1 0 0

1 5 0
s im fm im o .m : N e uro - fuzzy p re d i c ti o n e rro r

tim e

N
F

 P
re

di
ct

io
n

E
rr

or
 (r

ed
)

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

T r n fm im o 1 :S S E - V s - E p o c h

N o o f E p o c h s

S
um

 S
qu

ar
ed

 E
rr

or

0 5 0 0 1 0 0 0 1 5 0 0
- 1 5 0

- 1 0 0

-5 0

0

5 0

1 0 0

1 5 0
T rn fm i m o 1 : N e u r o - fu z z y o u tp u t - V s - A c tu a l

T i m e

N
F

(g
r)

-A
ct

ua
l(b

lu
e)

-E
rr

or
(r

ed
)

 Neuro-fuzzy Approach 251

Figure 6.7(c). Training performance of the Takagi-Sugeno-type multi-input multi-output
neuro-fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for
short-term forecasting of electrical load time series with the proposed Levenberg-Marquardt
algorithm. Training parameters of Levenberg-Marquardt algorithm: 0.001 , = 0.1, mo
= 0.1, maximum epoch = 200, training (pre-scaled) data = 1 to 500 rows of XIO matrix,
initial SSE = 868.9336 (with random starting parameter of neuro-fuzzy network), final SSE
= 22.5777, data scaling factor = 0.01.

Figure 6.7(d). Forecasting performance of the Takagi-Sugeno-type multi-input multi-output
neuro-fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for
short-term forecasting of electrical load after the training with the proposed Levenberg-
Marquardt algorithm. Note that in both Figures 6.7(b) and 6.7(d) data from 1 to 1500
correspond to training data and data from 1501 to 3489 represent the forecasting
performance with validation data set. It is important to note that data within the time points
2200 to 2510 are different from the training data. Still the Takagi-Sugeno-type multi-input

0 500 1000 1500 2000 2500 3000 3500
-50

0

50

100

150

200
simfmimo.m: Neuro-fuzzy output vs. Actual

time

N
F

(g
r)

-A
ct

ua
l(b

l)

0 500 1000 1500 2000 2500 3000 3500
-150

-100

-50

0

50

100

150
simfmimo.m: Neuro-fuzzy prediction error

time

N
F

 P
re

di
ct

io
n

E
rr

or
 (r

ed
)

20 40 60 80 100 120 140 160 180 200

100

200

300

400

500

600

700

800

TrnfLV 2MIMO:SS E -Vs-Epoch

No of Epochs

S
um

 S
qu

ar
ed

 E
rr

or

0 500 1000 1500
-150

-100

-50

0

50

100

150
TrnfLV 2MIMO: Neuro-fuzzy output-V s-A ctual

Time

N
F

(g
r)

-A
ct

ua
l(b

lu
e

)-
E

rr
or

(r
ed

)

252 Computational Intelligence in Time Series Forecasting

multi-output neuro-fuzzy network can predict this data region with reasonably high
accuracy.

Table 6.1(a). Training and forecasting performance of Takagi-Sugeno-type multi-input
multi-output neuro-fuzzy network with proposed backpropagation algorithm for electrical
load time series.

Figure 6.7(a) and Table 6.1(a) demonstrate that the proposed backpropagation
algorithm brings the sum squared error as the performance function smoothly from
its initial value of 324.6016 down to 23.8580 in 300 epochs, whereas Figure 6.7(c)
and Table 6.1(b) demonstrate the training performance with the proposed
Levenberg-Marquardt algorithm. In the latter case the performance function is
brought down to 22.5777 from its initial value of 868.9336 within just 200 epochs,
indicating the much higher convergence speed of the proposed Levenberg-
Marquardt algorithm in comparison with the backpropagation algorithm.
Furthermore, the sum square error plots in both Figure 6.7(a) and Figure 6.7(c)
show that the training does not exhibit much oscillation. The results illustrated in
Figure 6.7(b) and Figure 6.7(d) and also in Table 6.1(a) and Table 6.1(b) clearly
show the excellent training and forecasting performance of the Takagi-Sugeno-
type multiple-input, multiple-output neuro-fuzzy network with the proposed
training algorithms.

Sl. No. Final SSE with pre-scaled data
(scale factor = 0.001)

Final SSE, MSE, RMSE
with original (nonscaled) data

1. SSE = 23.8580

SSE1 = 3.0077,
SSE2 = 7.2863,
SSE3 = 13.5640
(with training data 1 to 1500)

(After training with
backpropagation algorithm)

SSE = 2.3858e+005
(with training data 1 to 1500)
MSE1 = 30.0772,
MSE2 = 72.8630,
MSE3 = 135.6401;

RMSE1 = 5.4843,
RMSE2 = 8.5360,
RMSE3 = 11.6465

2. SSE = 53.5633;
SSE1 = 6.8169,
SSE2 = 16.6395,
SSE3 = 30.1069,
(with training and validation
data points 1 to 3489)

SSE = 5.3563e+005

(with training and validation data
points 1 to 3489)

 Neuro-fuzzy Approach 253

Table 6.1(b). Training and forecasting performance of Takagi-Sugeno-type multi-input
multi-output neuro-fuzzy network with proposed Levenberg-Marquardt algorithm for
electrical load time series.

Sl. No. Final SSE with pre-scaled data
(scale factor = 0.001)

Final SSE, MSE, and RMSE with
original (nonscaled) data

1. SSE = 22.5777

SSE1 = 2.6365
SSE2 = 6.7828
SSE3 = 13.1584
(with training data 1 to 1500)

(After training with Levenberg-
Marquardt algorithm)

SSE = 2.2578e+005

MSE1 = 26.3650
MSE2= 67.8278
MSE3= 131.5837

RMSE1= 5.1347
RMSE2= 8.2358
RMSE3=11.471

2. SSE = 42.3026
SSE1 = 5.0096
SSE2 = 11.7879
SSE3 = 25.5051
(with training and validation data
points 1 to 3489)

SSE = 4.2303e+005

(with training and validation data
points 1 to 3489)

Note that in the Table 6.1(a) and Table 6.1(b) SSE1, SSE2, and SSE3 indicate the
sum squared error values at the output nodes 1, 2 and 3 respectively of the Takagi-
Sugeno-type multi-input multi-output neuro-fuzzy network as formulated in
(Equation 6.11a), and SSE indicates the cumulative sum of the sum square error
values contributed by all three output nodes of the multi-input multi-output neuro-
fuzzy network as formulated in (Equation 6.11b).

6.7.2 Prediction of Chaotic Time Series

In the next application example the proposed neuro-fuzzy algorithm has been
tested for modelling and forecasting the Mackey-Glass chaotic time series,
generated by solving the Mackey-Glass time delay differential equation (6.44)
(MATLAB, 1998).

100.2 1 0.1 ,dx dt x t t x tx (6.44)

for .0for,0and,17,2.10 ttxx

The equation describes the arterial CO2 concentration in the case of normal and
abnormal respiration and belongs to a class of time-delayed differential equations
that are capable of generating chaotic behaviour. It is a well-known benchmark
problem in fuzzy logic and neural network research communities. Like in the

254 Computational Intelligence in Time Series Forecasting

previous example for forecasting purposes the time series data X = {X1, X2, X3, …,
Xq} were rearranged in a multi-input single-output (XIO)-like structure. For
modelling and forecasting of the given time series the respective neuro-fuzzy
predictor that has to be developed is taken to have four inputs (n = 4) and one
output (m = 1). In addition, both the sampling interval and the lead time of forecast
is supposed to be six time units, so that for each t > 18 the input data represents a
four-dimensional vector

 XI(t-18) = [X(t-18), X(t-12), X(t-6), X(t)],

and the output data a scalar value

 XO(t-18) = [X(t+6)].

In the forecasting example considered, using Equation (6.44) and neglecting the
first 100 transient data from the chaotic series, in addition 1000 input-output data
were generated for the XIO matrix. Out of 1000 generated input-output data, only
the first 200 data sets were used for network training, and the remaining 800 data
were used for verification of forecasting results.

The training and forecasting performances achieved with the implemented
neuro-fuzzy network and with stored seven fuzzy rules are illustrated in Figure
6.8(a) and Figure 6.8(b) and listed in Table 6.2(a) and also compared with other
standard models in Table 6.2(b). The items listed in serial numbers 1 to 12 of Table
6.2(b) were taken from Kim and Kim (1997), whereas serial number 13 is taken
from Park et al. (1999). The results clearly confirm excellent training and
forecasting performance of the Takagi-Sugeno-type neuro-fuzzy network for
Mackey-Glass chaotic time series.

 Neuro-fuzzy Approach 255

Figure 6.8(a). Training performance of Levenberg-Marquardt algorithm for Takagi-Sugeno-
type of multi-input single-output neuro-fuzzy network (using seven fuzzy rules and seven
GMFs) with Mackey-Glass chaotic time series data. Parameters of Levenberg-Marquardt
algorithm: = 10, = 0.001, mo = 0.098, WF = 1.01.

Table 6.2(a). Training and forecasting performance of Takagi-Sugeno-type of multi-input
single-output neuro-fuzzy network (with M = 7 fuzzy rules) with proposed Levenberg-
Marquardt algorithm for Mackey-Glass chaotic time series (SSE = sum square error, MSE =
mean square error, MAE = mean absolute error, RMSE = root mean square error)

Sl. No. Input data SSE, MSE
achieved

RMSE, MAE
achieved

1. 1–200

(Training in 95 epochs)

SSE = 0.0026

MSE = 2.5571e–005

RMSE = 0.0051

MAE = 0.0039

2. 201–500

(Forecasting)

SSE = 0.0047

MSE = 3.1120e–005

RMSE = 0.0056

MAE = 0.0043

3. 501–1000

(Forecasting)

SSE = 0.0071 RMSE = 0.0053

4. 201–1000

(Forecasting)

SSE = 0.0118

MSE = 2.9427e–005

RMSE = 0.0054

MAE = 0.0042

SSE = 2

1
0.5

N

r
r

e , MSE = 2

1

N

r
r

e N , RMSE = 2

1

N

r
r

e N , and MAE =

1
,

N

r
r

abs e N where er is the error due to rth data sample and N is the number of data

samples.

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

T r n fL M T 1 :S S E - V s - E p o c h

N o o f E p o c h s

S
um

 S
qu

ar
ed

 E
rr

or

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
- 0 .5

0

0 .5

1

1 .5
T r n fL M T 1 : N e u r o - f u z z y o u tp u t - V s - A c tu a l

T i m e

N
F

(g
r)

-A
ct

ua
l(b

lu
e)

-E
rr

or
(r

ed
)

256 Computational Intelligence in Time Series Forecasting

Figure 6.8(b). Performance of a Takagi-Sugeno-type multi-input single-output neuro-fuzzy
network in forecasting the Mackey-Glass chaotic time series. Figure 6.8(a) and Figure 6.8(b)
demonstrate the excellent training and forecasting performance of the Takagi-Sugeno-type
multi-input single-output neuro-fuzzy network respectively for the Mackey-Glass chaotic
time series. It is to be noted that the neuro-fuzzy network considered for this problem has
only four inputs and one output and uses only seven Gaussian membership functions for
(fuzzy) partitioning of input universes of discourse and seven fuzzy rules for neuro-fuzzy
modelling.

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

0 .5

1

1 .5
s im fzTS .m : N e uro -fuzzy o utp ut vs . A c tua l

tim e

N
F

(g
r)

-A
ct

ua
l(b

l)

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

-0 .2

-0 .1

0

0 .1

0 .2
s im fzTS .m : N e uro -fuzzy p re d ic tio n e rro r

tim e

N
F

 P
re

di
ct

io
n

E
rr

or
 (r

ed
)

 Neuro-fuzzy Approach 257

Table 6.2(b). Comparison of training and prediction performance of fuzzy and other model
with selected Takagi-Sugeno-type multi-input single-output neuro-fuzzy network with
proposed Levenberg-Marquardt training algorithm for Mackey-Glass chaotic time series.

Sl. No. Method Training /
forecasting with
Input data

RMSE
prediction error

1. Kim and Kim
 (coarse partition)

500 0.050809 (5 partitions)
0.044957 (7 partitions)
0.038011 (9 partitions)

2. Kim and Kim
 (after fine tuning)

500 0.049206 (5 partitions)
0.042275 (7 partitions)
0.037873 (9 partitions)

3. Kim and Kim
(genetic-fuzzy predictor
ensemble)

500 0.026431

4. Lee and Kim 500 0.0816
5. Wang (product operator) 500 0.0907
6. Min operator 500 0.0904
7. Jang (ANFIS) 500 0.0070 (16 rules)
8. Auto regression model 500 0.19
9. Cascade correlation neural

network
500 0.06

10. Backpropagation neural
network

500 0.02

11. Sixth-order polynomial 500 0.04
12. Linear prediction model 500 0.55
13. FPNN (quadratic polynomial

fuzzy inference)
500 0.0012 (16 rules)

14. Takagi-Sugeno-type multi-
input single-output neuro-
fuzzy network (proposed
work)

500 (forecasting) 0.0053 (7 rules,
7 GMFs,
non-optimized)

RMSE = 2

1

N

r
r

e N , er is the error due to rth training sample and N is the number

of training / predicted data samples.

258 Computational Intelligence in Time Series Forecasting

6.7.3 Modelling and Prediction of Wang Data

This example deals with the modelling of a second-order nonlinear plant

)())2(),1(()(kukykygky (6.45a)

studied by Wang and Yen (1998, 1999a, and 1999b) and by Setnes and Roubos
(2000 and 2001), with

2 2

(1) (2)((1) 0.5)
((1), (2))

1 (1) (2)

y k y k y k
g y k y k

k ky y
 (6.45b)

The goal is to approximate the nonlinear component))2(),1((kykyg of the

plant with a suitable fuzzy model. Wang and Yen (1999) generated 400 simulated
data points from the plant model (6.45a) and (6.45b). 200 samples of identification
data were obtained with a random input signal u(k) uniformly distributed in [-1.5,
1.5], followed by 200 samples of evaluation data obtained by using a sinusoid
input signal () sin 2 25 ,u k k as shown in Figure 6.9(a). This example was also

used by Setnes and Roubos (2000 and 2001) and a comparison with the results of
Wang and Yen (1998, 1999a, and 1999b) was made. Here, we also apply the
proposed Takagi-Sugeno-type neuro-fuzzy modelling scheme on the original
Wang-data and show the results for linear rules consequents and compare the
results with others described in the above references.

In order to apply the Takagi-Sugeno-type neuro-fuzzy modelling scheme the
original Wang data (which is available to us in the form of an XIO matrix of size
400 × 3 that contains the first two columns as inputs and the third column as the
desired output) was scaled and normalized down to the range [0, 1] for
convenience. In the following, since our objective is to approximate the nonlinear
component))2(),1((kykyg of the plant, the same is treated as the desired

output from the neuro-fuzzy network, whereas u(k) and y(k) have been considered
as two inputs to the neuro-fuzzy network. The scaling and normalization were
performed separately on each column of the XIO matrix, i.e. XIO , ,u y g , and

the three column vectors 1 2, , ,
T

Nu u u u , 1 2, , ,
T

Ny y y y and

1 2, , , ,
T

Ng g g g each contains N data points. The scaled and normalized vector

nsc 0

min0 max

1 min 2 min min(), (), ,() ,

))((

T

lo

lohi

Nu K u u u u u u u

K u uu u
 (6.46)

is then computed where umax and umin are the maximum and minimum values of the
u vector, and uhi = 1 and ulo = 0 are the desired highest and lowest values of the
scaled or normalized unsc vector.

Once the scaling/normalization is performed, the scaled/normalized data are fed
to the neuro-fuzzy network with n = 2 inputs and m = 1 output for training. Once

 Neuro-fuzzy Approach 259

the network is trained, its final parameter values are stored and the network is used
for prediction. In this experiment, the first 200 data samples were used for training
and the remaining 200 data samples were used for evaluation. The training
performance of the network is illustrated in Figure 6.9(b) and also listed in Table
6.3(a). It is also illustrated that using only M = 10 fuzzy rules (first model) and also
10 Gaussian membership functions implemented for fuzzy partition of the input
universe of discourse the proposed training algorithm could bring the network
performance index (SSE) down to 3.0836 × 10–4 or equivalently MSE to 3.0836 ×
10–6 from their initial values 45.338 in only 999 epochs. This is equivalent to
achieving an actual SSE = 0.0012 or an actual MSE = 1.1866 × 10–5 when
computed back on the original data.

Figure 6.9(a). Plot of first input u(k) (top), output g(k) (middle) and second input y(k)
(bottom) of non-scaled Wang data (second-order nonlinear plant).

The corresponding evaluation performance of the trained network, as shown in
Figure 6.9(c) and also listed in Table 6.3(a), illustrates that using the scaled or
normalized evaluation data set from 201 to 400, the SSE value of 5.5319 × 10–4, or
equivalently MSE value of 5.5319 × 10–6, were obtained. The above results further
correspond to an actual SSE value of 0.0021, or equivalently to an actual MSE
value of 2.1268 × 10–5, which were computed back on the original evaluation data
set. Evidently, the evaluation performance (actual MSE value), reported in Table
6.3(b), is at least 10 times better than that achieved by Setnes and Roubos (2000),
Roubos and Setnes (2001) and much better than that achieved by Yen and Wang
(1998, 1999a, 1999b).

0 5 0 10 0 15 0 2 00 2 50 3 00 3 50 4 00
-2

-1

0

1

2
u(k), g (k) and y(k) p lo t o f W ang d a ta

In
pu

t1
 u

(k
)

0 5 0 10 0 15 0 2 00 2 50 3 00 3 50 4 00

-1

-0 .5

0

0 .5

1

O
ut

pu
t g

(k
)-

bl
ac

k

0 5 0 10 0 15 0 2 00 2 50 3 00 3 50 4 00
-2

-1

0

1

2

In
pu

t2
 y

(k
)-

bl
ue

260 Computational Intelligence in Time Series Forecasting

Table 6.3(a). Training (999 epochs) and evaluation performance of Takagi-Sugeno-type
multi-input single-output neuro-fuzzy network with proposed Levenberg-Marquardt
algorithm for Wang data (second-order nonlinear plant data). Tuning parameter values of
Levenberg-Marquardt algorithm for first model, i.e. M = 10, GMFs* = 10: = 10, =
0.01, mo = 0.098, WF = 1.05; for second model, i.e. M = 5, GMFs* = 5: = 10, = 0.01,
mo = 0.098, WF = 1.05

Sl. No. Input data SSE & MSE
(with pre-scaled and
 non-scaled actual data)

RMSE & MAE
(with pre-scaled and
 non-scaled actual data)

1 1–200
Training data

(first model)

SSE_train = 3.0836e–004
MSE_train = 3.0836e–006

Equivalently actual
SSE_train = 0.0012
MSE_ train= 1.1866e–005

RMSE_train = 0.0018
MAE_train = 0.0012

Equivalently actual
RMSE_train = 0.0034
MAE_train = 0.0024

2 201–400
Evaluation data

(first model)

SSE_test = 5.5319e–004
MSE_test = 5.5319e–006

Equivalently actual
SSE_test = 0.0021,
MSE_test = 2.1268e–005

RMSE_test = 0.0024
MAE_test = 0.0015

Equivalently actual
RMSE_test = 0.0046
MAE_test = 0.0030

3 1–200
Training data

(second model)

SSE_train = 0.0135
MSE_train = 1.3491e–004

Equivalently actual
SSE_train = 0.0519
MSE_train = 5.1866e–004

RMSE_train = 0.0116
MAE_train = 0.0087

Equivalently actual
RMSE_train = 0.0228
MAE_train = 0.0170

4 201–400
Evaluation data

(second model)

SSE_test = 0.0203
MSE_test = 2.0289e–004

Equivalently actual
SSE_test = 0.0780
MSE_test = 7.8002e–004

RMSE_test = 0.0142
MAE_test = 0.0104

Equivalently actual
RMSE_test = 0.0279
MAE_test = 0.0204

GMFs* = Gaussian membership functions

The same experiment was also carried out for M = 5 (second model), which
exhibited the following training performance with the first 1 to 200 normalized and
scaled training data: SSE and MSE values of 0.0135 and 1.3491×10–4 respectively,
which correspond to the actual SSE and MSE values of 0.0519 and 5.1866×10–4

respectively. In addition, as listed below, the testing or evaluation performance of
the Wang data with 201 to 400 rows, for five fuzzy rules and five Gaussian
membership functions has produced SSE and MSE values of 0.0203 and
2.0289×10–4 respectively. These results further correspond to actual SSE and MSE
values of 0.0780 and 7.8002×10–4 respectively, which are computed back from
original (non-scaled) evaluation data.

 Neuro-fuzzy Approach 261

Figure 6.9(b). Performance of Takagi-Sugeno-type multi-input single-output neuro-fuzzy
network with M = 10 rules (first model) for normalized Wang data when trained with
proposed Levenberg-Marquardt algorithm.

Figure 6.9(c). Prediction performance of Takagi-Sugeno-type multi-input single-output
neuro-fuzzy network with M = 10 rules (first model) for non-scaled Wang data after training
with proposed Levenberg-Marquardt algorithm.

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0
0

1 0

2 0

3 0

4 0

TrnfL M T1 :S S E -V s -E p o c h (in i tia l S S E = 4 5 .3 3 8 2 , F ina l S S E = 3 .0 8 3 6 e -0 0 4 in 9 9 9 e p o c hs

N o o f E p o c hs

S
um

 S
qu

ar
ed

 E
rr

or

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

0

0 .2

0 .4

0 .6

0 .8

1

1 .2
Trn fL M T1 w ith no rm a lize d W a ng D a ta : N e uro -fuzzy o utp ut-V s -A c tua l , M = 1 0 R ule s , 1 0 G M F s

T im e

N
F

(g
r)

-A
ct

ua
l(b

lu
e)

-E
rr

or
(r

ed
)

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1
TS type MISO NF ouput-vs-actual output (With full-scale Wang data), M = 10 Rules, 10 GMFs

N
fO

ut
pu

t-b
lu

e,
 d

es
ire

dO
ut

pu
t-B

la
ck

0 50 100 150 200 250 300 350 400
-0.02

-0.01

0

0.01

0.02
TS type MISO NF output error (full-scale error) of Wang data

O
ut

pu
t-E

rr
or

:re
d

262 Computational Intelligence in Time Series Forecasting

Figure 6.9(d). Performance of Takagi-Sugeno-type multi-input single-output neuro-fuzzy
network with M = 5 rules (second model) and five GMFs for normalized Wang data when
trained with proposed Levenberg-Marquardt algorithm.

Figure 6.9(e). Prediction performance of Takagi-Sugeno-type multi-input single-output
neuro-fuzzy network with M = 5 rules (second model) for non-scaled Wang data after
training with proposed Levenberg-Marquardt algorithm.

100 200 300 400 500 600 700 800 900

0

5

10

15

TrnfLMT1:SSE-Vs-Epoch (Initial SSE =16.7419, Final SSE= 0.0135 in 999 epochs)

No of Epochs

S
um

 S
qu

ar
ed

 E
rr

or

20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

1.2
TrnfLMT1 with normalized Wang data: Neuro-fuzzy output-Vs-Actual

with M = 5 rules, and 5 GMFs

N
F

(g
r)

-A
ct

ua
l(b

lu
e)

-E
rr

or
(r

ed
)

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1
TS type MISO NF ouput-vs-actual output (with full-scale Wang data), M= 5 Rules, 5 GMFs

N
fO

ut
pu

t-b
lu

e,
 d

es
ire

d O
u t

p u
t-B

la
ck

0 50 100 150 200 250 300 350 400
-0.15

-0.1

-0.05

0

0.05

0.1
TS type MISO NF output error (full-scale error) of Wang data

O
ut

pu
t-E

rr
or

:re
d

 Neuro-fuzzy Approach 263

Figure 6.9(f). Finally tuned five Gaussian membership functions plot for fuzzy partition of
input u (scaled/normalized) universe of discourse for Wang data. X-axis (input universe of
discourse, scaled/normalized), Y-axis (degree of membership).

Figure 6.9(g). Finally tuned five Gaussian membership functions plot for fuzzy partition of
input y (scaled/normalized) universe of discourse for Wang data. X-axis (input universe of
discourse – scaled/normalized), Y-axis (degree of membership). Note that fuzzy membership
functions in Figure 6.9(f) and Figure 6.9(g) are largely overlapping. Accuracy and
transparency of the model are expected to be further improved if the similar fuzzy sets (for
e.g. G4 and G3 in Figure 6.9(f) and in Figure 6.9(g) G3 and G5 are highly similar fuzzy
sets) are merged and further fine-tuned using genetic algorithm or evolutionary computation.

264 Computational Intelligence in Time Series Forecasting

Table 6.3(b). Comparison of training and evaluation performances of other fuzzy model and
Takagi-Sugeno-type multi-input single-output neuro-fuzzy networks trained with the
proposed Levenberg-Marquardt algorithm for Wang data (second-order nonlinear plant
data)

Method No. of rules No. of fuzzy
sets

Rules
conseq.

MSE
training

MSE
eval.

Wang and
 Yen (1999)

40 (initial)
28 (optimized)

40 Gauss. (2D)
28 Gauss. (2D)

Singleton
Singleton

3.3e–4
3.3e–4

6.9e–4
6.0e–4

Yen and
Wang (1998)

36 (initial)
23 (optimized)
36 (initial)
24 (optimized)

12 B-splines
12 B-splines
12 B-splines
12 B-splines

Singleton
Singleton
Linear
Linear

2.8e–5
3.2e–5
1.9e–6
2.0e–6

5.1e–3
1.9e–3
2.9e–3
6.4e–3

Yen and
Wang (1999)

25 (initial)
20 (optimized)

25 Gauss. (2D)
20 Gauss. (2D)

Singleton
Singleton

2.3e–4
6.8e–4

4.1e–4
2.4e–4

Setnes and
Roubos
(2000)

7 (initial)
7 (optimized)
5 (initial)
5 (optimized)
4 (optimized)

14 Triangular
14 Triangular
10 Triangular
 8 Triangular
 4 Triangular

Singleton
Singleton
Linear
Linear
Linear

1.6e–2
3.0e–3
5.8e–3
7.5e–4
1.2e–3

1.2e–3
4.9e–4
2.5e–3
3.5e–4
4.7e–4

Roubos and
Setnes (2001)

5 (initial)
5 (optimized)
5 (optimized)

10 Triangular
10 Triangular
 5 Triangular

Linear
Linear
Linear

4.9e–3
1.4e–3
8.3e–4

2.9e–3
5.9e–4
3.5e–4

Proposed
neuro-fuzzy
TS model

10 (initial,
non-optimized)
5 (initial,
non-optimized)

10 Gaussian
 5 Gaussian

Linear
Linear

1.1866e–5
5.1866e–4

2.1268e–5
7.8003e–4

The plots of the finally tuned GMFs that made the fuzzy partitions of universes
of discourse of normalized input u(k) and input y(k) are shown in Figures 6.3(f)
and 6.3(g) respectively. The figures also show that there is further scope for
improving the accuracy, transparency and interpretability of neuro-fuzzy model
obtained through similarity measures and genetic-algorithm-based optimizations.
These issues, namely model transparency and interpretability, will be the main
subject of discussion in Chapter 7. The results obtained in this example also, in
general, summarize the excellent prediction performance of Takagi-Sugeno-type
multi-input single-output neuro-fuzzy networks when trained with the proposed
Levenberg-Marquardt Algorithm.

6.8 Other Engineering Application Examples

In the following, some engineering application examples are given in which the
systematic neuro-fuzzy modelling approach has been used to solve the problem of

material property prediction
pyrometer reading correction in temperature measurement of wafers, based
on prediction of wafer emissivity changes in a rapid thermal processing
system, such as chemical vapour deposition and rapid thermal oxidation

 Neuro-fuzzy Approach 265

monitoring of tool wear.

6.8.1 Application of Neuro-fuzzy Modelling to Material Property Prediction

Chen and Linkens (2001) have proposed a systematic neuro-fuzzy modelling
framework with application to mechanical property prediction in hot-rolled steel.
Their methodology includes three main phases:

the initial fuzzy model, which consists of generation of fuzzy rules by a
self-organizing network
the second phase, which includes the selection of important input variables
on the basis of the initial fuzzy model and also the assessment of the
optimum number of fuzzy rules (hidden neurons in the RBF network) and
the corresponding receptive fields determination via the fuzzy c-means
clustering algorithm
third phase, dedicated to the model optimization, including parameter
learning and structure simplification on the basis of backpropagation
learning and the similarity analysis of fuzzy membership functions.

Thereafter, the neuro-fuzzy model developed is used to predict the tensile stress,
yield stress, and the like in materials engineering.

In materials engineering, property prediction models for materials are important
for design and development. This has for many years been an important subject of
research for steel. Much of this work has concentrated on the generation of
structure - property relationships based on linear regression models (Pickering,
1978), (Hodgson, 1996), developed only for some specific class of steels and
specific processing routes. Recently, some improved, neural-networks-based
models have been developed for prediction of mechanical properties of hot-rolled
steels (Hodgson, 1996), (Chen et al., 1998), and (Bakshi and Chatterjee, 1998).
Using complex nonlinear mapping, the models provide more accurate prediction
than traditional linear regression models. But the drawback here is that the
development of these kinds of model is usually highly problem specific and time
consuming, so that the development of a fast, efficient, and systematic data-driven
modelling framework for material property prediction is still needed.

The problem of modelling of hot-rolled metal materials can be broadly stated as
follows. Given a certain material which undergoes a specified set of manufacturing
processes, what are the final properties of this material? Typical final properties, in
which metallurgical engineers are interested, are the mechanical properties such as,
tensile strength (TS), yield stress, elongation, etc. Chen et al. (2001) have
developed a neuro-fuzzy model for the prediction of the composition-
microstructure-property relations of a wide range of hot-rolled steels. More than
600 experimental data from carbon-manganese (C-Mn) steels and niobium micro-
alloyed steels have been used to train and test the neuro-fuzzy model, which relates
the chemical compositions and microstructure with the mechanical properties.

In the experimental data set, they have considered 13 chemical compositions,
two microstructure variables, and measured tensile stress values, which
corresponds to a system with 15 possible input variables and with one output

266 Computational Intelligence in Time Series Forecasting

variable. Several performance indices (RMSE and MAE), and the correlation
coefficient between the measured and the model predicted tensile stress were used
to evaluate the performance of the fuzzy models developed. Property prediction
results for different types of steel are summarized below.

6.8.1.1 Property Prediction for C-Mn Steels
Using the proposed input selection paradigm, five inputs (the carbon, silicon,
manganese, nitrogen contents and the ferrite grain size D–1/2 (mm–1/2), were
selected from the 15 possible input variables. Three hundred and fifty-eight
industrial data were used, with 50% of them for training and the remaining 50% for
model testing. After partition validation and parameter learning, the final fuzzy
models of the Mamdani type consisting of six rules were obtained. The rule-based
fuzzy model was represented by six fuzzy rules. From the fuzzy model generated,
Chen et al. (2001) used linguistic hedges to derive the corresponding linguistic
model.

