(C Programming

forEMBEDDED
SYSTEMS

Apply C fo 8-Bit

Mcmpmtessnrs =
for Efficient &&= 82 -
Development B % i

Brought to you by Team FLY®

Page i

C Programming for Embedded Systems

Kirk Zurell

R&D Books
Lawrence, Kansas 66046

Page i
Disclaimer:

This netLibrary eBook does not include the ancillary mediathat was packaged with the original
printed version of the book.

R& D Books

CMP Media, Inc.

1601 W. 23rd Street, Suite 200
Lawrence, KS 66046

USA

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where R&D is aware of atrademark claim, the product name appearsin initial capital
letters, in all capital letters, or in accordance with the vendor's capitalization preference. Readers
should contact the appropriate companies for more complete information on trademarks and
trademark registrations. All trademarks and registered trademarks in this book are the property of
their respective holders.

Copyright © 2000 by Byte Craft Limited. Licensed Material. All rights reserved. Published by R&D
Books, CMP Media, Inc. All rights reserved. Printed in the United States of America. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher; with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but are not guaranteed for any particular purpose. The publisher does not offer any warranties
and does not guarantee the accuracy, adequacy, or completeness of any information herein and is not
responsible for any errors or omissions. The publisher assumes no liability for damages resulting
from the use of the information in this book or for any infringement of the intellectual property
rights of third parties that would result from the use of thisinformation.

Cover art created by Robert Ward.

Distributed in the U.S. and Canada by:
Publishers Group West

1700 Fourth Street

Berkeley, CA 94710

| SBN 1-929629-04-4

CPAP

BYTE CRAFT LIMITED

421 King Street North

Waterloo, Ontario

Canada N2J 4E4

Telephone: (519) 888-6911

Fax: (519) 746-6751

E-mail: i nf o@yt ecraft.com

http://www.bytecraft.com
All example and program code is protected by copyright.

Intel is aregistered trademark of Intel Corporation.

Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation.
PC isaregistered trademark of International Business Machines Corporation.

Motorolais aregistered trademark of Motorola Inc.

COP8, MICROWIRE, and MICROWIRE/PLUS are trademarks or registered trademarks of
National Semiconductor Corporation.

PIC isaregistered trademark of Microchip Technology Inc. in the USA
Scenix isatrademark of Scenix Semiconductor, Inc.
Cypressisatrademark of Cypress Semiconductor Corporation.

I2C isaregistered trademark of Philips.

All other trademarks mentioned herein are property of their respective companies.

Page iii

Page v

Acknowledgments

| would like to thank Walter Banks at Byte Craft Limited for dropping me head-first into the world

of embedded programming. Walter and Andre have provided copious expertise in the very finest
points of C programming and code generation.

| would also like to thank my parents, who went out on alimb and purchased that Commodore 64 all
those years ago. | hereby disclose publicly that | did not wash the dishes forever, as promised.

Table of Contents

Acknowledgments

Chapter 1
Introduction

Role of This Book

Benefits of C in Embedded Systems
Outline of the Book

Typographical Conventions

Updates and Supplementary Information

Chapter 2
Problem Specification

Product Requirements
Hardware Engineering
Software Planning
Software Architecture
Pseudocode
Flowchart
State Diagram
Resource Management

Testing Regime

<

=

=

N

(O8]

oo

(I

o

o

(o))

oo

[Ce]

Page vii

Page viii

Chapter 3 17/
Microcontrollers In-depth
The Central Processing Unit (CPU) 19
Instruction Sets 20
The Stack 20
Memory Addressing and Types 21
RAM and ROM 22
ROM and Programming 22
von Neumann Versus Harvard Architectures 23
Timers 24
Watchdog Timer 25
Examples 26 26
Interrupt Circuitry 26
Vectored and Nonvectored Arbitration 217
Saving State during Interrupts 29
Executing Interrupt Handlers 30
Multiple Interrupts 31
RESET 31
1/O Ports 32
Analog-to-Digital Conversion 33
Serial Peripheral Buses 34
Development Tools for a Microcontroller 36
Chapter 4 37

Design Process

Product Functionality
Hardware Design
Software Design
Software Architecture
Flowchart
Resource Management
Scratch Pad
Interrupt Planning
Testing Choices
Design for Debugaing
Code Inspection
Execution within a Simulator Environment
Execution within an Emulator Environment

Target System in a Test Harness

|-l>
N

|-l>
N

|-l>
N

IS

IS

IS

&

|-l>
(6]

Page ix

Chapter 5 a7
C for Embedded Systems
In-line Assembly L anguage a7
Device Knowledge 49
#pragma has 49
#pragnma port 51
Endianness 52
Mechanical Knowledge 52
Libraries 4
First Look at an Embedded C Program A4
Chapter 6 57
Data Types and Variables
Identifier Declaration 59
Specia Data Types and Data Access 59
Function Data Types 60
The Character Data Type 60
Integer Data Types 61
Byte Craft's Sized Integers 61
Bit Data Types 61
Real Numbers 63
Complex Data Types 63
Pointers 63
Arrays 64

Enumerated Types 65

Structures
Unions
t ypedef
Data Type Modifiers
Value Constancy Modifiers: const and vol atil e
Allowable Values Modifiers: si gned and unsi gned
Size Modifiers: short and| ong
Pointer Size Modifiers: near andf ar
Storage Class Modifiers
External Linkage
Internal Linkage
No Linkage
The ext er n Modifier
Thest ati c Modifier
Ther egi st er Modifier

The aut o Modifier

Chapter 7
C Statements, Structures, and Operations

Combining Statements in a Block
Functions
Function Parameters
Control Structures
The mai n() Function
Initialization Functions
Control Statements
Decision Structures
L ooping Structures
Control Expression
br eak andcont i nue
Operators and Expressions
Standard Math Operators
Bit Logical Operators
Bit Shift Operators

Chapter 8
Libraries

Creating Libraries
Writing the Library
Librariesand Linking

Chapter 9
Optimizing and Testing Embedded C Programs

Page x

Optimization

Instruction Set-Dependent Optimizations
Hand Optimization

Manual Variable Tweaking
Debugging Embedded C

Register Type Modifier

Loca Memory

Pointers
Mixed C and Assembly

Calling Conventions

Accessto C Variables from Assembly
Exercising Hardware

Debugging by Inspection

100

102

103

104

106

106

Dummy L oads

Working with Emulators and Simulators
Simulators
Emulators

The Packaging of Embedded Software

Chapter 10
Sample Project

Hardware Exercise Programs
"Hello World!"
Keypad Test
LCD Test

Talking to Ports

A/D Converter Theory

Appendix A
Table of Contents

Appendix A
Embedded C Libraries

Appendix B
ASCII Chart

Appendix C
Glossary

Index

What's on the CD-ROM?

[HY
(O]

163

[EY
o

Page xi

Page 1

Chapter 1—
I ntroduction

1.1—
Role of This Book

This book provides a complete intermediate-level discussion of microcontroller programming using
the C programming language. It covers both the adaptations to C necessary for targeting an
embedded environment, and the common components of a successful development project.

C isthe language of choice for programming larger microcontrollers (MCU), those based on 32-bit
cores. These parts are often derived from their general -purpose counterparts, and are both as
complex and feature-rich. Asaresult, C (and C++) compilers are necessary and readily available for
these MCUs.

In contrast, designers who have chosen to use 8-bit controllers have usually resorted to hand-coding

in assembly language. While manual assembly programming for precise control will never go out of
style, neither will the push to reduce costs. There are advantages in compiling high-level C language
to even the limited resources of an 8-bit MCU.

» Automatic generation of code for repetitive coding tasks, such as arithmetic for 16-bit or longer
datatypes.

Page 2

* Intuitive treatment of hardware peculiarities. Reading from or writing to a serial flash memory
device can be represented in C as a simple assignment statement, although the store operation
requires some coding.

* Platform-independence. The same cross-platformcapabilities that C brings to desktop computing
are available for the range of 8-bit microcontrollers on the market today.

This text shows you how to use C to program an 8-bit embedded MCU. We hope you are familiar
with C, but require in-depth information about microcontroller programming.

The main example project in this text is a computer-controlled thermostat. From an initial
specification, we progressively refine and augment the device in the same manner as any other
consumer or control product. With software development as our focus, we make choices and trade-
offs that any designer will need to make.

12—
Benefits of C in Embedded Systems

The direct benefits of using C in Embedded Systems design are as follows.

Y ou will not be overwhelmed by details. 8-bit microcontrollers aren't just small: microcontrollers
include only the logic needed to perform their restricted tasks, at the expense of programmer
"comfort”. Working with these limited resources through a C compiler helps to abstract the
architecture and keep from miring you down in opcode sequences and silicon bugs.

You will learn the basics of portability. Embedded applications are cost -sensitive. There may be
great incentive to change parts (or even architectures) to reduce the per-unit cost. However, the cost
of modifying assembly language code to allow a program written for one microcontroller to run on a
different microcontroller may remove any incentive to make the change.

You can reduce costs through traditional programming techniques. Thisbook emphasizes C
code that generalizes microcontroller features. Details relating to specific hardware implementations
can be placed in separate library functions and header files. Using C library functions and header
files ensures that application source code can be recompiled for different microcontroller targets.

Page 3

Y ou can spend moretime on algorithm design and lesstime on implementation. Cisahigh
level language. Y ou will be able to program your applications quickly and easily using C. C's
breadth of expression is concise and powerful; therefore, each line of code written in C can replace
many lines of assembly language. Debugging and maintaining code written in C is much easier than
in code written in assembly language.

1.3—
Outline of the Book

Determining the goals of software development isthe first step, and is covered in Chapter 2. It
Includes embedded-specific commentary about the regimen of predesign documentation crucia to
effective software devel opment.

Chapter 3 provides an introduction to 8-bit microprocessors for those who have not dealt with them
on alow level before.

With a good plan and in-depth information about the central controller, the design process (covered
in Chapter 4) finalizes what was previoudy estimated. The processor-specific details about
implementing the thermostat are introduced.

Chapter 5 details hardware representation in C. It catalogs all the required set up for your program
source.

Chapter 6 providesinsight into embedded data. The near and f ar variable storage modifiers mean
different things on an Intel PC running Microsoft Windows and on an embedded processor running
your code.

Chapter 7 completes the C portion, with embedded- specific information on functions, statements,
and operators.

Chapter 8 introduces libraries. Even in environments with a pittance of ROM and a very specific
task to do, libraries of prewritten functionality are agreat help.

Chapter 9 provides insight into optimization, and hel ps you test your creation thoroughly.

Chapter 10 sums up with more information about the sample project. Though some information is
presented throughout the book, this chapter includes content not previously discussed.

14—
Typographical Conventions

Typography is used to convey contextual or implied information. The following examples provide a
guide to the conventions and their meanings.

Page 4

Table 1.1 Typogr aphical usage

Bold identifies key terms.

Italic provides emphasis.

Letter denotes elements of programming language: identifiers, variable types, keywords, file
Got hi ¢ names, sample code and code excerpts.

Letter indicates replaceable elements in user input or in computer output.

Got hi ¢

Italic

0x is used to denote a hexadecimal number. For example: OxFFF

Ob is used to denote a binary number. For example: 0b010101
15—

Updates and Supplementary I nformation

If you are looking for more information on the thermostat project, please consult our supplementary
information via web:

http://www.bytecraft.com/embedded C/

Page 5

Chapter 2—
Problem Specification

The problem specification is the initial documentation of the problem that your device and software
will solve. It should not include any specific design questions or product solutions. Themain aimis
to explain in detail what the program will do.

Of course, there are as many ways to conduct project planning as there are workplaces on the planet.
Even the most standardized phases are observed in different fashions or in adifferent order. The
following sections are included because they add information about the embedded software realm,
or they pertain to the sample project specifically.

2.1—
Product Requirements

Often, this document is written from the users point of view, as a series of user requirements. In the
case of an embedded system designed for a single task, you can be quite explicit and certain of the
extent of the product's intended functionality.

General decisions about hardware form part of the problem specification, especially in embedded
projects in which the hardware will be well controlled.

Page 6
Results
» Program will measure and display current temperature.

* Program will count real time on a 12- or 24-hour clock, and display hours and minutes on a digital
display.

* Program will accept time settings and set clock.
 Program will accept and store time settings for three daily usage periods.

* Program will switch between heating control and cooling control. Note that some HVAC experts
will see the need for occasionally operating both heating and cooling at the same time, but this
requirement more closely resembles traditional thermostat operation.

* Program will compare current temperature with settings for current time period, and turn on or turn
off external heating or cooling units as needed.

* Program will refrain from changing state of external units twice within a short period of time, to
permit the HVAC equipment to operate well.

 Program will accept manual override at any time, and immediately turn off heating or cooling unit.

2.2—
Hardware Engineering

This book does not deal directly with hardware, except for the example project. Nevertheless, the
target platform influences everything about the product. It determines the ease with which codeis
generated by the compiler, and it determines some overall software design decisions.

If software developers are so lucky as to be involved in the hardware development process, the
opportunity to influence the design is too important to pass over. Wish-list itemsto ask for include
the following.

A Built-in Debug Interface Another method of field-programmability would also suffice. When a
device must be installed, customized, or repaired on site, a Flash-RAM part makes more sense than
an EEPROM or ROM device.

ROM Code Protection Embedded processors often provide protection against casual examination
of your ROM code. A configuration bit inhibits reading of ROM through the programming
interface. While there are sev-

Page 7

eral exploits against this protection, only a determined opponent will succeed in reading your
programming.

Rational Peripheral Interfaces The temptation to route circuits according to convenience can
overwhelm software performance quite quickly when it affects 1/0 organization. Does the desired
processor have bit-manipulation instructions to change port bits independently? Will multiplexed
interfaces require too much data direction switching?

Some peripherals can be replicated using generic I/O port lines and driver software. This saves
money but adds complexity to the programming challenge. Typically described as "bit-banging"”,
software must quickly and repeatedly write sequences of bits to port output lines, to imitate the logic
signals of adedicated peripheral circuit.

Standard libraries, which might not contemplate a particularly-optimized hardware solution, can pay
for the added hardware cost in reduced software cost.

The central decision in hardware design is processor selection. The choice of aprocessor isa
negotiated decision, weighing factors such as the resources needed by the intended application, the
cost and availability of the part supply, and the development tools available. For an in-depth
treatment of microcontrollers, see the next chapter. Memory estimation does form part of our
problem specification, so estimation of RAM and ROM sizesis discussed in Section 2.3.5, Resource
M anagement.

Results

While we don't deal with hardware engineering in this book, we include some sample product
specification information for hardware to complete the information set.

Table 2.1 Initial hardwar e specifications

Engineering Factors Estimate

Operating Environment « domestic environment

» medium-power, medium-noise electrical connections

* occasional power loss

(table continued on next page)

Page 8
(table continued from previous page)

Engineering Factors Estimate

Interfaces « one multi-bit port for switching HVAC: probably only 3
pins necessary

» one multi-bit I/O interface for display

 one multi-bit I/O interface for keypad

* one A/D device for temperature sensing

« real time clock source: one second granularity

Memory Size (See the following text.)
Special Features » clock/counter or real time clock

» use of NVRAM depends upon whether and how the
processor might sleep

« watchdog timer might be helpful

Development Tools » C compiler
* simulator or emulator

* development board

2.3—
Softwar e Planning

The software plan should say something about the choice of programming language. With
embedded systems, there are three general choices of development language: machine language, C,
or ahigher-level language like BASIC. Of the three, C balances two competing needs.

» C approaches the performance of hand-coded machine language, compared to an interpreted
system like many BASICs. If aBASIC system ceases to be basic by exposing pointers or by
precompiling the source, the difficulty in testing begins to match that of C.

« C provides device-independence not offered by machine language. If you hand-code a program in
assembly, you run the risk of wasting it al with a change in microcontroller. Changing processorsin
adesign programmed in C can incur as little extra effort as changing a header file in your software
modules.

The first step in the software plan is to select an algorithm that solves the problem specified in your
problem specification. Various agorithms should be considered and compared in terms of code size,
speed, difficulty, and ease of maintenance.

Page 9

Once a basic algorithm is chosen, the overall problem should be broken down into smaller problems.
The home thermostat project quite naturally breaks down into modules for each device:

* HVAC interface,

* keypad,

* LCD, and

* temperature sensor;

and then each function of that device.

Working from the block modules, you can write traditional pseudocode. This helps form the
identifiers and logical sections you will implement in your code.

The flowchart beginsto make the transition from natural |anguage pseudocode to actual code. In
the flowchart, we can begin to speculate about the data that functions will accept and provide. Most
importantly, we can begin to plan library usage. Even if there are no prewritten peripheral or data
conversion libraries available, we can write original code in library form and much more easily re-
useit later.

Itislikely that different states have been introduced into the plan. A state diagram maps the
transitions, as a complement to the flowchart.

From the pseudocode, we can build a list of variables and make estimates about RAM and ROM
needs. The restriction of memory resources will come as a shock to some. Programmers working
with modern desktop environments are comfortable with huge memory spaces. Great fields of RAM
are available to create large data structures or arrays that may never actually beinitialized or used.

In contrast, microcontrollers sport only as much RAM and ROM asis projected to be needed for a
specific class of target applications. Vendors strive to provide arange of similar parts, each variant
contributing only a small increase in on-chip resources.

Results

2.3.1—
Software Architecture

The language for programming the thermostat device will be C.

The main architectural dilemmainvolves the use of interrupts versus polling. Part of this dilemma
will be resolved in part selection: some processor variants do not include interrupts at all. Other
choices include explicit

Page 10

support for interrupt-driven keypads, or timers that generate interrupts upon timeout.

A serious facet of an interrupt-based solution is the protocol for communication between the
interrupts and main-line code. Since interrupts and main line are as independent as possible (an
interrupt may occur during any main-line instruction), race conditions are one consequence.

We have chosen the simplest of several alternative algorithms: a clock/counter interrupt will
calculate time, request a display update and set target temperatures. The main line will loop to poll
the keyboard, to sample environment temperature, to update the display, and to switch the HVAC
machinery. Thisrequires only a precise timing interrupt, which is essential for 24-hour timekeeping.

2.3.2—
Pseudocode

Pseudocode presents in natural language the imperative steps of the program. It is especially useful
in embedded programming because every aspect of execution can be planned together: thereis no
need to account for operating system oddities.

In the following example, we assume that time is kept with a counter and
software.

1. Initialization
(a) Set clock counter to 0.
(b) Set time and temperature target variables to defaults.
(c) Enable time interrupt.
2. Clock/counter triggers an interrupt each second
(a) Increment clock counter.
(b) Request display update.

(c) Loop through the preset cycles. If clock is at or past the indexed cycle time, set target
temperature to that cycle.

3. Mainloop
() Sample environment temperature.
(1) If environment temperature is outside target temperature, turn on heat or cool.
(2) If environment temperature is inside target temperature, turn off heat or cool.

(b) Write time, environment temperature, and statusto LCD.

Page 11
(c) Wait for keystroke

(1) If key is pressed, wait for debounce period and check again.
(d) Parse keystroke
(1) If shutdown command is sent, shut down operating units immediately.
(2) If cycle selection command is sent, change to next cycle record.
(3) If time setting is sent, adjust time in current cycle record.
(4) If temperature setting is sent, adjust temperature in current cycle.

2.3.3—
Flowchart

Thisdiagram is basically a representation of the relationships between major and minor tasksin the
embedded software. The flowchart helps determine

» what functionality goesin which logical module and
« what functionality you expect (or hope) to be supplied by libraries.

Y ou can also begin to give identifiers to important constructs.

Main Line Code Support Routines

Foead temperatunt Gt Temperahare

W euitzichs of
swiich haat or

Dspiey amperare. Gamposa e Shenp

Raed keypead
Y i kSt

;Hm%h

Tirneer Enbemupt

I skt of nrw cyche,
3ot targed lemparadures.

Library Routines

Fonad AT Convertar

Figure 2.1
Dataflow for the algorithm

2.3.4—
State Diagram

Page 12

The software will likely express different states, moving between them after processing external

interaction or internal events. This diagram illustrates these states and the stimuli that make it

progress through them.

Page 13

: down;
Hysteresis imeout CaNNAt tum heaticool off Heaticool switched

tniess an fmmediats request
i T Modified flag cleared
Initialization Normal mode: ¢ Updating display:
== can switch heat/cool wile g o
5 and clear flag

l T Modified flag sel

Key prosseq DS0OUGING Keysioke o oy prasseq

Figure 2.2
State diagram for the algorithm

2.3.5—
Resource Management

In the restricted environment of a microcontroller, one too many variables or constants can change
the memory requirements, and therefore the price, of the selected part. Features like multiple
language support can quickly boost the resource requirementsto anew level.

It makes sense to explicitly plan out the resources needed. Thisis not terribly premature— we are
still talking about generic variables here, not specifics like page 0 access, serial ROM, or other
technical choices.

If you have written assembly language programs before, estimating memory demandsis easier.
Without that experience, writing sample code and compiling it is the only way to forecast precisely.
Fortunately, using C helps conserve all that development effort.

A rough outline follows.

Page 14

Table 2.2 Estimating memory requirements

Variable/Module

Real time clock

Daily cycle records
User settings

Stack

Local variables

Total RAM estimate
Constants

Interrupt service routine
Initialization

Mainline

A/D conversion (temperature sensor)
LCD

Keypad decode
Total ROM estimate

24—
Testing Regime

Resour ces

~10 bytes RAM, both a counter and a text representation.
~20 bytesRAM.

~10 bytes RAM.

~10 bytes RAM: two or three function calls, and an interrupt.
~10 bytesRAM.

~60 bytes RAM.

~100 bytes ROM.

~100 bytes ROM.

~50 bytes ROM.

~300 bytes ROM.

~50 bytes ROM.

~300 bytes ROM, with wide variation depending upon type of
interface.

~100 bytes ROM.
~1,000 bytes ROM.

Suggested steps for debugging embedded software include the following.

* Design for debugging.

 Code inspection.

* Execution within a simulator environment.

* Execution within an emulator environment.

» Candidate target system in atest harness.

Both hardware and software can benefit from early consideration of debugging needs. Especialy in
systems with alphanumeric displays, software can communicate faults or other out-of-spec

information. Thisinfor-

Page 15

mation is useful both to the tester and the end user, but it may prove aliability if the market will not
tolerate equipment that appears to fail.

In the absence of the panel, LEDs can signal meaningful states or events. Provision for run-time
diagnostic feedback should appear in the pseudocode and resource projections.

The first step in debugging requires you to inspect the assembly code generated by the compiler.
Embedded control applications on 8-bit CPUs are small enough, and the architecture simple enough,
that a developer can review the entire generated assembly language easily. A listing file, which lines
up C source fragments with the assembly they generate, provides the easiest navigation.

Beyond thisfirst step, however, testing becomes a challenge: when the code in question implements
the most basic behaviour of the machine, in-system debugging becomes more difficult. A bug may
prevent any meaningful response from the embedded system at all, whereas desktop operating
systems can provide core dumps or other diagnostic aids.

To make in-system debugging possible, simulators and emulators peer into the embedded system.
Each tries to approximate different areas of the target environment while allowing you to inspect
your software's performance thoroughly and easily. Software-only simulators are best used to
examine algorithm performance and accuracy, in a situation in which you don't need or care about
the hardware. Emulators focus more on |/O and internal peripherals operating in the real world. You
will need accessto at least an emulator. We bring it up now because tool selection istied to the
hardware design process and processor selection.

Finally, placing a prototype device within atesting harness provides the most accurate proof of
working software.

Results

Our design will have an LCD panel. With this capability, the system can write debug messages to
the display. These can include a "splash screen" on power-up, echoed keystrokes, or displayed status

messages.

The compiler must help in debugging. The generated assembly code needs to be available for
inspection.

Product choices should favour emulators that can perform source-level debugging, matching the
currently -executing machine code with the original C. For athermostat, speed of emulation is not a
critical factor; the only time-dependent function is the real -time clock.

A test harness made up of alightbulb and fan, switched by the controller and pointed at the
thermistor, isthe simplest effective solution.

Page 17

Chapter 3—
Microcontrollersin-depth

This section reviews microcontroller features and outlines the options available in the 8-bit
microcontroller market. Some of the features you are used to seeing in central processors, such as
graphics enhancements or floating point support, are nonexistent here.

The most engrossing and charismatic part of computer hardware design is the choice of the central
processing unit. In the desktop world, processor choices revolve around compatibility with the Intel
x86 product line: those compatible with Intel, those nearly compatible, and those completely
divergent from it.

Thereislittle such consistency in the embedded world, especially when talking about a new design.
The 8-bit controller market is very competitive, largely because of the focus on volume. Thereis
usually no brand name recognition; consumer product manufacturers want to protect users from
technical details. If users do care about the chip that drives their product, they are probably seeking
to surpassits intended use.

The 8-bit microcontrollers are not as programmer-friendly as 32-bit processors. L atter-day
enhancements to a highly-optimized architecture, like extra ROM address space, can quickly
outstrip an 8-bit's architectural limitations. Thisin turn forces processor designers to add in kludges
such as bank switching or restrictions on addressing to compensate.

Page 18

Finally, factors such asthe life expectancy of the architecture should be considered. UsingaC
compiler for generating device programming reduces the cost of changing controllers when the
preferred choice reaches the end of its product life cycle.

An 8-bit microcontroller has al of the traditional functional parts of a computer.

Central Processing Unit (CPU) The arithmetic and logic units of microcontrollers are restricted
and optimized for the limited resources present in such small architectures. Multiply and divide
operations are rare, and floating-point is nonexistent. Addressing modes are restricted in sometimes
infuriating ways.

ROM and RAM The 8-bit microcontrollers rarely address more than 16 lines (64Kb) of ROM and
RAM. If a chip's package exposes address or data buses at al, they provide only severa kilobytes of
addressing space. Most often, MCUs (Microcontroller Units) contain small internal RAM and ROM
arrays. Because of the requirement to program the individual chips, ROM is often available as
electrically-programmable (or electrically-erasable) memory.

Timer Two kinds are common: counters and watchdog timers. Simple counters can respond to a
clock cycle or an input signal. Upon reaching a zero-point or a preset threshold, they can trigger an
interrupt.

Interrupt Circuitry Where a general -purpose microprocessor would have multiple generalized
interrupt inputs or levels, amicrocontroller has interrupt signals dedicated to specific tasks: a
counter time-out, or asignal change on an input pin.

That is, if the controller has interrupts at all. There is no guarantee that designers will include them
if the intended applications are simple enough not to need them.

Input and Output Most chips supply some I/O lines that can switch external equipment;
occasionally these pins can sink heavy current to reduce external components. Some varieties
provide A/D and D/A converters or specialized logic for driving certain devices (like infrared
LEDs).

Peripheral Buses Parallel peripheral buses reduce the "single-chip" advantage, so they are
discouraged. Because speed is not at the top of the

Page 19

list in embedded systems design, several competing standards for seria peripheral buses have
evolved. Using only one to three wires, these buses permit external peripheral chips, such as ROMs,
to interface with the microcontroller without monopolizing its existing interface lines.

The main consequence of the microcontroller's small size isthat its resources are proportionally
limited compared to those of a desktop personal computer. Though all the qualities of a computer
arethere — RAM, ROM, 1/O and a microprocessor — the developer cannot count on having 8 bits
inan /O port, for example.

Before settling on the perfect processor, you must consider the external development tools available
for your target. An embedded system is not self-hosting, like a personal computer. To develop
embedded software, your development tools must run on a desktop computer, and use at least some
very specialized hardware.

31—
The Central Processing Unit (CPU)

The number and names of registers vary among microcontrollers. Sometimes they appear within a
memory address space, and sometimes they are completely separate. Certain registers are common
to most microcontrollers, although the names may vary.

» Theaccumulator

* Theindex register

» The stack pointer

* The program counter

» The processor statusregister

Direct access to the accumulator and index register in C is only occasionally desirable. The C
regi st er datatype modifier amountsto a"request” for direct access to aregister: the compiler

may not actually use aregister if it cannot do so optimally.

When it is desirable or necessary, however, another type of declaration can link a variable name
with aregister itself. The Byte Craft compiler providesther egi st er a type (and equivalents for
other registers). Assignment to ar egi st er a variable generates aload into the accumulator
register, but does not generate a store into memory. Evaluation of the identifier returns the value in
the register, not a value from memory.

regi stera inportant_variable = 0x55

Page 20

Direct access to the stack pointer or program counter is even less desirable. The whole point of
using C isto abstract the program logic from direct machine language references. Function calls and
looping, which will even out device-dependent stack manipulation and branching, are the best ways
to structure your code. If necessary, use the C got o keyword with alabelled target: the compiler
will insert the appropriate jump instruction and, most importantly, take care of any paging or setup
automatically.

3.1.1—
I nstruction Sets

Where machine instructions for multiply, divide, table lookup, or multiply-and-accumul ate are
expected on general purpose MPUs (Microprocessor Units), their 8-bit equivalents do not always
appear on each variant of a controller family.

A #pr agma statement can inform the compiler that the target chip does have a certain optional
instruction feature, and that it can therefore optimize code that will benefit from the instruction.
These examples are present in the header file of the MC68HCO05CS8.

Listing 3.1 Instruction set configuration

#pragma has MJL;
#pragma has WAI T,
#pragma has STOP;

3.1.2—
The Stack

If your processor supports a stack in general memory, the space required to record the stack is
alocated from RAM that would otherwise be used for global variables. Not all stacks are recorded
in main (or data) memory: the Microchip PIC and Scenix SX architectures use a stack space outside
of user RAM.