The fuzzy model with linguistic hedges finally generated used six Mamdani-
type fuzzy rules, such as one described below:

Rule-1: IF Carbon is large and Silicon is medium and Manganese is large and
Nitrogen is medium and D–1/2 is more or less medium, THEN Tensile
Stress is large

Using the above model, Chen et al. (2001) obtained good prediction results that
gave RMSE = 12.44 and 16.85 and MAE = 9.46 and 13.15 for model training and
testing respectively.

According to their simulation result, the out-of-10% error-band prediction
patterns for the testing data is 2.2%. It was claimed that the fuzzy model generated
gave good prediction and generalization capability.

6.8.1.2 Property Prediction for C-Mn-Nb Steels
In another experiment of Chen et al. (2001), for property prediction for C-Mn-Nb
steels, more than 600 measured data, including the previously used 358 C-Mn data,
were used to build the fuzzy model. Three hundred and fifteen data were selected
for training and the remaining 314 data were used for testing. Using their proposed
fuzzy modelling approach, six out of 15 variables were selected as the inputs (C,
Si, Mn, N, Nb, D –1/2) with tensile stress as output. A six-rule fuzzy model was
developed after structure identification and parameter training. The property
prediction resulted in RMSE = 15.48 and 19.74 and MAE = 12.11 and 14.46 for
training and testing, respectively. Furthermore, the out-of-10% error-band patterns
for the testing data were found to be only 3%.

6.8.2 Correction of Pyrometer Reading

As a second engineering application, we describe here the prediction capability of
a self-constructing neural-fuzzy inference network (SONFIN) proposed by Lai
and Lin (1999) for pyrometer reading correction in wafer temperature
measurement, based on emissivity changes. The motivation for this was that,

 Neuro-fuzzy Approach 267

because of several distinct advantages of rapid thermal processing (RTP) over
other batch processing, such as significant reduction in thermal budget and better
control over the processing environment, rapid thermal processing has been
extensively used in high-density integrated circuit manufacturing on single wafers.

Wafer temperature measurement and control are two critical issues here.
Currently, a single-wavelength pyrometer is used as a non-contact temperature
sensor. However, for applications where the characteristics of the surface change
with the time, the wafer emissivity also varies simultaneously. This can lead to
temperature errors in excess of 50 degree Celsius in a few seconds. Various
methods were suggested to overcome this problem, such as use of a dual-
wavelength pyrometer, model-based emissivity correction, etc. A global
mathematical model for the rapid thermal process, which includes the temperature
sensor along with a control loop and lamp system, was developed and simulated by
Lai and Lin (1999). In the same model, emissivity changes during oxidation are
calculated according to reflections, refraction within thin dielectric films on a
silicon substrate. The oxide thickness as a function of oxidation time at various
temperatures, is simulated by a linear parabolic model. Using the basic heat
transfer law, a pyrometer model to simulate the temperature sensor in the rapid
thermal process is derived and, thereafter, a neural-fuzzy network is used to learn
and predict the variations of oxidation growth rate of the film under different
process temperatures. Based on this neural-fuzzy prediction and an already
available optical model the emissivity of the wafer can be correctly computed.

Figure 6.10. Block diagram of the neural-fuzzy method to predict wafer emissivity variation
and to correct the pyrometer readings

Another neural-fuzzy network was used by Lai and Lin (1999) to control the
temperature of an RTP system by using the inverse model of the RTP system to
achieve two control objectives: trajectory following and temperature uniformity on
the wafer. Figure 6.10 shows the block diagram of the neural-fuzzy method to
predict wafer emissivity variation and to correct the pyrometer readings. The
previous corrected temperature value Tc(k) and the current processing time k are
used as the inputs of the neural-fuzzy network to predict the current film thickness,
which is further used to compute the emissivity of the wafer ew´(k+1) according to

NF
predictor

Converter

NF
controller

Pyrometer

RTP plant

Z-1

Tc(k)

Tc(k+1)

Tp(k+1)

Tw(k+1)

EmissChw(k+1)

EmissCh´w(k+1)

P(k+1)

Tp = pyrometer measurement temperature
Tc = corrected temperature, Ts = desired temp.

Tw = wafer actual temperature, EmissCh´w (k) =
predicted wafer emissivity change

Ts(k+1)

268 Computational Intelligence in Time Series Forecasting

wafer optical model. The converter is then used to correct the pyrometer reading
value Tp(k+1) to Tc(k+1).

The neural-fuzzy network used for this purpose was the SONFIN, which has a
fuzzy rule-based network possessing neural learning ability. Compared with other
existing neural-fuzzy networks, a major characteristic of this network is that no
preassignment and design of fuzzy rules are required. The rules are constructed
automatically during the training process. Besides, SONFIN can overcome both the
difficulty of finding a number of proper rules for the fuzzy logic controllers and the
overtuned and slow convergence phenomena of backpropagation neural networks.
SONFIN can also optimally determine the consequent of fuzzy IF-THEN rules
during its structure learning phase, and it also outperforms the pure neural
networks greatly, both in learning speed and accuracy.

6.8.3 Application for Tool Wear Monitoring

In automated manufacturing systems, such as flexible manufacturing systems, one
of the most important issues is the detection of tool wear during the cutting process
to avoid poor quality in the product or even damage to the workpiece or the
machine. It will be shown that a neuro-fuzzy model, based on a prediction
technique, can be applied for monitoring tool wear in the drilling process.

The alternating direction of the cutting force leads to vibrations of the machine
structure. These vibrations will change owing to the tool wear conditions. Despite
the relatively harsh environment in the proximity of the cutting zone, the vibrations
can be measured conveniently by accelerometers at a comparably affordable price.
Neural networks have, for a long time, been used for classification of various
signals. However, because of many limitations, including the slow training
performance of neural networks, alternatively a neural network with fuzzy
inference has been used because of its much faster learning ability. The latter is
nothing but a neuro-fuzzy type of hybrid learning network. Using such a network a
new drill condition monitoring method is described, as proposed by Li et al.
(2000). The method is based on spectral analysis of the vibration signal. The
results are used to generate a set of indices for monitoring, utilizing the fact that
the frequency distribution of vibration changes as the tool wears. The nonlinear
relationship between the tool wear condition and these monitoring indices is
modelled using a hybrid neuro-fuzzy network. The hybrid network selected in this
case has five inputs and five outputs. The inputs to the network are the monitoring
indices based on the vibration signal of the drilling process. It is to be noted that
the mean value of each frequency band can be used to characterize the different
tool conditions. The monitoring indices selected as network inputs are summarized
in Table 6.4(a). The content of the Table 6.4(a) is read follows:

 x1 = the r.m.s value of the signal in the frequency band [0, 300] Hz.

Unlike the inputs of the network, the tool wear condition of the network was
divided into five states represented by five fuzzy membership functions (MF),
namely initial wear, normal wear, acceptable wear, severe wear and failure. Based
on the flank wear of the tool, these conditions are summarized in the Table 6.4(b).

 Neuro-fuzzy Approach 269

Inputs (x1, x2, …, xn) ,
 outputs (y1, y2, …, yn)
yj = max (min (xi ,wij))

x1

xn

x2

y1

y2

ynwn m

w11

 0.05, 0.1, 0.25, 0.3, 0.45, 0.5, 0.55, 0.6

Flank Wear
(mm)

1.0

Initial Normal Acceptable Severe Failure

D
eg

re
e

o
f

M
F

Table 6.4(a). Summary of monitoring indices selected as network inputs

Input
terminal of
network

Input
representation

RMS value of the signal
in the frequency band

1 x1 [0, 300] Hz.
2 x2 [300, 600] Hz
3 x3 [600, 1000] Hz
4 x4 [1000, 1500] Hz
5 x5 [1500, 2500] Hz

Table 6.4(b). Summary of the conditions for various flank wear

Output terminal
of the network

Fuzzy
MF

Tool condition Flank wear

y1 1 Initial wear 0 < wear < 0.1 mm
y2 2 Normal wear 0.05 < wear < 0.3 mm
y3 3 Acceptable wear 0.25 < wear <0.5 mm
y4 4 Severe wear 0.45< wear <0.6 mm
y5 5 Failure wear > 0.6 mm

Figure 6.11. Fuzzy neural net topology (left), fuzzy membership functions of drilling
conditions (right)

The fuzzy membership functions of drilling conditions based on experimental
data and the observed system behaviour are set for output indices of the hybrid
network, and are shown in the Figure 6.11. The reason for choosing a trapezoidal
membership function is that it is difficult to quantify what exact percentage of tool
wear corresponds to a certain linguistic variable. In order to improve the training
speed of the hybrid network, the tool wear conditions are coded as follows: initial
(1,0,0,0,0); normal (0,1,0,0,0); acceptable (0,0,1,0,0); severe (0,0,0,1,0); and failure

270 Computational Intelligence in Time Series Forecasting

(0,0,0,0,1). If the tool condition is acceptable, then the output values of the hybrid
network are (0,0,1,0,0).

Once the hybrid neuro-fuzzy network has learnt the above nonlinear mapping
from a given set of training examples consisting of (x, y) values, thereafter, for a
new set of monitoring indices (i.e. related to the frequency band of the vibration),
obtained from the drilling process through accelerometer, charge amplifier, and the
signal processing unit, the network will generate or predict a set of y values. The
maximum of yi, namely J, is converted to 1, and the others are converted to 0. For
instance, if J = max{yi i =1, 2, 3, …, 5) = y2 = 0.8, the predicted output of the
hybrid network is (0,1,0,0,0). This prediction indicates that the tool wear condition
belongs to the normal category. Exploiting the prediction capability of the hybrid
network and adopting similar methodologies one can monitor the tool wear in an
automated manufacturing system.

6.9 Concluding Remarks

In this chapter a hybrid neuro-fuzzy modelling frame work is proposed. An
accelerated training algorithm, based on either the backpropagation or Levenberg-
Marquardt algorithm and in combination with a modified error index extension,
has also been developed for training Takagi-Sugeno-type multi-input multi-output
or multi-input single-output neuro-fuzzy networks. The increased speed of training
convergence was experimentally confirmed on some examples of modelling and
forecasting of time series. It was observed that the addition of a small modified
error index term to the original performance function improves the convergence
speed of both standard backpropagation and the Levenberg-Marquardt algorithm
significantly.

The trained neuro-fuzzy network itself is found to be powerful for modelling
and prediction of dynamics of various nonlinear phenomena. However, the fuzzy
rules generated through neuro-fuzzy training are occasionally found to be not
transparent enough, in the sense that a clear interpretation of all the tuned fuzzy
sets is not possible. This is due to the fact that the membership functions, finally
tuned through neuro-fuzzy network training, are frequently very similar to each
other or they greatly overlap each other, giving rise to a difficult situation to
interpret. To solve this problem and to improve the interpretability of fuzzy rules,
set-theoretical similarity measures should be computed for each pair of fuzzy sets
and highly similar fuzzy sets should be merged together into a single set (Setnes,
Babuška, Kaymark, 1998) as discussed in detail in Chapter 7. Furthermore, the
tuned membership functions building a universal fuzzy set within the universe of
discourse should be removed because they do not contribute anything to the rule
base. Also, because the parameters of the Gaussian membership functions are
unconstrained, it is probable that the fuzzy partition occasionally may not look like
the usual fuzzy partition. In such cases, the interpretation of a trained neuro-fuzzy
system may also not be possible.

An additional issue is the determination of the optimum number of fuzzy rules
and hence, also the determination of optimum number of membership functions.
This is essential, because an unnecessarily larger rule base may overfit the noisy

 Neuro-fuzzy Approach 271

data and thereby worsen the prediction ability. For determination of the optimum
number of rules and of membership functions, genetic algorithms or, in general,
evolutionary computation, should preferably be used as a proper support tool.

It should finally be underlined that, after the completion of backpropagation or
Levenberg-Marquardt training, if the final (linear/singleton) rules consequent
parameters are determined by applying the least squares error estimator using only
the tuned GMF parameters of the network, then the accuracy of the model could
occasionally be increased further. Furthermore, the simulation results have shown
that the Levenberg-Marquardt algorithm, based on Jacobian matrices computed
using normalized prediction error or normalized equivalent error (Section
6.4.2.3.1), though computationally very heavy, often leads to a better training
performance and to a faster convergence when applied to the Takagi-Sugeno type
of neuro-fuzzy networks. In the experiments investigated here, the proposed
training algorithms (modified backpropagation/Levenberg-Marquardt algorithm)
proved to be efficient enough for neuro-fuzzy modelling and for prediction of
electrical load time series, chaotic time series, etc. Furthermore, some recently
published additional engineering examples confirm the versatility and possible
other applications of neuro-fuzzy networks in different fields of engineering.

References

[1] Bakshi BR and Chatterjee R (1998) Unification of neural and statistical methods as
applied to materials structure-property mapping, J. Alloys Compounds, 279(1): 39–
46.

[2] Bezdek JC (1993) Editorial-fuzzy models: What are they and why, IEEE Trans. on
Fuzzy Systems, vol. 1, pp. 1–5.

[3] Brown M and Harris C (1994) Neuro-fuzzy adaptive modelling and control, Prentice
Hall, New York.

[4] Buckley JJ and Hayashi Y (1994) Fuzzy neural networks, In: Fuzzy Sets, Neural
Networks and Soft Computing, edited by Yager R and Zadeh L, Van Nostrand
Reinhold, New York.

[5] Chak CK, Feng G and Ma J (1998) An adaptive fuzzy-neural network for MIMO
system model approximation in high-dimensional spaces, IEEE Trans. on System,
Man and Cybernetics, 28: 436–446.

[6] Chen M and Linkens DA (1998) A fast fuzzy modeling approach using clustering
neural networks, In Proc. IEEE world congress on Intell. Computat. 2: 1406–1411.

[7] Chen M Linkens DA (2001), A systematic neuro-fuzzy modelling framework with
application to material property prediction, IEEE Trans. on SMC, B 31(5): 781–790.

[8] Cho KB and Wang BH (1996) Radial basis function based adaptive fuzzy systems and
their application to system identification and prediction, Fuzzy Sets System., 83: 325–
339.

[9] Fuller R (1995) Neural-fuzzy systems, Abo Akademi.
[10] Gupta MM (1994) Fuzzy neural networks: Theory and Applications, Proceedings of

SPIE, vol. 2353, pp. 303–325.
[11] Gustafson DE, Kessel WC (1979) Fuzzy clustering with fuzzy covariance matrix,

Proc. of the IEEE CDC, San Diego, 761–766.
[12] Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt

algorithm, IEEE Trans. on Neural Networks, 5(6): 989–993.

272 Computational Intelligence in Time Series Forecasting

[13] Hodgson PD (1996) Microstructure modeling for property prediction and control, J. of
Materials Process Technology, 60: 27–33.

[14] Jang JSR (1993) ANFIS: Adaptive Network Based Fuzzy Inference System, IEEE
Trans. on SMC., 23(3): 665–685

[15] Jang JSR, Sun CT (1995) Neuro-fuzzy modelling and control, Proc. of IEEE, 83:
378–406.

[16] Kim D, Kim C (1997) Forecasting time series with genetic fuzzy predictor ensemble,
IEEE Trans. on Fuzzy Systems, 5(4): 523–535.

[17] Kosko B (1992) Neural networks and fuzzy systems, Prentice Hall, Englewood Cliffs,
New Jersey.

[18] Kulkarni AD (1998) Neural-fuzzy models for multi-spectral image analysis, Internat.
J. of Applied Intelligence, 8: 173–187

[19] Kulkarni AD (2001) Computer vision and fuzzy-neural systems, Upper Saddle River,
New Jersey: Prentice Hall PTR.

[20] Lai JH and Lin CT (1999) Application of neural fuzzy network to pyrometer
correction and temperature control in rapid thermal processing, IEEE Trans. Fuzzy
Systems, 7(2):160–174.

[21] Lee SH, Kim I (1994) Time series analysis using fuzzy learning, Proc. of Intern. Conf.
on Neural Information Processing, Seoul, Korea, 6: 1577–1582.

[22] Li X, Dong S, Venuvinod PK (2000) Hybrid Learning for tool wear monitoring, Int. J.
Adv. Manufacturing Technology, 16: 303–307.

[23] Lin CT and Lee CSG (1991) Neural networks based fuzzy logic and control systems,
IEEE Trans. On Computers, vol. 40, pp. 1320–1336.

[24] MATLAB (1998) Fuzzy logic toolbox, user’s guide, The Math Works Inc., vers. 5.2
[25] Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in soft computing

framework, IEEE Trans. on Neural Networks, 11(3): 748–768.
[26] Nauck D, Klawonn F and Kruse R (1997) Foundations of neuro-fuzzy systems,

Wiley, Chichester, U.K.
[27] Nie J (1997) Nonlinear time-series forecasting : A fuzzy-neural approach,

Neurocomputing, 16(1997): 63–76.
[28] Pal SK and Mitra S (1992) Multilayer perceptron, fuzzy sets and classification, IEEE

Trans. On Neural Networks, 2(5): 683–697.
[29] Palit AK and Babuška R (2001) Efficient training algorithm for Takagi-Sugeno type

neuro-fuzzy network, Proc. of FUZZ-IEEE, Melbourne, Australia, vol. 3: 1367–1371.
[30] Palit AK and Popovic D (1999) Forecasting chaotic time series using neuro-fuzzy

approach, Proc. of IEEE-IJCNN, Washington DC, USA, vol. 3: 1538–1543.
[31] Palit AK and Popovic D (1999) Fuzzy logic based automatic rule generation and

forecasting of time series, Proc. of FUZZ-IEEE, Seoul, Korea, vol. 1: 360–365.
[32] Palit AK and Popovic D (2000) Intelligent processing of time series using neuro-

fuzzy adaptive genetic approach, Proc. of IEEE-ICIT, Goa, India, vol. 1:141–146.
[33] Palit AK and Popovic D (2000) Nonlinear combination of forecasts using artificial

neural network, fuzzy logic and neuro-fuzzy Approaches, Proc. of FUZZ-IEEE, San
Antonio, Texas, USA, vol. 2: 566–571.

[34] Palit AK, Doeding G, Anheier W, Popovic D (2002) Backpropagation based training
algorithm for Takagi-Sugeno type MIMO neuro-fuzzy network to forecast electrical
load time series, Proc. of FUZZ-IEEE, Honolulu, Hawai, USA. vol. 1: 86–91.

[35] Park HS, Oh SK, Ahn TC and Pedrycz W (1999) A study on multi-layer based fuzzy
polynomial inference system based on an extended GMDH algorithm, Proc. of FUZZ-
IEEE, Seoul, Korea, vol. 1: 354–359

[36] Pedrycz W (1995) Fuzzy sets engineering, CRC Press, Boca Raton, Florida.
[37] Pickering FB (1978) Physical metallurgy and the design of steels, Applied Science,

London, U.K.

 Neuro-fuzzy Approach 273

[38] Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classifiers
through iterative complexity reduction, IEEE Trans. on Fuzzy System, 9(4): 516–524

[39] Setnes M, Babuška R, Kaymark U, et al., (1998) Similarity measures in fuzzy rule
base simplification, IEEE trans. on SMC., B-28: 376–386

[40] Setnes M, Roubos JA (2000) GA-fuzzy modelling and classification: complexity and
performance, IEEE Trans. on Fuzzy Systems, 8(5): 509–522

[41] Takagi and Hayashi (1991) NN-driven fuzzy reasoning, Internat. J. of Approximate
Reasoning, 5(3): 191–212.

[42] Wang L and Yen J (1999) Extracting fuzzy rules for system modelling using a hybrid
of genetic algorithms and Kalman filter, Fuzzy Sets System, 101: 353–362

[43] Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis,
Englewood Cliffs, New Jersey: Prentice Hall.

[44] Wang LX and Mendel JM (1992a) Fuzzy basis functions, universal approximation,
and orthogonal least squares learning, IEEE Trans. on Neural Network, 3: 807 – 814.

[45] Wang LX and Mendel JM (1992b) Back-propagation fuzzy system as nonlinear
dynamic system identifiers, Proc. of FUZZ-IEEE, vol. 2: 1409–1418.

[46] Wang LX and Mendel JM (1992c) Generating fuzzy rules by learning from examples,
IEEE Trans. on SMC, 22(6): 1414–1427.

[47] Xiaosong D, Popovic D, Schulz-Ekloff G (1995) Oscillation resisting in the learning
of backpropagation neural networks, Proc. of 3rd IFAC/IFIP workshop on algorithm
and architectures for real-time control, Ostend, Belgium.

[48] Yen J and Wang L (1998) Application of statistical information criteria for optimal
fuzzy model construction, IEEE Trans. on Fuzzy System, 6(3): 362–371.

[49] Yen J and Wang L (1999) Simplifying fuzzy rule-based models using orthogonal
transformation methods, IEEE Trans. on SMC, 29(1): 13–24.

[50] Zhang J and Morris AJ (1999) Recurrent neuro-fuzzy networks for nonlinear process
modelling, IEEE Trans. on Neural Networks, 10: 313–326.

7

Transparent Fuzzy/Neuro-fuzzy Modelling

7.1 Introduction

Fuzzy logic is a methodology widely applied in model building of dynamic
systems for implementation of advanced control systems. Fuzzy models are
developed using the universal approximation capability of fuzzy logic systems.
Such models differ from other types of model built using non-symbolic
methodology, mainly because they can represent knowledge in a transparent
manner using fuzzy IF-THEN rules which are understandable to the human expert
who can directly operate on them. This provides the direct man-machine
communication.

Fuzzy models are generally built by extracting and encoding expert knowledge
into the IF-THEN rules with the linguistic arguments, in this way generating a
transparent knowledge appropriate for its easy inspection, modification, and
maintenance by human experts. However, the process of knowledge acquisition
and building of adequate IF-THEN rules are not trivial tasks, because the experts
are not always available and their knowledge is often incomplete, episodic and
time varying. This was the motivation for switching model building approach from
the seminal ideas of knowledge acquisition described above to a data-driven
approach. Unfortunately, many of newly developed algorithms for data-driven
fuzzy modelling aim at good numerical approximation and pay little attention to
the transparency and computational load of the resulting rule base. In this chapter
we will therefore present a rule base simplification method that can be used - along
with arbitrary fuzzy modelling methods - for obtaining transparent and compact
fuzzy models from data. The efficiency of the approach will be demonstrated on
the example of nonlinear plant modelling and prediction of its future output value.

276 Computational Intelligence in Time Series Forecasting

7.2 Model Transparency and Compactness

Fuzzy models are often referred to as white-box models, in contrast to the neural-
networks-based models which are considered as black-box models. This is because
fuzzy models are, to some extent, transparent to interpretation and analysis,
implying that the model’s output can be justified through developed IF-THEN
linguistic rules. However, the transparency of a fuzzy model cannot be achieved
automatically, unless some special measure is taken a priori. This is especially,
true for the automated data-driven fuzzy modelling technique, where the fuzzy
models generated are not at all or to a restricted degree transparent to
interpretation.

A system can be described by a few fuzzy rules using distinct, i.e. non-
overlapping, interpretable fuzzy sets. It can, of course, also be described by a few
fuzzy rules, but with a large number of highly overlapping fuzzy sets that hardly
allow for any interpretation. Alternatively, if a system is described by a large
number of rules but with a few (or many) distinct and non-overlapping fuzzy sets,
then the fuzzy models generated in such a case could also be unclear or close to
non-interpretable because of the large number of rules. This situation can occur
practically when the fuzzy rules are generated using the Wang and Mendel (1992a)
approach, or by its modification as proposed by Palit and Popovic (1999a),
presented in Chapter 4. In both rule-generation approaches a large number of
input-output data pairs (or training samples) generate a large number of rules, even
though fuzzy domains are partitioned by large (or small) numbers of distinct and
non-overlapping /partially overlapping fuzzy sets such as Small(N), Small(N-1), ...,
Small(1), Centre (CE), Big(1), ..., Big(N), etc. The reason for loss of
interpretability in the above case is mainly because the large number of rules fire
simultaneously for an unknown input condition (within the fuzzy domain) to infer
the corresponding output decision. Therefore, the corresponding output decision
cannot be easily justified by human reasoning.

Yet, in contrast to the above case when a fuzzy model is developed using expert
knowledge, the model designer usually takes care that neither the number of rules
nor the fuzzy sets, which are used to partition the domains, are large at all, besides
maintaining the proper distinguishability of applied fuzzy sets for domain partition.
On the other hand, when automated data-driven techniques are applied to build
fuzzy models from data, a certain degree of redundancy, and thus unnecessary
complexity, cannot be avoided.

In the following, we present a rule base simplification and reduction method
proposed by Setnes et al. (1998a and 1998b) and Setnes (2001) that seeks to
simplify an already available rule base by reducing redundant information present
in the form of similar fuzzy sets. Similar fuzzy sets are overlapping fuzzy sets that
describe almost the same region in the domain of some model variable. In such
cases, the model uses more fuzzy sets than necessary, since these fuzzy sets
represent more or less the same concept. We intend to use the concept of set
theoretic similarity measure, as extensively used by Setnes et al. (1998a, 1998b),
that helps to identify the similar fuzzy sets, and to replace these similar fuzzy sets
by a common fuzzy set representative of those original fuzzy sets. If the
redundancy in the model is very high, then merging the similar fuzzy sets might

 Transparent Fuzzy/Neuro-fuzzy Modelling 277

result in identical rules that can be subsequently removed from the rule base,
leading to a reduction of the number of rules too. Also, the number of dimensions
(features) in the model’s premise can be reduced in the case of partition similarity.

In the rule base simplification method presented here, initially the set-theoretic
similarity between two fuzzy sets is defined, based on which the similarity between
the same sets can be numerically calculated. If the calculated similarity measure is
larger than a threshold value (say 0.7) predefined by the fuzzy model designer,
then the similar fuzzy sets are merged together, resulting in a unique fuzzy set
representative of both fuzzy sets. By selecting different values of similarity
threshold from the same initial (non-transparent/non-interpretable) rule base,
several final (transparent/interpretable) fuzzy models can be generated in which the
degree of acceptability of the final model is a trade-off between the three model
competitive issues: modelling accuracy, transparency, and compactness.

Setnes et al.(1998a, 1998b) have pointed out that several methods have been
proposed for optimizing the size of the rule base. However, the fuzzy set-theoretic
similarity-based rule base simplification method differs from other fuzzy rule base
reduction methods mainly in the way that its main objective is to reduce the
number of fuzzy sets used in the model and not the number of rules. Furthermore,
the method can favourably be combined with any data-driven modelling tools, such
as fuzzy clustering, or even the neuro-fuzzy approach of Palit and Babuška (2001)
and genetic algorithms in order to obtain a tool for transparent, yet reasonably
accurate and compact fuzzy modelling (Setnes and Roubos, 2000; Roubos and
Setnes, 2001).

In what follows, we will briefly discuss the transparent modelling procedure
followed by a general data-driven modelling scheme in which fuzzy set-theoretic
similarity-driven simplification is included. The concepts of similarity and
redundancy to be described here are illustrated through a similarity-driven rule
base simplification method, applied to the example of forecasting a nonlinear time
series using a fuzzy model.

7.3 Fuzzy Modelling with Enhanced Transparency

In the fuzzy modelling scheme presented below, our objective is to achieve a good
approximation accuracy and model transparency in a data-driven fuzzy modelling
approach. In order to make the model transparent and computationally more
efficient, an initial fuzzy model is extracted from observation data. In order to
remove the unnecessary redundancy in the knowledge learnt from the data, the
principle of set-theoretic similarity-driven fuzzy rule base simplification will be
used.

7.3.1 Redundancy in Numerical Data-driven Modelling

In the recent past a variety of numerical data-driven fuzzy modelling tools have
been developed for automated building of data-driven models (Roubos et al., 2001;
Setnes, 2001). Usually, when building a fuzzy model, the model premise space is
partitioned by means of fuzzy sets. However, rule-based models obtained from

278 Computational Intelligence in Time Series Forecasting

numerical data can contain unnecessary redundancy in the form of highly
overlapping and compatible membership functions. Also, when modelling
approaches such as fuzzy clusterings are applied, this redundancy is predominant
because the rules defined in the multidimensional premise are overlapping in one
or more dimensions. As a result, more membership functions will be required to
describe the same concept adequately in the final rule base.

Another common fuzzy modelling approach, such as neuro-fuzzy approach
proposed by (Wang and Mendel, 1992), and it’s modification by (Palit and
Popovi , 1999b), and (Palit and Babuška, 2001), is based on parameter adaptation.
In this approach, an initial partition of the input space is usually given by randomly
generated fuzzy sets or by a number of equidistant symmetrical fuzzy sets defined
for all the premise variables of the system. This partition can be seen as a uniform
grid in the premise space. Thereafter, the parameters of the membership functions
are adapted using the steepest descent method (backpropagation algorithm) (Wang
and Mendel, 1992b; Palit and Popovi , 1999b) or by it’s superior form, such as
Levenberg-Marquradt algorithms (Palit and Popovi , 1999b), (Palit and Babuška,
2001). An undesired effect of adaptation is that antecedent Gaussian fuzzy sets can
move closer to each other and may end up in overlapping positions. Also, some
sets may grow to cover the whole space (universal fuzzy set), or diminish to non-
influential singletons. As illustrated in Figure 7.1, an initially transparent fuzzy
model may become unreadable after parameter adaptation.

Figure 7.1. Fuzzy sets before adaptation (left) and after adaptation (right)

Undesired redundancy in the form of similarity between fuzzy sets can manifest
itself in three different ways:

Similarity of a particular fuzzy set A with other fuzzy sets in the model.
Similarity of a fuzzy set A to the universal fuzzy set U: 1, .A x x X

Similarity of a fuzzy set A to a singleton fuzzy set such that,

01, ;A x if x x and 00, , .A x x x x X

As similar fuzzy sets represent compatible concepts in the rule base, a model with
many similar fuzzy sets becomes redundant, unnecessarily complex and
computationally less efficient. Linguistic interpretation of such a model is also
difficult, as it is not trivial to assign qualitatively meaningful labels to highly
similar fuzzy sets. As an illustration of the latter, consider the Figure 7.1 (right),

Low Medium High

x

M
u

(x
)

Three distinct and
interpretable fuzzy sets

Noninterpretable
fuzzy sets

Close to
Singleton

x

M
u

(x
)

Highly
overlapping

 Transparent Fuzzy/Neuro-fuzzy Modelling 279

where it can be seen that the first two triangular fuzzy sets after adaptation become
highly overlapping and they approximately represent the same concept.
Consequently, assigning them any meaningful label, such as low or medium, is no
longer appropriate. Furthermore, some of the fuzzy sets extracted from numerical
data may be similar to the universal set U. Such fuzzy sets are irrelevant because,
for all the elements within the universe of discourse, they have degree of
membership approximately equal to 1, which fails to categorize the data. The
opposite effect is similarity to a singleton fuzzy set (see Figure 7.1 (right)). In this
case, a particular data point has degree of membership equal to 1 and for all other
data points it gives zero degrees of membership. If a rule has one or more such
fuzzy sets in it’s premise, then it may never fire, and thus the rule does not
contribute to the output model. However, it should be noted that such a rule may
represent an exception in the overall model behaviour and, therefore, deserves a
special care as it’s removal may force one to neglect the exceptionality in the
model behaviour.

7.3.2 Compact and Transparent Modelling Scheme

We will now turn our attention to the application problem of similarity-driven
simplification to enhance the transparency and compactness of a fuzzy rule base. In
order to reduce the redundancy of fuzzy models obtained from data, this
simplification can naturally be combined with a data-driven modelling tool, which
results in a transparent fuzzy model scheme. This is the approach followed in
nonlinear time series modelling for the purpose of forecasting it’s future values. As
such, a data-driven modelling tool, either of the fuzzy clustering or the neuro-fuzzy
method, can be considered. However, other methods, such as Wang and Mendel’s
(1992a) approach, or it’s modification by Palit and Popovic (1999a) for rule base
generation or fuzzy modelling, can also be considered. Setnes et al. (1998a)
considered a similarity-driven simplification in combination with fuzzy-neural
networks, and Setnes and Roubos (2000), and Roubos and Setnes (2001)
considered the genetic-fuzzy approach for second-order nonlinear plant modelling
using Wang data (Wang and Yen, 1999), the principal steps of which for a
transparent modelling scheme are described below.

Step 1: Model Structure Selection

The relevant input and output variables that are used for fuzzy model
building are determined. Here, the structure selection for dynamic systems
means translation of the identification problem into the equivalent
regression problem that can be solved in a static manner (Babuška, 1996).
Frequently, a reasonable choice of model structure can be made by the
user, based on prior knowledge about the process. For the time series
forecasting problem considered in this chapter, four input variables and one
output variable are considered, so that the input data is a vector of size
1 4 and output is a scalar.

Step 2: Data Clustering

280 Computational Intelligence in Time Series Forecasting

The fuzzy clustering is usually used to discover the substructures in the
product space of the available observations, where each cluster defines a
fuzzy region in which the system can be approximated locally by a
corresponding submodel. The location and the parameters of the submodels
are derived from the clusters of the data. By applying cluster validity
measures (Bezdek and Pal, 1998; Gath and Geva, 1989) such as Xie-
Beni’s index (Xie and Beni, 1991) or compatible cluster merging
(Kaymak and Babuška, 1995); (Setnes and Kaymak, 1998) and (Setnes,
1999), an appropriate number of clusters can be found. Alternatively, Yao
et al. (2000) have proposed an entropy-based simple fuzzy clustering
algorithm where the number of clusters is automatically determined by the
clustering algorithm itself. In the recent publications of Panchariya et al.
(2003a, 2003b, 2004a, 2004b) a distance-based simple clustering algorithm
has been developed that uses an almost similar idea for the determination
of the number of clusters.

Step 3: Initial Fuzzy Model

For a rule-based fuzzy model derived from the fuzzy partition matrix and
the cluster prototypes, the rules themselves, the membership functions, and
other model parameters, such as rules consequent parameters, are
automatically extracted. The extraction procedure used depends on the type
of fuzzy model to be built. In our case, fuzzy models of the type Takagi-
Sugeno are considered.

Step 4: Similarity Based Simplification

In order to upgrade or improve the transparency and the computational
issues, the initial fuzzy model is simplified in this step. By selecting an
acceptable degree of similarity (redundancy) between the fuzzy sets in the
model, it is possible to generate models with varying degrees of complexity
for different purposes. Thereafter, depending upon the needs, an
appropriate model can be selected for validation.

Step 5: Model Evaluation

The ultimate version of the fuzzy model built undergoes an evaluation
process that is decisive for its final acceptance for the given purpose. In
addition to the numerical model validation by simulation, the interpretation
of the fuzzy model plays an important role in the process of model
validation. This includes the analysis of the input space coverage by the
rules. If the rule base generated is found to be incomplete, i.e. if no rule is
available involving an antecedent fuzzy set, then some additional rule is to
be provided to complete the rule base. Such, an interpretation is made
easier by the simplification in step 4.

Very often, the number of rules, and hence the number of clusters, are not known a
priori. From the function approximation point of view creation, of too many

 Transparent Fuzzy/Neuro-fuzzy Modelling 281

clusters does not necessarily pose any problem. However, for the inspection of the
resulting model this means higher complexity, less transparency, and possibly
wrong conclusions about the characteristics of the system.

Figure 7.2. Flow chart of transparent fuzzy modelling scheme

Furthermore, in the modelling approach proposed in Figure 7.2, the aggregation
of similar fuzzy sets to a certain degree will correct for bias introduced by having
too many clusters, making the modelling less sensitive to the determination of the
correct number of clusters.

7.4 Similarity Between Fuzzy Sets

The definition of similarity concept between the fuzzy sets depends on their
context. The concept of similarity has been defined, in our case, as the degree to
which the fuzzy sets are equal. For instance, the fuzzy sets F1 (slow) and F2 (fast)
in Figure 7.3(a) have exactly the same (triangular) shape, but clearly represent two
distinct concepts, because they are representatives of slow and fast speeds
respectively.

Figure 7.3(a). Dissimilar fuzzy sets Figure 7.3(b). Similar fuzzy sets

Numerical Data

Selection of model structure
(no. of Input-output)

Fuzzy model evaluation

Neuro-fuzzy / fuzzy
clustering based initial rule-

based fuzzy model

Similarity based rule-base
simplification

Accepted final
model

R
ej

ec
te

d
 m

o
d

el

D
eg

. o
f

M
F

Fuzzy Set
Slow

F1

Fuzzy Set
Fast
F2

Speed

D
eg

. o
f

M
F

Fuzzy Set
(Low)

F3

Fuzzy Set
F4

Temperature

282 Computational Intelligence in Time Series Forecasting

This means that they have a zero degree of equality and are, therefore,
considered dissimilar. On the other hand, the two fuzzy sets F3 and F4 in Figure
7.3(b), although different in shape, have a high degree of similarity or resemblance.
They represent compatible concepts (low temperature) and are considered largely
similar.

7.4.1 Similarity Measure

In the method presented here, two fuzzy sets are considered similar if the two
overlapping membership functions assign approximately the same values of
membership grade to the elements in their universe of discourse. So, the similarity
here is the degree to which they can be considered as equal. Equality is a crisp set
in the classical definition.

Let us now consider two fuzzy sets F1 and F2 with the membership functions

1F x and
2F x respectively. Then, it holds that the fuzzy sets F1 and F2 on X

are equal if
1 2F Fx x and x X , where X is the universe of discourse.

Applying this concept of equality to the fuzzy sets in Figure 7.3, we get that

1 2F F and 3 4 ,F F because in both cases their membership functions are
different. However, F3 and F4 can be said to have high degree of equality, and
hence are similar.

As the fuzzy sets allow for gradual transition between full membership and
total non-membership, therefore, the similarity measure S should capture a gradual
transition between equality and non-equality

1 2,s S F F , 0,1s , (7.1)

The similarity measure is a function of assigning a similarity value “s” to the pair
of fuzzy sets (F1, F2) that indicates the degree to which F1 and F2 are equal.

7.4.2 Similarity-based Rule Base Simplification

For the purpose of rule base simplification, the fuzzy sets in a rule base that
represent a more-or-less compatible concept should be detected by a similarity
measure. Therefore, the fuzzy sets, representatives of a compatible concept, should
be assigned a high similarity value, whereas more distinct sets should be assigned a
lower similarity value. Furthermore, for a correct comparison of similarity values,
the similarity measure in any case should be independent of the scaling of the
domain on which fuzzy sets are defined. As a consequence, this eliminates the
necessity of normalization of the domains.

Now, let F1 and F2 be two fuzzy sets on X with the membership functions

1F x and
2F x respectively. If the four criteria, as listed below, are satisfied

by the similarity measure, then it can be used as a suitable candidate for an
automated rule base simplification scheme.

1. Two overlapping fuzzy sets should have a similarity value s > 0:

 Transparent Fuzzy/Neuro-fuzzy Modelling 283

1 21 2, 0 , 0.F FS F F x X x x

According to this criterion, two overlapping fuzzy sets F1 and F2 should be
assigned a non-zero degree of similarity and should not be regarded as a
totally non-equal.

2. Only two equal fuzzy sets should have a similarity value s =1:

1 21 2, 1 , .F FS F F x x x X

This criterion assures that the equality is a special case of similarity, in the
same way as the crisp sets can be considered as a special case of fuzzy sets.

3. Non-overlapping fuzzy sets should be totally non-equal, i.e. s = 0:

1 21 2, 0 0, .F FS F F x x x X

This assures that dissimilar (non-overlapping) fuzzy sets are excluded from
the set of similar fuzzy sets. Various degrees of similarity between distinct
fuzzy sets are related to the distance between them, and can be quantified
by a distance measure.

4. Similarity between two fuzzy sets should not be influenced by scaling or
shifting the domain on which they are defined:

1 1

2 2

1 2 1 2, , , ,

, , , 0.

F F

F F

S F F S F F l kx x

l kx x k l k

This criterion is required for a fair comparison of similarities in the rule
base, as a similarity measure that satisfies this criterion is not influenced by
the numerical values of the domain variables.

Many methods have been proposed to assess the similarity or compatibility of
fuzzy concepts. A comparative analysis of different measures using human
subjects was reported by Zwick et al.(1987) and the mathematical relations
between the various measures were studied by Cross (1993). Later, Setnes (1995)
investigated the usefulness of various measures for fuzzy modelling.

According to the taxonomy presented by Cross (1993), the compatibility
measures can be divided into three broad classes: set-theoretical, logic-based, and
distance-based measures. Zwick et al. (1987) and Setnes (1995) used the term
similarity measures as a general description for methods of comparing fuzzy sets.
Unlike in the taxonomy by Cross, the term similarity is not reserved for a subclass
of measures, and all measures are divided into two main groups:

geometric similarity measures

284 Computational Intelligence in Time Series Forecasting

set-theoretic similarity measures.

Compared with the classification of Cross, the geometric similarity measures are
the same as the distance-based compatibility measures, and the set-theoretical
similarity measure holds for both the set-theoretic and the logic-based
compatibility measures.

The theoretical analysis of similarity has been dominated by the geometric
models. These models represent fuzzy sets as points in a metric space and the
similarity between the sets is regarded as an inverse of their distance in this metric
space.

Denoting now the distance between the fuzzy sets F1 and F2 as D(F1, F2), the
similarity of F1 and F2 can be written as

1 2
1 2

1
, .

1 ,
S F F

D F F
 (7.2)

Examples of geometric similarity measures are the generalizations of Hausdorff
distance to fuzzy sets (Zwick et al., 1987). Another example is similarity
transformed from the well-known Minkowski class of distance functions:

1

1 2
1 21

, , 1
r

r

rn
i iF Fi

D F F x x r

The above sum of terms holds when the fuzzy sets F1 and F2 are defined on
discrete universe of discourse 1,2, ,iX x i n , whereas for continuous

universes the summation is replaced by integration.
As argued by Zwick et al. (1987), geometric similarity measures are best suited

for measuring similarity (or dissimilarity) among distinct fuzzy sets, while the set-
theoretical measures are most suitable for capturing the similarity among
overlapping fuzzy sets. Setnes and Cross (1997) found that geometric measures are
quite suitable for ranking of fuzzy numbers. The geometric similarity measures
represent similarity as the proximity of fuzzy sets, and not as a measure of equality.
The interpretation of similarity as “approximate equality” can be better represented
by set-theoretic operations like union and intersection. They also have an
advantage over geometrical measures, in that they are not affected by scaling and
ordering of the domain (Setnes, 1995). For the similarity-driven simplification, we
will use the fuzzy Jaccard index, which is based on the set-theoretical operations
of intersection and union, in order to determine the similarity between fuzzy sets.

Considering the two fuzzy sets F1 and F2 defined on the discrete domain X by
their membership functions, the Jaccard index of similarity is defined as

1 2

1 2

1 2
1 2

1 2

min ,
,

max ,

F i F i

F i F i

x xF F
S F F

F F x x
, (7.3)

 Transparent Fuzzy/Neuro-fuzzy Modelling 285

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Gaussian MFs with varying overlap

(a)

de
g.

 o
f M

em
be

rs
hi

p

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
GMFs with varying deg. of Similarity

(b)

de
g.

 o
f S

im
ila

rit
y

where the cardinality is given by

1 1
1

n

F i F i
i

x x .

The fuzzy Jaccard index complies with the four criteria described above, and
reflects the idea of gradual transition from equal to completely non-equal fuzzy
sets with S(F1, F2) = 0. This similarity is also used by Chao et al. (1996) for
training the structure of fuzzy artificial neural networks.

The similarity measure values for Gaussian fuzzy sets with a varying degrees of
overlap are shown in Figure 7.4. Figure 7.4(b) shows that degree of similarity
between the first Gaussian fuzzy set (GMF) and itself is 1.0, whereas it’s degree of
similarity with the second fuzzy set from Figure 7.4(a) is only 0.4889, and with the

Figure 7.4. Gaussian fuzzy sets and varying degree of similarity

third Gaussian fuzzy set it is 0.2295, and so on. The list of degrees of similarity
between the first Gaussian fuzzy set and the fourth set and others are given as
follows: 0.1001, 0.0394, 0.0134, 0.0038, 0.0009, 0.0002, 0.0000.

7.5 Simplification of Rule Base

As discussed in Section 7.2, the automated approaches to fuzzy modelling
frequently introduce redundancy in terms of several similar fuzzy sets that describe
almost the same region in the domain of some model variable. These similarity
measures can be used to quantify the similarity between fuzzy sets in the rule base.
Two or more similar such fuzzy sets can be merged to create a new set to be stored
in the rule base as the representative of the merged sets. In this way, the overall

286 Computational Intelligence in Time Series Forecasting

number of fuzzy sets needed to construct the model decreases, which obviously
simplifies the rule base. The simplification, however, also results when two or
more rules are equal. Here, only one of the equal rules is to be stored in the rule
base. Hence, in the approach presented here, there is a difference between rule
base simplification, where the primary objective is to simplify the rules by
merging similar fuzzy sets that represent almost the similar concept and rule base
reduction, which may follow automatically as a result of rule base simplification.
Figure 7.5 illustrates the idea of merging similar fuzzy sets, showing both rule base
simplification and rule base reduction.

Figure 7.5(a). Similarity-driven rule simplification (A1, A2, A3 are compatible fuzzy sets in
Rules 1, 2 and 3; similarly B2 and B3 are compatible). Note that fuzzy set B1 is close to the
universal fuzzy set in Rule 1.

Figure 7.5(b). Similarity-driven rule simplification and rule reduction (after merging
compatible fuzzy sets A1, A2 and A3 in Figure 7.5(a) to give common fuzzy set Ac, and
similarly merging compatible fuzzy sets B2 and B3 in Figure 7.5(a) in Rule 2 and Rule 3 to
give common fuzzy set Bc).

A1

R1

A2

R2

B1

B2

and x2 is ….If x1 is …. then y is ….

f1

f3
R3

A3 B3

f2

Rc

Ac

R2

Ac Bc

fc1

fc2

then y is ….If x1 is …. and x2 is ….

 Transparent Fuzzy/Neuro-fuzzy Modelling 287

In time series modelling or in data-driven identification of dynamic systems,
when the similarity of the partitioning as a whole of two or more inputs occurs,
another type of redundancy may be encountered. For instance, as illustrated in
Figure 7.6, when delayed samples of the same variables are used as input, say x(k)
and x(k-1), they may have a highly similar influence in the model’s premise. In this
case, the degree of firing of the various rules can be determined by one such input
only, which reduces the dimensionality (feature) of the rule base premise.

7.5.1 Merging Similar Fuzzy Sets

In general, when two fuzzy sets are considered to be similar, the rule base can be
simplified by

replacing A by B
replacing B by A, or
replacing both A and B by a new fuzzy set C.

When the rule base represents a system model, two important aspects of the
simplified rule base are to be considered: the model accuracy and it’s coverage of
the premise space. Here, owing to the rule base simplification, the uncovered
regions should not occur in the premise space. Assuming that the model’s accuracy
is measured by the sum of squared errors J, the effect of replacing A and B by C
should be as small as possible with respect to J. Finding the fuzzy set C best suited
to replace A and B becomes a question of evaluating J. Considering the
nonlinearity of fuzzy models and the possible interplay between the rule
antecedents and the rule consequents, optimizing the fuzzy set C based on J
becomes a computationally intensive search problem. In general, if the model is
more sensitive to changes in A than to the changes in B, then the fuzzy set A should
replace the fuzzy set B, or the common fuzzy set C should resemble A more than B.
In particular cases, some additional aspects like model granularity (number of
linguistic terms per variable), interpretability or physical relevance may be
important.

For a better understanding of merging fuzzy sets, we define a trapezoidal fuzzy
set A using parametric membership functions

1 2 3 4 1 2 3 4; , , , ;A x a a a a a a a a ,

1 4

1 2 3 4 2 3

0, for , or

; , , , 1, for

and 0,1
A

A A

x a x a

x a a a a a x a

x x

 (7.4)

One way to merge the fuzzy sets is to take the support of A B as the support of
the new fuzzy set C. This guarantees preservation of the coverage of the whole
premise space when C replaces A and B in the premise of the rule base. The kernel
(cardinality) of C is given by aggregating the parameters describing the kernels of
A and B. Thus, merging A and B, defined by 1 2 3 4; , , ,A x a a a a and

288 Computational Intelligence in Time Series Forecasting

1 2 3 4; , , ,B x b b b b respectively, gives a fuzzy set C defined by 1 2 3 4; , , , ,C x c c c c

where

1 1 1

3 2 3 2 3

min , ,

1 ,

c a b

c a b

2 1 2 1 2

4 4 4

1 ,

max , .

c a b

c a b
 (7.5)

From the above description one can see that for 2 3a a and 2 3b b , trapezoidal

fuzzy sets A and B reduce to two triangular fuzzy sets and for 2 3c c fuzzy set C
represents the final triangular fuzzy set obtained by merging two triangular fuzzy
sets A and B. Following the same discussion, one can also merge two similar
Gaussian fuzzy sets 1 2 and G G represented by the corresponding membership
function as

2 2; , exp , 1, 2.
iG i i i ix c x c i

Merging of these two fuzzy sets 1 2and G G will result in a new fuzzy set 3G

represented also by a Gaussian membership function with mean and variance
parameters respectively as

3 1 1 1 2 3 2 1 2 21 , 1c c c .

The parameters 1 and 2 [0,1] determine which of the fuzzy sets 1 2, orG G has

the most influence on the cardinality of 3G . Similarly, in the case of trapezoidal or

triangular fuzzy sets the parameters 1 and 2 [0,1] determine which of the
fuzzy sets A or B has the most influence on the cardinality (kernel) of C.

Figure 7.6. Merging of two fuzzy sets, trapezoidal (left) and triangular (right)

A

Mu(x)

B

C

xa4a1 a2 a3

c1

b1

c2 c3 c4

b2 b3 b4

1.0
A

Mu(x)

B
C

xa1 a2 a3

c1

b1

c2 c3

b2 b3

1.0

 Transparent Fuzzy/Neuro-fuzzy Modelling 289

In the following, we will suppose that 1 = 2 = 0.5. This averaging of the
kernel gives a trade-off between the contributions of the rules in which the fuzzy
sets occur. Figure 7.6 illustrates this method for merging the two fuzzy sets A and
B in order to create the fuzzy set C.

7.5.2 Removing Irrelevant Fuzzy Sets

If the rule base contains irrelevant fuzzy sets, i.e. if a fuzzy set in the premise of a
rule has a membership function 1, ,x x X then it is similar to the universal

fuzzy set U and can be removed. The similarity of a fuzzy set A to the universal
fuzzy set is to be quantified by S(A,U). An example of a fuzzy set quite similar to
the universal fuzzy set is illustrated in the Figure 7.7, where the fuzzy set B1 that is
highly similar to a universal fuzzy set can be removed and only A1 is required in
the premise of rule R1 for distinguishing the associated region in the premise space.

Figure 7.7. Irrelevant set (B1) in the rule base and non-similar i iA B domain partition

If the rule base premise consists of all antecedents fuzzy sets similar to the
universal set only, then the corresponding rule can be removed from the rule base.
The activation of such rules is more or less constant for all inputs within the
domain, and the contribution to the output can often be accounted for by re-
estimating the consequents of the other rules. The opposite situation may also
occur. During parameter adaptation of the fuzzy model, the support of one or more
fuzzy sets may become so narrow that they can be almost like fuzzy singletons (see
fuzzy set A3 in rule R3 of Figure 7.7), prohibiting the rule from firing. Singleton-
like fuzzy sets have extremely low similarity to the universal fuzzy set, i.e. S(A, U)
= 0. Rules with such singleton fuzzy sets in their premise are also candidates to be
removed from the rule base. In general, one must be careful, as the rules with

A1

R1

A2

R2

B1

B2

and x2 is ….If x1 is …. then y is ….

f1

f3
R3

A3 B3

f2

Close to universal
fuzzy set

Close to
singleton fuzzy

set

290 Computational Intelligence in Time Series Forecasting

singleton fuzzy sets may represent exceptions. Interaction from the user is typically
needed in such cases to handle such situations. Since our interest is to develop an
automated simplification method, these types of rule reduction are not considered
here.

7.5.3 Removing Redundant Inputs

Figure 7.7 shows a non-similar partitioning of two input-domains. However, in
systems identification and time series modelling, highly similar partitioning of two
or more inputs can sometimes occur. An assessment of the similarity Spq between
the partitions of a pair of inputs (xp, xq) can be obtained by measuring the similarity
S(Alp, Alq) between all corresponding pairs of fuzzy sets l = 1, 2, ..., M, and taking
the minimum occurring similarity for each pair of inputs as the partition similarity:

, , 1, 2,..., .minpq lp lq
l

S S A A l M (7.6)

If the partition similarity Spq is above an acceptable threshold value predefined by
the user, then one of the two inputs, xp or xq, can be removed from the model’s
premise part. Depending upon the model type and it’s performance, e.g. in a
Takagi-Sugeno fuzzy model, it might still be necessary to keep all variables in the
consequent part of the rule base.

7.5.4 Merging Rules

Given a Mamdani-type fuzzy model with k identical rules, if 2k , then the rule
base simplification will result in the removal of k-1 rules, and thereby reducing rule
base. However, if only the premises of the rules (antecedent fuzzy sets) are equal,
but not the consequents, then this may indicate a rule conflict situation in the rule
base and that has to be solved by assigning a degree to each conflict rule (Wang
and Mendel, 1992). In the following, only the fuzzy models of Takagi-Sugeno type
are considered.

As in the case of Takagi-Sugeno models, the rule-consequents are not fuzzy;
therefore, the similarity concept is applied here only in the premise (antecedents)
part of the rules. When the premise parts of 2k Takagi-Sugeno rules are equal,
these rules are removed and replaced by one general rule Rg. This general rule has
the same premise part as the rules that it replaces. However, the consequent
parameters of the general rule are re-estimated taking into account the total
influence of all the k-rules in fuzzy inferencing that it replaces. This can be done by
weighting RG with k and letting it’s consequent be an average of the consequents of
all the k-rules with equal premise parts.

Let Q be a set of indices 1,2, ,l M of the k rules Rl with equal premise

parts. These rules are replaced by a single rule Rg with weight k and consequent
parameters

 Transparent Fuzzy/Neuro-fuzzy Modelling 291

1 k
g l

l Qk
 (7.7)

where l is a vector of the consequents parameters of rule Rl as described in
Chapter 4. The output of the Takagi-Sugeno model can now be calculated as

,

,

l l g g

l l Q

l g

l l Q

y y
y

k
 (7.8)

For the Takagi-Sugeno model, a substitution of the k-rules with equal common
parts by one general rule Rg yields the same input-output mapping. In the above
equation, it is assumed that all rules in the initial rule base have a weight 1lw . A
similar expression can be derived for any rule weights.

Another approach is to re-estimate the consequent parameters in the reduced
rule base using the training data with the help of the least squares error technique
as described in Chapter 4. This requires more computations, but it usually gives a
numerically more accurate result than the averaging in the above equation, since it
enables the consequents to adapt to the new rule base. However, re-estimation of
all rules consequents is the preferred approach using the training samples relying
on the least squares error approach.

7.6 Rule Base Simplification Algorithms

Based on the discussions above, an algorithm is now presented for rule base
simplification in Takagi-Sugeno models. The same procedure, carried out in three
operational steps, can also be used for Mamdani-type fuzzy models.

Simplification, achieved by merging similar fuzzy sets and by removing
fuzzy sets similar to the universal set.
Dimensionality reduction, achieved by removing redundant (similar)
premise partitions.
Rules reduction, achieved by merging rules whose premise parts have
become equal as a result of the two previous steps.

The approach uses the Jaccard similarity measure (7.3) for determining the
similarity between the fuzzy sets in the rule base and requires three threshold
values within [0,1], namely the for merging fuzzy sets that are mutually similar,

 for removing fuzzy sets similar to the universal fuzzy sets, and for removing

the redundant input partitions. The values of and should be relatively high to

ensure that the model’s performance will not be deteriorated. As pointed out by
Setnes (2000), in many applications the values of = 0.8 and = 0.8 have given

good results and are used as defaults in the algorithm, but the selection of a suitable

292 Computational Intelligence in Time Series Forecasting

threshold , which represents the degree to which the user allows for equality
between the two fuzzy sets used in the model, depends on the application. The
lower the value of , the more fuzzy sets are combined, thereby decreasing the
term set of the model. In general, one can expect the numerical accuracy of the
model to decrease as the value decreases.

However, this need not always be the case. If the model is highly redundant or
overdetermined, then the numerical accuracy may improve as a result of merging
the fuzzy sets and thereby possible reduction in rule base. As a general practice,
one may carry out the trial with several values of for a particular application
with the training samples, and the value that gives the best result with the
validation data set for a particular application should be finally selected. For
instance, in order to explain the operation of a particular system, e.g. operator’s
training or expert’s validation, a comprehensible linguistic description is important.
In such cases, it is reasonable to trade some accuracy for extra transparency and
readability. Consequently, this implies the use of a lower value of so that more
fuzzy sets can be found to meet this similarity threshold, and which can, in turn, be
merged. In contrast to this, an application that aims at prediction or simulation
(function approximation) means that one can probably select much higher values
of , as in this case accuracy is more important. To obtain rules sufficiently
distinguishable to describe the system qualitatively, a value around 2/3 has been
found to give good results in the various experiments of Setnes (2000). Since this
part of the simulation requires no additional data acquisition or computationally
expensive optimization, the effect of different thresholds can be easily investigated.

The simplification part of the algorithm can be performed in two ways:

by iterative merging
using similarity relations.

The main difference lies in the computational effort, and the sensitivity to changes
in the threshold . Iterative merging requires more computations than similarity
relations, but it is more transparent to user interaction. Both approaches are
presented below.

7.6.1 Iterative Merging

The algorithm is illustrated in Figure 7.8 and summarized in Algorithm 7.1. The
algorithm starts by iteratively merging similar fuzzy sets. In each iteration, the
similarities between all pairs of fuzzy sets for each variable are considered, and the
pair of fuzzy sets having the highest similarity S > is merged to create a new
fuzzy set. Then, the rule base is updated by substituting this new fuzzy set for the
fuzzy sets merged to create it. The algorithm then again evaluates the similarities in
the updated rule base. This continues until there are no more fuzzy sets for which S
> . Then the fuzzy sets that have similarity S > to the universal fuzzy set are
removed. Thereafter, the rule base premise is checked for redundant inputs. If
present, such inputs are removed. The rule base is then checked for rules with
equal premise parts. Such rules are merged as discussed in Section 7.5.4. Finally,
the rule consequents are re-estimated.

 Transparent Fuzzy/Neuro-fuzzy Modelling 293

Algorithm 7.1. Algorithm of iterative merging

Given a rule base 1,2, , . ,lR R l M with lth rule as Rl: If x1 is Gl
1 and, ..., and xn

is Gl
n then yl = f(x1, ..., xn), where Gl

i, with inputs i = 1, 2,..., n, are fuzzy sets with
membership functions : 0,1 ,

lGi
ix select three thresholds , , 0,1 .

Repeat for inputs i =1, 2, ..., n

Step 1: Selection of the most similar fuzzy sets

, 1,...,

max, ,p qL l l m
i i i i i i

p q
p q M

G G G G G GS S

Step 2: Merging of Selected fuzzy sets

, , , :

(), , set

l m l m L
i i i i i

C L l L l C
i i i i i i

If S G G G G G

MergeG G G G G G

Until: ,l m
i iS G G .

Step 3: Removal of fuzzy sets similar to universal set
for i = 1, 2,, n
 for l = 1, 2, ..., M

, ,l l l
i i ii i iS U U UG G G

If , , l
i iS UG remove Gl

i from the antecedent of rule Rl.

end
end
where 1, .

iU i ix x

Step 4: Removal of redundant inputs
for j = 1, 2,, n-1
 for k = 1, 2,, n

 Sjk= minl , , 1,2, , ;l l
j kS l MG G

 If ,jkS remove xj from the premise.

 end
end

Step 5: Merging of rules with equal premise parts
for l = 1, 2,, M-1
 for m = 1, 2,, M
 if , ,l m

i i iG G Merge (Rl, R
m
).

 end
end

Step 6: Re-estimation of TS rule consequents by LSE method

294 Computational Intelligence in Time Series Forecasting

Figure 7.8. Flow chart for transparent fuzzy modelling through iterative merging

7.6.2 Similarity Relations

In this approach all similar fuzzy sets per input are merged in one operation. The
fuzzy compatibility relation i ilmC c of size M M is calculated for each input i

= 1, 2, ..., n. The elements of compatibility relation ,ilm l i m iC S A x A x are

obtained by the Jaccard similarity index (7.3). It is to be noted that the Jaccard
similarity measure is not transitive. Thus, it follows that Ci is reflexive and

Generate initial fuzzy model

For each input variable measure
the pairwise similarity between

all fuzzy sets

Select the most similar fuzzy
sets

Check whether
Similarity >Threshold

Check the similarity between all
fuzzy sets and universal fuzzy set in

the same domain

Remove the fuzzy set whose similarity
with the universal fuzzy set exceeds

the threshold

Measure the similarity between all
pairs of input / feature partitions

Remove the redundant inputs from the
premise of rule base

Check the equality of the rule
premise part

Merge the rules with identical premise

Recalculate the TS rules consequent
by LSE method using the training data

Obtain the transparent final
fuzzy model

Merge the fuzzy sets

Update the premise of
the rule base

R
u

le
 r

ed
u

ct
io

n
D

im
en

si
o

n
al

it
y

re
d

u
ct

io
n

R
u

le
si

m
p

lif
ic

at
io

nYes

No

 Transparent Fuzzy/Neuro-fuzzy Modelling 295

symmetric, but not transitive. In order to obtain a transitive similarity relation Si,
the max-min transitive closure CTi, of Ci is calculated (Klir and Yuan, 1995):

max .i i i iC C C T C

If ,i iC C set ,i iC C and go to previous step.