It isimportant to check the depth of return information stored by function calls and interrupts. The
compiler may report stack overflow (meaning that your stack istoo small), but your stack
declaration may be larger than necessary as well.

Beyond declaring an area as reserved for the stack, thereis little else to worry about. Consider the
following stack from the Motorola MC68HC705C8. The stack is 64 bytes from address 00C0 to
OOFF.

Page 21

0xFF 1
| .
] Stack Pointer
[— bitnumber: 54 3210
0xCO oolpohnll [T 1]
Figure 3.1
M C68HC705C8 stack

Thisisthe required declaration in C.

#pragma nenory stack [0x40] @ OxFF;

Because stack sizes and configuration will change between processor families (or even between
variants within the same family), the declaration makes the compiler aware of exactly how much
space is available. Should you not need 64 bytes, you can reduce the size from 0x40 to a smaller
number.

The compiler can provide information on the depth of function calling. See the CALLMAP option in
Section 9.6, Debugging by Inspection.

3.2—
Memory Addressing and Types

Most small microcontrollers provide very little RAM. The feeling of claustrophobia caused by
absolutely running out of RAM or ROM is novel for desktop application programmers. Beyond the
cursory check for failed memory alocations, programmers can rely on megabytes of RAM and swap
filesto amost always avoid out-of -memory errors.

The C compiler assists by reusing memory, wherever possible. The compiler has the patience to
determine which locations are free at any one time, for reuse within multiple local scopes. "Free", of
course, means not intended to be read by a subroutine until reinitialized by the next function call.

Y ou will find that some typical programming techniques overwhelm the capacity of 8-bit
microcontrollers because of memory concerns. Reentrant or recursive functions, gems of
programming in desktop systems, assume abundant stack space and are practically impossible.

Page 22

3.2.1—
RAM and ROM

RAM and ROM are very permanently divided on a microcontroller. They may be part of different
address spaces.

Controllers with anything less than the full complement of RAM or ROM (most of them) leave parts
of the address space unimplemented. Instruction fetches or reads or writes to those areas can have
unintended or erroneous results.

Declaring available RAM and ROM instructs the compiler where it is safe to place programming or
data. The Byte Craft compiler requires all memory resources to be declared. The declarations can

simply declare the type, size, and location of available memory, or they may optionally assign the
area a symbolic name.

Named addr ess spaces give you some control over the optimization process. If your processor has
faster access to a portion of memory (page 0 on the 680x, for instance), and you have a particular
scheme in mind, you can declare your variables as being in that memory area.

Listing 3.2 Declaring in named addr ess space

#pragma nenory ROM [0x4000] @ OxAO000;
#pragma nenory RAM pageO [OxFF] @ 0xO00;
#pragma nenory RAM pagel [OxFF] @ 0x100;

[* o0 0%

/* my_ariable will appear in pageO. |f the processor has speci al
instructions to access pageO, the conpiler should generate them for
the assignnment and | ater references */

int pageO ny_variabl e = 0x55;

3.2.2—
ROM and Programming

Programmable ROM, or PROM, started as an expensive means to prototype and test application
code before making a masked ROM. In recent years, PROM has gained popularity to the point at

which many developers consider it a superior alternative to a masked ROM in a mass production
part.

Page 23

As microcontroller applications become more specialised and complex, needs for maintenance and
support rise. Many developers use PROM devices to provide software updates to customers without
the cost of sending out new hardware.

The categories of programmable ROM are described in the following text.

Fused ROM isthetraditiona PROM, with ROM cells that are programmed by selectively blowing
fuses in a memory matrix, according to bit patterns. Programmable only by external equipment.

EPROM (Erasable Programmable ROM) isnonvolatile and is read only. It must be erased by
exposure to ultraviol et radiation.

EEPROM (Electrically Erasable Programmable ROM) devices have a significant advantage
over EPROM devices, asthey allow selective erasing of memory sections. The most common use
for EEPROM is recording and maintaining configuration data vital to the application. For example,
modems use EEPROM storage to record the current configuration settings.

Flash Memory is an economical compromise between EEPROM and EPROM technology. Y our
product can have a ROM -based configuration kernel, and application code written into flash
memory. When you want to provide the customer with added functionality or a maintenance update,
the hardware can be reprogrammed on site without installing new physical parts. The hardwareis
placed into configuration mode, which hands control to the kernel written in ROM. This kernel then
handles the software steps needed to erase and rewrite the contents of the flash memory.

Depending upon the target part, EEPROM and Flash are programmable under program control. The
programming process takes some time, as the electronics must wait for charge transfer and work
slowly to avoid overheating the device.

3.2.3—
von Neumann Versus Harvard Architectures

von Neumann architecture has a single, common memory space in which both program instructions
and data are stored. Thereisasingle internal data bus that fetches both instructions and data.

Page 24

Harvard architecture computers have separate memory areas for program instructions and data.
There are two or more internal data buses, which allow simultaneous access to both instructions and
data. The CPU fetches program instructions on the program memory bus.

Programmers need not dwell upon which architecture they write for. C compilers should
compensate for most of their respective drawbacks and quirks. Some of the more common
characteristics are explained here as an insight into the code generated by compilers.

« Code generation for von Neumann-archtecture machines often takes advantage of the fact that the
processor can execute programs out of RAM. Operations on certain data types may actualy prime
RAM locations with opcodes, and then branch to them!

* Since Harvard machines have an explicit memory space for data, using program memory for data
storage istrickier. For example, a data value declared as a C constant must be stored in ROM as a
constant value. Some chips have specia instructions allowing the retrieval of information from
program memory space. These instructions are a'ways more complex or expensive than the
equivalent instructions for fetching data from data memory. Others simply do not have them; data
must be loaded by the side effect of areturn instruction, for instance.

3.3—
Timers

A timer isacounter that isincremented or decremented at the fixed rate of aclock pulse. Usualy,
an interrupt signals the completion of afixed interval: the timer has counted to 0, has overflowed to
0, or has reached a target count.

Timers are avery competitive feature in microcontrollers. Timers or timing units of increasing
sophistication and intelligence are readily available. The different types of timers available give the
engineer |ots of room to manoeuvre.

Programming the prescalar and starting the clock are tasks of the software developer. Knowing the
processor clock frequency, and choosing correct prescalar values, you can achieve accurate timer
clock periods.

The programmer's interface to atimer is several named control registers, declared with #pr agma
port statementsand read or written as variables.

If atimer interrupt is available, it can be declared with a#pr agna vect or statement, and
serviced by an associated interrupt service routine, written as afunction.

Page 25
Listing 3.3 Timer registersand interrupt handler

#pragma portr TIMER LSB @ 0x24;
#pragma portr TIMER _MSB @ 0x25;

#pragma vector TIMER | RQ @ OxFFEO;

void TIMER | RQ(void) {
/* I RQ handl er code */
}

3.3.1—
Watchdog Timer

A COP (computer operating properly) or watchdog timer checks for runaway code execution. In
general, watchdog timers must be turned on once within the first few cycles after reset. Software
must then periodically reset the watchdog during execution.

If processor execution has gone off the track, it is unlikely that the watchdog will be reset reliably. It
Isthis exact state that needs to be fixed: an indirect jump to an unexpected address could be the
cause. A loop polling for external signals that are never received is also a possible cause.

The watchdog timeout can cause the processor to go to aknown state, usually the RESET state, or to
execute an interrupt. The hardware implementation of watchdog timers varies considerably between
different processors. Some watchdog timers can be programmed for different time-out delays.

In C, the sequence to reset the watchdog can be as simple as assigning to a port.
Listing 3.4 Resetting the watchdog

#pragnma portw WATCHDOG @ 0x26;
#defi ne RESET_WATCHDOG() WATCHDOG = OxFF

void main(void) {
while(l) {
[* ... %
RESET_WATCHDOX) ;
}
}

Page 26

3.3.2—
Examples

The following are some sample configurations.

« National Semiconductor's COP8SAA7 has a 16 bit timer called T1, a 16 bit idletimer called TO,
and awatchdog timer. Theidletimer TO helpsto maintain real time and low power during the IDLE
mode. Thetimer T1is used for real time controls tasks with three user-sel ectable modes.

» The Motorola MC68HC705C8 has a 16-bit counter and a COP watchdog timer. The COP
watchdog timer is user-enabled, has selectable time-out periods, and is reset with two write
instructions to the COPCR register. Interestingly, the COP watchdog is dependent upon the system
clock; aclock monitor circuit resets the MCU if the clock stops, and thereby renders the COP
watchdog useless.

» The Microchip PIC17C42a has four timer modules called TMRO, TMR1, TMRZ2, and TMR3, and
awatchdog timer. TMRO is a 16-bit timer with programmable prescalar, TMR1 and TMR2 are 8-bit
timers, and TMR3 is a 16-bit timer.

34—
Interrupt Circuitry

Microcontrollers usually provide hardware (signal) interrupt sources, and sometimes offer software
(instruction) sources. In packages with restricted pin counts, IRQ signals may not be exposed or may
be multiplexed with other 1/0 signals.

Interrupts that can be disabled are maskable; those which you cannot disable are nonmaskable
interrupts. For example, RESET is nonmaskable; regardless of the code currently executing, the
CPU must service aRESET interrupt.

Interrupt signals are asynchronous: they are events that can occur during, after, or before an
instruction cycle. The processor can acknowledge interrupts using one of two methods:
synchronous or asynchronous acknowledgement.

Most processors acknowledge interrupts synchronously: they complete the current instruction before
dealing with the interrupt. In contrast, with asynchronous acknowledgement, the processor halts
execution of the current instruction to service the interrupt. While asynchronous acknowledgement
is more prompt than synchronous, it leaves open the possibility that the interrupt code will interfere
with the instruction already in progress.

For instance, an interrupt routine updates a multi -byte value, which the main-line code reads
regularly. Should the main-line code read that value in

Page 27

amulti-byte fetch, and be interrupted part-way through, the loaded value becomes meaningless
without any notice.

The code obeys our suggestion (Section 4.4.2, Interrupt Planning) about reading and writing
variables one way, between interrupt and main-line code. To provide complete protection, the
compiler needs to use indivisible instructions, or to disable interrupts temporarily, to protect the
main-line code.

Synchronous acknowledgement is not a magic solution. This same problem affects processors with
synchronous acknowledgement, when a multi -byte operation requires several instructions!

3.41—
Vectored and Nonvectored Arbitration

There are two competing ways in which microcontrollers service interrupts. Vectored arbitration
requires atable of pointersto the interrupt service routines. Nonvectored arbitration expects the
first instructions of the ISR at a predetermined entry point. Most 8-bit microcontrollers use vectored
arbitration interrupts.

When the compiler generates code for the interrupt service routine (ISR), it places the starting
address in the appropriate interrupt vector within the ROM map, or relocates the code at the entry-
point location in ROM. The compiler may also automatically generate arbitration code: remember to
check for this when estimating ROM usage.

When an interrupt occurs, the processor will disable interrupts to prevent the service routine from
being itself interrupted. A vectored machine then reads the address contained at the appropriate
interrupt vector. It jumps to the address and begins executing the ISR code.

In contrast, a nonvectored system simply jumps to the known start location and executes what's
there. The ISR may have to test each interrupt source in turn to implement priority, or to simply
jump to a different location where the main body of the ISR resides.

Because of the extra handling in nonvectored systems, vectored interrupts are faster. In general,
nonvectored | SRs are feasible for microcontrollers with less than five interrupts.

Table 3.1 shows the arbitration schemes of the major families of 8-bit microcontrollers.

Page 28

Table 3.1 Interrupt arbitration schemes

Architecture Arbitration
Motorola6805/08 Vectored
National COP8 Mixed

Microchip PIC Nonvectored
Zilog Z8 Vectored

Scenix SX Nonvectored
Intel 8051 Nonvectored
Cypress M8 Nonvectored

Notes
Vectors at top of implemented memory.
See the text following this table.

Some models do not have interrupts, and some provide vector
dispatch for groups of interrupts.

Priority setting required.
No priority levels.
Each interrupt jumps to a different, fixed, ISR entry point.

The processor jumpsto adifferent, fixed, ISR entry point for
each interrupt. These are called "vectors" and are two bytes
long. A IMP instruction is required in these locations to jump
to the ISR proper.

The National Semiconductor COP8 uses a mixed scheme. All interrupts branch to a common
location in a nonvectored manner. At that location, the code must either execute the VI Sinstruction,
which arbitrates among active interrupt sources and jumps to an address from a vector table, or poll
the system for the interrupt condition explicitly and handle it in a user-defined manner. The latter
method may be useful, but has many disadvantages.

Table 3.2 shows the COP8 vector table, as required for the COP8SAA7 device. Therank isas

enforced by the VIS instruction.

Table 3.2 COPS8 vectored interrupts

Rank Sour ce

1 Software
Reserved

3 External

(table continued on next page)

Description Vector Address*
INTR Instruction ObFE - ObFF
Future ObFC - ObFD
GO ObFA - ObFB

Page 29

(table continued from previous page)

Rank Sour ce Description Vector Address*
4 Timer TO Underflow ObF8 - ObF9
5 Timer T1 T1A/Underflow ObF6 - ObF7
6 Timer T1 TiB ObF4 - O0ObF5
7 MICROWIRE/PLUS BUSY Low ObF2 - ObF3
8 Reserved Future ObFO - ObF1
9 Reserved Future ObEE - ODbEF
10 Reserved Future ObEC - ObED
1 Reserved Future ObEA - ObEB
12 Reserved Future ObE8 - ObE9
13 Reserved Future ObE6 - ObE7
14 Reserved Future ObE4 - ObE5
15 Port L/Wakeup Port L Edge ObE2 - ObE3
16 Default VIS Instruction ObEO - ObEl

_Execution without any

interrupts

* b represents the Vector to Interrupt Service routine (V1S) block. VIS and the vector table
must be within the same 256-byte block. If VISisthe last address of a block, the table must be
in the next block.

342—
Saving State during I nterrupts

On all chips, the interrupt process saves a minimal processor state of the machine, usually the
current program counter. Thisis done to ensure that after an interrupt is serviced, execution will
resume at the appropriate point in the main program.

Beyond this, machine state preservation varies widely. In any case, it is up to the programmer to
provide code that saves as much extra state asis necessary. Usually, each interrupt handler will do
this before attempting anything else. The location and accessibility of the saved state information
varies from machine to machine.

Page 30

Table 3.3 Processor state preservation during interrupts

Architecture Interrupt Stacking Behaviour

Motorola 6808 All registers, except high byte of stack pointer, are automatically saved
and restored.

Motorola 6805 All registers are automatically saved and restored.

National' COP8 Program counter is pushed.

Microchip PIC Program counter is pushed.

Zilog Z8 PC and flags are pushed.