Stop: ,Ti iC C set .i TiS C

Here, the t-norm used is the min-operator and “oT” is the sup-t composition. The
lmth element of the fuzzy similarity relation i ilmS s , of size M M , gives the

transitive similarity between the concepts represented by the fuzzy sets Ali and Ami.
The merging of similar fuzzy sets takes place by applying a threshold 0,1 to

the similarity relation. Therefore, the similar fuzzy sets are merged, when their
similarities are greater than a threshold , to produce a fuzzy set representing
generalization of the individual concepts represented by the similar fuzzy sets.
Thereafter, updated rule base is checked for any fuzzy set which is similar to the
universal fuzzy set. The approach is illustrated in Algorithm 7.2 and Example 7.1.

Algorithm 7.2. Algorithm of similarity relations

Given a fuzzy rule base 1,2, , ,lR R l M with the lth rule Rl: If x1 is Gl
1 and, ...,

and xn is Gl
n Then yl = f(x1, ..., xn), where Gl

i, i = 1, 2,..., n, are fuzzy sets with

membership functions : 0,1 ,l
i

iG
x select , 0,1 .

Repeat for inputs i =1, 2, ..., n;

Step 1. Calculate similarity relation:

; , 1, 2, , ;i ilmC c l m M

,i ilm TiS s C

where the elements of the M M fuzzy compatibility relation Ci are given by

,l m
ilm i ic S x xG G .

Step 2. Aggregate similar fuzzy sets

for l =1,2, ..., M

, 1,2, ,

,

l m
i i ilm

l l
i i

S m MG G

MergeG G

end

Step 3 to Step-6. The steps 3-6 are same as in iterative merging algorithm.

296 Computational Intelligence in Time Series Forecasting

Example 7.1

Five triangular fuzzy sets 1 2 5, , ,F F F shown in Figure 7.9(a) are used to partition
the universe of x. Applying the Jaccard similarity index (7.3) a compatibility
relation C and the corresponding similarity relation S i.e., the max-min transitive
closure of C are given as follows:

1.0 0.09 0.06 0.05 0.0

0.09 1.0 0.73 0.59 0.06

0.06 0.73 1.0 0.73 0.06

0.05 0.73 0.59 1.0 0.09

0.0 0.06 0.06 0.09 1.0

C , and

1.0 0.09 0.09 0.09 0.09

0.09 1.0 0.73 0.73 0.09

0.09 0.73 1.0 0.73 0.09

0.09 0.73 0.73 1.0 0.09

0.09 0.09 0.09 0.09 1.0

TS C .

Applying a threshold 2 3 to the similarity relation, we identify a set of similar
fuzzy sets 2 3 4, , ,l lmF F S l m F F F . The linguistic terms (labels) represented

by the three fuzzy sets 2 3 4, ,F F F are merged to create a generalized concept
moderate represented by fuzzy set Fc. The resulting fuzzy partition is depicted in
Figure 7.9(b).

Figure 7.9(a). Fuzzy sets (initial partition) Figure 7.9(b). After merging of fuzzy sets

7.7 Model Competitive Issues: Accuracy versus Complexity

The advantage of transparent representation of the fuzzy model is paid at the cost
of reduced numerical accuracy of fuzzy models compared with that of, say, a
neural-networks-based model, when both models have approximately the same
number of parameters. The reason is that the complexity of fuzzy models grows
with the dimension of input and output spaces, which, as shown by Barron (1993),
is not the case with neural networks. Therefore, for high-order and for
multivariable systems a neural-network-based model might be easier to obtain and
may provide a more compact representation than a fuzzy model. However, fuzzy

Low

Moderate

High

F1 Fc F5

x

Mu(x)

1.0

(b)

1.0

Low High

F1 F2 F3 F4 F5

x

Mu(x)

(a)

 Transparent Fuzzy/Neuro-fuzzy Modelling 297

models are less prone to overfitting, and provide better control over the
interpolation and extrapolation properties of the mapping obtained.

In order to deal effectively with multivariable complex systems, hybrid
approaches should be applied which can use the available prior knowledge about
the system, and allow for decomposition of a large problem into a number of
simpler subproblems. Furthermore, if different fuzzy models of the same type (say,
of Mamdani and Takagi-Sugeno type) are only considered, then the accuracy,
transparency, or complexity and compactness of the generated model may also,
based on the various factors, vary. In addition, for a set of fuzzy models of the
same type (Mamdani) representative of an identical process and even with identical
model inputs and output(s) besides their identical domain representation for all
input and output variables, the accuracy, transparency and compactness of these
models, generated by the same or a different data-driven automated approach, may
be totally different. This is particularly because the model accuracy, transparency,
and compactness are influenced by many factors like

Number of antecedent (or consequent) fuzzy sets assigned to each variable.
Coverage of the antecedent (consequent) fuzzy sets.
Number of fuzzy rules.
Fuzzification/defuzzification or inference mechanism

The first factor suggests that the accuracy of the model may generally increase if
the input universes (and also output universes for a Mamdani model) are fine
partitioned using a large number of membership functions or antecedent (also
consequents) fuzzy sets. In fact, it was observed in Chapter 4 that when the input
and output universes of discourse are partitioned by 27 Gaussian membership
functions instead of an initially chosen 17 Gaussian membership functions, the
accuracy of the generated fuzzy chaotic time series forecaster model has
significantly increased.

Coverage means that each domain element is assigned at least one fuzzy set
with (non-zero) membership degree, i.e.

, , .
iGx X i x

So, coverage actually insists on there being a certain amount of overlapping
between the adjacent fuzzy set, so that entire universe of discourse is well covered
by the input/antecedent (output/consequent) fuzzy sets (see Figure 7.10). Optimum
selection of this coverage (small) value can result in both an accurate and a
transparent model. However, large coverage may result in indistinguishable fuzzy
sets, creating a model that is completely non-transparent. It is also observed that
the accuracy of the model may generally increase if the number of rules are such
that all possible combinations of inputs (antecedents) and output fuzzy sets are
covered by at least one rule (for a Mamdani model).

Suppose that for a two-input and one-output system the first input and second
input universes are partitioned respectively by antecedent fuzzy sets such as (low,
medium and high) and (slow, moderate and fast). In this case at least (32 = 9) nine
fuzzy rules are required to take into account all possible combinations of

298 Computational Intelligence in Time Series Forecasting

antecedent fuzzy sets, such as (low, small), (low, moderate), (low, fast), ..., and
(high, fast) of the two input variables. However, for a multivariable system with a
large number of input and output variables and with a reasonably large number of
antecedent fuzzy sets this is not feasible, as it will explode the fuzzy rule base,
making the model non-transparent, computationally very expensive, and non-
compact.

Figure 7.10. Transparent partitioning of domain by distinguishable fuzzy sets

Accuracy of the model, of course, depends on the type of fuzzification
(singleton or non-singleton) and of defuzzification (mean of maxima or centre of
gravity) method, as well as of the inference mechanism used. For inferencing a
Mamdani-type fuzzy model one can select the product/min operator for degree of
firing of rule computation with Mamdani’s inferencing mechanism. Similarly, for
relational matrix computation (which is used in min-max compositional rule of
inference), Mamdani implication (min operator), or the alternative Larsen
implication (product operator), can be used (see Chapter 4). The different choices
of all those possibilities result in different accuracy of the model even though the
model type (Mamdani), number of inputs and outputs, and their partitioning fuzzy
sets numbers and types of membership function (Gaussian/triangular) may be the
same.

However, assuming that for the identical type of model and using identical
fuzzification, defuzzification, and inferencing mechanisms we obtain fuzzy model
1, which is the most accurate, model 2, which is the most transparent and model 3,
which is the most compact, the question that arises now is which model is to be
selected for a particular situation. There is no unique answer to this question,
because each model has it’s own advantage for a particular application, but is less

1.0

Not easily distinguishable sets

x

Mu(x)

Not moderate number of sets

x

Mu(x)
1.0

Bad coverage, subnormal set

x

Mu(x)
1.0

Transparent partitioning of UD

x

Mu(x)
1.0

 Transparent Fuzzy/Neuro-fuzzy Modelling 299

advantageous for another one. In what follows, a few suggestions are given for
selecting the fuzzy model for some applications.

An extremely complex but very accurate model (high level of similarity
acceptable) can be useful for off-line simulation (function approximation) or
prediction application, because in this case accuracy is more important than model
transparency and compactness. On the other hand, in order to explain the operation
of a particular system, i.e. for operator training, operator interaction, expert
validation, and to understand the basic concepts of the system a transparent model
with a comprehensible linguistic description (where a little similarity is accepted)
is needed. In such cases, it is reasonable to trade some accuracy for extra
transparency and better readability of the fuzzy model. Consequently, this actually
implies the use of a lower value of similarity threshold so that more fuzzy sets can
be found to meet this similarity threshold, which in turn can be merged to result in
fewer fuzzy sets. A model with fewer fuzzy sets and fewer rules is also
computationally less-expensive. Thereby, computationally less-expensive models
are more suitable for applications like model predictive control, memory-expensive
implementations, and fast, on-line model adaptation.

7.8 Application Examples

In order to illustrate the similarity-based rule simplification algorithm presented in
this chapter, the second-order nonlinear plant model (Wang and Yen, 1999) that
was modelled using the neuro-fuzzy approach in Chapter 6, is once again
considered here.

Table 7.1. Performance comparison of fuzzy model after neuro-fuzzy network training and
similar fuzzy sets merging

Training data Evaluation data No. of rules and no.
of fuzzy sets

SSE = 0.0090

MSE = 8.972e -05

SSE = 0.0069

MSE = 6.856e -05

Rules = 5

GMFs/input = 5

MSE (after merging)

= 0.0093

MSE (after merging)

= 0.0147

Rules = 2

GMFs/input = 2

The neuro-fuzzy trained model generated has five Takagi-Sugeno-type fuzzy
rules and the antecedent fuzzy sets generated for first input (u) and second input (y)
respectively are shown in Figure 7.11(c) and Figure 7.11(d). From Figure 7.11(c)
and Figure 7.11(d) it is seen that the antecedent fuzzy sets are not interpretable, as
they largely overlap each other. However, the accuracy of this fuzzy model is very
high, as the MSE value with the training and validation data are respectively
8.9720e -05 and 6.8560e -05 (see Table 7.1).

In order to improve the model transparency, similar fuzzy sets are merged
together and the corresponding final interpretable fuzzy sets are shown in Figure

300 Computational Intelligence in Time Series Forecasting

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Ne uro-Fuzzy tra ining performance

No of Epochs

S
u

m
 S

q
u

a
re

d
 E

rr
o

r

20 40 60 80 100 120 140 160 180 200

0

0.5

1

Ne uro-fuzzy output-Vs-Actual

Time

N
F

(b
lk

)-
A

ct
u

a
l(

b
lu

e
)-

E
rr

o
r(

re
d

) 220 240 260 280 300 320 340 360 380 400
-0.2

0

0.2

0.4

0.6

0.8

time

N
F

 &
 A

ct
u

a
l

o
u

tp
u

t

220 240 260 280 300 320 340 360 380 400
-0.2

-0.1

0

0.1

0.2

time

E
rr

o
r

7.11(e). After merging of similar fuzzy sets, the number of fuzzy sets and rules are
reduced to two. Thereafter, the Takagi-Sugeno rule’s consequents are recalculated.

Figure 7.11(a). Neuro-fuzzy network training Figure 7.11(b). Neuro-fuzzy prediction

Figure 7.11(c). Fuzzy membership functions for input domain (u) partition after neuro-
fuzzy training.

This resulted in the final fuzzy model, which is very much transparent to
interpretation. However, the accuracy of the model is greatly hampered as the MSE
values achieved with training and validation data sets are now respectively 0.0093
and 0.0147. Therefore, to improve the model accuracy while retaining its
transparency the fuzzy sets have to be further tuned using genetic-algorithm-based
constrained optimization, as described by Setnes and Roubos (2000), Roubos and
Setnes (2001) and Panchariya et al. (2004b). By this way one can generate a

 Transparent Fuzzy/Neuro-fuzzy Modelling 301

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Gaussian Membership functions plot

Input universe of discourse

D
eg

re
e

of
 M

em
be

rs
hi

p

transparent, yet accurate and compact fuzzy model.

Figure 7.11(d). Fuzzy membership functions for second input (y) domain partition after
neuro-fuzzy training.

Figure 7.11(e). Fuzzy sets after merging the similar fuzzy sets for first input.

302 Computational Intelligence in Time Series Forecasting

7.9 Concluding Remarks

In this chapter a similarity-driven rule base simplification method is presented.
This rule base simplification method serves two practical purposes: increase in
model transparency and decrease in computational cost. Furthermore, this method
can be combined with any data-driven automated fuzzy modelling procedure
together with genetic-algorithm-based fuzzy set tuning procedure to generate a
transparent yet accurate and compact fuzzy model. However, the efficiency of the
approach depends largely on three threshold parameter values which are currently
set by trial and error. Genetic algorithms or evolutionary computations, in general,
can possibly also be used here as a proper support tool to determine the optimum
values of these three threshold parameters.

References

[1] Babuška R (1996) Fuzzy modelling and identification, Ph.D thesis, Delft University
of Technology, Delft, The Netherlands.

[2] Barron AR (1993) Universal approximation bounds for superposition of a sigmoidal
function, IEEE Trans. Information Theory, vol. 39: 930-945.

[3] Bezdek JC, Pal NR (1998) Some new indexes of cluster validity, IEEE Trans. on
System, Man and Cybernetics, 28(3):301-315

[4] Chao CT, Chen YJ and Teng TT (1996) Simplification of fuzzy-neural systems using
similarity analysis, IEEE Trans. on SMC, Part-B: Cybernetics vol. 26: 344-354.

[5] Cross V (1993) An analysis of fuzzy set aggregators and compatibility measures.
Ph.D. thesis, Wright State University, Ohio, USA.

[6] Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern
Analysis and Machine Intelligence. 11(7):773-781

[7] Jain AK, Dubes RC (1988) Algorithms for clustering data, Prentice-Hall, Englewood
Cliffs, New Jersey.

[8] Kaymak U, Babuška R (1995) Compatible cluster merging for fuzzy modelling, Proc.
of FUZZ-IEEE/IFES, Yokohama, Japan, 897-904

[9] Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic, Theory and Applications,
Prentice-Hall Inc., Upper Saddle River, New Jersey.

[10] Palit AK and Babuška R (2001) Efficient training algorithm for Takagi-Sugeno type
neuro-fuzzy network, proc. of FUZZ-IEEE, Melbourne, Australia, vol. 3: 1367-1371.

[11] Palit AK and Popovi D (1999a) Fuzzy logic based automatic rule generation and
forecasting of time series, Proc. of FUZZ-IEEE, Seoul, Korea, vol. 1: 360-365

[12] Palit AK and Popovi D (1999b) Forecasting chaotic time series using neuro-fuzzy
approach, Proc. of IEEE-IJCNN. Washington DC, USA, vol. 3:1538-1543

[13] Panchariya PC, Palit AK, Popovic D and Sharma AL, (2003a) Data driven simple
fuzzy rule generation algorithm for fuzzy modelling and identification, Proc. of First
Indian Internat. Conf. on AI (IICAI-03), Hyderbad, India, 1088-1097.

[14] Panchariya PC, Palit AK, Popovic D and Sharma AL, (2003b) Simple fuzzy
modelling scheme for compact TS fuzzy model using real-coded Genetic algorithm,
Proc. of First Indian Internat. Conf. on AI (IICAI-03), Hyderbad, India, 1098-1107.

[15] Panchariya PC, Palit AK, Popovic D and Sharma AL, (2004a) Nonlinear system
identification using Takagi-Sugeno type neuro-fuzzy model, Proc. of IEEE Intern.
Conf. on Intelligent Systems (IEEE-IS), Varna, Sofia, Bulgaria, vol. 1: 76-81.

 Transparent Fuzzy/Neuro-fuzzy Modelling 303

[16] Panchariya PC, Palit AK, Sharma AL and Popovic D (2004b) Rule extraction,
complexity reduction and evolutionary optimization, International Journal of
Knowledge-Based and Intelligent Engineering Systems, vol. 8(4): 189-203.

[17] Roubos JA and Setnes M (2001) Compact and Transparent fuzzy model through
iterative complexity reduction, IEEE Trans. on Fuzzy Systems, 9(4):516-524

[18] Setnes (1995) Fuzzy rule-base simplification using similarity measure, M.Sc Thesis,
Delft University of Technology, Control Laboratory, Dept. of Elect. Engg.

[19] Setnes M (1999) Supervised fuzzy clustering for rule extraction, Proc. of FUZZ-
IEEE, Seoul, Korea, pp. 1270-1274.

[20] Setnes M and Cross V (1997) Compatibility-based ranking of fuzzy numbers, Proc. of
NAFIPS, New York, USA, pp. 305-310.

[21] Setnes M and Kaymak U (1998) Extended fuzzy c-means with volume prototypes and
cluster merging, Proc. of EUFIT, Aachen, Germany, pp. 1360-1364.

[22] Setnes M, (2000) Supervised fuzzy clustering for rule extraction, IEEE Trans. on
Fuzzy Systems, 8(5): 509-522

[23] Setnes M, (2001) Complexity reduction in Fuzzy systems, Ph.D. thesis, Delft
University of Technology, Delft, The Netherlands.

[24] Setnes M, Babuška R, Kaymak U, Nauta Lemke HR (1998a) Similarity measures in
fuzzy rule base simplification, IEEE Trans. on System, Man and Cybernetics, B
28(3):376-386

[25] Setnes M, Babuška R, Verbruggen HB (1998b) Transparent fuzzy modelling,
International Journal of Human-Computer Studies, 49(2): 159-179

[26] Setnes M, Babuška R, Verbruggen HB (1998c) Rule based modelling: precision and
transparency, IEEE trans. on System, Man and Cybernetics-part C: Applications and
Reviews, 28(3): 376-386

[27] Setnes M, Roubos JA (2000) GA-fuzzy modelling and classification: complexity and
performance, IEEE Trans. on Fuzzy Systems, 8(5):509-522

[28] Wang L, Yen J, (1999) Extracting fuzzy rules for system modelling using a hybrid of
genetic algorithms and Kalman filters. Fuzzy Sets and Systems, 101: 353-362

[29] Wang LX, Mendel JM, (1992a) Generating fuzzy rules by learning from examples,
IEEE Trans. on Systems, Man and Cybernetics, 22(6): 1414-1427

[30] Wang LX, Mendel JM, (1992b) Back-propagation fuzzy system as nonlinear dynamic
system identifiers, Proc. of FUZZ-IEEE, vol. 2: 1409-1418

[31] Xie XL, Beni GA, (1991) Validity measure for fuzzy clustering. IEEE Trans. on
Pattern Analysis and Machine Intelligence. 3(8):841-846

[32] Yao J, Dash M, Tan ST and Liu H (2000) Entropy-based fuzzy clustering and fuzzy
modeling, Fuzzy Sets and Systems, vol. 113: 381-388.

[33] Zwick R, Carlstein E and Budescu DV (1987) Measures of similarity among fuzzy
concepts: A comparative analysis. International Journal of Approximate Reasoning.
vol. 1: 221-242.

8

Evolving Neural and Fuzzy Systems

8.1 Introduction

One of the main application fields of evolutionary computation, especially of
genetic algorithms and evolutionary programming, has for a long time been the
design or evolving of intelligent computational structures, such as neural networks,
fuzzy logic systems, neuro-fuzzy systems and of their combination to implement
intelligent controllers. In the following, evolving of neural networks and fuzzy
logic systems using evolutionary algorithms will be presented.

8.1.1 Evolving Neural Networks

In evolving of neural networks for specific applications, the user is faced with the
following two key issues:

what network architecture (i.e. how many hidden layers, number of
neurons in each layer, and what interconnections between them) should be
selected as the most adequate
what specific weight values should the interconnecting elements have for
optimal network performance.

No standard guidelines are available for resolving the above selection problems, at
best only some recommendations and some hints could be found in some
publications. In this chapter we will take a closer look at these selection difficulties
and we will describe some approaches that have been used successfully in evolving
of optimally design neural networks.

In the past, most very frequently a trial-and-error approach has been used in
developing the neural network structures, which have afterwards been optimized
by simulation or by some optimization methodologies. For the process of network
development, two basic approaches have been used.

306 Computational Intelligence in Time Series Forecasting

Constructive approach, an approach that starts with a minimal network
architecture and continues by its stepwise growth through adding new
neurons and new interconnection links between the neurons, under
permanent evaluation of network performance, until the optimal network
structure has been achieved.
Destructive approach, which starts with a “large enough” architecture and
continues by its stepwise reduction of size through removal of some
individual neurons and the related links between them, under continuous
evaluation of network performance, until the optimal network structure has
been achieved.

Both approaches, however consider, through incremental changes of network
structure, only a limited (neighbouring) topological space, instead of considering
the entire search space of possible network structures. This deficiency definitely
restricts the overall possible optimal network structure that could be developed.

In the last decade or so, a way out of network development, by arbitrarily
adding and deleting of neurons and connecting weights, has been found in using
some more systematic evolutionary approaches. During this period of time,
researchers have succeeded in elaborating evolutionary methods capable of
covering most of the basic requirements in developing, training, and application of
neural networks. Using the new methods the following network evolving issues
have been supported:

evolving optimal interconnection weights
evolving global network architecture
evolving pure network architecture
evolving activation function
evolutionary network training.

This is the main subject of the paragraphs that follow.

8.1.1.1 Evolving Connection Weights
Traditionally, optimal values of interconnection weights have from the very
beginning been determined through network training, usually by using a gradient-
based parameter-tuning algorithm, like the backpropagation algorithm. Yet, the
substantial risk of all gradient-based algorithms to be trapped in a local minimum
was a good enough reason to avoid their use in optimization problems and to look
for gradient-free search algorithms.

Jurick (1988) suggested that the network training process to be understood -
within the frame of the given network architecture and the objectives of learning
task - as an evolutionary process through which the optimal values of connection
weights can be determined. Montana and Davis (1989) decided to take the genetic
algorithms, instead of backpropagation algorithm, in searching the optimal weights
values. Using the new search strategy, they were able to find the global optimal
values of connection weights, without gradient implications. The results achieved
have been confirmed by Kitano (1990), who also accelerated the network training
convergence using an improved version of the genetic approach.

 Evolving Neural and Fuzzy Systems 307

In 1990s, the awareness was spread out among the experts that the evolutionary
algorithms could, in the future, become the most efficient tools for neural networks
training, so that since that time the evolutionary approaches have been very
successfully used in training of backpropagation neural networks (Johnson and
Frenzel, 1992; Porto et al., 1995; Schwefel, 1995), and later in training of recurrent
neural networks (Angeline et al., 1994; McDonnell and Waagen, 1994).

Surprisingly, although the evolutionary approaches, while based on extensive
computations are generally slower than the gradient methods, it was reported by
some investigators that in network training the evolutionary algorithms have been
considerably faster than the gradient methods (Prados, 1992; Porto et al., 1995;
Sexton et al., 1998).

McInerney and Dhawan (1993) pursued an alternative way of network training
by combining two different search algorithms for network training, namely the
backpropagation and the genetic algorithms. They in this way created two
alternative hybrid training algorithms:

algorithms that use genetic programming to bring the search process close
to the global optimum and then the backpropagation algorithm has to locate
it more exactly
an algorithm that first finds (based on backpropagation search) “all” local
minima and then leaves the task for the genetic algorithm to find the
smallest one as the global minimum.

In both algorithms the backpropagation algorithm is used because it is relatively
fast, but it suffers with the inherent troubles associated with gradient methods
being prematurely trapped in local minima. Genetic algorithms, although being
relatively slow, are used because they are robust in finding the global optimum.
Their combination, as expected, profits from the advantage of one algorithm and
from the possibility of counterbalancing the disadvantages of the other. In addition,
in the evolutionary algorithms, unlike in the gradient-based training algorithms, the
error function, i.e. the fitness function, does not require any differentiation and
even need not be continuous.

The joint application of genetic algorithms and gradient methods has been the
subject of extensive research in the 1990s (Kinnebrock, 1994; Zhang et al., 1995;
Yang et al., 1996; Yan et al., 1997).

Nevertheless, in practical applications of genetic algorithms the encoding of
weight values in chromosomes has proven to be the most crucial problem
(Balakrishnan and Honavar, 1995; Curran and O’Riordan, 2003). However, further
research in this area has borne a great number of possible solutions that can be
classified into two categories:

direct encoding approaches, in which all parameters that define the neural
network (i.e. weight values, number of nodes, connectivities, etc.) or some
of them are encoded in gene code
indirect encoding approaches, which represent a neural network in terms
of assembly instructions or of recipes.

Direct encoding approaches facilitate the reverse operation of decoding that
consists of back-transformation of genotypes into phenotypes. The best illustration

308 Computational Intelligence in Time Series Forecasting

for direct encoding represents the connection matrix that exactly specifies the
architecture of the network to be evolved. For direct encoding the following
approaches have been recommended:

connectionist encoding
node-based encoding
layer-based encoding
S-expressions based encoding.

Indirect encoding needs much more work in styling the phenotypes adequately,
because here, in encoding of phenotypes, the rewrite rules and construction rules
are also applied recursively. For indirect encoding the following approaches are
recommended:

matrix re-writing
edge encoding
cellular encoding
growth encoding

Figure 8.1. Binary representation of parameter values

Figure 8.1 shows the transparency and the simplicity of binary representation of
a neural network, whose architecture is given and whose connection weights are
represented as a 4-bits binary chain. Binary representation enables a direct acting
of crossover and mutation operators on the coding structure. But still, the serious
drawback of binary coding is that the total length of the concatenated strings
grows steadily with the number of interconnections to be considered. This,
increasingly slows down the computational speed of the genetic algorithm. The
total length of concatenated strings grows even more if the higher computational
accuracy is required, because in this case more bits need to be represented in
binary. This can be mastered by using the real numbers for connection weight
representation, so that each individual in the evolving population becomes a real
vector. However, new circumstances are faced here, since it is difficult to use
directly the binary-encoded crossover and mutation operators. A better way to

3 4

6 5

10

0110 0101 0011 0100 1010

 Evolving Neural and Fuzzy Systems 309

evolve the real vectors is to use the evolutionary strategies or evolutionary
programming (Fogel et al., 1990; Yao, 1993) rather than genetic algorithms.

8.1.1.2 Evolving the Network Architecture
The first action in evolving the network architecture is to lay down the network
topological structure, i.e. the proper number of nodes, the interconnection pattern
of the nodes, the activation function to be assigned to each node, etc. This activity,
if properly carried out, is very promising in leading, through the process of
evolution, to a final network architecture, optimally shaped for the given problem
to be solved.

The adequacy of the selected topology generally depends on the network task.
For example, if the network to be evolved is to be used for identification of
nonlinear interdependencies between the collected data of a time series and to
process them, then it must be a multilayer network because a single-layer network
is not capable of doing this. Similarly, if the network has to be able to discover and
to handle the temporal dependencies in the environment, then it must be a
recurrent network because the feed-forward networks are not capable of doing
this.

A further important decision to be made when evolving neural networks is to
select the appropriate initial network topology size. For example, if the selected
network topology size is too small, then the evolved network might fail to learn the
desired input-output mapping. In contrast, if it is too large, then the generalization
capability of the network will be very poor (Sietsma and Dow, 1991).

All this indicates that, for adequate selection of initial network topology, much
expert knowledge and practical experience is needed, because here also we are
short of a well-paved way for systematic topology selection. Therefore, for the less
experienced network developer, the only way left is to select different initial
network topologies and, using a trial-and-error strategy, to find the most
appropriate one.

The next critical issue of an evolving neural network architecture is the
decision to be made about the encoding strategy to be used. Encoding strategies
help in transforming the network structure into specific representations, called
genotypes, on which the evolutionary operators (mainly mutation and
recombination) act during the process of network evolution. Both the selected
genotypes and the evolutionary operators to be used belong to the crucial issues to
be resolved before the evolving process is initiated. This is needed because the
application success of a neural network in solving the problem for which it is
evolved depends predominantly on the selected genotypic representation and on
the evolutionary operations.

For genotypic representation, two alternative encoding strategies are available:

direct encoding strategies, in which all architectural aspects of the network
are encoded by direct transformation of genotypes to phenotypes, for
instance through building a connection matrix
indirect encoding strategies, in which grammatical or morphological
encoding is used, based on a compressed description of the network to be
evolved.

310 Computational Intelligence in Time Series Forecasting

For evolving the network architecture, there are also two alternative approaches
available:

evolving the pure network architecture, without interconnecting weights,
which presumes that weight values are to be determined through network
training
simultaneous evolution of both architecture and weights.

8.1.1.3 Evolving the Pure Network Architecture
Evolving a genuine network architecture requires a decision about the degree to
what extent the genotypes (i.e. the chromosomes) should bear the detailed
information related to the targeted network architecture. This depends on the
representation scheme to be used. Should it be a direct representation that includes
all the details of every node, or should it be an indirect representation in which
only some dominant nodes are represented by some details like the number of
hidden layers and the number of neurons in the layers?

Figure 8.2. Example of low level encoding

If the genotypes should not contain any statements about the connecting
weights, then a random set of initial weight values can be taken. In this case the
risk exists that the weight values finally determined could be noise spoiled. This is
because the fitness values of genotypes will be represented by fitness values of
phenotypes, which could be due to the randomization of initial values of training
runs (Angeline et al., 1994). To reduce this noise the use of one-to-one mapping
between the genotypes and phenotypes is recommended (McDonnel et al., 1994).

Otherwise, when using the direct encoding scheme in evolving the pure
network architecture, each network connection is represented by a binary string of
a specified length. Once accepted for representation, the strings should be
concatenated to build corresponding chromosomes. The set of chromosomes
belonging to the same network can then form the connectivity matrix that itself
depicts the network architecture in terms of network interconnection pattern. This
is shown in Figure 8.2. The matrix, again, could also be interpreted in the inverse

000110
000100
000010
000001

000001
000000

4 5

6

1 32

 Evolving Neural and Fuzzy Systems 311

direction in the sense that, given the desired structure of the network to be evolved,
the corresponding connectivity matrix can be generated and translated into the
corresponding binary string.

A direct encoding strategy, although transparent and easy to implement, still
suffers from the scalability problem, which hampers its application in evolving
complex network configurations, because in this case a large connectivity matrix
and much computing time for network evolution are required. In addition, the
potential difficulty of direct encoding strategy is the permutation problem that
disturbs the evolution of proper network architecture.

Indirect encoding strategies are especially popular because they help in
reducing the length of genotypic representation of architectures; this is achieved,
however, at the cost of a reduced feasible search space. In this kind of strategy,
only some characteristics of the architecture (i.e. those to be evolved) are binary
encoded, which enables a more compact, modular overall network description.

Because being based on a restricted initial information, the indirect decoding
strategies obviously pursue the principle of a growing network, termed
grammatical encoding. Their major advantage is that they favour the modular
design of network structure. Much of pioneer work in this area was done by Kitano
(1990), particularly in defining the matrix rewriting encoding strategy. This
strategy, however, was soon abandoned for the reason that it failed to deliver better
results than the direct encoding strategies.

8.1.1.4 Evolving Complete Network
We now come to the most challenging design task in which the network topology
along with the interconnection weights are simultaneously evolved. The
advantages of such a design approach are, however, accompanied by the
difficulties in finding an adequate representation of genotypes. In the past, apart
from the direct binary encoding that is also applicable here, two additional
encoding strategies have been in use:

parameterized encoding, in which (instead of a connectivity matrix) the
compact network description is stored in terms of number of layers,
number of neurons within the layers, number of connections between the
layers, etc.
grammar encoding (Vonk et al., 1995), particularly matrix grammar
encoding (Kitano, 1990).

In a parameterized encoding network the parameters can be freely encoded. Some
recommendations on this issue have been elaborated by Harp et al. (1990).

Grammar encoding roots in the research achievements of Lindenmayer (1968)
in the area of encoding strategies. Using the biological principle of information
exchange between the cells, Lindenmayer has introduced the so-called L-systems.
To implement this, he defined a special grammar with the parallel representation of
production rules that Boers and Kuiper (1992) later used to evolve neural
networks. The benefits of grammatical encoding are the identification possibility of
network building blocks and the general reusability of development rules. Kitano
(1990) used the productions as the grammar rewriting rules to develop his matrix
rewriting encoding strategy.

312 Computational Intelligence in Time Series Forecasting

Gruau (1994) represented neural networks as grammar trees, called cellular
encoding, which is similar to the edge encoding strategy.

In the graph grammar encoding, the network is understood as a lattice made
up of functions and terminals. Each node of the lattice, which is seen as a function
(neurons) or a terminal (input variables), is provided with the information
concerning the connections to other nodes, the weights of the connections, bias,
etc.

An entirely different indirect encoding strategy was proposed for encoding the
developmental rules that are to be optimized instead of direct optimization of the
network architecture. The development rules are similar to the IF-THEN rules used
in production systems, written in recursive form.

Some interesting findings in evolving the learning rules have been reported.
Chalmers (1990) was the first to report on automatic evolving of the delta learning
rule, and Harp and Samad (1991) reported on evolving the rules that can learn and
adapt the network training parameters, such as training speed and network training
accuracy.

However, the inherent problem of encoding neural networks in gene code is
still the well-known permutation problem, created by the fact that different
genotypes can produce equivalent networks, because the fitness and the network
function could produce the permutation of hidden nodes. This is evident from
Figure 8.3, which represents the differently encoded network shown in Figure 8.1.
Both networks are topologically equivalent (Tettamanzi and Tomassini, 2001).

Figure 8.3. Differently encoded network presented in Figure 8.1

The permutation problem considerably decreases the suitability of the genetic
algorithm as a training tool for feedforward networks.

8.1.1.5 Evolving the Activation Function
So far, we have ignored the evolving issue of the neuron activation function,
assuming silently that it is given in advance by the network expert, preferably as a
sigmoidal function. This is indeed not always the case, but it is assumed for
simplicity that the activation functions of all neurons in a layer or in the entire
network are equally shaped. The first trial to evolve both the activation functions,
placed in nodes as a node transfer function, and the network architecture was done

4 3

5 6
10

01100101 0011 0100 1010

 Evolving Neural and Fuzzy Systems 313

by Stork et al. (1990). A series of improvements followed, the most interesting of
them being the achievement of Hwang et al. (1997) in evolving the network
topology, connection weights, and the node transfer function simultaneously.

8.1.1.6 Application Examples
Evolved neural networks have found a wide application in time series forecasting,
because the network evolutionary process has contributed the network structure
and the network parameters (connecting weights, activation functions, hidden
nodes, etc.) that are optimal. The only difficulty that accompanies the application
of such networks is the selection of the optimal initial population that will
guarantee the shortest search time. To reduce it’s influence on the problem at hand,
Prudencio and Ludermir (2001) have advocated using the case initialized genetic
algorithm (Louis and Johnson, 1999), based on experience in optimizing the
solution of some similar problems. The solution concept was applied to the
problem of river flow prediction, where the time series models NARX (Nonlinear
Auto-Regressive model with eXogenous variables and the NARMAX (Nonlinear
Auto-Regressive Moving Average model with eXogenous variables) have been
employed. In the models, the following parameters have been optimized: length of
time window, length of context layer, and the number of hidden layers. The
network was trained with the Levenberg-Marquardt method (Marquardt, 1963).
The objective of the case study was to forecast the monthly river flow of a
hydrographic reservoir, based on 144 available flow values acquired within a
period of 12 years. During the experiments, about 20 neural network architectures
were developed in order to find the best one. The software system developed,
although tailored for forecasting purposes, is suitable for application in other
problem classes.

8.1.2 Evolving Fuzzy Logic Systems

In evolving fuzzy logic systems, two principal decisions should be made:

selection of the fuzzy rule base that could be considered as the most
promising one to solve optimally the given problem and the selection of
strategy for their genetic encoding
definition of membership function parameters.

Optimal definition of membership functions to be used in the process of systems
evolution is also a crucial problem here that, to be well-solved, needs much skill
and computational efforts. This is because the performance of the system to be
developed is very sensitive to the shapes of the membership functions. The early
proposals on how to manage these problems (Shao, 1988) did not bring a
significant success in performance improvement, until it was recognized that for
solving this problem the optimal parameter tuning of membership function shape
should be used, for instance by being carried out using an evolutionary algorithm.
Tettamanzi (1995) has proven that the integration of evolutionary algorithms and
fuzzy logic could cover the following application fields:

314 Computational Intelligence in Time Series Forecasting

optimum search capabilities of evolutionary algorithms can help design and
optimally tune the parameters of fuzzy logic systems
during the evolutionary processes the rule base of the fuzzy system could
be used to automatically tune the algorithm parameters in order to avoid its
premature convergence and other undesired behaviour of the search
process
the fuzziness can be embedded into the algorithms for internal calculations
of fitness function, etc.

The work on the design of fuzzy logic systems using evolutionary computation was
effectively initiated in early 1990s and was made public by the reports of Thrift
(1991) and Karr (1991) on the use of genetic algorithms in synthesis of fuzzy logic
controllers. This was later extended to the synthesis of a model-reference adaptive
controller (Hwang and Thompson, 1994). In the early considerations of the
evolving procedures, triangular membership functions were preferred because their
encoding within the chromosome as finite-length bit strings was relatively simple.
This kind of membership functions is parameterized by the left and the right base
and by the distance from the previous centre point. For evolving purposes, the
same triangular form for all membership functions and the same number of
membership functions for each variable were taken.

Some researchers (Hwang and Thompson, 1994) encoded all the rules and the
fixed membership functions into the chromosome. Under this condition, the
evolving process, however, did not evolve an optimal fuzzy system, because the
shape of the membership functions is strongly related to the character of the rules.
As a consequence, both the rules and the membership functions have to be evolved
simultaneously. Homaifar and McCormick (1995) solved the problem of
simultaneous tuning of the membership functions and evolving the rule set by
encoding all the rules and the base length of each triangular membership function
into chromosomes.

Thrift (1991) pleaded for building the fuzzy rule base in tabular form by
assigning to each input variable a number of partition domains, say n, that are to be
specified in detail. This, however, was not applicable, because in this way a huge
number of detailed data are generated that cannot be stored in a transparent form.
The idea of Thrift, of representing the generated data in matrix form, was
acceptable only for small fuzzy systems, say for systems with two input variables
for which an n n matrix is to be built. However, for a system with a higher
number of input variables an ...n n n dimensional matrix has to be built.

To avoid the super-dimensionality problem, Lee and Takagi (1993a)
recommended numerating the rules instead of tabulating them. They also encoded
the membership functions and the rule set into the chromosomes, but they took
another route to encoding the triangular membership function by restricting the
adjacent membership functions from fully overlapping and by some additional
restrictions. This considerably reduced the total number of membership functions
required. Further reduction is still possible by grouping the given rules into
relevant (needed) and non-relevant ones, and by encoding only the relevant rules.
This enables fuzzy systems of higher dimensionality to be evolved.

While considering the Takagi-Sugeno model, in which the consequent part is

 Evolving Neural and Fuzzy Systems 315

made up of a linear combination of the input values, Lee and Takagi (1993b) found
it more advantageous to encode both the membership and the fitness functions in
chromosomes. To each rule with N input variables and n membership functions in
the genotype they assigned a gene to encode the N+1 weights in a linear
combination of the input variables for the rule concerned. The drawback of the
encoding approach is that Nn combinations have to be encoded.

Tettamanzi (1995) implemented his fuzzy control evolving system on a WARP
fuzzy processor capable of supporting up to 256 rules with up to four antecedent
clauses and one consequent clause, as well as antecedent membership functions of
arbitrary shapes. To define the appropriate fitness function he used the concept of
competition, defined later (Tettamanzi, 1994). The concept registers the number of
competitions c undergone by an individual, the number of its wins w, and the
number of successes s. Using this statistical data the membership function of
fitness for a given individual is defined as

f () (,) (1)n bx N a b x x

with

()()
(,)

a b

a b

a b
N a b

a b

as a normalization factor, in which a = w + s and b = c - s.
Recently, a new evolutionary road to fuzzy systems design was paved by Shi et

al. (1999), who, along with the membership function shapes and the fuzzy rule set,
also encoded the membership function type and the number of rules inside the set.
Two types of membership function have been considered: linear and nonlinear
(Gaussian, triangle and their combination). Each membership function was
completely defined by its start point, its end point, and the function type.

In order to make the evolving process easier, the fitness function, which
measures the performance of the system, was carefully defined. Depending on the
application, the fitness functions taken are

2

f
1

1 N

i
i iE o t

N

and

2

f
1

1 N

i

i i

i

o t
E

tN

io and it being the ith obtained and target outputs respectively.

For control of crossover and mutation as the most critical parameters, an
adaptive tuning approach, made up of eight fuzzy rules, was integrated into the

316 Computational Intelligence in Time Series Forecasting

genetic algorithm. The completed evolutionary fuzzy system was written in C++
code and was compiled with the Borland C++4.5 compiler. The benefits of the
developed system have been demonstrated on examples of iris data classification,
but the system could be successful for a large range of similar problems.

Several researchers have focused their attention on integration of fuzzy logic
and evolutionary approaches in optimal tuning of the parameters of a fuzzy logic
controller by adapting the fuzzy membership functions by learning the IF-THEN
rules (Varsek et al. 1993; Mohammadian and Stonier, 1994; Herrera et al. 1995).
For instance, Zeng and He (1994) evolved a fuzzy controller with a self-learning
feature for approaching the optimality conditions of the given control task.
Thereafter, the integrated genetic algorithm took over the initiative to tune the
controller parameters optimally. The modified fuzzy controller was successfully
applied to control an unstable nonlinear system that demonstrated high accuracy
and robustness of the evolved fuzzy controller.

Wong and Chen (2000) elaborated a genetic-algorithm-based approach to fuzzy
systems construction directly from collected input-output data. The basic idea of
the approach is that each individual in the population determines the number of
fuzzy rules and that the consequent part of the evolved fuzzy system is determined
by a recursive least-squares method. The effectiveness of the approach was
demonstrated on construction of some nonlinear systems.

In the recent past, some reports have been published on evolving and/or tuning
a fuzzy controller implemented using neural networks. Kim et al. (1995)
introduced a genetic-algorithm-based computationally aided design methodology
for rapid prototyping of control systems. As an example, they designed a fuzzy net
controller (FNC), with the intention to use genetic algorithms for optimizing the
fuzzy membership functions capable of meeting various operational specifications.
Seng et al. (1999) described a genetic-algorithm-based strategy for simultaneously
tuning the parameters of a fuzzy logic controller implemented on an RBF network,
named NFLC (neuro-fuzzy logic controller). Belarbi and Titel (2000) presented an
alternative approach to designing all parameters of fuzzy logic controllers (i.e. the
parameters of the membership functions of both the input and the output variables,
and the rule base) using genetic algorithms. The fuzzy logic controller designed
was implemented in neuro-technology. The application of binary-coded genetic
algorithm was reported by Palit and Popovic (2000) in order to train a fixed
structure neuro-fuzzy network that used the singleton type of rules consequent.
Thereafter, the genetic-algorithm-trained neuro-fuzzy network was applied to
forecast the future values of a chaotic time series. In addition to the above
applications Setnes and Roubos (2000), Roubos and Setnes (2001) also applied the
a genetic-algorithm-based fuzzy logic system for identification and modeling of a
nonlinear plant. In their method, a real-coded genetic algorithm was mainly used to
fine tune the fuzzy antecedent memberships (triangular) that were obtained by
similarity-based fuzzy set merging. It was reported that the genetic-algorithm-
tuned fuzzy model was transparent, accurate but compact. Similar applications of
real-coded genetic algorithms were reported by Panchariya et al. (2003, 2004) for
improving the fuzzy model transparency. In the last case, using a distance
(entropy)-based fuzzy clustering algorithm, an initial Takagi-Sugeno fuzzy model
with high accuracy was obtained. However, the initial fuzzy model was not

 Evolving Neural and Fuzzy Systems 317

compact and transparent. In order to improve the model transparency, and also the
accuracy, antecedent (Gaussian) fuzzy sets were consequently merged (as
described in Chapter 7) and thereafter real-coded genetic algorithms were applied.
Finally, the evolved fuzzy model of Panchariya et al. (2003, 2004) was also, in this
case, applied for nonlinear plant modeling and reported to have much better
accuracy than that reported by contemporary literature on the same benchmark
problem.

References

[1] Angeline PJ, Saunders GM, and Pollack JB (1994) An Evolutionary Algorithm That
Constructs Recurrent Neural Networks. IEEE Trans. Neural Networks. 4: 54-65.

[2] Balakrishnan K and Honavar V (1995) Evolutionary Design of Neural Architectures.
Technical Report CS TR 95-01, Dep. of Computer Science, Iowa State University,
Ames, Iowa, US.

[3] Balarbi K and Titel F (2000) Genetic Algorithm for the Design of a Class of Fuzzy
Controllers: An Alternative Approach. IEEE Trans. on Fuzzy Systems 8(4): 398-405.

[4] Boers EJW and Kuiper H (1992) Biological Metaphors and the Design Artificial
Neural Networks. Master’s Thesis, Niels Bohrweg 1, 2333 CA, Leiden, The
Netherlands.

[5] Chalmers DJ (1990) The evolution of learning: An experiment in genetic
connectionism. In D.S. Touretzky, JL Elman, and GE Hinton, eds. Connectionist
models: Proc. of the 1990 Summer School, Morgan Kaufmann, San Mateo, CA: 81-
90

[6] Curran D and O’Riordan C (2003) Applying Evolutionary Computation to Design
Neural Network: A Study of the State of the Art. The 7th Int. Conf. on Knowledge-
Based Intelligent Information and Engineering Systems, Sept. 3-5, Oxford, UK.

[7] Fogel DB, Fogel LJ, and Porto VW (1990) Evolving neural networks. Biological
Cybern. 63(6): 487-493.

[8] Gruau F (1994) Neural network synthesis using cellular encoding and the genetic
algorithm, Ph.D Thesis, Ecole Normale Superieure de Lyon.

[9] Harp SA and Samad T (1991) Genetic synthesis of neural network architecture. In L.
Davis, ed. Handbook of Genetic Algorithms, Van Nostrand : 202-221.

[10] Harp SA, Samad T, and Guha A (1990) Designing application-specific neural
Networks using the genetic algorithm. In: Advances Neural Information Processing
Systems 2, Touretzky DS, Ed. Morgan Kaufmann, San Mateo, CA.

[11] Herrera F, Lozano M, and Veregay L (1995) Tuning Fuzzy Logic Control by Genetic
Algorithms. Intl. J. of Approximate Reasoning 12(3/4): 299-315.

[12] Homaifar A. and McCormick E (1995) Simultaneous design of membership functions
and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst,
3: 129-139.

[13] Hwang MW, Choi JY and Park J (1997) Evolutionary projection neural networks,
Proc. IEEE-CEC ’97, pp. 667-671.

[14] Hwang WR and Thompson (1994) Design of intelligent fuzzy logic controllers Using
genetic algorithms. Proc. IEEE Intl. Conf. Fuzzy Syst.: 1283-1388.

[15] Johnson DJ and Frenzel JF (1992) Application of genetic algorithms to the training of
higher order neural networks. J. Syst. Eng., vol.2: 272-276

[16] Jurick M. (1988) Back error propagation: A critique. Proc. IEEE COMPCON 88, San
Francisco, CA: 387-392.

318 Computational Intelligence in Time Series Forecasting

[17] Karr CL (1991) Genetic Algorithms for fuzzy logic controllers. AI Expert 6(2): 26 -
33.

[18] Kim J, Moon Y, and Zeigler BP (1995) Designing Fuzzy Net Controllers Using
Genetic Algorithms. IEEE Control Systems Magazine15(3): 66-72.

[19] Kinnebrock W (1994) Accelerating the standard backpropagation method using a
genetic approach. Neurocomputing 6(5-6): 583-588.

[20] Kitano H (1990) Designing neural networks using genetic algorithms with graph
generation system. Complex Systems 4(4): 461-476.

[21] Lee M and Takagi H (1993a) Dynamic control of dynamic algorithms using fuzzy
logic techniques. In S. Forrest, editor, Proc. of the Fifth Intl. Conf. on Genetic
Algorithms: 76-83, Morgan Kaufmann, San Mateo, CA.

[22] Lee M and Takagi H (1993b) Embedding a priori knowledge into an integrated Fuzzy
system design method based on genetic algorithms. Proc. of the 5th IFSA World
Congress IFSA’93, II: 1293-1296.

[23] Lindenmayer (1968) Mathematical models for cellular interaction in development, Pt.
I and II, Journal of the Theoretical Biology, 18: 280-315

[24] Louis S and Johnson J (1999) Robustness of Case Initiated Genetic Algorithm.
http://citeseer.nj.nec.com/92649.html.

[25] Marquardt D (1963) An Algorithm for least-squares estimation of nonlinear
parameters SIAM J. Applied Mathematics. 11: 431-441.

[26] McDonnell JR and Waagen D (1994) Evolving Recurrent Perceptrons for Time -
Series Modeling. IEEE Trans. Neural Networks 5: 24-38.

[27] McInerney M and Dhawan AP (1993) Use of Genetic Algorithms with Back
Propagation in Training of Feed-Forward Neural Networks. Proc. 1993 IEEE Int.
Conf. Neural Networks, ICNN ’93, San Francisco, CA: 203-208.

[28] Mohammadian M and Stonier RJ (1994) Generating fuzzy rules by genetic
algorithms. Proc. Of 3rd IEEE Intl. Workshop on Robot and Human Communication,
Nagoya, pp. 362-367.

[29] Mohammadian M and Stonier RJ (1994) Generating fuzzy rules by genetic
algorithms, 3rd IEEE Internat. Workshop on Robot and Human Communication,
Nagoya: 362-367.

[30] Montana DJ and Davis L (1989)Training feedforward neural networks using genetic
algorithms. Proc. 11th Int. Joint Conf, Artif. Intelligence 1:789-795.

[31] Palit AK, Popovic D (2000), Intelligent processing of time series using neuro-fuzzy
adaptive Genetic approach, Proc. of IEEE-ICIT Conference, Goa, India, ISBN: 0-
7803-3932-0, 1:141-146.

[32] Panchariya PC, Palit AK, Popovic D, Sharma AL, (2003) Simple fuzzy modeling
scheme for compact TS fuzzy model using real coded Genetic algorithm, Proc. of
First Indian internat. Conf. on AI (IICAI-03), Hyderbad, India, 1098-1107.

[33] Panchariya PC, Palit AK, Sharma AL, Popovic D (2004) Rule extraction, complexity
reduction and evolutionary optimization, International Journal of Knowledge-Based
and Intelligent Engineering Systems, 8(4): 189-203.

[34] Porto VW, Fogel DB, and Fogel LJ (1995) Alternative Neural Network Training
Methods. IEEE Expert, June: 16-22.

[35] Prados DL (1992) New learning algorithm for training multilayered neural networks
that uses genetic algorithm techniques. Electron. Lett., 28: 1560 -1561.

[36] Prudencio RBC and Ludermir TB (2001) Evolutionary Design of Neural Networks:
Application to River Floe Prediction. Proc. of the IASTED Int. Conf. on Artificial
Intelligence and Applications, AIA 2001, Marbella, Spain.

[37] Roubos JA, Setnes M (2001) Compact and Transparent fuzzy model through iterative
complexity reduction, IEEE Trans. on Fuzzy Systems, 9(4): 516-524

[38] Schwefel H-P (1995) Evolution and Optimum Seeking. Springer-Verlag, Berlin

 Evolving Neural and Fuzzy Systems 319

[39] Seng TL, Khalid MB, Yusof R (1999) Tuning of a Neuro-Fuzzy Controller by
Genetic Algorithm. IEEE Trans. on SMC, 29(2): 226-236.

[40] Setnes M, Roubos JA, (2000) GA-fuzzy modeling and classification: complexity and
performance, IEEE trans. on fuzzy systems, 8(5):509-522

[41] Sexton RS, Dorsey RE, and Johnson JD (1998) Toward global optimization of neural
networks: A comparison of the genetic algorithm and backpropagation. Decision
Support Syst. 22(2): 171-185.

[42] Shao S (1988) Fuzzy self-organizing controller and its application for dynamic
processes. Fuzzy Sets and Systems, 26: 151-164.

[43] Shi Y, Eberhart R, and Chen Y (1999) Implementation of Evolutionary Fuzzy
Systems. IEEE Trans. On Fuzzy Systems, 7(2):109-119.

[44] Sietsma J and Dow RJF (1991) Creating neural networks that generalise. Neural
Networks 4(1): 67-79.

[45] Stork DG, Walker S, Burns M, and Jackson B (1990) Pre-adaptation in network
circuits. Proc. Int. Joint Conf. Neural Networks, Washington DC 1: 202-205.

[46] Tettamanzi A (1994) A distributed model for selection in evolutionary algorithms
Technical Report 110-94, Dipartimento Di Scienze dell’Informazione – Università
degli Studi di Milano, Milano, Italy.

[47] Tettamanzi A (1995) Evolutionary algorithms and fuzzy logic: A to-way integration.
Proc. of the 2nd Annual Joint Conf. on Information Sciences.: 464-467, Duke
University, Durham, NC.

[48] Tettamanzi A and Tomassini M (2001) Soft computing: Integration of evolutionary,
neural and fuzzy systems, Springer-Verlag, Berlin.

[49] Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In R.K. Belew and L.B.
Booker, editors, Proceedings of the Fourth Intl. Conf. On Genetic Algorithms: 509-
523, Morgan Kaufmann, San Mateo, CA.

[50] Varsek A, Urbancic T, and Filipic B (1993) Genetic Algorithms in Controller Design
and Tuning. IEEE Trans. on Systems, Man, and Cybernetics 23(5) : 1330-1339.

[51] Vonk E, Jain LC, and Johnson R (1995) Using genetic algorithms with grammar
encoding to generate neural networks. Proc. 1995 IEEE Int. Conf. Neural Networks,
4: 1928-1931.

[52] Wong C-C and Chen C-C (2000) A GA-Based Method for Constructing Fuzzy
Systems Directly from Numerical Data. IEEE Trans. on Systems, Man, and
Cybernetics, Part B 30(6): 904-911.

[53] Yan W, Zhu Z, and Hu R (1997) Hybrid/genetic/BP algorithm and its application for
radar target classification. Proc. 1997 IEEE Natnl. Aerospace and Electronics Conf.,
NAECON, 2: 981-984.

[54] Yang J-M, Cao C-Y, and Horng J-T (1996) Evolving neural induction regular
language using combined evolutionary algorithms. Proc. 1996 1st Joint Conf.
Intelligent Systems ISAI-IFIS: 162-169.

[55] Yao X (1993) An empirical study of genetic operators in genetic algorithms.
Microprocessing and Microprogramming 38(1-5): 707-714.

[56] Zeng S and He Y(1994) Learning and Tuning Logic Controllers Through Genetic
Algorithm. Proc. IEEE World Congress on Computational Intelligence: IEEE Intl.
Conf. on Neural Networks (WCCI/ICNN ’94): 1632-1637, Orlando, Florida.

[57] Zhang P, Sankai Y, and Ohta M (1995) Hybrid adaptive learning control of nonlinear
system. Proc. 1995 American Control Conf. 4: 2744-2748.

9

Adaptive Genetic Algorithms

9.1 Introduction

The genetic algorithms, or in general the various evolutionary computations, have
been introduced to the reader in Chapter 5 along with their important
implementation aspects. Genetic algorithms (GAs) are often described as a
gradient-free, robust search and optimization technique, where the search direction,
unlike a gradient-based optimization method, is not biased towards a local
optimum, but, at the same time, GAs can also be applied to an ill defined complex
problem for optimization. However, the above advantages of GAs may be totally
jeopardized because of the extremely long run time required for a complex
optimization problem. Furthermore, even at the end of an extremely large number
of generations the solution obtained from the GA run may be completely
unacceptable. This being the main motivation why GA researchers are constantly
trying to improve GAs in order to obtain an acceptable solution within a reasonable
number of generations of a GA run. With the above objectives in mind, the present
chapter furnishes a few important possibilities, collected from various publications,
for the improvement of a standard GA run.

The most typical features of genetic algorithms (GAs) are:

genetic representation or encoding of data to be optimized
initial population of encoded data
control parameters of the algorithm
fitness function.

In practical applications, the adequate selection of GA features substantially
influences its performance; and, vice versa, the non-adequate selection of GA
features might lead to nonacceptable problem solutions. To prevent the latter
situation, this was a challenging task of researchers in the 1980s, who tried to
implement various practical concepts to facilitate the feature selection process. In

322 Computational Intelligence in Time Series Forecasting

association with the concepts of adaptive control of dynamic systems, the idea was
widely accepted to work on adaptive GAs by incorporating the parameter
adaptation mechanism in conventional GAs. Different researchers have
concentrated their efforts on implementing genetic algorithms with different
parameters tuned. Herrera and Lozano (1996) later classified the proposed adaptive
GA systems as systems with

adaptive parameter setting
adaptive genetic operators
adaptive operator selection
adaptive representation
adaptive fitness function.

In practical realizations of adaptive GA approaches it should first be decided at
what algorithm level the adaptation should work (Smith and Fogarty, 1997), i.e.
should it be at the

population level, at which the global GA parameters of all individuals of
the population are on-line adapted
individual level, at which the strategy parameters, usually mutation and
crossover, are adapted only in some elected population individuals in order
to effectuate only elected individuals
component level, at which the strategic parameters of some components or
of some genes of population individuals are locally varied?

9.2 Genetic Algorithms Parameters to Be Adapted

Adaptive versions of genetic algorithms are particularly needed because, in the
process of the evolutionary search, the algorithm should converge to the global
optimum with a high speed of convergence, so that the global optimum value is
found in the minimum number of steps, i.e. it should be finished after a minimum
number of generations treated. This is usually achievable by on-line adapting of the
control parameters of the algorithm, such as the probability of crossover,
mutation, or of reproduction. Several empirical and theoretical studies devoted to
identifying the optimal mode of parameter settings for genetic algorithms (DeJong,
1985; Grefenstette, 1986; Hesser and Manner, 1990) have resulted in the following
general assessments:

Crossover. This parameter controls the rate at which the solutions are
subjected to crossover effects. When its value is increased, new solutions
are more rapidly introduced into the population. Through this, the search
process can become so fast that it can be disrupted.
Mutation. This parameter restores the genetic material and transforms the
GA – when its value is increased too much - into a purely random search
algorithm, whereas, a small value of the mutation parameter is required to
prevent the premature convergence of the GA to a suboptimal solution.

 Adaptive Genetic Algorithms 323

Reproduction. This parameter determines the rate at which the old solution
will be copied into the new population. When its value is increased the
chance of survival of a solution in the subsequent generation will also be
increased. This subsequently increases the number of “super-fit”
individuals in the next generation, which is not always desirable.

Apart from the above genetic parameters and their probabilities, two additional
parameters can be used for GA adaptation:

Population size. This GA parameter can be adapted to the problem to be
solved. During the search process, the proper population size is the most
critical factor that strongly influences the convergence speed of the search
process, in the sense that too small a population size speeds up the search
convergence and leads eventually to a premature solution. On the contrary,
a very large population size could stretch the search process ad infinitum
(Baker, 1985).
Fitness function. As a performance index, this helps in carrying out the
selection process optimally and has to be defined adequately with respect
to the problem to be solved.

9.3 Probabilistic Control of Genetic Algorithms Parameters

In the early 1980s it was a general view that the on-line adjustment of crossover
probability, or crossover rate, can be favourable for optimal progress in the search
process, because it can help in avoiding the premature end of the search process
through the higher loss of the alleles. Using the entropy measure over the entire
population, Wilson (1986) was able to quantify the benefit of crossover
adjustment. To compensate for this, the value of mutation probability should be
increased. This indicates that, when the GA parameters are adaptively tuned, the
following two tendencies have to be balanced out:

convergence to the solution optimum, after the region that contains the
solution optimum or nearly the optimum has been traced
searching for new regions of the solution space in order to find a real global
optimum.

This illustrates that the genetic algorithm operates by a permanent balancing
between the best result that can be achieved and searching for the possibility to
achieve some better results. For monitoring the status of the balance the
exploitation-to-exploration relation (EER) has been introduced to serve as a
diversity measure of the search process. In the above case, the balance between the
values of the crossover probability p(c) and the mutation probability p(m) should
be kept at an optimal level. In practice, moderate values of crossover probability
(0.5 < p(c) < 1.0) and small balancing values of the mutation probability (0.001 <
p(m) < 0.05) are commonly used.

Li et al. (1992) proposed an EER-based dynamic GA, capable of balancing
ideally the GA behaviour by adjusting the crossover and mutation probabilities, by

324 Computational Intelligence in Time Series Forecasting

which the EER is defined. They used two diversity functions for adjustment
purposes.

The dynamic GA presented by Li et al. operates in the following three stages:

in the initial stage, in which the diversity measures follow the initial
conditions and the initial parameter values of GA
in the search stage, in which the dynamic GA varies its parameters to
enable a broad search and improved exploitation
in the refinement stage, in which the balance is adapted to manage the
search process more efficiently, while the best chromosome is already
close to the optimum problem solution in the search space.