Scenix SX PC is pushed, other registers are shadowed.

Cypress M8 PC and flags are pushed on the program stack.

Many C compilers reserve some locations in data memory for internal uses, such as pseudo-
registers. Y our compiler documentation should outline what code you must write to preserve the
information located in these memory blocks. If your compiler creates a pseudo-register for 16-bit
math operations, and your interrupt handler does not perform 16-bit operations that alter this
pseudo-register, then you probably won't need to preserve its state.

3.4.3—
Executing I nterrupt Handlers

To minimize the possibility of an interrupt routine being itself interrupted, the microcontroller will
disable interrupts while executing an interrupt handler.

Masking interrupts manually is useful during timing-critical sections of mairn-line code. The
possibility of doing thisis determined by your design; implementing it in C is easy. It doesn't take
much more effort to generalize the procedure, either.

For the Byte Craft compilers, some simple macros in a header file can create the appropriate

instructions. This code uses symbols defined by the compiler itself to choose the appropriate
instructions.

Listing 3.5 Cross-platform interrupt control instructions

#i fdef CYC

#define | RQ OFF() #asm < DI >
#define 1RQ ON() #asm< El>
#endi f

Page 31

#i f def COP8C

#define IRQ OFF() PSWd E
#define IRQON() PSWG E
#endi f

#i f def C6805

#define | RQ OFF() CC.
#define 1RQ ON() CC
#endi f

3.4.4—
Multiple I nterrupts

One some machines, the CPU first fetches and executes a program instruction, and then checks for
pending interrupts. This guarantees that no matter how many interrupts queue up, the machine will
always step through program code: no more than one interrupt handler will execute between each
main program instruction.

On most machines, the CPU will check for interrupts before performing the next instruction fetch.
Aslong as the controller detects a pending interrupt, it will service the interrupt before fetching the
next instruction. Thismeansit is possible to halt the main-line program by continuously sending
interrupts. On the other hand, it guarantees that an interrupt is serviced before any more main
program code is executed. Thisinformation isimportant for debugging: it can help explain why
main-line software will not respond.

How does the CPU decide which interrupt to service first? A hardware priority level should
determine thisif two interrupts are signalled at the same time.

3.4.5—
RESET

Some simple chips support no interrupts except a RESET sequence. If itsintended applications
require only asimple polling loop, or accept no input at all, there is no need for the extra hardware.

The only universal interrupting signal is RESET. A RESET can occur because of:
e initial power-on;

* amanual reset (signal on an external RESET pin);

Page 32

» awatchdog time-out;
* low voltage, if your part supports power supply monitoring; or

* an instruction fetch from anillegal or unimplemented address, if your part implements protection
against this.

The RESET interrupt prompts the chip to behave asif the power has been cycled. Since it does not
actually cycle the power to the chip, the contents of volatile memory, I/O ports, or processor
registers remain intact.

Taking advantage of thisistricky, but possible. If the compiler supports a user-written initialization
function, you can check for particular valuesin memory, and decide to |oad default values or not.
This can be used to check if the RESET was cold (power was cycled — use defaults) or warm
(power was not cycled: preserve unaffected data).

There are conditions that upset this strategy. In the case of watchdog time-out, the datais electrically
valid (the same as before watchdog RESET) but logically questionable.

35—
/O Ports

Input/output signals allow the microcontroller to control and read relays, lamps, switches, or any
other discrete device. More complex components, such as keypads, LCD displays, or sensors, can
also be accessed through ports. In this section, we talk about programming standard 1/0 lines. More
specialized peripheral deviceslike A/D converters and communication buses are dealt with in
subseguent sections.

Ports usually consist of eight switchable circuits, arranged in byte-sized 1/0 data registers. If a port
Is capable of both input and output, it will also have an associated register that specifies which way
the port (or each individual bit of the port) isto operate. On many devices, thisregister is called the
DDR (Data Direction Register).

Ports often support tristate logic. Tristate adds athird useful configuration besides input and output:
high impedance. High impedance mode is the state of being undefined or floating. It's asif the port
isn't actually part of the circuit at that time.

Since microcontrollers are intended to replace as many devices as possible, ports often include
extras, such asinternal pull-ups or pull-downs. These electrical features provide some noise
immunity.

Data direction, tristate control, and optional pull-ups or pull-downs are al at the control of the
programmer. As with desktop computer systems,

Page 33

ports and their control registers appear as memory locations or as special 1/0 registers.
The following are some sample port configurations.

» The COP8SAAT has four bidirectional 8-bit I/O portscalled C, G, L, and F, in which each bit can
be either input, output, or tristate. The programming interface for each has an associated
configuration register (determines how the port behaves) and data register (accepts data for or
presents data from the port).

» The Motorola MC68HC705C8 has three 8-hit ports called A, B, and C that can be either inputs or
outputs depending on the value of the DDR. Thereis also a 7-bit fixed input port called port D,
which isused for seria port programming.

* The Microchip PIC16C74 has five ports; PORTA through PORTE. Each port has an associated
TRIS register that controls the data direction. PORTA uses the register ADCONL to select analog or
digital configuration. PORTD and PORTE can be configured as an 8-bit parallel slave port.

Ports and their associated configuration registers are not RAM locations, and as such are not
electrically the same. Either reading or writing to a port may beillegal or dangerousif not explicitly
permitted by the manufacturer. The compiler can watch for improper reads or writes by specifying
acceptable modes in the port declaration.

With the Byte Craft compilers, ports are declared to the compiler using #pr agnma statements.

#pragnma portrw PORTA @ 0x00;
#pragma portw PORTA DDR @ 0x04;

The acceptable modes of use are specified with por t r for reading, por t wfor writing, or port rw
for both.

35.1—
Analog-to-Digital Conversion

It is often necessary to convert an external analog signal to a digital representation, or to convert a
digital value to an analog level. A/D or D/A converters perform this function.

The science behind conversion, and the competitive environment of some analog disciplineslike
automotive instrumentation or audio processing, ensures that there is a variety of approachesto
conversion, with tradeoffs in accuracy, precision, and time.

Page 34

Typically, the support routines for an A/D or D/A converter are prime candidates for packaging as a
library of C functions. It isimportant to note that the conversion process may take some time.

The Byte Craft compiler will support this type of peripheral in two ways.
* You can declare the control portswith #pr agma por t in the device header file.

* You can declare an interrupt raised by the conversion peripheral with #pr agma vect or and
service it with an ISR function. Thisis an intuitive way to handle conversions that take along time.

Most microcontrollers use a successive approximation converter for A/D conversion. The
converter works with one bit a atime from the MSB (Most-Significant Bit) and determinesif the
next step is higher or lower. This technique is slow and consumes a great deal of power. Itisaso
cheap and has consistent conversion times.

The Microchip PIC16C74 has an A/D converter module that features eight analog inputs. These
eight inputs are multiplexed into one sample-and-hold, which isthe input into the converter.

A single slope converter appearsin National Semiconductor's COP888EK. It includes an analog
MUX/comparator/timer with input capture and constant current source. The conversion time varies
greatly and is quite slow. It also has 14- to 16-bit accuracy.

A flash converter examines each level and decides the voltage level. It is very fast, but draws a
great deal of current and is not feasible beyond 10 bits.

3.6—
Serial Peripheral Buses

Single-chip microcontrollers of sufficient pin count can expose address, data, and control signals
externally, but this negates the benefit of single-chip design.

There are severa standards for serial peripheral communication, using one to three external wires to
communicate with one or more peripheral devices.

Of course, serializing frequent ROM or RAM accesses impacts on execution speed. Serial
peripherals are not accommodated within the addressing range of a processor, so seria program
ROM is not possible.

The compiler can assist by making data access to seria peripherals more intuitive. The Byte Craft
compilers provide the SPECI AL memory declaration. Using it, you can declare the registers or
memory of the remote device

Page 35

within the memory map as the compiler under standsit. You then write device driver routines to
read and write each SPECI AL memory area.

Accesses to variables or ports declared within the SPECI AL memory areareceive special treatment.
Reading the value of a SPECI AL variable executes the associated read routine, and the value
returned is the result of the read. Assigning a new value to a SPECI AL variable passes the value to

the associated write routine. The read and write routines can conduct peripheral bus transactions to
get or set the variable value.

Bus standards and driver routines are prime targets for library implementation.

Table 3.4 Serial peripheral busoptions
Standard Manufacturer Notes

12c Philips Synchronous seria peripheral interface that
operates across two wires. The two lines consist of
the serial data line and the serial clock line, which
are both bidirectional. No programming interface is
specified.

SCI various Enhanced UART for board-level serial
communication. Asynchronous over two wires.

SPI various Synchronous seria peripheral interface that
operates across 4 wires. SPI Clock (SCK), master-
out-slave-in (MOSI), master-in-slave-out (M1SO),
and a slave select (SS).

Manufacturers rebrand, or enhance, this standard.
For instance, National Semiconductor offers
MICROWIRE/PLUS devices that are similar (and
possibly compatible).

Page 36

3.7—
Development Toolsfor a Microcontroller

Developing software in C requires the use of a desktop computer to run the cross-compiler. From
there, you can program and evaluate the target system in one of the following ways.

Manual Programming The developer programs an EEPROM microcontroller, and replacesit in
the target for each testing iteration. Thisistime- and labour-intensive, but provides the most realistic
testing environment. The results are not tainted by the presence of test instruments.

Simulators The developer loads object code into a software program that simulates the eventual
environment. This arrangement is best suited for examining complex programming on the fly.

Emulators The developer substitutes the microcontroller (or an external chip like a program ROM)
in the design with a special piece of hardware that emul ates the device while providing alink to the
development platform. A well-designed emulator does not appear any differently to the target
system than anormal controller, but allows the user to spy into the controller's behaviour and to
examine the target platform's hardware at the same time.

Development tools are a factor in processor choice. A compiler can generate information to link the
original source with the object code that the smulator or emulator uses. Watch for products that are
compatible with your compiler.

Page 37

Chapter 4—
Design Process

The design process mirrors the problem specification, making concrete decisions about each genera
point raised previoudly.

41—
Product Functionality

We can mirror the product requirements, the user-oriented checklist of tasks that the product should
perform, with some details about the device to be designed.

Results

* Program will measure current temperature. We will have to service and read an A/D converter
connected to a thermistor. To minimize part count, the A/D converter will be quite rudimentary.

* Program will count real time on a 24-hour clock. With a one-second timer interrupt, we should be
able to count minutes and hours. We won't bother with day/date cal culations— no automatic
daylight savings time adjustment, but no year calculation problems either!

Page 38

* Program will accept current time settings and reset clock count. Library routines should help in
trandating internal clock representation with a displayable format.

* Program will accept and store user-selected heating and cooling temperature settings, and time
settings for three daily usage periods. We will build in reasonable defaults, and then keep the current
settingsin RAM. If the power goes out, the device won't put anyone in danger.

* Program will compare current temperature with settings for current time period, and turn on or turn
off external heat or cooling units as needed. Thiswill require asserting an output line to actuate a
relay, one for both heating and cooling.

 Program will refrain from changing state of external units twice within a short period of time to
avoid thrashing. This means keeping a separate count of afive-second waiting period between
switching operations. mmediate shut-off should override this count, however.

* Program will accept manual override at any time, and immediately turn off all active external
units. Whether the keypad is polled or interrupt-driven, one or two keys for shutdown should be
responded to immediately.

42—
Hardware Design

As mentioned previously, hardware is outside the scope of this book. We include this hardware
information to justify the choices we make in the design of the thermostat.

The part of choiceisthe MC68705J1A, for its ssimplicity and small pin count. It has just enough pins
to control all devices.

* 14 1/0 pins, plus adisabled IRQ input.

» 8 pins (port a) for keypad.

* 2 pins (1 from port b, 1 from disabled IRQ input) for the thermistor.
7 pins (3 from port b, 4 from port a) for serial LCD panel.

* 2 pins (port b) for heating and cooling
switching.

Thej 1la isthe only chip needed; the rest are discrete parts.

Once the hardware is settled, the task moves to designing your program.

Page 39

4.3—
Softwar e Design

43.1—
Software Architecture

As before, we will be using C.

Prepackaged libraries of functions for microcontrollers are available with C compilers for embedded
targets, but they are nowhere near as common as those for the general -purpose computer
programmer.

Libraries for microcontrollers should always be accompanied by their source code! Since safety of
the final product becomes areal factor in applications like machine control, libraries must be as
carefully inspected as the rest of the program.

To remain productive, your compiler and emulation environment should agree on aformat for
extended debugging information. This allows the emulator to perform source level debugging with
your listing file.

Whiletraditional, alinker is not strictly necessary.

The development environment is not discussed here in detail. A text on configuration management
can best provide assistance on how to implement revision control and build automation, if either are
necessary.

Results

The compiler will be the C6805 Code Development System from Byte Craft Limited. It generates
Motorola, Intel, and part-proprietary binaries, and alisting file that places the generated assembly
code beside the original source.

With the Byte Craft CDS, device-specific details are captured in a header file that uses common
identifiers to represent them. Ensure that the device header file 05j 1a. h is present. When using an

EEPROM part, use the file 705j 1a. h. To change the target part, ssimply change the header file.

Libraries to be used in the thermostat include the following.

stdio includes routines to get and put strings from displays and keyboards. Thislibrary relies on
othersto do the actual input and output.

Icd includes routines to clear the display, move the hardware cursor, and write characters and
strings.

keypad includes routines to check for keypresses and decode keys.

Page 40
port provides transparent access to the two parallel ports of the | 1a part.
delay times communications with the LCD display, and debounces the keyboard.
We will also write one completely new library.
timestmp converts a seconds count into a human-readable time, and back.

A clock/counter interrupt calculates time, requests display update, and sets target temperatures. The
main line implements a loop that updates the LCD, polls the keyboard, samples environment
temperature, and switches the HVAC machinery.

4.3.2—
Flowchart

Now we can add some concrete information to the flowchart for the algorithm. Thisin turn will help
us lay out our source files.

Page -
Results

Main Line Code Support Routines Library Routines

seﬁm;mmum
Setmodified flag.
Enable time interrupt.

v

Main Line

Read temperature,
If outside of

and no recent

switch heat or air on,
else off.

#f modified:
e ek
buikd 2nd LCO line.
Clear modified.

Read

E;ﬂnﬂuﬁdeﬂm.
, change between
heat/coot.

if0-9, add digit
if "A", switch
Celsius/ Fahrenheit.

void get_temperature() unsigned int read_atod()

void update_time() void MinutesToTime()

void
mbd_wtdrﬂ

char

Timer intermupt:

Increment clock counter by 655 (65.5 ms period).
i = 10000, reduce and increment seconds.
Ifmids 60, increment minutes ... hours
Sﬂmdiﬂe:lm

Examine minutes]) and hours[} for start of .
SumtonmmrﬂhW-m o

Figure 4.1
Dataflow for the algorithm (revised)

Page 42

44—
Resour ce M anagement

Now that we have some concrete information about the target platform, the development software,
and the way data will flow between parts of the software, we can begin to nail down resource usage.

44.1—
Scratch Pad

Many C compilers use some available RAM for internal purposes such as pseudo-registers. An
efficient C compiler will support scratch pads in data memory. A scratch pad is ablock of memory
that can be used for more than one purpose. A pseudo-register is avariable used as the destination
for basic operations performed with larger data types. Y our compiler documentation will detail the
size and purpose of scratch pad allocations.

For example, if you attempt a 16-bit math operation on a chip with no natural 16-bit register, the
compiler will dedicate a portion of RAM for 16-bit pseudo-registers that store values during math
operations.

If the scratch pad allocation strains your memory budgeting, you can consider reusing the memory
yourself. The only condition is that you must manage variable scope yourself.

For example, the Byte Craft compiler creates the 16-bit pseudo-index register __ | ongl X. You can
reuse this 16-bit location with the following statement.

long int nyTenp @ __| ongl X;

Should you store avaue in my Tenp, and then make alibrary call, the library software must not
perform any long operations or your data will be overwritten.

4.42—
I nterrupt Planning

Unless you have delved into drivers or other low-level software development, you have probably
been shielded from interrupts. Embedded C helps by providing an intuitive way to structure and
code interrupt handlers, but there are some caveats.

» How will the main-line processor state be preserved? The processor registers might be saved
automatically on a stack, or smply shadowed in hidden registers, by the processor. Y ou might easily
swap the main-line register values out if multiple banks of registers are available. As alast resort,
you could save the register values manually, and restore them before returning from the interrupt.

Page 43

The temporary registers used by compiler math functions also need to be preserved if calculations
within the interrupt might obliterate them. Preserving these registers will require multi-byte transfer
routines. The cost of these repetitive sequences within a frequently-called interrupt can add up.

» Will the tasks envisioned for the interrupt, including the previous save and restore operations, be
completed in time? The frequency of the interrupt calls, and the amount of work to be done within
them, need to be estimated.

If there is more than enough time to complete all operations, the speed of the processor could be
reduced to gain electrical benefits.

» How will the interrupt routine and mairtline code interact? Beyond protecting critical sections of
the main line by disabling interrupts, there are broader synchronization conflicts to worry about,
especially in global data.

One general ruleisto write global variablesin one place only — main line or interrupt code — and
read them in the other. Make communication between the interrupt routine and main-line code travel
oneway if possible.

Results

The C6805 CDS creates a 4-byte scratch pad called _ SPAD. It also creates two pseudo-registers
for 16-bit operations. They are | ongAC (2 bytes) and __| ongl X (4 bytes).

C6805 has support for local memory, so we can watch for economies in counter or temporary
variable allocation.

The | 1a apart has a software interrupt, which may be used by the compiler as afast subroutine
call. Wewon't use it explicitly. We will disable the IRQ input to use as a spare input pin.

The|j 1a aso hasatimer interrupt, which we will use to execute the time-keeping functions. The
interrupt will run about every 65 milliseconds, so we will need to keep the following items.

A Millisecond Counter Actually, the millisecond counter needs an extra digit of accuracy to agree
with the published specification, so we will keep tenths of a millisecond.

Page 44

A Second Counter We will display time in minutes, so thisisjust for internal use.

A Counter for Hoursand Minutes We will explain more on this later.

Since we will need the external IRQ pin as an extrainput, we cannot use the keypad interrupt
function associated with port A pins 0-3.

6805 interrupts cause the entire processor state to be preserved: accumulator, X register, PC, stack
pointer, and condition codes. Therefore, we don't need to write code for this. We may need to
preserve the pseudo-registers.

45—
Testing Choices

45.1—
Design for Debugging

With the processor selected, you can start to formulate a testing strategy. The processor may supply
some help, in the form of a hardware debugging interface.

Designing the software by grouping it in libraries is a good organizational technique. Y ou can then
test each subsystem by writing small test programs that use one library apiece.

Modular testing solves an interesting quandary: a system with an LCD display can display human-
readable status codes or other debugging messages. But until the LCD display itself is operational
and reliable, it is of no help.

Focus directly on the configuration of the LCD display with atest program: it is one of the more
complex "black box" devices, with a 4- or 8-hit interface, and enable, register-select, and read/write
lines that must be signalled according to timing tolerances. In our design, it is cost-effective to
multiplex the LCD data bus with the keypad. In your design, the LCD bus may be attached in even
more complex ways. Y ou may need atest program just to drive the library as you customizeit for
your hardware.

452—
Code I nspection

When writing libraries, ensure they contain the following lines.

Page 45
Listing 4.1 Library skeleton

#pragma |ibrary;
#pragnma option +l;
(= . .. %
#pragma endlibrary;

This causes the compiler to omit generating code for any function not referenced from the main
module, and to reproduce the library code within the listing file.

453—
Execution within a Simulator Environment

Software-based simulators enjoy great flexibility as atest environment. Although not physical, they
can be written or configured to match the specified programmer's model and hardware
characteristics exactly.

When running on a contemporary PC, speed of simulation is not an issue: a PC running at hundreds
of MHz can easily simulate events at the common MCU speeds of between 1 and 10 MHz.

454—
Execution within an Emulator Environment

Thereis atradeoff that appears with emulators: they provide a physical base for testing, but may not
reproduce your specific physical configuration. They only present the success of the design to the
extent that they implement it.

Emulator host software should accept a debugging file format. Byte Craft's . COD fileissuch a
format. It includes extrainformation that would not normally be represented within the executable
data, such as source code line numbers for each section of generated code.

With this extra information, emulators can coordinate breakpoints within the source or listing file.
Y ou can determine the context of the register values that the emulator host software reports.

455—
Target Systemin a Test Harness

After prototype hardware has arrived, it makes sense to move candidate software to it as quickly as
possible. The test harness can consist of simple components. switches, lights, small motors, or other
simple indicators. It should replicate the connections (and any feedback conditions) of the working
environment for which the unit is destined.

Page 46

For the programmer, the challenge lies in understanding the difference between the test harness and
the real world. Hopefully, you will not have to change important constants like prescalar values.

Results

For initial code inspection, we will use the C6805 listing file. The listing file includes numerous
reports that are useful both during code-and-compile cycles, and when doing code review on others
work.

For an emulator, we will use the MC68HC705JI CS product from Motorola. The emulator connects
to aPC using a serial cable, and uses a 6805C8 to recreate I/O ports and communicate with the host
system. The host system actually evaluatesthe | 1a software. The emulator is non-red -time:
commands to change port bits, for instance, must be transmitted by the PC to the JICS board.

For the thermostat, our test harness consists of the following.
» 30V lamps to represent heat and cool units when activated.

 Unit power and ground from awall unit.

Page 47

Chapter 5—
C for Embedded Systems

With arefined design in hand that takes into account the prospective hardware environment, you can
begin coding. Starting to code an embedded project is not much different from coding a desktop
application project.

Most significantly, the only software environment present is that which you establish, through
device defaults, global declarations, and setup routines. Themai n() function isindeed the main
function.

There are other practices that characterize embedded C devel opment:
* in-line assembly language,
» device knowledge, and

* mechanical knowledge.

51—
In-line Assembly L anguage

While not required by ANSI C, most embedded development compilers provide a means of
Incorporating assembly language in C programs. One common way of accomplishing thisisusing
preprocessor directives.

The Byte Craft compiler uses #asm and #endasmdirectives to signal assembly language code
boundaries. Everything lying between the directivesis processed by the macro assembler, which is
built into the compiler.

Page 48

The labels and variables used in C are available within included assembly, as well. However, the
compiler will not attempt to optimize such code. The compiler assumes that the user has a good
reason to avoid the compiler's code generation and optimization.

The microcontroller's manufacturer should provide assistance in hand-crafting assembly language
programming. Y ou may be required to flip opcodes out of order to accommodate a pipeline,
something the compiler will do transparently.

The following two definitions of thewai t () function show the function written in C and the
equivalent function in Motorola 6BHC705C8 assembly language.

Listing 5.1 C functions containing in-line assembly language

/* C function */

void wait(int delay)

00EA {

0300 B7 EA STA $EA

0302 3A EA DEC $EA whi | e(--del ay) ;
0304 26 FC BNE $0302

0306 81 RTS }

/* Hand-written assenbly version. Note: the code to store paraneters
and the return fromthe function are still generated. There's little
reason to change this: if you want to avoid using a |ocal variable,
consi der declaring the paraneter as (BCL) registera or registerx, or
anot her equi val ent nane */

void wait2(int delay)

00EA {
0307 B7 EA STA $EA
#asm
LOOP:
0309 3A EA DEC del ay;
030B 26 FC BNE LOOP
#endasm

030D 81 RTS }

Page 49

5.2—
Device Knowledge

In the embedded world, one compiler, generating code for one controller architecture, must still
support a potentially endless array of slightly different processors: parts with varying amounts of
RAM and ROM, fewer or more ports, special features, and so on. Add to this the possibility of
customi zed parts (with mask-programmed ROM routines, for instance).

The standard C environment allows the definition of compiler-specific extensions with the
#pr agma preprocessor directive. The preprocessor may deal with #pr agna directivesin your
source code, or it may be the compiler that acts upon these directives.

The #pr agna directive is used most commonly in embedded development to describe specific

resources of your target hardware, such as available memory, ports, and specialized instruction sets.
Even processor clock speed can be specified, if it matters to the compiler. The following sections
describe #pr agma directives needed by the Byte Craft compiler.

52.1—
#pragma has

#pragma has describes specific architectural qualities of the processor. The qualifiers of the
#pragma has instruction are dependent upon the processor family and the compiler.

Most #pr agma has statements will appear in the device header file. The following examples
show the difference between code compiled with has MJL enabled and disabled.

Listing 5.2 6805 multiplication without #pr agma has MJL

voi d mai n(voi d)

{
O0EB unsigned int result;
00EA unsi gned int one;
00E9 unsi gned int two;
030E A6 17 LDA #$17 one = 23
0310 B7 EA STA 3$EA
0312 A6 04 LDA #$04 two = 4;

0314 B7 E9 STA $E9

0316
0318
031A
031D

031F
0320
0322
0324
0326
0327
0328
0329
032B
032D
032F
0330
0332
0334

Listing 5.376805 multiplication with #pr agma has MJL enabled

O0OEB
O00EA
00E9

030E
0310
0312
0314

0316
0318

B6
BE
CD
B7

81
B7
A6
B7
4F
48
59
24
BB
24
5C
3A
26
81

A6
B7
A6
B7

B6
BE

E9
03
EB

ED
08
EC

05
ED
01

EC
F3

17

04
E9

E9

20

LDA
LDX
JSR
STA

RTS
STA
LDA
STA
CLRA
LSLA
ROLX
BCC
ADD
BCC
I NCX
DEC
BNE
RTS

LDA
STA
LDA
STA

LDA
LDX

$EA
$E9
$0320
$EB

$ED
#308
$EC

$0330
$ED
$0330

$EC
$0327

#$17
$EA
#3$04
$E9

$EA
$E9

resul t

}

/* multiplication subroutine */

one * two;

void main (void)

{

unsigned int result;
unsi gned int one;
unsi gned int two;

one =

t wo

resul t

23;

4,

one * two;

Page 50

Page 51

031A 42 MUL

031B B7 EB STA $EB

031D 81 RTS }
5.2.2—

#pragnma port

#pragma port directives describe the ports available on the target computer. This declaration

reserves memory-mapped port locations, so the compiler does not use them for data memory
allocation.

#pragma port directivesindicate read or write access, or both. The electronics of 1/0 ports may
sometimes forbid writing to them or even reading from them. The compiler can report undesirable
accesses to aport if it finds arestriction in the declaration. Besides protecting the port register, the
declaration allows you to provide a useful mnemonic name for the port. Y ou can then use the name
associated with the port to read or write itsinput or output state.

The following defines two ports and their associated data direction registers on the Motorola
68HC705CS8.

Listing 5.4 Defining portswith #pr agnma directives

#pragma portrw PORTA @ 0x0000
#pragna portrw PORTB @ 0x0001;
#pragma portw DDRA @ 0x0004;
#pragma portw DDRB @ 0x0005;

The compiler isinformed that two ports are available. The name PORTA refersto physical port A's
dataregister, which is available for reading and writing and is located at address 0x0000. The
name DDRA refersto physical port A's data direction register, which is available for writing only and
islocated at address 0x0004.

It is then possible to write the value Ox AA (alternate bits high) to the port using the C assignment
syntax.

Listing 5.5 Setting portsusing assignment

DDRA=0xFF; /* set the direction to output */
PORTA=0xAA; /* set the output pins to 10101010 */

Page 52

The resources for a specific part are best described through a header file that is brought in using

#i ncl ude. ANSI C hasone prescribed rule about #pr agna directives: if a#pr agna directiveis
not recognised, the compiler ignoresit. This ensures that unknown #pr agna directives will not
affect your code.

523—
Endianness

One piece of device knowledge that the programmer must keep in mind is the endianness of the
processor. C does not deal directly with endianness, even in multi-byte shift operations.

In cases in which you will directly manipulate part of a multi-byte value, you must determine from
manufacturer's information whether the high byte (big end) or low byte (little end) is stored first in
memory.

With the restricted resources of microcontrollers, some quirks appear. The COP8 architecture stores
addresses in memory (for indirect operations) as big-endian, and data as little-endian. Addresses
pushed on to the stack do not appear in the same endianness as they do in registersor in RAM.

Compilers, when building their symbol tables, normally use the lowest (first) memory location to
record the location of an identifier, regardless of the endianness of the processor.

53—
M echanical Knowledge

Techniques used in an embedded system program are often based upon knowledge of specific
device or peripheral operation. Modern operating system APIs are designed to hide this from the
application developer. Embedded C systems need first-hand control of peripheral devices, but can
still provide a healthy level of generalization.

One useful technique employed by the port library isto define the letters | and O to the appropriate
settings for port control registers that govern data direction. The letters cannot be defined
individually. They are defined in eight-letter sequences that are unlikely to appear €l sewhere.

Applications may need to use a port both as input and output (for instance, driving a bidirectional
parallel port through software), and setting a port's data direction using these macros provides device
independence.

Page 53
Listing 5.6 Device-independent data dir ection settings

#pragnma portw DDR @ 0x05;

#i ncl ude <port. h>
/* port.h contains nunerous definitions such as the follow ng:

#define 1111111 Ob0O0O00000O
#define 11110000 0b00001111
#defi ne 00000000 0b11111111

where 'O utput sets DDR bits to one ('1")

and 'I'nput sets DDR bits to zero ('0").