Srinivas and Patnaik (1994) also used the manipulation of crossover and mutation
probabilities to retain the population diversity and still to support the convergence
capability of the algorithm. In order to vary the crossover, mutation and
reproduction probabilities, i.e. to vary p(c), p(m) and p(r) adaptively with the
objective of preventing the premature convergence of the GA to a local optimum,
they first tried to identify whether the GA is converging to a local or to a global
optimum at all. For this, they recommended the observation of the relation between
the average fitness value avgf across the population and the maximum fitness value

maxf within the population (i.e. the fitness of the best chromosome in the

population). The value of the difference max avg()f f is likely to be less for a

population that has converged to an optimum solution than that of the population
scattered in the solution space. The same property has been observed in
experiments with the GA. This is obvious, because convergence of the GA means
that the majority of the population has a similar high fitness value. This
alternatively implies that the average fitness of the population is high and is most
possibly close to the maximum fitness of the population. Therefore, this justifies
the difference max avgf f being used here as the measure of convergence of the

GA.
Usually in the adaptive GA experiments, the probability values p(c), p(m), and

p(r) are varied, depending on the difference value max avgf f , i.e. on search

results (Palit and Popovic, 2000). Since the probability values of p(c) and p(m)
have to be increased (in order to bring more genetic diversity into the population)
when the GA converges to the local optimum, i.e. when the difference max avgf f

decreases, both p(c) and p(m) have to be varied inversely with max avg().f f

Therefore, the same expression can be written mathematically as follows:

rep max avg()p r f fk (9.1)

mu max avg()p m f fk (9.2)

cross max avg()p c f fk (9.3)

 Adaptive Genetic Algorithms 325

where the numerators rep mu cross, andk k k in the right-hand side expressions are

some constants of the (respective) variations.
From the above expressions it is evident that all three probabilities do not

depend on the fitness of any particular solution and have the same value for all
solutions of the populations. Consequently, solutions both with high and with low
fitness values are subjected to the same level of reproduction, mutation, and
crossover. Also, when the population converges to an optimal global or local
solution, the increase of p(c) and p(m) may eventually cause disruption of the near-
optimal solutions. Therefore, the population will neither converge to a local
optimum nor converge to the global optimum. Therefore, though we may prevent
the GA from getting stuck at a local optimum solution, the performance of the GA
– in terms of generations required for convergence will be very large - will
certainly deteriorate.

To overcome this problem, we need to preserve the “good” solutions of the
population by using some higher value of p(r) and lower values of p(c) and p(m)
for higher fitness solutions and some higher values of p(c) and p(m) for lower
fitness solutions. This is because high fitness values support the convergence speed
of the GA, whereas low fitness solutions prevent the GA from getting stuck at local
optima.

Thereby, the value of p(m) should not only depend on max avg()f f but also on

the fitness value of the solution. Similarly, the p(c) value should not only depend
on the difference max avg()f f but also on the fitness of the two parent solutions.

Furthermore, if the value of the difference max avg()f f can identify whether the

GA is converging or not, then the difference avg min()f f will possibly also

identify the convergence of the GA because, in our experiment (Palit and Popovic,
2000), all the populations for subsequent generations are selected from the mating
pool that consists of the best 50% populations of the current generation. Therefore,
by using both of them as a measure of GA convergence, the adaptive values of the
control parameter of the GAs are set as follows. For

selrep avgf f

it is

selrep avg
1rep 1repbias

max avg

()
f f

p r k k
f f

 (9.4)

and for

selrep avgf f

it is

326 Computational Intelligence in Time Series Forecasting

2rep()p r k (9.5)

where selrepf represents the fitness value of the chromosome (individual) selected

by the roulette wheel selection mechanism for further genetic (reproduction)
operation. The values of other constant terms in the right-hand side expression, e.g.

1rep 0.9,k 2rep 0,k and 1repbias 0.1,k have been selected in the adaptive GA

experiment (Palit and Popovic, 2000). Note that, in (9.4), when the best individual
with highest fitness maxf is selected by the roulette wheel, i.e. selrep maxf f , the

probability of reproduction p(r) = 1 and that for an average individual avgf is

only 0.1 (set by the bias term in (9.4)). On the other hand, the sub-average
individual cannot be reproduced at all, as per (9.5), since p(r) = 0.

Similarly, for the adaptive probability of mutation, i.e. for p(m), the following
mathematical expressions were used. If

selmu avgf f

then

max selmu
1mu 1mubias

max avg

()
f f

p m k k
f f

. (9.6)

Otherwise, when

selmu avgf f

then,

avg selmu
2mu 2mubias

avg min

()
f f

p m k k
f f

, (9.7)

where the following values for the constant terms have been selected: 1mu 0.01k ,

2mu 0.09,k 1mubias 0.005,k and 2mubias 0.005.k Here, as per (9.6), the best
individual will undergo the lowest mutation (since p(m) = 0.005), whereas the
average individual will undergo a moderate level of mutation (since p(m) = 0.015).
On the other hand, the worst chromosome, as per (9.7), will have the highest
possibility of mutation (since p(m) = 0.095).

Furthermore, for the crossover probability p(c) the following relations hold. If

selcross2 avgf f

 Adaptive Genetic Algorithms 327

then,

selcross2 avg
1cross 1crossbias

max avg

()
f f

p c k k
f f

 (9.8)

elseif,

selcross2 avgf f

It is

selcross min
2cross crossbias

avg min

()
f f

p c k k
f f

 (9.9)

with 1cross 0.5,k 2cross 0.2,k 1crossbias 0.5,k and 2crossbias 0.3.k Here, selcross2f

corresponds to the fitness of parent 2 and the same is only selected through roulette
wheel, since parent 1 is always the best individual selected of all generations for
the crossover operation. This is because, when the crossover is performed between
the best individual of all generations and worst individual of current generation, the
possibility of generating better individuals is generally low, hence, as per (9.9), the
probability of crossover for such a case is low (set by 2crossbias 0.3k).

9.4 Adaptation of Population Size

Genetic algorithm starts with an initial population that is randomly generated so
that it - as far as possible - uniformly represents the entire search space. This
assumes that the knowledge about the search space and the problem to be solved is
a priori available. This also helps – using an efficient heuristics – drive the initial
population in the direction of the most promising problem solution.

The initial population size potentially defines the size of the search space to be
considered and it directly influences the convergence speed and the achievable
solution accuracy. This is closely related to the problem of premature convergence
of the search process and to the problem of search crashes. Therefore, it is
advisable to adapt the population size steadily while executing the search process.
Baker (1985) was the first to show how this could be done. He noticed that the
chromosomes that produce a large number of offspring during the process of
crossover and mutation contribute considerably to the acceleration of convergence
speed. Owing to the limited population size, this forces the rest of the population to
produce a reduced number of offspring, even it prevents some chromosomes from
contributing any offspring at all. This causes a rapid decrease in the population
diversity, which leads to premature convergence of the search process. In order to
monitor this phenomenon, Baker introduced the percent involvement as a measure

328 Computational Intelligence in Time Series Forecasting

that indicates the percentage of a generation contributing the offspring for the next
generation. Based on this measure he could control a dynamic population size by
adding or deleting additional population chromosomes in order to balance out the
contribution percentages over the entire current population.

Entirely different approaches to resolving the premature convergence problem
have been proposed by Arabas et al. (1994) and by Kubota and Fukuda (1997),
based on the concepts of age of chromosome and of age structure of population
respectively. In the age of chromosome concept, the number of generations that a
chromosome has survived is taken as an indicator that replaces the plain selection
mechanism. The concept assigns to every created chromosome its lifetime, which
determines the age at which the chromosome will die. The lifetime length is
calculated by taking into account the minimum, average, and the maximum fitness
values within the current population and the minimum and maximum fitness values
in the past generations. The chromosomes with the outstanding fitness values get a
longer lifetime assigned.

The concept of age structure of population maintains the genetic diversity of
the population by deleting the aged individuals. This mimics nature by removing
individuals from the population by reaching the lethal age. Defining the natural life
cycle as the time interval between the birth of parents and the birth of offspring,
there are two conceptual possibilities to be used

the parents and the children may not simultaneously live as long as the
parents live (AGA algorithm)
both the parents and the children may coexists for a period of time (ASGA
algorithm), which is the most natural case.

In the aged genetic algorithm concept, each individual is characterized by its
age and its lethal age as parameters. As soon as an individual is born it is assigned
a lethal age and the zero value of its age parameter. Thereafter, its parents die
immediately. The remaining individuals increase their age parameter value by one
in every generation. Starting with an initial generation in which all individuals
have a zero-value age parameter, an age operator manages the aging and dying
process.

The effect of the proposed genetic algorithm with age structure was tested on a
simulated knapsack problem. The simulation results have shown that the new
concept can prevent individuals with a large fitness value from overrunning the
population and maintain a considerable genetic diversity in the population. The
introduced age concept also helps in solving optimization problems with a
relatively small population size. There are, however, some unpleasant effects that
accompany the age concept application (Knappmeier, 2003):

there is an increased possibility of weak individuals surviving as long as
their lethal time is not expired
there is an enlarged possibility for strong individuals to die formally earlier,
i.e. before they become bad, when their lethal time has expired.

 Adaptive Genetic Algorithms 329

9.5 Fuzzy Logic Controlled Genetic Algoithms

A number of scientists, after experimenting with probabilistic approaches for
improving GA performance, were not satisfied because, by pursuing this research
track, much vague and ill-structured knowledge and some highly exhaustive
computational procedures have to be used. They, therefore, started searching for
more comfortable and more efficient alternatives for solving this problem. To
escape from the probabilistic concepts and to by-pass the long-lasting calculations
they selected fuzzy logic as a possible tool for on-line adaptation of GA parameters
and for GA resources management. Lee and Takagi (1993) took this route in their
study and worked out a dynamically controlled genetic algorithm using a fuzzy
logic technique. Soon thereafter, Arnone et al. (1994) reported on fuzzy
government of a genetic population, and Bergmann et al. (1994) published their
experience with GA parameter adjustment using fuzzy control rules.

Dynamically controlled genetic algorithm is an algorithm that uses a fuzzy
knowledge-based system to control the GA parameters dynamically, mostly the
crossover, mutation rate, and the population size. In fact, it is a typical rule-based
expert system the inputs of which can be a combination made up of a genetic
algorithm and performance measures, such as the ratio of average to best fitness,
current population size or the mutation rate. The rules stored in the system reason
about the state of the measure values and recommend adequate actions. The
authors give a rule example: an increase in the present population causes the
sensitivity to mutation rate to decrease, along with the best mutation rate to use.
This can be programmed as follows:

IF the ratio of average fitness-to-best fitness is HIGH
 THEN population size should INCREASE

IF the ratio of worst fitness-to-average fitness is LOW
 THEN population size should DECREASE
 IF mutation is SMALL and population is SMALL
 THEN population size should INCREASE

The system developed was validated through a simulation example of an inverted
pendulum control, where it has shown much better behavioural results in pendulum
control than a GA with fixed parameters.

Government of the genetic population is a concept coined by Arnone et al.
(1994) for describing the process of on-line tuning GA parameters using a fuzzy
knowledge base. The concept is based on a fuzzy government module whose
inputs are statistical data periodically collected from the genetic algorithm and
whose outputs are the control parameters of the GA. In the concept, a facility is
embedded for monitoring the evolutionary process in order to avoid its possible
undesired behaviour.

Herrera and Lozano (1996) summarized the steps in building adaptive GAs
using fuzzy logic controllers as follows:

330 Computational Intelligence in Time Series Forecasting

define some firm measures related to the GA behaviour, its setting
parameters, and operators, e.g. example the diversity indices, maximum,
average, and minimum fitness values, as system inputs
define as system outputs the values of control parameters or of their
changes
define the database as a collection of membership functions and the
boundary values of input and output variables
build the rule base in which the fuzzy rules describe the relations between
the input and output variables.

The statistical data generated by the genetic algorithm concern the genotypes of
individuals of a population as well as the phenotypes related to the fitness and
other properties of individual performance for the problem to be solved. Two
typical examples for the above statistics are the

genotypic diversity measure, representing the variations of similarity
within the genetic material (like chromosomes, alleles, etc.)
phenotypic diversity measure, which mainly concerns the fitness of
chromosomes.

9.6 Concluding Remarks

In this chapter, three possibilities of adaptive versions of genetic algorithms are
presented, the first of which dynamically controls the basic tuning parameters, such
as probability of crossover, mutation and reproduction etc., based on the on-line
measurement of GA convergence. Other methods control mainly the population
size, based either on the concept of the age of the chromosome, the age structure of
the population, or by application of the average-fitness -to- best-fitness ratio,
worst-fitness -to- best-fitness ratio, besides the mutation- and crossover-rates-based
fuzzy IF-THEN rules. The efficiencies of the various methods are demonstrated on
application examples that can be found in the corresponding publications list.

References

[1] Arabas J, Michalewicz J, and Mulawka (1994) GAVaPS – a Genetic Algorithm with
varying population size. Proc. of the 1st IEEE Conf. on Evolutionary Computation:
73-78.

[2] Arnone S, Dell’Orto M, and Tettamanzi A (1994) Toward a fuzzy government of
genetic populations. Proc. of the 6th IEEE Conf. on Tools with the Artificial
Intelligence TAI’94, IEEE Computer Press, Los Alamitos, CA.

[3] Baker J (1985) Adaptive selection methods for genetic algorithms. In: Proc.1st Intl.
Conf. on Genetic Algorithms (J.J. Grefenstette, ed.): 101-111. Lawrence Erlbaum
Associates, Hillsdale , NJ.

[4] BergmannA, Burgard W, and Hemker A (1994) Adjusting parameters of genetic
algorithms by fuzzy control rules. In K.-H. Becks and D. Perret-Gallix, editors, New
Computing Techniques in Physics Research III. World Scientific Press, Singapore.

 Adaptive Genetic Algorithms 331

[5] DeJong KA (1985) Genetic Algorithms: A 10 year perspective. Proc. of Intl Conf. on
GAs and Applications: 169-177

[6] Grefenstette JJ (1986) Optimization of Control Parameters for GAs. IEEE Trans. On
Systems, Man, and Cybernetics 16(1): 122-128.

[7] Herrera F and Lozano M (1996) Adaptation of Genetic Algorithm Parameters Based
on Fuzzy Logic Controllers. In: F. Herrera and J.L. Verdegay Genetic Algorithms and
Soft Computing, Physica-Verlag: 95-125.

[8] Hesser J and Manner R (1990) Towards an optimal mutation probability for system
learning of a Boole an GAs. Proc. of the 1st Workshop, PPSN-I: 23-32.

[9] Knappmeier N (1993) Genetic algorithms with age structure and hybrid populations,
Final report for the research project 416, Univ. of Darmstadt.

[10] Kubota N and Fukuda T (1997) Genetic algorithms with age structure. Soft
Computing 1: 155-161.

[11] Lee M and Takagi H (1993) Dynamic control of genetic algorithms using fuzzy logic
techniques. In S. Forrest, editor, Proceedings of the 5th Intl. Conf. on Genetic
Algorithms, Morgan Kaufmann, San Mateo, CA.

[12] Li T-H, Lukasius CB and Kateman G (1992) Optimization of calibration data with the
dynamic genetic algorithm, Analytica Chimica Acta, 2768: 123-134.

[13] Palit AK and Popovic D (2000), Intelligent processing of Time series using neuro-
fuzzy adaptive Genetic approach, in Proceedings of IEEE-ICIT conference, Goa,
India, ISBN: 0-7803-3932-0, v. 1: 141-146.

[14] Smith JE and Fogarty TC (1997) Operator and Parameter Adaptation in Genetic
algorithms

[15] Srinivas and Patnaik (1994) Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Trans. on Systems, Man and Cybernetics 24(4): 656-667.

[16] Wilson SW (1986) Classifier System learning of a Boolean function. Research Memo
RIS-27r, Rowland Institute for Science, Cambridge, MA.

Part IV

Recent Developments

10

State of the Art and Development Trend

10.1 Introduction

In the previous chapters we have presented the main issues of computational
intelligence that, in our opinion, are of outstanding interest to practising engineers
in the industry. The issues presented, to our knowledge, also make up the main part
of syllabus of postgraduate courses on fuzzy logic, neural networks, computational
intelligence, and soft computing in computer science and engineering.

In the last decade, some additional issues have become of growing interest,
such as support vector machines, wavelet neural networks and fractally
configured neural networks, which will be presented below. However, there are
some advanced issues like stochastic machines, neurodynamics, and
neurodynamic programming that have been left out of scope of the book because
they are, in our belief, primarily of interest to informatics scientists and
mathematicians.

The new development trends in computational intelligence are multiple. In the
following, some development trends that, in our opinion, are the most promising
for applications in engineering will be presented.

In the area of neuro-technology, the progress and the expectations in the area of
bioinformatics and neuroinformatics are tremendous (Chen et al., 2003). The
advances have prevalently been possible due to the availability of sophisticated
computer facilities for collection and management of tremendous amounts of
complex experimental data, required for analyzing of brain infrastructure (see the
Proceedings of the IEEE, special issues on bioinformatics, November 2002 and
December 2002). The foremost research goal here is to understand the synaptic
communication pathway of neurons and of supporting cellular elements. The
pivotal achievements thus far are the understandings of how the computational
processes in the living cells are performed by interaction of molecules and how the
stochastic biochemical networks are built. Although the research work for the time
being is predominantly carried out by biologists and bioneurologists, there is still
expectation that, at a certain point in development, it will attract the attention of

336 Computational Intelligence in Time Series Forecasting

engineers. Here, it should be recalled that the learning rule of Hebb, himself a
neurophysiologist, was formulated after his study of the learning principle of
neurons.

A modest step in this direction is the special issue of Control Systems
Magazine, August 1994, devoted to biological networks and cell regulation.

In the area of fuzzy logic technology, the intensive research trend towards
knowledge extraction from data or data understanding using rule-based systems
(Duch et al., 2004) is remarkable. The beginning of this research has roots in the
achievements in image interpretation using the methods of artificial intelligence.
The aim behind this was to explain the meaning of the images from the collected
data, mainly using

perceptual knowledge, which supports interpretation in terms of lines,
patterns, areas, etc.
semantic knowledge, which enables the use of some abstract concepts like
the object shapes, the relationships between the objects, etc.
functional knowledge, i.e. the problem-oriented knowledge that finds out
the best image interpretation by conducting intelligently the inference
process.

Thus far, the rule-based data understanding approach has chiefly been used for
data-based medical diagnostics, like for diagnosis of cancer and diabetes diseases
(Setiono, 2000; Mertz and Murphy, 1993). However, it is highly possible that the
approach can also find application in the production industry for material analysis,
product quality inspection, and for production performance identification. What is
interesting from our point of view is that rule-based data understanding can help to
elucidate more inherent knowledge from the time series to be analyzed in this way
than using the approaches described in previous chapters.

In the area of genetic algorithms, the trend toward development of new, more
advanced search algorithms is noteworthy. The most prominent example represents
the development trend in particle swarm optimization, invented by Kennedy and
Eberhart (1995), i.e. by a social psychologist and an electrical engineer. It is a
population-based search approach placed somewhere between genetic algorithms
and evolutionary programming because it works in the following way:

Each particle (representing a potential problem solution) keeps track of its
coordinates in the problem space related with the best solution, called
pbest, based on the fitness obtained thus far. By evaluation of pbest values
across the particle’s population the global best temporary solution, called
gbest, is found and the parameter’s adjustments are performed. This, in
principle, corresponds to the crossover operation of GAs.

Like evolutionary programming, the particle swarm concept also relies on
the stochastic processes within the population.

The advantage of the particle swarm algorithm, compared with both of its
precursors, i.e. with genetic algorithms and evolutionary programming, lies in the
programming simplicity, which is due to the simplicity of its underlying concept.

 State of the Art and Development Trends 337

Usually, a few computer program lines are needed to define the algorithm and the
search objectives.

Initialization of the particle swarm algorithm starts with the random generation
of particles that at this stage represent the potential problem solutions. Through the
search for a final optimal problem solution the initial solutions will be improved by
updating the values of each particle generation, and this will be performed without
using the evolutionary operators such as crossover and mutation. During the search
process, the particles fly through the solution space towards the current pbest,
changing their velocity after each evaluation step.

It is interesting to add that the concept of particle swarm optimization was
worked out by its inventors through the observation of bird flocking and fish
schooling behaviour, and in the attempt to simulate birds seeking food through
social cooperation of neighbouring birds.

Presently, the main application of particle swarm optimization is in solving the
constrained optimization problems, such as optimization of nonlinear functions
(Hu and Eberhart 2002a), multiobjective optimization (Hu and Eberhart, 2002b),
dynamic tracking, etc. He et al. (1998) have even shown a way how to extract the
rules from fuzzy-neural networks using the particle swarm optimization approach.
In the meantime, the term swarm engineering was also coined (Kazadi, 2000),
dealing with the multi-agent systems.

Finally, some useful information about the development trends in this area of
research can be found in the special issue on particle swarm optimization, IEEE
Transactions on Evolutionary Computation (June, 2004).

10.2 Support Vector Machines

Over the last decade or so, increased attention has been paid to support vector
machines, based on the computational approach termed the principle of structural
risk minimization, formulated by Vapnik (1992). This principle is of fundamental
relevance to statistical learning theory and represents an innovative methodology
for development of neural networks (Vapnik, 1998 and 1995) for applications in
function approximation, regression estimation, and signal processing (Vapnik et
al., 1996). The applications are also extended to include pattern recognition
(Burges, 1998), and time series forecasting (Cao, 2003) and prediction (Muller et
al., 1997).

Originally, support vector machines were designed for solving pattern
recognition problems by determining a hyperplane that separates positive and
negative examples, by optimization of the separation margin between them. This is
generally based on the method of structural risk minimization and the theory of
statistical learning, where the error rate of learning of test data is limited by the
training error rate and by the Vapnik-Chervonenkis dimension (Vapnik and
Chervonenkis, 1968).

The fundamental concept of a support vector machine relies on Cover’s
theorem (Cover, 1965), which states that the mapping of an input vector x into a
sufficiently high-dimensional space, called a feature space, using a nonlinear

338 Computational Intelligence in Time Series Forecasting

C
la

ss
A

C
la

ss
B

High-dimensional
Feature Space

Hopt
Support Vectors

C
la

ss
A

C
la

ss
B

Low-dimensional
Data Space

Nonlinear
Mapping

x x

mapping function (x) could more probably be linearly separable than in the low-

dimensional input space of the vector (see Figure 10.1).

Figure 10.1. Nonlinear mapping from input space into feature space

In the high-dimensional feature space, if the data are nonlinearly separable in
the low-dimensional data space, then linear separability of features could be
achieved by constructing a hyperplane as a linear discriminant. In this way, a data
classifier can be built, as illustrated by the following example.

Let a set of labelled training patterns (,)i ix y be available, with i = 1, 2, …, N,

where ix is an n-dimensional pattern vector and iy is the desired output

corresponding to the input pattern vector ix , the values of which belong to the

linearly separable classes A with iy = -1 and B with iy = +1. The postulated

separability condition implies that there exists an n-dimensional weight vector w
and a scalar b such that

0T
iw x b for iy = -1, (10.1)

0T
iw x b for iy = +1, (10.2)

whereby the parametric equation

0T
iw x b (10.3)

defines the n-dimensional separating hyperplane. The data point nearest to the
hyperplane is called the margin of separation. The objective is to determine a
specific hyperplane that maximizes this margin between the two classes, called the
optimal hyperplane optH , defined by the parametric equation for optH in the

feature space

0 0 0T
iw x b (10.4)

 State of the Art and Development Trends 339

as shown in Figure 10.1. From all the possible hyperplanes separating the two
classes, optH is at equal distance between the data points that are nearest to the

boundary between the two classes. Such data points, satisfying one of the
following conditions

0 0 1T
iw x b , for 1iy

0 0 1T
iw x b , for 1iy ,

are called support vectors (see Figure 10.1).

Figure 10.2. Structure of a kernel-based machine

Nonlinear mapping from the input space 1 2[, ,...,]Nx x x x to the higher

dimensional feature space is carried out using the kernel function family

1 2() [(), (),..., ()]Nk x k x k x k x

which helps in defining the linear discriminant function

1

() 0
N

i i
i

w k x b (10.5)

in the feature space, where iw , i = 1, 2, …, N, are parameters of the discrimination

function. Assuming that 0 0 () 1b w k x , then Equation (10.5) can be rewritten in

the more compact form

0

() 0
N

i i i
i

w k x (10.6)

which is equivalent to the vector form

Summation

Minimizer

k1

Summation

Summation

k2

kN

x1

x2

xN

y

w11

w12

wNN

:
:

:
:

:
: O

u
tp

u
tIn

p
u

ts

340 Computational Intelligence in Time Series Forecasting

 () 0Tw k x . (10.7)

Equation (10.6), as shown in Figure 10.2, can be used directly for implementation
of a kernel-based machine (Principe et al., 1999).

In the following, we will seek for the optimal separating hyperplane (Haykin,
1999) using the set of training data samples (,)i ix y and the constraint

() 1T
i iy w x b , i = 1, 2, …, N. This is achieved by optimal selection of the value

of b and by determination of the optimal value of w by minimizing the cost
function

1
()

2
TJ w w w . (10.8)

Using for this purpose the method of Lagrange multipliers, we have to minimize
the Lagrangian function

1

1
(, ,) [() 1]

2

N
T T

i i i
i

J w b w w y w x b (10.9)

with respect to w and b and to maximize with respect to by solving the equations

(, ,)
0

J w b

b
 (10.10)

and

(, ,)
0

J w b

w
. (10.11)

As a result, the values of the weight vector w are found as

1

N

i i i
i

w y x (10.12)

under the condition that

1
0

N

i i
i

y , (10.13)

holds. Taking into consideration the nonlinearly transformed value of ix , i.e.

()ik x , the optimal value of w found above becomes

 State of the Art and Development Trends 341

1

()
N

i i i
i

w y k x , (10.14)

where the transformed value ()ik x represents the feature vector corresponding to

the input vector ix .

After replacing the last Equation by equation (10.7), the separating surface in
the feature space is found as

1

() () 0
N

T
i i i

i

y k x k x , (10.15)

or as

1

(,) 0
N

i i i
i

y K x x , (10.16)

where

(,) () () () ()T T
i i iK x x k x k x k x k x (10.17)

is the inner product kernel, which is a symmetric function, i.e.

 (,) (,)i iK x x K x x . (10.18)

Figure 10.3. Basic architecture of a support vector machine

In practice, kernels of various shapes have been used:

 polynomial kernels (,) [(,) 1]T n
i iK x x x x

K(x,x1)

Summ-
ation

x1

x2

xN

y

:
:

:
:

K(x,x2)

K(x,xN)

In
p

u
ts

O
u

tp
u

t

b

342 Computational Intelligence in Time Series Forecasting

 RBF kernels

2

22(,)
ix x

iK x x e

sigmoid kernels (,) tanh[(,)].T
i iK x x c x x

The condition for a selected kernel to be acceptable as an inner product kernel
and to be useful for building a support vector machine is defined by Mercer’s
theorem, which states that the proposed kernel function must be a symmetric
function, as defined by Equation (10.17). Furthermore, an inner product kernel to
be used in building the basic architecture of the support vector machine shown in
Figure 10.3 must be expandable in the series

1

(,) () ()i i i i i
i

K x x k x k x , (10.19)

where i are eigenvalues and ()ik x are the eigenfunctions of the expansion.

10.2.1 Data-dependent Representation

Auflauf and Biehl (1989), using a data-dependent representation, have worked out
a simple and fast convergent sequential algorithm for finding the optimal
parameters of a discriminant function with the largest margin. The algorithm that
they called adatron considers the discriminant function in terms of

0

() sgn()
N

T
i i

i

f x x x b , (10.20)

where N is the number of samples and i the multipliers of individual samples that

should be selected so that the quadratic form

1 1 1

1
() ,

2

N N N

i i j i j i j
i i j

J d d x x , (10.21)

is optimized subject to the constraint

1

0
N

i i
i

d , (10.22)

for 0i , i = 1, 2, …, N, where .,. represents the inner product of ix and jx .

 State of the Art and Development Trends 343

In order to understand the building of a machine using the adatron algorithm,
the discriminant function, relying on N data samples ix and the corresponding

weight multipliers iw , should be written as

1

()
N

T T
i i

i

f x x w b x x b , (10.23)

and the machine output function as

 () sgn[()]y x f x . (10.24)

Figure 10.4. Adatron-algorithm-based perceptron

Equations (10.23) and (10.24) define the structure of a data-dependent machine,
shown in Figure 10.4, in accordance with a perceptron with b = +1 as its bias input.

The idea of adatron was born during the search for a perceptron with optimal
stability. Among the best iterative computational proposals for the design of such a
perceptron, the adatron algorithm has proven to be the best one, since it
theoretically promises – if the problem solution exists – to deliver an optimal
solution with an exponential speed of convergence. The adatron algorithm is a
kernel-based on-line algorithm for a learning perceptron under the premise that it
operates in a feature space in which it is supposed that a maximal margin
hyperplane exists.

10.2.2 Machine Implementation

After presenting the support vector machines concept and the aspects of its
implementation, we would now like to summarise some essential issues and give a
typical example of a support vector machine based on the RBF function as its
kernel function (Figure 10.5). In doing this, we would first like to remind that the
decision methodology of a support vector machine is based on implementation of
the following two successive steps:

mapping the training points by a nonlinear function to a sufficiently high-
dimensional feature space in which the training points are linearly
separable

Sum

xi1

xi2

xiN

f(x) Sgn(f(x))

:
:

:
:

1

2

N

:
:

344 Computational Intelligence in Time Series Forecasting

determination of the optimal separation hyperplane that maximizes the
margin, i.e. the distance to the points.

We also recall that the adatron algorithm is capable of maximizing the margin.
This can be used to implement a kernel-based machine. In the specific case of an
RBF kernel of Gaussian style, the discriminant function ()f x , represented by

Equation (10.23), takes the form

2

22

0

()
ix xN

i
i

f x e b , (10.25)

which can be implemented as shown in Figure 10.5.

Figure 10.5. Architecture of an RBF-based support vector machine

This implementation effectively represents the structure of an RBF-based
support vector machine in which the Gaussian activation functions are centred at
sampled values, and the multipliers i play the role of interconnecting weights.

10.2.3 Applications

In engineering, support vector machines have found useful applications in
nonlinear regression estimation and in time series forecasting and prediction.

Nonlinear regression estimation addresses the problem of estimating a
function given by a set of data (,)i dix y , i= 1, 2, …, N, generated by an unknown

function to be estimated, where ix are the sampled values of data set and diy are

the desired values to be estimated using the approximating function

0

(,) ()
N

i i
i

f x a a x b .

In the above function, the functions ()i x are called features and ia are

coefficients to be estimated from given data by minimizing the functional

RBF
Center at x1

Summ
-ation

xi1

xi2

xiN

y

:
:

:
:

RBF
Center at x2

RBF
Center at xN

In
p

u
ts

O
u

tp
u

t

sgn

1

2

N

:
:

 State of the Art and Development Trends 345

2

1

1
() (,)

N

i i a
i

J w y f x a a
N

,

where is a constant.
Mukherjee et al. (1997) experimentally investigated the performances of a

support vector machine in nonlinear regression estimation of the database of a
chaotic time series, and compared the results with those achieved with other
techniques, such as with polynomial and rational approximations, radial basis
functions, and with neural networks. They reported that the support vector machine
performs better than any of the techniques taken for comparison. Cao and Tay
(2001) concentrated their research on application of support vector machines in
financial time series forecasting using the S&P daily index as the data set. They
showed that, compared with neural networks, support vector machines performed
better because of their better generalization capabilities.

10.3 Wavelet Networks

10.3.1 Wavelet Theory

The origin of the wavelet concept lies at the begin of the last century, as an
extension of the Fourier transform. The real application of the new concept,
however, began many decades later, sometime in the 1980s. It was soon realized
that the wavelet concept, as a unified framework of various methodologies, could
provide an efficient tool for signal processing, speech and image compression, etc.
Moreover, wavelets became very popular in statistical time series analysis (Nasin
and Sachs, 1999). Of more advanced use is the wavelet transform (WT) in analysis
of non-stationary processes.

Presently, various types of wavelet transform are in use, such as the continuous,
discrete, and discrete-time wavelet transform, which are appropriate for various
applications. For instance, the continuous wavelet transformation

1
(,) ()x

t
T a x t h dt

aa

is seen as an alternative to the short-time Fourier transform

02(,) () () j f tT f x t h t e dt

and to the Gabor transform. Evidently, the wavelet transform is a kind of signal
decomposition in a family of basis functions called wavelets, whereby wavelets of
a family are obtained from a prototype wavelet or mother wavelet as

346 Computational Intelligence in Time Series Forecasting

,

1
()

t
t ,

whereby is a fixed time-frequency function meeting the restrictions

1
() 1t t

and

1
() 1 ,

where () represents the Fourier transform of ()t and meets the condition

 > 0.

10.3.2 Wavelet Neural Networks

The wavelet decomposition approach, formulated at the end of 1980s, became a
powerful tool for function approximation, and it was also applicable to time series
analysis. Based on this decomposition, some structural representations of wavelet
neural networks have been developed. In the first half of the 1990s, a number of
publications reported on the synthesis and applications of wavelet neural networks
(Zang and Benveniste, 1992; Pati and Krishnaprasad, 1993; Zhang et al., 1995).
The initial idea of Zang and Benveniste (1992) was to depict the wavelet neural
network as an approximator of continuous functions using the universal
approximation capability of wavelet decomposition.

Figure 10.6. Wavelet network as a function approximator

Hence, they proposed a neural network structure described by the
decomposition algorithm

D1R1
w1

D2R2
w2

DNRN
wN

x
g(x)

g

-t1

-t2

-tN
:
:

:
:

:
:

:
:

 State of the Art and Development Trends 347

1
() [()] *

N

i i i i
i

g x w D R x t g ,

where the iD values are diagonal matrices built from dilation vectors and iR , i =

1, 2, …, N, are some rotation matrices. The redundant parameters *g are

introduced to deal with non-zero-mean functions, because the wavelet ()x is a

zero-mean function. The network’s equivalent structure is shown in Figure 10.6.
Rao and Kumthekar (1994) worked out the structure of recurrent wavelet networks
using the equivalence between the

statement of Cybenko (1989) that, if (.) is a continuous discriminating

function, then finite sums of the form

1

() ()
N

T
i i i

i

f x w a x b

are dense in the space of continuous functions, so that any continuous
function f(.) may be approximated by a weighted sum of (.) functions

analogous results of wavelet theory, which state that arbitrary functions can
be written as a weighted sum of dilated and translated wavelets

1/ 2

1

() det ()
N

i i i i
i

f x w D D x i .

A more transparent wavelet network representation was proposed by Chen et
al. (1999). In this network, the wavelets are used as activation functions in the
network’s hidden layer, replacing the sigmoid functions, whereby the wavelet
shape and the wavelet parameters are adaptively determined to deliver the optimal
value of an energy function. In analogy with the input-output mapping of a one
hidden-layer perceptron, generally written as (see Chapter 3)

1

()
N

T
o h h i i

i

y f w f f w x ,

Chen et al. (1999) proposed a similar wavelet neural network structure

0 0() ()n m
i j ij ab k jk ky t w w x t

for i = 1, 2, …, N, where kx and iy are the input and the output vectors

respectively, and jkw are the connecting weights between the output unit i and the

348 Computational Intelligence in Time Series Forecasting

hidden unit j. In the last equation, the factors aj and bj represent the dilation and the
translation coefficients of the wavelet in the hidden layer respectively. Similarly,

jkw represents the connecting weight between the hidden unit j and the input unit

k. Relying on the above representation of neural networks, Cybenko (1989) and
Hornik et al. (1989) proved – using the Stone-Weierstrass theorem – that any
arbitrary function can be approximated with a given accuracy, thus designating the
single hidden-layer neural network as a universal approximator.

The proposed wavelet neural network is trained using the backpropagation
algorithm with the cost function

1 1

1

2

P N
p p

i i
p i

E d y ,

where d is the desired network output of pth input pattern. Furthermore, P
represents the sum of input sample and m, n, and N the sum of input, hidden, and
output nodes respectively.

Pati and Krishnaprasad (1993) developed an alternative structure of
feedforward network, based on the discrete affine wavelet transform. This is
possible because the sigmoid activation function can be viewed as being composed
of affine wavelet decompositions of mappings.

Zhang et al. (1995) described a wavelet neural network structure similar to that
of a radial basis function network in which the radial basis functions are replaced
by orthonormal scaling functions that are not necessarily radially symmetric. The
wavelets used for network implementation are functions whose translations and
dilations build an orthonormal basis of L2(R), which encompasses all square
integrable functions of R, with the mother wavelet of the form

/ 2
, () 2 (2).m m

m n t t n

The objective of the proposed network is that, given a training data set

, ()N i iT t f t ,

where i =1, 2, …, N, the optimal estimate of f(t) could be found using

, ,() , ()M k M k
k

f t f t .

For a given set of M and k, the wavelet network implements the mapping

,() ()
K

k M k
k K

g t c t

 State of the Art and Development Trends 349

which can be used to approximate f(t) when the weights kc are properly chosen.

Mukherjee and Nayer (1996) proposed a methodology for automatic generation
of RBF networks based on the integral wavelet transform. In fact, they concentrate
on automated construction of a generalized radial basis function network. To
solve the problem considered, there is a general question to be answered: Can a
multivariate function f(x) be represented by the sums and products of univariate
functions? The answer is to be found in approximation theory, which for this
purpose recommends minimizing the cost functional

2
(,) () (,)H F W x f x F W x dx

with respect to W. In order to make the approximation problem well posed,
regularization techniques have to be used by introducing smoothness constraints
into the approximation problem, so that the extended cost functional becomes

2

1

(,) [() (,)]
N

i i
i

H F W x f x F W x +
2

(,)PF W x .

Solving this problem (for details see Chapter 3), the approximation function for the
generalized radial basis network is defined by

1

(,) (;)
n

j j
j

F W x c G x z ,

where jz , j = 1, 2, …, n, are the centres of the new basis functions, which can be

computed - along with the coefficients in the last equation – by minimizing the cost
functional

2

1

(,) [(,) ()]
N

i i
i

H F W x F W x f x .

Based on the results of Zang (1997) in the use of wavelet network in non-
parametric estimation, Li and Chen (2002) proposed a robust wavelet network,
based on the theory of robust regression.

10.3.3 Applications

As mentioned earlier, wavelets have been widely used in various application fields
of engineering. Some remarkable achievements have been reported in the
Proceedings of the IEEE, special issue on wavelets, in April 1996. A state-of-the
art report on wavelet applications in signal processing was compiled by Rioul and
Vetterly (1991). Also, Li et al. (2000) have presented a real-life application of the
wavelet transform in manufacturing for tool wear condition monitoring and tool

350 Computational Intelligence in Time Series Forecasting

breakage, based on measurements of spindle and feed motor currents. For
decomposition of power inputs to the spindle and to the feed motor servos, both
continuous and discrete wavelet transforms were used, and for detection of tool
wear state a fuzzy classification method was developed relying on mathematical
models of relationships between the current signals and the cutting parameters in
the various tool wear states.

Recently, the results of wavelet application in time series forecasting and
prediction have been published. Zhang et al. (2001) used wavelet decomposition
for multi-resolution forecasting of financial time series. For this purpose, the time
series was decomposed into an invariant scale-related representation and the
individual wavelet series modelled by a separate multilayer perceptron. In order to
build the overall time series forecast, the individual forecasts are recombined by a
linear reconstruction property of the inverse transform with the chosen
autocorrelation shell representation. Also, for time series preprocessing, a
combined Bayesian and wavelet-based approach was used. Wavelet decomposition
was also used by Soltani (2002) for nonlinear time series prediction. To produce
improved prediction values, he used a combination of wavelet decomposition (as a
filtering step) and neural networks. The most difficult problems to be solved here
are the selection of an appropriate model order and the determination of optimal
estimator complexity. Chen et al. (1999), again, used the multiresolution learning
capability of a feedforward wavelet neural network described above for single- and
multi-step predictions of chaotic time series and for systems modelling. Finally, in
his Ph.D. thesis, Lotric (2000) used wavelet-based smoothing in time series
prediction with neural networks and applied it to process quality control.

10.4 Fractally Configured Neural Networks

Engineering, information science, and mathematics have learnt much from biology
and physiology. Examples are the creation of genetic and evolutionary searches,
the discovery of Hebbian learning, reinforcement learning, associative memories,
etc. From the complexity points of view, all arts of learning are categorized as
elementary learning processes used for recognition and classification of patterns
from given data. With the progress of time, the attention was shifted towards
higher level learning processes or cognitive functions, which are based on a set of
elementary learning processes. As a tool for solving problems involved in higher
level processes that, for instance, conventional neural networks cannot solve,
fractally configured neural networks (or simply fractal networks) have been
proposed. The primary reason for this was because the higher cognitive functions,
such as consciousness, are basically hierarchically organized complex systems that
cannot be modelled by a simple neural network, but rather they need several sub-
networks (Takeshi and Akifumi, 1999).

In general systems theory, various concepts have been elaborated for modelling
of hierarchically organized modular systems, among them the concept of partially
bounded open systems, in which the system itself and it’s modules interact with
their environment through their inputs and outputs. In the same way, the modules
interact with each other at each hierarchical level as well as with the modules at a

 State of the Art and Development Trends 351

higher hierarchical level, so that they can be seen as partial open systems
themselves. This interaction creates new, more complex open systems having a
“higher order” intelligent behaviour, which is analogous with the capabilities of
biological modules building higher level systems (multi-cellular organisms) out of
lower level modules (cells) that, within the higher level system, behave as partially
bounded open systems with mutual interaction.

The core issue, however, is: How should the modules interact mutually? This is
the issue that was irrelevant for general systems theory. Furthermore, the question
also arises as to what internal models should be embedded in individual modules.
At least now, contemporary intelligent technology, particularly neuro-technology,
is called for help. For instance, in analogy with the modules of biological systems,
modules made up of neural networks should be structured as kinds of nested
networks made up of networks that themselves build the individual modules
capable of mutual communication. This indicates that the overall hierarchically
organized modular system should have some fractal structure.

The operational principle of fractally configured neural networks is as follows.
The modules at the lowest hierarchical level primarily have a sensing function.
While interacting with the environment, the basic function is to collect the input
data and to learn their characteristic features. The modules thereafter interact with
modules of the next higher hierarchical level by sending the results of learning to
them. The higher level modules receive from more than one lower level module the
information learnt and perform a “higher level abstraction” that is forwarded to
higher level modules, etc. This procedure is repeated until the central module of
the system receives the combined information needed for final recognition and
interpretation of the environment situation.

Following this operational principle, the entire neural network to be built
becomes fractally configured. The problem now is what types of neural network
should be used for system implementation. Because the modules should transfer
the learning results towards to higher level modules, the feed-forward networks
could be appropriate for this function. These types of network, however, do not
have the storage capacity that, for example, the recurrent networks have. They can
also perform self-organized learning, but, again, cannot be easily organized
hierarchically. For this purpose, Morita (1993) proposed using what he called non-
monotone neural networks, capable of “abstracting” the input signals and of
building the associative memory.

Finally, the structure of the hierarchically organized modular neural network
was worked out as shown in Figure 10.7, in which the sensory level, recognition
level, abstraction (generalization) level, and the final interpretation and decision
level are chained hierarchically. This depicts the cerebral cortex hierarchy made
up of sensory cortices, association cortices, frontal association cortices, and the
central motor cortex on the top of the hierarchy. From the figure it is evident that
the fractal neural networks are tree-structured neural networks made up of
hierarchically distributed sub-network clusters.

All the modules presented in Figure 10.7 are made up of non-monotone neural
networks, the simplified structure of which is shown in Figure 10.8. In fact, the
internal neural networks of modules consist of non-monotone networks,
represented as circles. The non-monotone networks themselves consist of a number

352 Computational Intelligence in Time Series Forecasting

of pairs of inhibitory neurons and excitatory neurons, so that they are structured
as multi-input, multi-output neurons.

Figure 10.7. Hierarchically organized modular neural network

Figure 10.8. Simplified structure of a non-monotone neural network

It should finally be mentioned that although the discovery of fractally based
neural networks was introduced in the late 1980s, the subsequent work on their
implementation and application was rather dilatory.

10.5 Fuzzy Clustering

In Chapter 4 we have already described various fuzzy clustering algorithms, such
as the fuzzy c-means algorithm that relies on fixed distance norm and the
Gustafsson-Kessel algorithm that takes into account the adaptive version of
distance norms for various geometrical shapes of clusters. Here, two other fuzzy
clustering algorithms will be described, one that relies on the neural self-organizing
network of Kohonen and the other is an entropy-based method.

Once the data clustering algorithm is applied in the product space of X and y,
where a regression matrix 1 2[, ,...,]T

NX x x x and the corresponding output vector

1 2[, ,...,]T
Ny y y y are constructed from a given set of time series data, the

identification of a nonlinear time series model is simply a two-step procedure.

Interpretation and
Decision Level

Abstraction
Level

Recognition
Level

Sensory
Level

NNN

NNN

NNN

 State of the Art and Development Trends 353

From the generated fuzzy partition matrix ,g s c N
U that contains the

membership degrees of the data object sz Z , s = 1, 2, ..., N, and ,TZ X y , in

the cluster group g = 1, 2, ..., c, the one-dimensional antecedent fuzzy sets are
constructed from the point-wise projection of the rows of matrix U. Thereafter, the
Takagi-Sugeno (TS) rule’s consequents are estimated from the training data, using
the antecedent fuzzy sets, by the least squares error method. After validating the
time series model with the validation data, the future values of the time series can
be predicted easily by applying the generated Takagi-Sugeno rules.

10.5.1 Fuzzy Clustering Using Kohonen Networks

A Kohonen network is a self-organizing neural network, usually trained in
unsupervised competitive mode. It is very well suited for data clustering. The
network is closely related to the c-means clustering algorithm (Huntsburger and
Ajjimarangsee, 1989). This was demonstrated by Bezdek et al. (1992) in their
proposal of a data clustering algorithm that was based upon the Kohonen networks.

The ideas from the fuzzy c-means (FCM) algorithm are basically integrated
into the learning rate and weight-updating strategies of the Kohonen-type
networks, while implementing the fuzzy Kohonen clustering network (FKCN). The
new algorithm can be viewed as a Kohonen-type fuzzy c-means (FCM) algorithm.

A Kohonen network (Kohonen, 1982) basically performs on some specific
heuristic procedures, the termination of which does not represent the optimization
of any model. In this kind of network, the final weight vectors depend on the input
sequence. As a consequence, different initial conditions usually lead to different
results.

Bezdek et al. (1992) introduced a new class of networks called FKCNs. In
FKCNs, fuzzy membership values of output categories are incorporated into
learning rates. In addition, FKCNs are self-organizing networks, since the size of
the update neighbourhood is automatically adjusted during the learning process.
Also, FKCNs usually terminate in such a way that the FCM objective function is
approximately minimized. An FKCN is non-sequential and, therefore, it is
independent of the sequence of feed of the input data.

The learning algorithm of an FKCN can be described as follows.

A data set that consists of observations of n measured variables (e.g. pressure,
temperature, flow, etc. of a process) grouped into n-dimensional column vectors

1 2, , , ,
T

s s s nsz z z z ,n
sz and a set of N such observations (e.g. at time

instants 1, 2, ..., N etc.) can be denoted as Z = {zs | s = 1, 2, ..., N} and represented
by the n N matrix ,rs n N

Z z where the rows and columns are indicated

respectively by r = 1, 2, ..., n and s = 1, 2, ..., N. The rows and columns of this Z
matrix are called features (attributes) and patterns (objects) respectively. For a
given data set Z, c fuzzy clusters (groups) : 0,1g Z are fuzzy partitions of

data Z in the c N values of gs g sz , with 1 g c and 1 s N , that satisfy

354 Computational Intelligence in Time Series Forecasting

the three conditions (see Section 4.7.1.3). Here, gs g sz represents the degree

of membership of data object zs in the cluster group g. Based on the above
representation of data and membership degree, the following steps implement the
FKCN algorithm.

Step 1:

Initialize the constants c, m and , where c represents the number of
clusters sought in the data, m is the fuzziness exponent and is the
termination tolerance, such that

1

1

0

c N

m

Initialize the cluster centre vectors

0 1,0 2,0 ,0 ,0, , , , n
c gV v v v v

where ,0gv represents the prototype vector for cluster group g.

Select the fuzziness exponent m > 1, and m is usually set to 2. Select also
Tmax, the number of maximum allowed iterations.

Repeat for iteration t = 1, 2, 3, ..., Tmax;

Step 2:

Compute all learning rates using

m

gs gs , where

12 1

1
, 1 , 1 ,

m

c s g

gs
h s h

z v
g c h c

z v

where is the learning rate, are the membership values and c is the
number of clusters.

Step 3:

Update the weight vectors with

1 1

1 1
N N

g g gs s g gs
s s

v t v t z v t

 State of the Art and Development Trends 355

where t is the iteration number.

Step 4:

Test for the terminating condition, i.e. calculate

2
1t g gE v t v t ,

if tE or, maxt T

then stop
else go to step 2.

It is to be noted that very often a termination tolerance = 0.001 is selected, even
though = 0.01 works well in most cases. In the above algorithm, the weight
vector vg of the winning unit is closest to the input vector zs. During the learning,
the weight vector corresponding to the winning unit is adjusted so as to move
further closer to the input vector. Most importantly, for a fixed value of m, the
FKCN updates the weight vectors, using the conditions that are necessary for FCM
and, in fact, with a fixed value of fuzziness exponent m, Bezdek et al. (1992)
showed that the FKCN is equivalent to the fuzzy c-means clustering algorithm.
However, particularly for m = 1, the FKCN behaves as a hard c-means clustering.
As an illustration, they used an FKCN for clustering of iris data.

10.5.2 Entropy-based Fuzzy Clustering

The fuzzy c-means clustering methods, proposed by Bezdek (1974), and it’s
variant, the Gustafson-Kessel clustering algorithms (Babuška, 2002), based on an
adaptive distance metric, although being very popular and powerful, both had to
undergo some modifications (Yuan et al., 1995; Medasani et al., 1995; Babuška et
al., 2002), particularly the improvement of their performance and the reduction of
their computational complexities.

One of the most important issues here is the determination of the number and
initial location of cluster centres. In the original versions of both the above
approaches the initial locations are selected randomly. Setnes and Kaymak (1998)
in their extended version of both approaches have advocated selecting a large
number of clusters initially and by compatible cluster merging reducing their
number. Babuška (1996) and Setnes (2000) have suggested using a cluster validity
measure, such as Xie and Benie’s index, to select the optimum number of clusters.
Yager and Filev (1994) and Chiu (1994) proposed methods that automatically
determine the number of clusters and locations of cluster centres. Chiu’s method is
a modification of Yager and Filev’s mountain method, in which the potential of
each data point is determined based on it’s distance from other data. A data point is
considered to have a high potential if it has many data points nearby and the data
point having the highest potential is selected as the first cluster centre. Thereafter,
the potentials of all other data points are recalculated according to their distance

356 Computational Intelligence in Time Series Forecasting

from the selected cluster centre. This procedure is repeated until no data point has
it’s potential above a threshold. This method requires values of three parameters:

the radius beyond which data points have little influence on the calculation
of the potential
the amount of potential to be subtracted from each data point as a revision
after a cluster centre is determined
the threshold that potential uses to stop selecting cluster centres.

Although these methods are simple and effective, they are computationally heavy
because, after determining each cluster centre, the potential values of all other data
points have to be revised. The problem of recalculating the potential values is
aggravated with an increase in the number of cluster centres, because the values of
all three of the above parameters vary considerably from one data set to another.

In order to overcome the above difficulties, Yao et al. (2000) proposed using
the entropy measure instead of the potential measure, and in this way one avoids
any revision after finding a cluster centre. The entropy at each data point is
calculated based on a similarity measure. Note that the similarity measure here
indicates the similarity between the data points and not between the fuzzy sets as
described in Chapter 7. Data points in the middle of the clusters will have lower
entropy than other data points. In other words, they have a better chance of being
selected as cluster centres. The data point having the lowest entropy is chosen as
the first cluster centre. Data points having similarity with this cluster centre less
than a threshold are removed from being considered as cluster centres in the rest of
the iterations. The rationale here is that the data points having high similarity with
the chosen cluster centre should belong to the same cluster with a high probability,
and are not likely to be centres of any other clusters. This is repeated until there are
no data points left. An advantage of this method compared with other methods is
its lower computational complexity. This is because, in this method, the calculation
of entropy values is done only once. Also, the method requires a fewer number of
parameters and the parameters assume values within a narrow range. In the
following, an entropy measure for fuzzy clustering is introduced and a fuzzy
clustering algorithm, based on entropy measure, is presented.

10.5.2.1 Entropy Measure for Cluster Estimation
Consider a set of N data points in an M-dimensional hyperspace, where each data
point zs, i = 1, 2, …, N, is represented by a vector of M components (zs1, zs2, …,
zsM). The values of each dimension are normalized in the range [0.0, 1.0]. Let us
now assume that there are several clusters (groups) in the data. Now, for a data
point to be a cluster centre, the ideal situation is when it is close to the data points
in the same cluster centre and away from the data points in other clusters. This
situation restricts the data points in the border of the cluster from becoming cluster
centres.

10.5.2.1.1 The Entropy Measure
Yao et al. (2000) postulate that the data set has an orderly configuration if it has
distinct clusters, and a disorderly configuration or chaotic configuration
otherwise. From entropy theory (Fast, 1962) it is known that entropy (or

 State of the Art and Development Trends 357

probability) is lower for orderly configurations and higher for disorderly
configurations. Therefore, if we try to visualize the complete data set from an
individual data point, then an orderly configuration means that for most of the
individual data points there are some data points close to it (i.e. they probably
belong to the same cluster) and others away from it. In a similar reasoning, a
disorderly configuration means that most of the data points are scattered randomly.
So, if the entropy is evaluated at each data point then the data point with minimum
entropy is a good candidate for the cluster centre. This may not be valid if the data
have outliers, in which case they should be removed first before determining the
cluster centres. The next section addresses this issue more.

The entropy measure between two data points can assume any value within the
range [0, 1]. It shows very low values (close to zero) for very close data points, and
very high values (close to unity) for those data points separated by the distance
close to the mean distance of all pairs of data points. The similarity measure S is
based on distance, and assumes a very small value (close to zero) for very close
pairs of data points that probably fall on the same cluster, and a very large value
(close to unity) for very distant pairs of data points that probably fall into different
clusters. Entropy at one data point with respect to another data point is defined as

2 2log 1 log 1E S S S S . (10.26)

From the above expression it can be seen that entropy assumes the maximum value
of 1.0 when the similarity S = 0.5 and the minimum value of 0.0 when S = 0.0 or
1.0 (Klir and Folger, 1988). The total entropy value at a data point zi with respect
to all other data points is defined as

2 2log 1 log 1 ,
j i

ij ij ij ij
j Z

E S S S S (10.27)

where Sij is the similarity between the data points zi and zj, normalized to [0.0, 1.0].
It is defined as

,ijD
ijS e (10.28)

where Dij is the distance between the data points zi and zj. If we represent the
similarity against the distance graphically, then the representative curve will have a
greater curvature for a larger value of . The experiments with various values of

 suggest that it should be robust for all kinds of data sets. Yao et al. (2000)
proposed calculating the value automatically by assigning a similarity of 0.5 in
Equation (10.28) when the distance between two data points is mean distance of all
pairs of data points. This produced a good result, as confirmed in various
experiments (Yao et al., 2000). Mathematically, this can be expressed as

358 Computational Intelligence in Time Series Forecasting

log 0.5e

D
, (10.29)

where D is the mean distance among the pairs of data points in a hyperspace.
Hence, is determined by the data and can be calculated automatically.

10.5.2.2 Fuzzy Clustering Based on Entropy Measure
In order to determine the first cluster centre, the entropy at each data point is
evaluated. The data point that has the lowest entropy value is selected as a potential
cluster centre. Thereafter, this first cluster centre and all the data points that have
similarity with it greater than a threshold value of are removed, so that they are

ignored as possible subsequent cluster centres in the next iterations. The procedure
is continued with the search for the next cluster, which is selected as the point with
the minimal entropy value among the remaining data points and, again, this cluster
centre and the associated data points having similarity greater than are similarly

removed. This process is repeated until no data points are left.
The parameter can be viewed as a threshold of similarity value or as

association value among the data points in the same clusters. It assumes a value
within the range (0.0, 1.0), whereby the value of = 0.7 is quite robust, as shown

experimentally in Yao et al. (2000). In the algorithm described below, T is the
input data with N data points, each of which has M dimensions.

Algorithm 10.1. Entropy-based fuzzy clustering: EFC(T)

Step 1: calculate the entropy for each zi in T for i = 1, 2,…, N.
Step 2: choose ziMin that has lowest entropy
Step 3: remove ziMin and all the data points that have similarity greater
than with the cluster centre ziMin from the data set T.

Step 4: continue step 2 to 3 till T is not empty.

If the data set has outliers that are very distant from the rest of the data, then the
EFC algorithm described may select these data points for the cluster centres
because the entropy value for these data points will also be very low. To overcome
this problem, a new parameter is introduced in Yao et al. (2000) that acts as a

threshold between potential clusters and the outliers. Before selecting a data point
as cluster centre the number of data points are counted that have similarity greater
than with that cluster centre. If the number of counts is less than the value of ,

then that data point is unfit to be a cluster centre and should be rejected from the
data set, so that it is not considered further for the next iteration. In the work of
Yao et al. (2000) = 0.05N is selected as the threshold for outliers detection. The

selection of and, therefore, the corresponding removal of outliers also prevent

the data overfitting.

 State of the Art and Development Trends 359

10.5.2.3 Fuzzy Model Identification Using Entropy-based Fuzzy Clustering
In this section, entropy-based fuzzy clustering (EFC) will be presented to construct
a fuzzy model for predicting values of output variables. The fuzzy modelling
approach presented here is proposed by Yao et al. (2000) and differs slightly from
the other modelling approach described in Chapter 4 and elsewhere in the book.

In the EFC-modelling approach Takagi-Sugeno-type rules with singleton
consequents are considered. A fuzzy rule is based on a fuzzy partition of the input
space. In each fuzzy subspace one input-output relation is formed. For a data point
with an unknown value of output variable the values of input variables of the data
point are applied to all rules and each rule gives a value by fuzzy reasoning. The
predicted output value is then obtained by aggregation of all the values given by
the rules.

Consider now a set of c cluster centres (v1*, v2*, ..., vc*) in M-dimensional
hyperspace that is generated by the EFC algorithm. Now, suppose that the last L
dimensions of a kth cluster centre (vk*) are output dimensions, whereas the first
(M-L) dimensions are input dimensions. Then, each cluster centre vk* can be
decomposed into two vectors: xk* in (M-L)-dimensional input space and yk* in L-
dimensional output space. Then, a fuzzy model is a collection of c rules of the form

Rule k: IF X is close to xk* THEN Y is close to yk*,

where X is the input vector consisting of (M-L) input variables [xs1, xs2, ..., xs(M-L)]
and Y is the output vector consisting of L output variables [ys1, ys2, ..., ysL] of a data
point zs, with s = 1, 2, ..., N, training (input-output) samples. The membership
function, representing the degree to which rule k is satisfied, is given as

2
exp *k k kx x ,

where x is the input vector, X = x, and k is automatically calculated from the

data. In the above, the symbol ||.|| denotes the Euclidean distance. The output
vector, Y = y, is calculated as

1

1

*
c

k k
k

c

k
k

y
y .

We can now write a fuzzy rule in a more specific form as

IF x1 is Ak1 and x2 is Ak2 and … and x(M-L) is Ak(M-L) THEN Y is y,
for k = 1, 2,…, c.

where xj is the jth input variable and Akj is given by

360 Computational Intelligence in Time Series Forecasting

2
exp *kj k j kjA x x ,

where xkj* is the jth element of kth cluster centre vk* and the “and” operator is
implemented by multiplication.

The parameter k is crucial for the fuzzy model to perform well. It’s initial

value can be estimated from

min

log 0.5

0.5
e

k D

For each cluster centre we find its closest cluster centre and calculate the distance
Dmin between these two cluster centres. This formula implies that, in the fuzzy set
around a cluster centre, if there is a data point midway between the cluster and its
closest neighbouring cluster centre then the membership value of this data point
belonging to the fuzzy set should be 0.5. This estimation is further verified and
confirmed with the experimental evidence by Yao et al. (2000).

References

[1] Auflauf J and Biehl (1989) The Adatron: An adaptive perceptron algorithm
Europhysics Letters 10(7):687–692.

[2] Babuška (1996) Fuzzy modelling and identification, Ph.D Thesis, Control Laboratory,
Delft University of Technology, the Netherlands.

[3] Babuška R, Van der Veen PJ, and Kaymak, U (2002) Improved Covariance
Estimation for Gustafson–Kessel Clustering, FUZZ-IEEE 2002, vol. 2: 1081-1085.

[4] Bezdek JC (1974) Cluster validity with fuzzy sets. J. Cybernet.: 58–71.
[5] Bezdek JC, Tsao EC, and Pal N R (1992) Fuzzy Kohonen Clustering Networks. Proc.

of the IEEE Conf. on Fuzzy System: 1035–1043.
[6] Burges CJC (1998) A Tutorial on Support Vector Machines for Pattern Recognition.

Data Mining and Knowledge Discovery. Preprint: Kluwer Academic Publishers,
Boston.

[7] Cao L (2003) Support vector machines experts for time series forecasting,
Neurocomputing, 51:321–339.

[8] Cao L and Tay EHF (2001) Financial Forecasting Using Support Vector Machines.
Neural Computation & Application. 10:184–192.

[9] Chen J, Li Huai, Sun K, and Kim B (2003) How will Bioinformatics impact signal
processing research. IEEE Signal Processing Maga. 20(6): 16–26.

[10] Chen Z, Feng TJ, and Meng QC (1999) The Application of wavelet neural network in
time series prediction and system modelling based on multi-resolution learning.

[11] Chiu SL (1994) Fuzzy model identification based on cluster estimation: J. Intell.
Fuzzy Systems: 2: 267–278.