They can be regenerated for the opposite settings.
*/
[* ... later ... */

DDR = 00000000; /* all bits set for output */

DDR_WAI T() ;

[* ... performwite to port ... */

DDR = II1I1I1l; /* all bits set for input */
DDR_WAI T() ;

[* ... performread of port ... */

L ow power operation can be achieved by repeatedly putting the processor in an inactive mode until
an interrupt signals some event. Processor families provide variations on the STOP or WAIT
operation, with different provisions for protecting the contents of processor registers and recovery
times. C duly expressesthese as STOP() or WAI T() macros. If a hardware stop was not available,
the macro could be redefined to cause an infinite loop, jump to the reset vector, or perform another
substitute operation.

When a button is pressed, it "bounces’, which meansthat it is read as several quick contact closures
instead of just one. It is necessary to include debouncing support to ensure that one keypressis
interpreted out of several bounces. When afirst keypad switch is registered on a port, software can
cal the keypad_wai t () function to create adelay, and then check the button again. If the button
isno longer in a pushed state, then the push isinterpreted as a bounce (or an error), and the cycle
begins again. When the signal

Page 54

Is present both before and after the delay, it islikely that the mechanism has stopped bouncing and
the keypress can be registered.

54—
Libraries

Libraries are the traditional mechanism for modular compile-time code reuse. C for embedded
systems can make use of libraries as an organizational tool.

» Asusual, alibrary is acode module that hasno mai n() routine.

» The associated header file should declare the variables and functions within the library as
extern.

* Thelinking processis simpler than that for desktop software development. Thereis no need to
archive object files, and there is no dynamic linking to worry about.

* It is unacceptable in embedded software for unreferenced functions to be left in the object file
during linking. In the Byte Craft compiler, the #pr agma | i br ary and #pr agma

endl i br ary bounding statements identify that not all routines within alibrary need to be linked
in. The ROM space saved is worth the extra effort on the part of the compiler to extract only
referenced routines.

* Peering into the code generated for librariesis as important as seeing the code for the main
module. The statement #pr agma opt i on +l ; withinalibrary causes the compiler to add the

source and assembly code from the library into the listing file of the final program.

55—
First Look at an Embedded C Program

Traditionally, the first program a developer writesin C is one that displays the message "Hello
World!" on the computer screen.

In the world of 8-bit microcontrollers, there is no environment that provides standard input and
output. Some C compilers provide ast di o library, but the interpretation of input and output differs
from that of a desktop system with pipes and shell environments.

The following introductory program is agood "Hello World!" equivalent. The program tests to see if
a button attached to a controller port has been pushed. If the button has been pushed, the program
turns on an LED attached to the port, waits, and then turns it back off.

Listing5.7 A "HelloWorld!" for microcontrollers

#i ncl ude <hc705c8. h>
[* #pragma portrw PORTA @ Ox0A; is declared in header

#pragma portw DDRA @ Ox8A; is declared in header */
#i ncl ude <port. h>
#define ON 1
#define OFF O
#defi ne PUSHED 1
void wait(registera); /* wait function prototype, not displayed */
voi d mai n(void){
DDRA = [1I11110; /* pin O to output, pin 1 to input,
rest don't matter */
while (1)({
i f (PORTA.1 == PUSHED) {
wait(1); /[* is it a valid push? */
i f (PORTA. 1 == PUSHED){
PORTA. 0 = ON, /[* turn on |ight */
wai t (10); /* short delay */
PORTA. 0 = OFF; /[* turn off light */
}

}
}

} /* end main */

Page 55

Page 57

Chapter 6—
Data Typesand Variables

Due to the restricted environment of embedded controllers, standard C variables and data types take
on new characteristics.

The most drastic change takes the default integer typeto 8 or 16 bits. While quite acceptable from a
C point of view, programmers used to inexpensive 32-bit values need to adjust to the new
environment. By default, the Byte Craft compiler creates8 bit i nt s, whileal ong or | ong i nt
datatypeistwo bytesin size.

Embedded compilers expose standard C types, and several additional datatypes that are appropriate
for embedded development. The embedded world brings a new aspect to type conversion, too.
Casting is one task that is made easier by the compiler, but casting can more readily lose
information and interfere with values destined for use in a context such as peripheral control.

The other substantial change involves data types and variables with important side effects.

* Constants or initialized variables will consume amore significant proportion of ROM, aswell as
RAM. Global variable declarations that contain an initialization will automatically generate machine
code to place a value at the allocated address shortly after reset. In the Byte Craft com-

Page 58

piler, one or more global variable initializations will generate code to zero all variable RAM before
assigning the initialization values to the variables.

» Variables of typer egi st er areavailable, but the scarcity of registersin the typical 8-bit
architecture makes them more volatile than usual.

* In the Byte Craft compiler, a simple assignment to or evaluation of a variable declared to be within
a SPECI AL memory area can generate a subroutine call. The driver subroutine that reads or writes
the value can take significant time to execute if it is communicating with an external device.

Beyond the built-in types, programmers can define their own custom types, as usual.

When the compiler comes across a variable declaration, it checks that the variable has not
previously been declared and then allocates an appropriately-sized block of RAM. For example, a
char variable will by default require asingle word (8 bits) of RAM or data memory. Data type
modifier s influence the size and treatment of the memory allocated for variables.

Storage modifier s affect when memory is alocated and how it is considered free to be re-used.

» Some variables are meant to be allocated once only across several modules. Even previously-
compiled modules may need to access a common variable. The compilation units — libraries or
object files — must identify these asexternal symbols using the ext er n storage class modifier.

* Non-st at i ¢ variablesthat are of mutually-exclusive scope are likely to be overlaid. Embedded C
regards scope in much the same way that standard C does, but there is an extra effort to use scope to
help conserve memory resources.

» The compiler will reinitialize local variables, if appropriate, on each entry into the subroutine.
These variables are deemed to be declared asaut 0. Local variables declared asst at i ¢ areleft
alone at the start of the function; if they have an initial value, the Byte Craft compiler assigns it
once, in the manner of aglobal initialization.

Embedded- specific interpretations of each of the C datatype and storage modifiers are shownin
Table 6.1.

Page 59

Table 6.1 Datatype modifiersand notes

M odifier Notes

aut o Unnecessary for local variables. Compare with st at i c.
const Allocates memory in ROM.

extern Flags the reference for later resolution from within alibrary.
far Depends upon addressing scheme of target.

near Depends upon addressing scheme of target.

si gned Generates extra code compared with unsi gned.

static Preserves|ocal variable across function calls.

unsi gned Creates significant savings in generated code.

vol atile (No specific notes; consult the SO standard for more information)
6.1—

Identifier Declaration
An embedded C compiler uses C declarations to alocate memory for variables or functions.

Asthe compiler reads a program, it records all identifier namesin a symbol table. The compiler uses
the symbol table internally as areference to keep track of the identifiers: their name, type, and the
location in memory that they represent. Most compilers support identifier names of at least 31
characters.

It is sometimes necessary or desirable to direct the placement of variables. The Byte Craft compiler
interprets the @operator and a number following the identifier as the location at which the variable
value should be stored. The @operator is also used to associate port registers with identifiersin
#pragma port statements. These identifiers occupy the same name space as RAM and ROM
memory variable identifiers.

6.1.1—
Special Data Types and Data Access

Every bit of RAM isprecious. Even if unused RAM on a periphera deviceis not within the
immediate address space of the processor, subtle techniques can make it appear to be. Declaring a
memory space as SPECI AL requires you to write routines to read and write data to and from the
peripheral. The tradeoff is with performance.

Page 60
Listing 6.1 SPECI AL: memory, driver method, and variable declar ations

#pragma nenory SPECI AL eeprom [128] @ 0x80;
#define eepromr (LOC) |12C read(LOCC)
#define eeprom w(LOC, VAL) 12C wite(LOC, VAL)

int eepromi;

Accessing the variable declared to be within the special memory areawill take some time, but the
compiler will allow the process to be transparent.

6.2—
Function Data Types

A function data type determines the value that a subroutine can return. For example, a function of
type i nt returns asigned integer value.

Without a specific return type, any function returnsani nt . An embedded C compiler provides for
this even in the case of mai n() , though returning is not anticipated. To avoid confusion, you
should always declare mai n() with returntypevoi d.

Some other specially-named functions will have predetermined types; those that implement interrupt
coding, for example, will be of typevoi d unless there is some method for an interrupt to return a
value. The Scenix SX returns a value to support virtual peripherals, and so itsinterrupt handler will
have afunction datatype of i nt .

Parameter data types indicate the values to be passed in to the function, and the memory to be
reserved for storing them. A function declared without any parameters (i.e., with empty parentheses)
is deemed to have no parameters, properly noted as (voi d) .

The compiler allocates memory differently depending upon the target part. For instance, the Byte
Craft compiler passes the first two (byte-sized) parameters through an accumulator and another
register in the processor. If local memory is specifically declared, the compiler will alocate
parameter passing locations out of that space.

6.3—
The Character Data Type

The C character datatype, char , stores character values and is allocated one byte of memory space.
The most common use of aphabetic information is

Page 61

output to an LCD panel or input from a keyswitch device, where each letter used isindicated by a
character value.

6.4—
Integer Data Types

Integer values can be stored asi nt , short, or | ong datatypes. Thesize of i nt vauesisusualy
16 bits on 8-hit architectures. The Byte Craft compiler's default i nt size is switchable between 8
and 16 hits.

The short datatype helps compensate for varying sizes of i nt . On many traditional C platforms,

thesizeof an i nt ismore than two bytes. On platformsin which ani nt isgreater than two bytes,
ashort should be two bytesin size. On platformsin which an i nt isone or two bytesin size —
most 8-bit microcontrollers — the shor t datatype will typically occupy a single byte.

Should your program need to manipulate values larger than an i nt, you can usethel ong data
type. On most platformsthe | ong datatype reserves twice as much memory asthei nt datatype.
On 8-hit microcontrollers, thel ong datatype typically occupies 16 bits.

It isimportant to note that | ong integer values are almost always stored in a memory block larger
than the natural size for the computer. This means that the compiler must typically generate more
machine instructions when a program uses| ong values.

| ong and short areuseful because they are less likely to change between atarget with a natural
8-bit data type and one that delves into 16-bit values. In cases of aswitchable i nt, you can
maintain code portability by using shor t for those values that require 8 bits, and | ong for values
which require 16 bits.

Likethei nt ,theshort and| ong datatypes usesasign bit by default and can therefore contain
negative numbers.

6.4.1—
Byte Craft's Sized I ntegers

The Byte Craft compiler recognizesi nt 8,i nt 16,1 nt 24, and i nt 32 datatypes. They are
integers with the appropriate number of bits. These remove the ambiguity of varying or switchable
integer sizes.

6.5—
Bit Data Types

Embedded systems need to deal efficiently with bit-sized values.

Page 62

|SO/IEC 9899:1999 specifiesthe _Bool type. Variables of type _Bool canholdaOor 1. Thisisa
new addition to the C standard.

The Byte Craft compilers supply two types for bit-sized quantities: bit andbi ts.A bi t valueis
asingle independent bit, which the compiler places and manages depending upon the capabilities of
the processor.

A bi t s variable isastructure of 8 bits, managed together and individually addressable using
structure member notation. Y ou can assign a byte value directly to abi t s variable, and then
address individual bits.

Listing 6.2 is an example for the MC68705J1A.
Listing 6.2 Bit-sized variable types

bits switch_fixup(void)

{
O0OEB 0000 bit heat flag;
00EB 0001 bit cool flag;
O0EA bits swi tches;

0300 00 01 04 BRSET 0, $01, $0307 heat _flag = PORTB. 0;

0303 11 EB BCLR 0O, $EB

0305 20 02 BRA $0309

0307 10 EB BSET O, $EB

0309 02 01 04 BRSET 1, $01, $0310 cool _flag = PORTB. 1;
030C 13 EB BCLR 1, $EB

030E 20 02 BRA $0312

0310 12 EB BSET 1, $EB

0312 B6 01 LDA $01 swi tches = PORTB;
0314 B7 EA STA $EA

0316 0B EA 05 BRCLR 5, $EA, $031E if(switches.5 &&

heat _flag) switches.1 = 0;
0319 01 EB 02 BRCLR 0, $EB, $031E
031C 13 EA BCLR 1, $EA
return(sw tches);
031E 81 RTS

Page 63

6.6—
Real Numbers

While many desktop computer applications make extensive use of real or floating point numbers
(numbers with digits on both sides of the decimal place), 8-bit microcontroller applications do not.
The resources needed to store and manipulate floating point numbers can place overwhelming
demands on an 8-bit computer. Usually, the value gained is not worth the resources expended.

The fundamental data type for representing real numbersin Cisthef | oat type. The maximum
value for the target computer is defined in a C header file called val ues. h asasymbolic constant
called MAXFLQOAT.

C compilers generally allocate four bytesfor af | oat variable, which provides approximately six
digits of precision to the right of the decimal. Y ou can have greater precision with the doubl e and
| ong doubl e datatypes. Compilerstypically allocate eight bytesfor adoubl e variable and
more for al ong doubl e. There are approximately 15 digits of precision with doubl e values
and perhaps morefrom | ong doubl e vaues.

Another format, |EEE 754, specifies a4- or 3-byte format for floating-point numbers.

Y ou can assign an integer value to a floating point data type, but you must include a decimal and a0
to theright of the decimal.

myFl oat Vari able = 2.0;

6.7—
Complex Data Types

Complex data types include pointers, arrays, enumerated types, unions, and structures. Even within
the restricted resources of an 8-bit microcontroller, complex data types are useful in organizing an
embedded program.

6.7.1—
Pointers

The implementation of pointer variablesis heavily dependent upon the instruction set of the target
processor. The generated code will be simpler if the processor has an indirect or indexed addressing
mode.

It isimportant to remember that Harvard architectures have two different address spaces, and so the
interpretation of pointers can change. A dereference of a RAM location will use different
Instructions than a dereference into ROM.

Page 64

It is also important to differentiate between near and f ar pointers. The differencesin code
generation can be significant. For more information, see Section 6.9.4, Pointer Size Modifiers:
near andf ar.

6.7.2—
Arrays

When you declare an array, you must declare both an array type and the number of elementsit
contains. For example, the following declares an array containing eight i nt elements.

int mylntArray[8];

When you declare an array, asingle, contiguous block of memory isreserved to hold it. Thisiswhy
you must specify the array size or assign the contents in the declaration.

Listing 6.3 Initialized and uninitialized arrays

00C0 0008 int myarray[8];
[* uninitialized */
00C8 01 08 02 07 03 06 04 05 int ny2array[] =

{1,2,4,8,16, 32, 64, 128};
[* initialized bel ow */
0312 01 08 02 07 03 06 04 05 const int nyconsts[] =
{1,8,2,7,83,6,4,5};
/* no code generated for const array */

[* ... main() code omitted for clarity ... */

/[* Initialization code. The first passage clears all variable
menory. The second initializes ny2array. Finally, the junp
to main(). */

O7FE 03 32

0332 AE Q0 LDX #$C0
0334 7F CLR X
0335 5C I NCX

0336 A3 EB CPX #$EB

0338 26 FA BNE $0334

Page 65

033A 5F CLRX

033B D6 03 48 LDA $0348, X
033E E7 C8 STA $C8, X
0340 5C I NCX

0341 A3 08 CPX #$08
0343 26 F6 BNE $033B

0345 CC 03 1A JMP $031A

0348 01 02 04 08 10 20 40 80

There are some restrictions on or disadvantages to using arrays in embedded C programming. They
arise because of the available methods of indexing into an array.

The Byte Craft compiler forbids arrays of st r uct and uni on. Thisrestriction arises because of
the difficulty in addressing members of the data structures, which are themselves being addressed as
array members. To overcome this limitation, you can use several global arrays of basic data types,
and organize them together by context.

6.7.3—
Enumerated Types

Enumerated types are finite sets of named values.

For any list of enumerated elements, the compiler supplies arange of integer values beginning with
0 by default. While in many casesthis is sufficient to identify elementsin the set, in embedded C
you may wish to associate the enumerated set to a device-dependent progression. Enumerated
elements can be set to any integer values in two ways.

1. Specify values for each enumerated element. The following example is from the COP8SAA7
WATCHDOG service register WDSVR. Bits 6 and 7 of this register select an upper limit to the
service window that selects WATCHDOG service time.

Listing 6.4 Specifying integer values for enumerated elements

enum WDW nSel { Bit7 = 7, Bit6 = 6 };

Page 66

Since character constants are stored as integer values, they can be specified as valuesin an
enumerated list.

enum DIG TS {one="1", two= '2', three="3"};

will store the appropriate integer values of machine character set (usually ASCII) for each digit
specified in the element list.

2. Specify a starting value for one or more of the enumerated elements. By default, the compiler
assigns the value 0 to the first element in the list. You can set the list to begin with another value.

Listing 6.5 Specifying a starting value for enumerated elements

enum ORDI NALS {first = 1, second, third, fourth, fifth};

When the compiler encounters an element in an enumerated list without an assigned value, it counts
from the last value that was specified. For example, the following enumerated list specifies the
appropriate values for its elements.

Listing 6.6 The assignment of integer valuesto an enumerated list

enum ORDI NALS {first =1, second, fifth=5, sixth, seventh};

6.7.4—
Structures

Structures support the meaningful grouping of program data. Building understandable data
structures is one key to the effectiveness of a new program.

The following declaration creates a structured type for an extended time counter and describes each
element within the structure. The display is defined as having the components hour s, m nut es,
seconds, and an AM/PM flag. Later, avariable t i met ext isdeclared to be of type st r uct

di spl ay.

Listing 6.7 Declaring the template of a
structure

struct display {
unsi gned int hours;
unsi gned int mnutes;
unsi gned i nt seconds;

Page 67

char AorP;
b

struct display tinetext;

The Byte Craft compiler permits structures of bit fields, with individual fields taking less than 8 bits.
Using bit fields allows the declaration of a structure that takes up the minimum amount of space
needed: several fields could occupy one single byte.

The following example for the Motorola MC68HC705C8 defines the Timer Control Register (TCR)
bits as bit fields in the structure called TCR, and uses the structure to configure the timer output
compare.

Listing 6.8 Bit fieldsin structures

struct reg_tag {
int ICCE: 1; /* field ICIE, 1 bit long */
int OCCIE : 1; /* field OCIE, 1 bit long */
int notUsed : 3 =0; /* notUsed is 3 bits and set to 0 */
int IEDG: 1; /* field IEDG 1 bit long */
int OLVL : 1; /* field OLVL 1 bit long */
} TCR;

/* To configure the tinmer: */

TCR. OLVL = 1; /* TCMP pin goes high on output conpare successful */

The Byte Craft compiler can span abit field across two bytes. Not all compilers support this
optimization, however. In the worst case, the following structure would place the second field
entirely in a separate word of memory from the first.

Listing 6.9 Compiler dependant storage of bit fields

struct {
unsigned int shortElement : 1; /* 1 bit in size */
unsigned int longElenent : 7; /* 7 bits in size */
} nyBitField;, /* could be 1 byte, worst case 2 */

Page 68

The order in which the compiler stores elementsin a structure bit field also varies from compiler to
compiler.

Bit field elements behave exactly as an unsigned i nt of the same size. Thus, an element occupying
asingle bit could have an integer value of either 0 or 1, while an element occupying two bits could

have any integer value ranging from 0-3. Y ou can use each field in calculations and expressions
exactly asyouwouldani nt.

6.7.5—
Unions

C programmers developing for traditional platforms do not often use the uni on datatype, but itisa
very useful resource for the embedded system developer. The uni on type interprets data stored in a
single block of memory based on one of several associated datatypes.

One common use of the uni on type in embedded systemsisto create a scratch pad variable that
can hold different types of data. This saves memory by reusing one 16-bit block in every function

that requires atemporary variable. The following example shows a declaration to create such a
variable.

Listing 6.10 Using a union to create a scratch pad

struct | ohi _tag{
short | owByt e;
short hi Byte;
b
uni on tagNanme {
int aslnt;
char asChar;
short asShort:
| ong asLong;
int near * asNPtr;
int far * asFPtr;
struct hilo_tag asWwrd;
} scratchPad,;

Another common use for uni on isto facilitate access to data as different types. For example, the
Microchip PIC16C74 has a 16-bit timer/counter register called TMR1. TMR1 is made up of two 8-
bit registers called TMR1H (high byte) and TMRLL (low byte).

Page 69

It might be desirable to access either of the 8-bit halves, without resorting to pointer manipulation. A
union will facilitate this type of data access.

Listing 6.11 Using a union to access data as different types

struct asByte {
int TMRLH, /* high byte */
int TVMRLL; /* |ow byte */

}
union TIMERL tag {

long TMR1_word; /* access as 16 bit register */

struct asByte hal ves;
} TMRL;

[* o0 *

seed = TMR1. hal ves. TMRIL;

Since the compiler uses a single block of memory for the entire union, it allocates a block large
enough for the largest element in the union. The compiler will align the first bits of each element in
the lowest address in the memory block. If you assign a 16-bit valueto scr at chPad and then read
it as an 8-bit value, the compiler will return the first 8 bits of the data stored.

If you arbitrarily extract one byte of a 16-bit variable, the value returned will differ depending on the
endianness of the processor architecture. As mentioned in Section 5.2.3, Endianness, C does not
contemplate endianness.

6.8—
t ypedef

Thet ypedef keyword definesanew variable type in terms of existing types. The compiler cares
most about the size of the new type, to determine the amount of RAM or ROM to reserve.

Page 70
Listing 6.12 Defining new typeswith t ypedef

typedef int new.int;
new_ int result; /* represents sane range of val ues
in a different context. */

typedef struct {
char * nane;
int start;
int mn_tenp;
int max_tenp;
} tine_record

time_record targets[] {
{ "Night", 0, 20, 25},
{ "Day", 5*3600, 20, 25},
{ "Evening", 18*3600, 20, 25},

6.9—
Data Type Modifiers

The C language allows you to modify the default characteristics of simple data types. Mainly, these
data type modifiers alter the range of alowable values.

Type modifiers apply to data only, not to functions. Y ou can use them with variables, parameters,
and returned data from functions.

Some type modifiers can be used with any variable, while others are used with a set of specific
types.

6.9.1—
Value Constancy Modifiers:
const andvol atile

The compiler's ability to optimize a program relies on severa factors. One of these isthe relative
constancy of the data objectsin your program. By default, variables used in a program change value
when the instruction to do so is given by the developer.

Page 71

Sometimes, you want to create variables with unchangeable values. For example, if your code
makes use of p, the constant PI, then you should place an approximation of the value in a constant
variable.

const float Pl = 3.1415926;

When your program is compiled, the compiler allocates ROM space for your Pl variable and will
not allow the value to be changed in your code. For example, the following assignment would
produce an error at compile time (thank goodness).

In embedded C, storage for constant data valuesis alocated from computer program memory space,
usually ROM or other nonvolatile storage.

For the Byte Craft compiler, a declaration such as

const int maxi nuniTenperature = 30;

declares a byte constant with an initial value of 30 decimal. The compiler will reserve far more than
just one or two bytes for a constant if any special technique is required to load the value into a
register. Due to architectural limitations, some platforms require constants to be the parameter of a
multi-byte load statement embedded in a ROM subroutine: to access the constant value, the
processor executes the dedicated load statement.

Volatilevariables are variables whose values may change outside of the immediately executing
software. For example, avariable that is "stored" at the location of a port data register will change as
the port value changes.

Usingthe vol at i | e keyword informs the compiler that it can not depend upon the value of a
variable and should not perform any optimizations based on assigned values.

6.9.2—
Allowable Values Modifiers:
si gned and unsi gned

By default, integer data types can contain negative values. Y ou can restrict integer data typesto
positive values only. The sign value of an integer datatype is assigned with the si gned and
unsi gned keywords.

The si gned keyword forces the compiler to use the high bit of an integer variable asa sign bit. If
the sign bit is set with the value 1, then the rest of the variable is interpreted as a negative value. By
default, short ,i nt,and| ong datatypes are signed. The char datatypeisunsigned by default.
To create asigned char variable, you must use a declaration such as

si gned char nySi gnedChar;

Page 72

If you usethe si gned or unsi gned keywords by themselves, the compiler assumes that you are
declaring an integer value. Sincei nt vauesare si gned by default, programmers rarely use the
syntax si gned nySi gnedl nt ;.

6.9.3—
Size Modifiers:
short and| ong

The short and| ong modifiersinstruct the compiler how much space to allocate for an i nt
variable.

The shor t keyword modifiesani nt to be of the samesizeasachar variable (usually 8 bits).

short int nyShortlnt;

If you usethe short keyword alone, the compiler assumesthe variableisashort i nt type.

short nyShortlnt;

The | ong keyword modifiesani nt to betwiceaslongasanormal i nt variable.

I ong int nyLongl nt;

Omitting thei nt inalong declaration likewise assumesal ong i nt.

6.9.4—
Pointer Size Modifiers;
near andf ar

The near andf ar keywords are influenced a great deal by the target computer
architecture.

The near keyword creates a pointer that points to objects in the bottom section of addressable
memory. These pointers occupy a single byte of memory, and the memory locations to which they
can point islimited to a bank of 256 locations, often from $0000—$00FF .

int near * nyNntptr;

The f ar keyword creates a pointer that can point to any datain memory:

const char * nyString = "Constant String";
char far * nmylndex = &nyString;

These pointers take two bytes of memory, which alows them to hold any legal address location
from $0000-$FFFF. f ar pointersusualy point to objectsin user ROM, such as user-defined
functions and constants.

Page 73

6.10—
Storage Class M odifiers

Storage class modifiers control memory allocation for declared identifiers. C supports four storage
class modifiers that can be used in variable declarations: ext ern, st ati c,regi ster, and
aut 0. Only ext er n isused in function declarations.

The 1SO standard specifies t ypedef asafifth modifier, though it explains that thisis for
convenience only. t ypedef isdescribed in Section 6.8, t ypedef .

When the compiler reads a program, it must decide how to allocate storage for each identifier. The
process used to accomplish thistask is called linkage. C supports three classes of linkage: external,
internal, and none. C uses identifier linkage to sort out multiple references to the same identifier.

6.10.1—
External Linkage

References to an identifier with external linkage throughout a program all call the same object in
memory. There must be asingle definition for an identifier with external linkage or the compiler
will give an error for duplicate symbol definition. By default, every function in a program has
external linkage. Also by default, any variable with global scope has external linkage.

6.10.2—
Internal Linkage

In each compilation unit, all references to an identifier with internal linkage refer to the same
object in memory. This means that you can only provide a single definition for each identifier with
internal linkage in each compilation unit of your program. A compilation unit can be more than one
file because of #i ncl ude directives.

No objectsin C have internal linkage by default. Any identifier with global scope (defined outside
any statement block) and with thest at i ¢ storage class modifier, hasinternal linkage. Also, any
variable identifier with local scope (defined within a statement block) and with thest at i ¢ storage
class modifier, hasinterna linkage.

Although you can create local variables with internal linkage, scoping rules restrict local variable
visibility to their enclosing statement block. This means that you can create local variables whose
values persist beyond the immediate life of the statement blocks in which they appear. Normally, the
computer shares local variable space between several different statement

Page 74

blocks. If alocal variableisdeclared asst at i ¢, spaceis alocated for the variable once only: the
first time the variable is encountered.

Note

Unlike other internal linkage objects, static local variables need not be unique within
the compilation unit. They must be unique within the statement block that contains
their scope.

Objects with internal linkage typically occur less frequently than objects with external or no linkage.

6.10.3—
No Linkage

Referencesto an identifier with no linkage in a statement block refer to the same object in memory.
If you define avariable within a statement block, you must provide only one such definition.

Any variable declared within a statement block has no linkage by default, unlessthe st at i ¢ or
ext er n keywords are included in the declaration.

6.10.4—
The ext er n Modifier

Suppose the library function

int Calculate_Sum)

isdeclared in alibrary source file. An identifier with external linkage like this can be used at any
point within the same compilation unit, aslong as it was previously declared.

If you want to use this function in any other compilation unit, you must tell the compiler that the
definition of the function is or will be available. The concept isidentical to prototyping afunction,
except that the actual definition will not appear in the same compilation unit. The function definition
is external to the compilation unit.

To declare an external function, use the ext er n keyword.
extern int Calculate_Sum);

When the compiler encounters an external function declaration, it interpretsit as a prototype for the
function name, type, and parameters. The

Page 75

ext er n keyword claims that the function definition isin another compilation unit. The compiler
defersresolving this reference to the linker.

If you build alibrary of functions to use in many programs, create a header file that includes
ext er n function declarations. Include this header in your compilation unit to make library

functions available to your code.

Like functions, global variables have external linkage. A global variable is a good way to present
general configuration settings for alibrary. This avoids an extra function call.

To create aglobal variable that can be read or set outside its compilation unit, you must declare it
normally within its source file and declare it asext er n within a header file.

extern int myd obal I nt;

The compiler interprets an external declaration as a notice that the actual RAM or ROM allocation
happens in another compilation unit.

6.10.5—
The st ati ¢ Modifier

By default, al functions and variables declared in global space have external linkage and are visible
to the entire program. Sometimes you require global variables or functions that have internal
linkage: they should be visible within a single compilation unit, but not outside. Usethe st ati ¢
keyword to restrict the scope of variables.

Listing 6.13 Using the static data modifier to restrict the scope of variables

static int myd oballnt;
static int staticFunc(void);

These declarations create global identifiers that are not accessible by any other compilation unit.