[12] Cover TM (1965) Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition, IEEE Trans. on Electronic
Computers, vol. 14: 326–324.

[13] Cybenko G (1989) Approximation by superposition of a sigmoidal function.
Mathematics of Control, signals and systems 2:303–314.

 State of the Art and Development Trends 361

[14] Duch W, Setiono R, and Zurada JM (2004) Computational Intelligence Methods, for
Rule-Based Data Understanding. Proc. of the IEEE 92(5): 771–805.

[15] Fast JD (1962) Entropy: the significance of the concept of entropy and it’s
applications in science and technology. In: The statistical significance of the entropy
concept, Philips Technical Library, Eindhoven.

[16] Haykin S (1999) Neural Networks: A Comprehensive Foundation.2nd Edition.
Prentice Hall International, Inc., Hamilton, Ontario, Canada.

[17] He Z, Wei C, Yang L, Gao X, Yao S, Eberhart R, and Shi Y (1998) Extracting rules
from fuzzy neural networks by particle swarm optimization. IEEE Intl. Conf. on
Evolutionary Computation, Anchorage, Alaska, USA.

[18] Hornik K, Stinchcombe M, and White H (1990) Multilayer feedforward networks are
universal approximators. Neural Networks 2: 359–366.

[19] Hu X and Eberhart RC (2002a) Solving constrained nonlinear optimization problems
with particle swarm optimization. 6th World Multiconference on Systems, Cybernetics
and Informatics (SCI 2002), Orlando, USA.

[20] Hu X and Eberhart RC (2002b) Multiobjective optimization using dynamic
neighbourhood particle swarm optimisation. Proc. of the 2002 Congress on
Evolutionary Computation, Honolulu, Hawai, May 12–17, 2002.

[21] Huntsberger T and Ajjimaransee P (1989) Parallel self organizing feature maps for
unsupervised pattern recognition, Intl. Journal of General systems, 16: 357–372.

[22] IEEE : Special Issues on Wavelets: Trans. on Information Theory (March 1992),
Trans. on Signal Processing (December 1993), and Proceedings of the IEEE (April
1996).

[23] IEEE: IEEE Control Systems Magazine, August 2004
[24] Kazadi S (2000) Swarm Engineering. Ph.D. Thesis, California Institute of

Technology.
[25] Kennedy J and Eberhart RC (1995) Particle Swarm Optimization. Proc. IEEE Conf.

on Neural Networks, vol. 4: 1942–1948.
[26] Klir GJ and Folger TA (1988). Fuzzy sets, Uncertainty, and Information. Prentice

Hall International Editions.
[27] Kohonen T (1982) Self-organizing function in neural computing. Applied optics, 26:

4910–4918.
[28] Li ST and Chen SC (2002) Functional Approximation using Robust Networks. IEEE

Intl. Conf. on Tools with Artificial Intelligence (ICTAI’02)
[29] Li X, Tso SK, and Wang J (2000) Real-Time Tool Condition Monitoring Using

Wavelet Transforms in Fuzzy techniques. IEEE Trans. on Systems, Man, and
Cybernetics, Pt. C 30(3): 352–357.

[30] Lotric U (2000) Using Wavelet Analysis and Neural Networks for Time Series
Prediction, PhD thesis, University of Ljubljana, Slovenia.

[31] Medasni S, Kim J, and Krishnapuram R (1995) Estimation of membership functions
for pattern recognition and computer vision. In: Fuzzy Logic and it’s application to
engineering. Information Sciences and Intelligent systems, Kluwer Academic
publishers, Dodrecht: 45–54.

[32] Mertz J and Murphy PM (2003) UCI respiratory of machine databases. (visit:
http://www.ics.uci.edu/pub/machine-learning-data -bases)

[33] Morita M (1993) Associative memory with nonmonotone dynamics. Neural Networks
6: 115–126.

[34] Mukherjee S and Nayar S (1996) Automatic Generation RBF Networks Using
Wavelets. Patter Recognition 29(8):13691383.

[35] Mukherjee S, Osuna E, and Girosi F (1997) Nonlinear Prediction of Chaotic Time
Series Using Support Vector Machines. Proc. of IEEE NNSP ´97, Amelia Island, Fl,
24–26 Sept.

362 Computational Intelligence in Time Series Forecasting

[36] Muller KR, Smola JA, Ratsch G, Scholkopf B, Kohlmorgen J, and Vapnik VN (1997)
Predicting time series with support vector machines. Proc. of the 7th Intl. Conf. on
Artificial Neural Networks (ICANN’97):999–1004. Lausanne, Switzerland.

[37] Nason GP and Sachs R (1999) Wavelets in time series analysis. Phil. Trans. R. Soc.
London. A: 1–16.

[38] Pati YC and Krishnaprasad PS (1993) Analysis and Synthesis of Feedforward Neural
Networks Using Discrete Affine Wavelet Transformations. IEE Trans. on Neural
Networks 4(1): 73–85.

[39] Principe JC, Euliano NR, and Lefebvre WC (1999) Neural and Adaptive Systems:
Fundamentals through Simulations. Wiley, NY, USA.

[40] Rao SS and Kumthekar B. (1994) Recurrent Neural Networks. 0-7803-1901-x/94
IEEE 1994:3143–3147.

[41] Rioul O and Vetterli M (1991) Wavelets in Signal Processing. IEEE Signal
Processing Magazine: 14–38.

[42] Setiono R (2000) Generating concise and accurate classification rules for breast
cancer diagnosis. Artificial Intell. Med. vol. 18: 205–219.

[43] Setnes M (2000) Supervised fuzzy clustering for rule extraction, IEEE Trans. on
Fuzzy Systems, 8(4): 416–424.

[44] Setnes M and Kaymak U (1998) Extended fuzzy c-means with volume prototypes and
cluster merging, Proc. of EUFIT, Aachen, Germany, pp. 1360–1364.

[45] Soltani S (2002) On the use of the wavelet decomposition for time series prediction.
Neurocomputing 48: 267–277.

[46] Takeshi I and Akifumi T (1999) Modularity and Hierarchy in Cerebral Cortex; A
Proposal of Fractal Neural Networks. Proc. of 4th Intl. Workshop on Neural Networks
in Applications NN’99: 23–29.

[47] Vapnik VN (1992) Principles of risk minimisation for learning theory, Advances in
Neural Information Processing Systems, 4: 831–838. Morgan Kaufmann, San Mateo,
CA.

[48] Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer, New York.
[49] Vapnik VN (1998) Statistical Learning Theory. Wiley, New York.
[50] Vapnik VN and Chervonenkis AY (1968) On the uniform convergence of relative

frequencies of events to their probabilities, Doklady Akademi Nauk USSR (in
Russian)

[51] Vapnik VN, Golowich SE, and Smola AJ (1996) Support Vector Method for Function
Approximation, Regression Estimation, and Signal Processing. Advances in Neural
Information Processing Systems, 9:281–287. Morgan Kaufmann, San Mateo, CA.

[52] Yager RR, Filev, DP (1994) Generation of fuzzy rules by mountain clustering. J.
Intell. Fuzzy Systems 2: 209–219.

[53] Yao J, Dash M, Tan ST, and Liu H (2000) Entropy based fuzzy clustering and fuzzy
modelling, Fuzzy Sets and Systems, 113: 381–388.

[54] Yuan B, Klir GJ, and Swan-Stone J.F (1995) Evolutionary fuzzy c-means clustering
algorithm. FUZZ-IEEE 1995: 2221–2226.

[55] Zang Q (1997) Using wavelet network in nonparametric estimation, IEEE Trans. on
Neural Networks, vol. 8(2): 227–236.

[56] Zang Q and Benveniste A (1992) Wavelet Networks, IEEE Trans. on Neural
Networks 3(6): 889–898.

[57] Zhang BL, Richard C, Jabri MA, Derssch D, and Flower B (2001) Multi-resolution
Forecasting for Futures Trading Using wavelet Decompositions. IEEE Trans. on
Neural Networks. 12(4): 765–774.

[58] Zhang J, Walter GG, Miao Y, and Lee WNW (1995) Wavelet Neural Networks for
Functional Learning. IEEE Trans. on Signal Process. 43(6):1485–1496.

Index

a priori probability, 94
Abstraction (generalization) level,

351
Accelerated backpropagation

algorithm, 99ff
Activation function, 81

selection, 111
ADALINE, 79, 83
Adaptive evolutionary systems, 4
Adaptive fitness function, 322
Adaptive fuzzy logic system, 232
Adaptive genetic algorithm, 198,

231, 321ff
Adaptive genetic operators, 322
Adaptive learning rate, 99, 246 ff
Adaptive neuro-fuzzy approach, 232
Adaptive operator selection, 322
Adaptive parameter setting, 322
Adaptive representation, 322
Adatron, 342ff
Affine wavelet decomposition, 348
Age

operator, 328
of chromosome, 328
structure of population, 328

AIC see Akaike information
criterion

Akaike information criterion (AIC),
45, 109

AND fuzzy neuron, 228ff

ANFIS architecture, 9, 226, 230
Antecedent parameters of fuzzy

clustering, 185
Approximate reasoning, 5
Approximated reasoning, 5
AR model, 27
ARIMA model, 29, 131, 132
ARMA model, 28
Artificial intelligence, 8, 9
Association cortices, 351
Associative memory, 80, 351
Associative memory networks, 80
Auto-associative capabilities, 88
Autocorrelation

structure, 107
Automated rules generation, 157ff
Autonomous mental development, 9
Autoregression model, 27
Auxiliary genetic operators, 201
Axons, 81

Backpropagation
learning, 79, 85
networks 4, 85
through time, 90
training algorithm, 95, 237
training implementation, 97
training of neuro-fuzzy network,

234ff
Bayesian belief networks, 5

364 Index

Bayesian information criterion, 45
Behavioural models, 7, 214
Belief theory, 4
Bell-shaped function, 86
Best approximator, 129
Best generalization, 120
Bias error, 120
Bias, 81
Bias-Variance dilemma, 119, 120
Bi-directional associative memory,

92
Binary Hopfield net, 89
Binary logic, 143
Binary step function, 81
Bivalent logic, 5
Bivariate time series, 33
Boinformatics, 335
Box-Jenkins approach, 84
B-spline functions, 86

Cai’s fuzzy neuron, 230
CARIMA model, 71ff
CARMAX model, 32, 69
Cell body, 80
Cellular encoding, 308, 312
Census I method, 22
Census II method, 22
Central motor cortex, 351
Centre-of-gravity defuzzification,

150
Cerebral cortex hierarchy, 351
Chain of inferences, 5
Chaotic configuration of data set,

356
Chaotic time series, 23, 24

models, 36
Characteristic features, 18
Chromosome age, 328
Chromosomes, 6, 310
Classifier systems, 197
Cluster validity measure, 181, 280
Clustering

covariance matrix, 185
fuzziness parameter, 181
termination criterion, 182
theory, 174
using Kohonen networks, 353ff

C-means functional, 178
Cognition, 4
Cognitive functions, 350
Combined forecast, 64
Combined fuzzy rule base, 161
Combined modelling, 136
Combining neural network and

traditional methods, 131ff
Compact modelling scheme, 279ff
Compatible cluster merging, 280
Competition concept, 315
Competitive layer, 92
Component level, 322
Computation of Jacobian matrix, 241
Computational intelligence, 3, 8ff
Computing neuron 4, 79
Conjunction operator, 151
Connectionist encoding, 308
Connectivity matrix, 310
Constructive evolving of neural

network, 306
Context

layer, 88
nodes, 87

Counterpropagation networks, 80,
92ff

Cover’s theorem, 337
Crisp function, 148
Crisp input, 146
Crisp logic, 143
Crisp output, 146
Crisp set, 144
Crossover, 6, 7, 195, 196, 201ff, 322

operators for real-coded GA,
205ff

probability, 323
rate, 323

Cross validation, 118

Data
clustering, 279
fuzzification, 159
matrix, 174
mining, 10, 11
normalization, 104
preparation for forecasting, 103ff
preprocessing, 104

Index 365

smoothing, 22, 57
space, 338
understanding, 336

Data-dependent representation, 342ff
DE l variant of differential evolution,

215, 216ff
DE 2 variant of differential

evolution, 215, 218ff
Decision boundary, 94
Decision surface, 94
Decision trees, 87
Decomposition analysis, 21
Defuzzification, 146
Defuzzifier, 146
Degree of belongingness, 144
Degree of fulfilment, 153
Delta learning rule, 312
Delta rule, 82, 88
Dempster-Shafer theory, 5
Dendrites, 81
De-seasonalizing, 21
Destructive evolving of NN, 306
Determination of number of input

nodes, 106
De-trending, 21
Developmental rules, 312
Differential evolution, 197, 215
Dilation coefficients, 348,
Dimensionality reduction, 34, 291
Diophantine equation, 62, 69
Direct encoding approach, 307
Direct encoding strategies, 309
Discrete affine wavelet transform,

348
Disorderly configured data set, 356
Dissimilar fuzzy sets, 281
Distinguishable fuzzy sets, 298
Diversity measure, 323
Duplication, 196
Dynamic learning rate, 115
Dynamic recurrent networks, 91
Dynamically controlled GAs, 329

Early stopping, 117, 118, 120
Edge encoding, 308, 312
EFC(T) see Entropy-based fuzzy

clustering, 355ff

Eigen-nodes, 124
Elementary learning process, 350
Elitist strategy, 215
Elman network, 88
Energy function, 89
Enhanced transparency, 277
Entropy measure for cluster

estimation, 356
Entropy-based fuzzy clustering,

355ff, 358
Error-correction learning, 85
Estimation set, 118
Evidence theory, 6
Evolution

of evolution, 7
of evolution strategy, 7
window, 213

Evolutionary algorithms, 196ff
Evolutionary computation, 4, 6ff,

195, 231
Evolutionary law, 90
Evolutionary operators, 195
Evolutionary programming, 7, 195,

197, 214ff
Evolutionary programming

algorithm, 214ff
Evolutionary strategies, 7, 195, 197,

212ff
Evolutionary systems, 197
Evolving complete network, 311
Evolving connection weights, 306ff
Evolving fuzzy logic systems, 313ff
Evolving network architecture, 310ff
Evolving neural networks, 305ff
Evolving the activation function, 312
Excitatory neurons, 352
Experiment design, 112
Exploitation-to-exploration rate, 323

Failure diagnosis, 68
FAM, see Fuzzy associative memory
Feature space, 337
Features, 174
Feedforward networks, 80
Feedforward neuro-fuzzy system,

230
Final prediction error, 123

366 Index

Finite-state automata, 7
Fitness, 6, 196

function, 7, 323
measure in genetic programming,

211ff
windowing, 201ff

Fixed-point learning, 90
Fixed-point attractor, 88
Forecasting

chaotic time series using fuzzy
logic, 169ff

methodology, 49, 103ff
multivariate time series, 136
nonstationary processes, 66
of electrical load, 249
using adaptive smoothing, 62
using Box-Jenkins method, 53ff
using exponential smoothing, 58
using fuzzy logic approach, 169ff
using simple moving average, 57
using neural networks, 129ff
using neuro-fuzzy system, 230ff
using regression approaches, 51ff
using smoothing, 57
using trend analysis, 51
Fourier series model, 39

Four-layer network, 88
Fractally configured networks, 350ff
Fractally configured neural

networks, 335, 350ff
Frequency domain

approach, 18
models, 39

Frontal association cortices, 351
Full interconnection, 111
Fully connected recurrent network,

90, 91
Function defining branches, 211
Functional knowledge, 336
Fuzzifier, 146
Fuzziness, 5, 6
Fuzzy associative memory, 226
Fuzzy clustering, 198, 279, 352

algorithm, 173ff
Fuzzy c-means algorithm, 179ff, 352
Fuzzy c-means clustering, 178ff
Fuzzy expert systems, 146

Fuzzy government module, 329
Fuzzy implication, 151
Fuzzy inference, 224, 225

engine, 146
system, 147

Fuzzy input regions, 159
Fuzzy knowledge, 5
Fuzzy Kohonen clustering networks,

353
Fuzzy logic, 3, 4, 143

approach, 143ff
systems, 146ff
technology, 336

Fuzzy-logic-based neurons, 224
Fuzzy-logic-controlled GAs, 329ff
Fuzzy model identification using

EFC, 359
Fuzzy modelling, 277ff
Fuzzy net controller, 316
Fuzzy neuro systems, 4
Fuzzy neurons, 224, 227ff
Fuzzy output regions, 159
Fuzzy partition, 177ff
Fuzzy probability, 6
Fuzzy reasoning, 5
Fuzzy rule base generation, 157ff
Fuzzy rule systems, 146
Fuzzy set, 143

GA, see Genetic algorithm
Gabor transform, 345
Gaussian function, 86
Gauss-Newton method, 103, 240
Gauss-Newton modification, 102
Gbest solution, 336
General predictive control, 71
General systems theory, 350
Generalization

attribute, 112
capability, 125
of Hausdorff distance, 284

Generalized autoregressive operator,
29

Generalized backpropagation rule,
90

Generalized delta rule, 95
Generalized likelihood ratio, 48

Index 367

Generalized optimal brain surgeon,
124

Generalized RBF network, 349
Genes 6,
Genetic Algorithm (GA), 7, 195,

197, 231
adaptation

at component level, 322
at individual level, 322
at initial stage, 324
at population level, 322
at refinement stage, 324
at search stage, 324
of learning rate, 100, 246
of population size, 327

age operator, 328
implementation, 200

Genetic evolution, 7
Genetic models, 7, 214
Genetic operators, 198ff
Genetic programming (GP), 7, 195,

197, 209ff
algorithm, 210ff

Genotypes, 307
Genotypic diversity measure, 330
Genotypic representation, 309
Geometric pyramid rule, 109
Globally feed–forward, locally

recurrent network, 87
Government of genetic population,

329
GP, see Genetic programming
Gradient descent law, 96
Grammar re-writing rules, 311
Grammatical encoding, 311
Graph grammar encoding, 312
Green’s function, 127
Green’s matrix, 128
Grossberg output layer, 92
Grossberg outstar, 93
Growth encoding, 308
Gustafson-Kessel (GK) algorithm,

183ff, 352

Hard clustering, 175
Hard partition, 175ff
Hausdorff distance, 284

HBXIO matrix, 67, 135
Hebbian law, 88
Hebbian learning rule, 112, 113
Hessian matrix calculation, 101ff
Hidden layers, 82, 107
Hierarchically organised modular

systems, 350
Higher-level learning process, 350
HMIQ technology, 9
Holt-Winter algorithm 61
Hopfield network, 88, 89ff
Hybrid ARIMA-neural network

methodology, 132
Hybrid computational technology, 9
Hybrid intelligent systems, 223
Hybrid training algorithm, 307
Hyperbolic tangent function, 111

Identification of nonlinear dynamics,
249

IF-THEN rules, 143, 145, 232, 275
Ill-posed problems, 126
Image interpretation, 336
Implication-OR neuron, 230
Imprecise propositions, 5
Improved BP training algorithm,

238ff
Improved genetic version, 211ff
Indirect encoding

approach, 307
strategies, 309

Inferencing
of fuzzy logic systems, 150
of Mamdani model, 150
of Takagi-Sugeno model, 153
relational model, 154

Inhibitory neurons, 352
Initial fuzzy model, 280
Initial partition matrix, 182
Initialization of genetic

programming, 210ff
Initialization of RBF centres, 87
Inner product kernel, 341
Input layer, 82, 85
Integral wavelet transform, 349
Intelligent agents, 8
Intelligent signal processing, 10

368 Index

Interpretation and decision level, 351
Iterative merging, 181, 292ff

Jaccard index of similarity, 284, 285
Jaccard similarity

index, 284
measure, 291

Jacobian matrix computation, 241

Kernel function family, 339
Kernel-based machine, 339ff
K-means clustering algorithm, 87
Knowledge (fuzzy), 5
Knowledge extraction from data,

336
Kohonen networks, 4, 353
Kolmogorov’s superposition

theorem, 107
Kwan fuzzy neuron, 230

Layer-based encoding, 308
Learning rate, 114
Learning theory, 4
Lethal age of chromosomes, 328
Levenberg-Marquardt algorithm,

100, 231, 239ff, 246
Lifetime of chromosome, 328
Linear time series, 23

models, 23, 35
Linear vector quantisation, 87
Linearity, 18, 20
Linearly separable classes, 338
Linearly separable problems, 82
Linguistic terms, 143
Linguistic variables, 148
Localized basis functions, 85
Locally restricted basis functions, 86
Logarithmic scaling, 104

MA model, see Moving average
model

Machine learning, 209
Mackey-Glass chaotic time series,

172
MADALINE, 79, 83
Mahalanobis norm, 182
Mamdani fuzzy rules, 148

Mamdani fuzzy system, 148
Mamdani inference system, 148ff,

150ff
Margin of separation, 338
Material property prediction, 265ff
Mating pool, 199
Matrix

grammar encoding, 311
inverse unit, 91
re-writing, 308

Maturation operator, 214
Maximum likelihood estimate, 110
Maximum likelihood method, 45
Max operator, 228
Mean of maximum de-fuzzifier, 247
Mechanism of evolution, 196ff
Membership function 144ff, 148,

225
Mercer’s theorem, 342
Merging

rules, 290
similar fuzzy sets, 287ff

Min operator, 228
Minimum variance control, 69
Minkowski class of distance

function, 284
MLP see Multilayer perceptron
MLPN see Multilayer perceptron

network
Model

accuracy, 296
building, 42
compactness, 276
complexity, 296
deterministic, 26
diagnostic check, 48ff
estimation phase, 42
estimation, 42, 45ff
evaluation, 280
forecasting phase, 42
identification phase, 42, 43ff
stochastic, 26
structure selection, 279
transparency, 276
validation phase, 42, 48ff

Modelling
of nonlinear dynamics, 249

Index 369

of nonlinear plants, 187
redundancy, 279

Momentum term, 99ff, 114ff
Monotonic basis functions, 86
Mother wavelet, 345, 348
Moving average (MA) model, 28
Multi-agent systems, 337
Multilayer network, 309
Multilayer perceptron (MLP), 82

network (MLPN), 80, 85ff
Multisensor data fusion, 11
Multistep prediction, 90
Multivalued logic, 143
Multivariable fuzzy model, 227
Multivariate forecasts, 50
Multivariate models, 33
Multivariate statistical analysis, 136
Multivariate time series, 24
Mu-matrix, 162ff
Mutation, 6, 7, 195, 199, 322

operators, 205ff
probability, 323

Nested networks, 351
Network

architecture, 80ff
determination, 103, 106ff
evolution, 305ff

growing, 121
information criterion, 110
initialization, 112
overfitting, 117, 119
overtraining, 117, 119
pruning, 121
strategy design, 104
training methods, 95ff
training strategy, 104, 112ff
underfitting, 119

Networks training, 248
Neural inputs, 225
Neural-fuzzy inference network, 266
Neural networks approach, 79
Neural networks with fuzzy weights,

224
Neurobiology 9,
Neurocomputing, 3
Neurodynamic programming, 335

Neurodynamics, 335
Neuro-forecasters, 129ff
Neuro-fuzzy adaptive approach, 232
Neuro-fuzzy method, 279
Neuro-fuzzy modelling, 270, 275
Neuro-fuzzy network, 247
Neuro-fuzzy predictor, 267
Neuro-fuzzy systems, 4
Neuroinformatics, 9, 335
Neuron, 81
NIC see Network information

criterion
NL dynamics, see Nonlinear

dynamics
Neural network

learning algorithm, 224
representation of fuzzy logic

system, 233ff
Node-based encoding, 308
Noninfluential singleton, 278
Noninterpretable fuzzy set, 278
Nonlinear combination of forecasts,

64, 132ff
Nonlinear dynamics, 249
Nonlinear regression estimation,,

344
Nonlinear scaling, 104
Nonlinear time series, 23

models, 35
Non-monotone neural networks, 351
Non-symbolic methodology, 275
Norm inducing matrix, 182
Normalization of data, 104
Number of hidden neurons, 108
Number of input nodes, 107
Number of lagged values, 106
Number of output nodes, 107

Objective forecasts, 50
Objectives of analysis, 25
Objects, 174
Observation matrix, 39, 105
Observation of vector, 39, 105
Occam’s razor philosophy, 125
Offspring, 196
Optimal brain damage, 122, 123
Optimal brain surgeon, 122, 123

370 Index

Optimal hyperplane, 338
Optimal path planning, 11
OR fuzzy neuron, 229ff
Orderly configured data set, 356
Oscillation control, 246
Outliers, 177
Output

decisions, 225
layer, 82
weight training of RBF, 87

Overall network evaluation, 104
Overfitting, 111
Overtraining, 125

Parameterised encoding, 311
Parameters of fuzzy c-means

algorithm, 180ff
Parameters to be adapted, 322ff
Parse trees, 209
Partial autocorrelation function, 44
Partially bounded open systems, 350
Particle swarm optimisation, 336
Pattern

matrix, 174
unit, 95

Pbest solution, 336
Penalty term method, 121
Perceptron, 4, 81
Perceptual knowledge, 336
Performance-to-cost ratio, 117
Permutation problem, 311
Phenotypes, 307
Phenotypic diversity measure, 330
Phylogenetic adaptation, 213
Polynomial ADALINE, 94
Polynomial curve fitting, 120
Polynomial kernels, 341
Population, 6, 196

age structure, 328
level, 322
member, 196
of parents, 214
size, 323
survival, 196

Possibilistic partition, 177
Possibilistic reasoning, 5
Possibility

distribution, 6
theory, 6

Potential function approach, 85
Potential measure, 356
Precise propositions, 5
Predicate logic, 5
Prediction of chaotic time series,

253ff
Pre-processing of data, 104
Principal components analysis, 34,

124
Probabilistic neural networks, 80,

94ff
Probabilistic parameters control,

323ff
Probabilistic reasoning, 3, 4ff
Probability, 5, 6

density function, 95
Processing elements, 83
Product inference rules, 247
Product operator, 153
Production monitoring, 68
Propositional calculus, 5
Prototype wavelet, 345
Pruning methods, 123
Pure network architecture, 310ff

Quality prediction of crude oil, 67

Radial basis function, (RBF) 85
Radial-basis-function-based support

vector machine, 344
Radial basis neural networks, 80, 85,

247
Ramp function, 111
Randomness, 5
Rapid prototyping, 316
RBF, see Radial basis function
Real-coded GA, 203ff
Real genetic operators, 204ff
Real-time recurrent learning

algorithm, 90
Recognition level, 351
Recombination, 195
Recurrent networks, 4, 80, 87ff, 309
Regression

analysis, 27

Index 371

methods, 129
Regressive models, 27ff
Regularization

approach, 126
degree, 126
parameter, 126
method, 126
network, 128

Relational fuzzy logic system, 147,
149ff

Relational fuzzy model, 154ff
Removing irrelevant fuzzy sets,

289ff
Removing redundant inputs, 290ff
Reproduction, 196, 199, 323
Residual diagnostics, 48
Resonating neural networks, 80
Result producing branches, 212
Ridge regression method, 129
Robust regression, 349
Robust wavelet network, 349
Roulette wheel selection, 199
Rule base

reduction, 286
redundancy, 279
simplification, 285
simplification algorithms, 291ff

Rule grade table, 158
Rules

degree assignment, 160
generation, 157

algorithm, 157ff
by clustering, 173ff

Salience measure, 124
Saliency of the weights, 122, 123
Sample autocorrelation function, 44
SARIMABP model, 131
Scalability problem, 311
Search vector, 101
Seasonality, 19, 21
Selection, 7, 195, 199

function, 204ff
procedure, 199ff

Self-organising map, 92
Self-organising networks, 79
Semantic knowledge, 336

Sensitivity calculation method, 121
Sensory cortices, 351
Sensory level, 351
Separate modelling approach, 136
Separating hyperplanes, 86
S-expressions based encoding, 308
Short-term forecasting, 249ff
Short-term memory feature, 87
Sigmoid activation function, 81, 82,

99, 111
Sigmoid kernels, 342
Similar fuzzy sets, 281
Similarity

measure, 276, 282
of fuzzy sets, 281
relations,
294ff

Similarity-based rule base
 simplification, 282ff
Similarity-based simplification, 280
Similarity-driven simplification, 277
Simplification of rule base, 285ff
Simulated annealing, 197
Singleton, 278
Smoothness degree, 126
S-norm, 228
Soft computing, 3ff
Soma, 81
Spectral Analysis, 39
Spectral expansion technique, 41
Spread parameter, 87
Sprecher theorem, 108
State-space

equations, 91
modelling, 36
models, 38

Stationarity, 18
Stationary model, 19
Statistical bias, 119
Statistical learning theory, 337
Statistical modelling approach, 136
Statistical variance, 119
Step function, 111
Stochastic biochemical networks,

335
Stochastic difference equation, 36
Stochastic machines, 335

372 Index

Stopping
criterion, 117, 118, 123
with cross-validation, 120

Structural risk minimisation, 337
Structuring of data, 105
Summation unit, 95
Supervised learning, 85

algorithms, 95
Supervised mode, 4, 112
Supervisory mode, 4
Support vector machines, 335, 337ff
Support vectors, 338
Survival of the fittest principle, 196,

215
Swarm engineering, 337
Synaptic weights, 96

Takagi-Sugeno fuzzy model, 232
Takagi-Sugeno fuzzy system, 148
Takagi-Sugeno inference system,

153ff
Technology merging, 223
Test set, 118
Theory of belief, 6
Tikhonov functional, 126
Time domain

approach, 18
models, 37

Time series
analysis, 17, 25ff
classification, 22ff
modelling, 26
models, 26

T-norm, 151, 228
Tool wear monitoring, 68, 268ff
Traditional problem definition, 18ff
Training

algorithm for neuro-fuzzy
network, 234

efficiency merit, 116
set of data, 105
stopping and evaluation, 116ff
strip length, 119

Trajectory learning, 90

Transfer function models, 37
Translation coefficients, 348
Transparent fuzzy modelling

scheme, 279
Transparent modelling scheme, 279
Transparent partitioning, 298
Trend, 18, 20
Trend cycle, 21
Triangular-conorm, 228, 229

Uncertain information, 6,
Unconstrained minimisation, 96
Underfitting problem, 119
Univariate forecasts, 50
Univariate time series, 23
Universal approximator, 84, 129,

348
Universal fuzzy set, 278
Universe of discourse, 144
Unsupervised clustering, 87
Unsupervised mode, 4, 112

Validation set of data, 106, 118
Vapnik-Chervonenkis dimension,

108, 337

Wavelet neural networks, 335, 346ff
Wavelet theory, 345ff
Wavelet transform, 345
Wavelets, 86
Wavelets networks, 345ff
Weakest-link-in-the-chain analysis,

116
Weierstrass theorem, 129
Weight decay approach, 125
Weight elimination approach, 125
White-box models, 276
Wildness factor, 246
Winner-takes-all fashion, 92
World’s decomposition, 23

Xie-Benie’s index, 181, 280, 355

Yule-Walker equation, 44, 47