The st at i ¢ keyword works almost the opposite for local variables. It creates a permanent variable
local to the block in which it was declared. For example, consider the unusual task of tracking the
number of times arecursive function callsitself (the function's depth). Y ou can accomplish this
using a static variable.

Page 76
Listing 6.14 Using static variablesto track function depth

voi d nmyRecurseFunc(void) {
static int depthCount=1;
dept hCount += 1;
if ((depthCount < 10) && (!DONE)) {
myRecur seFunc() ;
}

myRecur seFunc containsani f statement that stopsit from recursing too deeply. Thest ati c
variable dept hCount isused to keep track of the current depth.

Normally, when afunction is called, the computer reinitializes its automatic local variables (or at
least leaves them in a questionable state). Memory for st at i ¢ variables, however, isonly
initialized once. Thest at i ¢ variabledept hCount retainsits value between function calls.

Because dept hCount isdefined inside the myRecur seFunc() statement block, itisnot visible
to any code outside the function.

6.10.6—
Ther egi st er Modifier

When you declare a variable with ther egi st er modifier, you inform the compiler to optimize
access to the variable for speed. Traditionally, C programmers use this modifier when declaring loop
counter variables.

Listing 6.15 Using theregister data type modifier

{
register int myCounter = 1,
while (nmyCounter<10) {
[* ... %
myCounter += 1;
} /* end while */
} /* enclosing block enforces reallocation of nyCounter */

Unlike other storage class modifiers, r egi st er issimply arecommendation to the compiler. The
compiler may use normal memory for the variable if it is out of registersto allocate.

Page 77

Because of the scarcity of registers on 8-bit machines and the desire for size optimization rather than
speed, ther egi st er keyword isnot very useful for embedded system programmers.

Notice that the technique used in the example does two things: it placesther egi st er declaration
and the whi | e loop close together and inside a statement block. This minimizes the cost of

potentially dedicating aregister to a specific variable. It aso forces the compiler to reallocate
storage for myCount er as soon astheloop is finished: if the compiler uses aregister to store

nmyCount er , it will not tie up the register longer than necessary.

6.10.7—
The aut o Modifier

The aut o keyword denotes atemporary variable (as opposed to st at i ¢). You can only use aut o
with local variables, because C does not support functions within ablock scope. Since all variables
declared inside a statement block have no linkage by default, the only reason to use the aut o
keyword is for clarity.

Listing 6.16 Usingthe aut o data modifier

i nt sonmeFunc(NODEPTR myNodePtr) {
ext ern NODEPTR TheStruct ur eRoot ;
/* global pointer to data structure root */
aut o NODEPTR t enpNodePtr;
/* tenporary pointer for structure manipul ation */
[* ... %

In this example, we declare t enpNodePt r asan aut o variable to make it clear that, unlike the
globa TheSt r uct Root pointer, t enpNodePt r isonly atemporary variable.

Page 79

Chapter 7—
C Statements, Structures, and Operations

Part of the benefit of using C for programming is the availability of mathematical expression.
Beyond simple constant cal culations, assembly forces you into arigorous, procedural structure. C
provides assignment statements, logical and arithmetic expressions, and control structures that allow
you to express yourself using common math notation and hel pful metaphors.

7.1—
Combining Statementsin a Block

Y ou create statement blocks for your functions, and at other times for the bodies of control
statements. For instance, the general format for the whi | e statement looks like the following.

while (condition) statenent;

Page 80

Since you can substitute a statement block anywhere a single statement can occur, thewhi | e
statement most commonly appears as follows.

while (condition){
statenents
}

7.2—
Functions

When the compiler reaches the function definition, it generates machine instructions to implement
the functionality, and reserves enough program memory to hold the statements in the function. The
address of the function is available through the symbol table.

A function definition includes a statement block that contains all function statements. Even if a
function has only a single executable statement, it must be enclosed in a statement block.

Embedded C supports function prototypes. Function prototype declarations ensure that the
compiler knows about afunction and its parameter types, even if its definition has yet to appear in
the compiler's input. Prototypes assist in checking forward calls. The function name is recorded as
an identifier, and is therefore known when invoked in code prior to its definition.

Header files of function prototypes provide the foundation for using libraries.

The syntax for afunction call in C isthe function name and alist of actual parameters surrounded
by parentheses.

Function calling is one areain which embedded C differs substantially from traditional C. The way
that parameters are passed differs significantly, as well as the permitted number of parameters.

Functions that produce extensive side effects are harder to maintain and debug, especialy for
members of a development team. To safely use abstract functions, you need to know only the data
that goes in and comes out — the function interface. When a function produces side effects, you
need to know about the interface and behaviour to use it safely.

Some C programmers insist that functions that just produce side effects should return avalue to
indicate success, failure, or error. Since ROM spaceis at a premium, the code needed to evaluate the
return statusis aluxury.

Page 81

7.2.1—
Function Parameters

C for embedded processors places some unique restrictions on function calls. Some compilers
restrict the number of parameters that can be passed to afunction. Two byte-sized parameters (or
one 16-bit parameter) can be passed within the common processor registers (accumulator and index
register).

To pass by reference, pass a pointer as usual. See information on pointersin Section 6.7.1,
Poi nt er s, for extrainformation about the relative cost of using pointers.

A function with no parameters can be declared with an empty parameter list.

int myFunc()

However, it is good practice to specify that the function has no parameters with the voi d parameter
type.

int myFunc(void)

In embedded programs, mai n() does not accept any parameters.

7.3—
Control Structures

While the flow of some embedded C programs will appear strange at first (the prominence of
whi | e(1), for instance), they are not fundamentally different than those in C for personal

computing.

7.3.1—
The mai n() Function

It may seem incongruous that an embedded program, which has no operating system to invokeit,
has a traditional mai n() function and an explicit return value specification. What invokes mai n
() ?Where will the function return?

Embedded C retainsthe mai n() function for compatibility with standard C. The return type of
mai n() should always explicitly be declared asvoi d; omitting it, as mentioned in Section 6.2,
Function Data Types, causesitto beunderstood asani nt return.

From there, the mai n() function can execute code from other functions and receive return values.
Remember to make your called functions available to mai n() by prototyping them, if necessary.

Page 82

7.3.2—
I nitialization Functions

Embedded C also permits specialized initialization routines. _ STARTUP() isone such function

understood by the Byte Craft compiler. If it is present, its statements are executed before control is
passed to mai n() .

Y ou can better organize initialization tasks with a separate initialization function. Device-dependent
hardware initialization, which must be rewritten for each target device, can liveinthe _ STARTUP
routine or equivalent.

7.3.3—
Control Statements

Embedded devel opers often use program control statements that are avoided by other programmers.
For example, the got o statement is used in C in the same contexts as an explicit jump or
unconditional branch instruction would be used in assembly.

7.4—
Decision Structures

C provides three structures the programmer can use to support different types of decisions. Decision
structures test an expression to determine which statement or statement block to execute.

I f.. el seisavalable, asexpected. The C conditional operator is aso available.

i f(expression) statenment else statenent
result = expr ? result if true : result_if false

Theswi t ch. . case structure chooses between several different possible paths of code to execute.
The swi t ch. . case structureis compiled to astructure resembling astringof i . . el ses.

Listing 7.1 swi t ch and case

00EB int choice;

swi tch(choice) {
case 1: return 5;
0304 A1 01 CWP #$01
0306 26 03 BNE $030B
0308 A6 05 LDA #$05
030A 81 RTS

Page 83

030B Al 02 CwvP #3502 case 2: return 11;
030D 26 03 BNE $0312

030F A6 0B LDA #3$0B

0311 81 RTS

0312 A1 03 CwvP #3503 case 3: return 37
0314 26 03 BNE $0319

0316 A6 25 LDA #$25

0318 81 RTS

default: return 9;
0319 A6 09 LDA #%$09
031B 81 RTS

The Byte Craft compiler can extend the case label to deal with common programming problems.
These two examples would require agreat deal more generated code if the compiler accepted only

single integer values for each case label.
Listing 7.2 Byte Craft Case extensions
case '0'..'9": /* accepts a range of values from'0' to '9" */

case 0x02, 0x04: /* accepts alternative values */

The benefit of such structuresisin avoiding recomparing the sw t ch argument for each integer

value within arange of cases. The compiler can generate simple comparisons to deal with ranges or
lists of alternate values.

Listing 7.3 A case comprising arange of values

case '0'..'9":
{
0473 A1 30 CWP #$30
0475 25 24 BCS $049B /* branch if less */
0477 Al 3A CWVP #$3A
0479 24 20 BCC $049B /* branch if greater */

047B AE DA LDX #$DA
047D CD 05 4B JSR $054B scanf (&t enperature, ch);

Page 84

7.5—
L ooping Structures

C control structures allow you to make a decision on the path of code execution. C also provides
looping structures for control over program flow. Loop control structures allow you to repeat a set of
statements.

whi | e plays an interesting role in embedded C. Y ou will often use whi | e to intentionally create
infinite loops. An embedded controller typically executes a single program "infinitely", so this
structure is appropriate.

The alternative, using agot o, requires you to use alabel; the compiler will implement thewhi | e
(1) decisionwith an unconditional jump or branch instruction anyway.

Listing 7.4 A skeleton infinite loop

voi d nmai n(voi d)

{
whi | e(1)
{

0300 B6 01 LDA $01 PORTB = PORTB << 1;
0302 48 LSLA
0303 B7 01 STA $01
0305 20 F9 BRA $0300 }

}
7.5.4—

Control Expression

The key component of any loop structure is the control expression. At some point in each iteration,
the control expression istested. If the control expression evaluates to 0, program execution passes to
the first statement following the loop structure. If the expression evaluates to 1, execution continues
within the loop structure statement block.

7.55—
br eak and cont i nue

C provides two ways to escape alooping structure: the br eak and cont i nue statements. When
either of these statements is encountered inside a loop, any remaining statements inside the loop are
ignored.

Page 85

Useabr eak statement to completely break out of a structure. When a br eak is encountered inside
alooping structure, the loop terminates immediately and execution passes to the statement following
the loop.

Y ou may wish to jump to the next iteration of aloop without breaking out of the loop entirely. A
cont i nue statement will allow you to do this. When a cont i nue statement is encountered inside
alooping structure, execution passes immediately to the end of the loop statement block.

If conti nueisusedwithawhi | e or f or loop, execution jumps from the end of the statement
block to the control expression at the top of the loop. If used with a do loop, execution passes from
the end of the statement block to the control expression at the bottom of the loop. In all cases, the
effect isthe same — acont i nue statement does not circumvent the loop control expression, but it
does skip any statements remaining in the loop iteration.

The most common place for a br eak statementisinsideaswi t ch. . case structure. Since
swi t ch. . case isnot alooping structure, acont i nue statement within it refersto the enclosing
loop structure (if any).

Listing 7.5 br eak and cont i nue in loop and switch statements

00EB char ch;
whil e(1)
{
030D AD F1 BSR $0300 ch = getch();
030F B7 EB STA $EB
swi tch(ch)
{
case '0'..'9":
{
0311 A1 30 CWP #3$30 put ch(ch);
0313 25 08 BCS $031D
0315 A1 3A CwP #$3A
0317 24 04 BCC $031D
0319 AD E8 BSR $0303
031B 20 10 BRA $032D break; /* after switch */
}
case 'A'.. C:

{

Page 86

031D A1 41 CWP #$41 continue; /* A-Cignored */
031F 25 04 BCS $0325
0321 Al 44 cwP #$44

0323 25 E8 BCS $030D /* top, before getch() */
}
case 'D
{
0325 Al 44 CwP #$44 LCD send_control (LCDCLR)

0327 26 04 BNE $032D
0329 A6 05 LDA #$05
032B AD DB BSR $0308

[* falls through! */ br eak;
}
}
/[* other statements in the while(1l) |oop appear here */
03FF 20 DE BRA $030D }
7.6—

Operators and Expressions

Using C for embedded programming relieves the tedium of coding large arithmetic operations by
hand. Where a 32-bit integer divide operation may be encompassed by one instruction on a general -
purpose microprocessor, an 8-bit controller will need a series of loads and stores, in addition to the
simplified math operations, to perform the equivalent work.

With embedded systems, there is an increased emphasis on bitwise operations. Both for peripheral
operation and for memory efficiency, the compiler will try wherever possible to use bit-
manipulation instructions to implement bitwise operators.

7.6.1—
Standard Math Operators

Multiply instructions are sometimes available in hardware. If the instruction is an enhancement to an
architecture, the compiler may need configuration to generate code that usesit. The Byte Craft
compiler can take advantage of an optional multiply instruction with an appropriate #pr agma has

instruction in the device header. See Section 5.2.1 #pr agnma has for more information.

Page 87

If no instruction is available, the compiler will provide multiply, as well as divide, and modulus as
functions. The Byte Craft compilers do this automatically if the operations are used.

7.6.2—
Bit Logical Operators

C supports one unary and three binary bitwise logical operators. Each of these operators act only
upon values stored inthechar ,short int ,int,andl ong i nt datatypes.

Note

Binary logical operators perform data promotion on operands to ensure both are of
equivalent size. If you specify one shor t operand and one | ong operand, the
compiler will widenthe shor t to occupy the | ong 16 bits. The expression will
return its value as a 16-bit integer.

The bitwise AND operator, &, produces a bit-level logical AND for each pair of bitsin its operands.
For example, if both operands have bit O set, then the result of the bitwise AND expression has bit O

Set.
Listing 7.6 Bitwise AND operation using &

int x=5, y=7, z; /* 5 is binary 101 and 7 is binary 111 */
z =x &y, [* z gets the value 5 (binary 101) */

The AND operation is easier to imagine if your compiler has an extension that permits data valuesin
binary.

Listing 7.7 Using the AND bitwise operator with binary values

i nt x=0b00000101,
y=0b00000111,
Z,
zZ =X &Yy;/* z gets the value 00000101, or 5 */

Page 88

The bitwise CR operator, |, performs abit-level logical OR for each pair of bitsin its operands. If
either operand has a bit in a specific position set, then the result of the bitwise CR expression has
that bit set.

Listing 7.8 Using the bitwise CR operator |

i nt x=0b00000101,
y=0b00000111,
Z,
z =x | y;/* z gets the value 00000111, or 7 */

The bitwise XOR operator, ~, produces a bit-level logical exclusive OR for each pair of bitsin the
operand. XOR sets a bit when one of the operands has a bit set in that position, but not if both
operands have the bit set. This produces aresult with bits set that the operands do not share.

Listing 7.9 The bitwise XOR operator

i nt x=0b00000101,
y=0b00000111,
z
z =x Ny;l* z gets the val ue 00000010, or 2 */

The bitwise NOT operator, ~, produces the complement of a binary value. Each bit that was set in
the operand is cleared and each cleared bit is set.

Listing 7.10 The bitwise NOT oper ator

i nt x=0b00000101,
Z,
z = ~X;/* z gets the value 11111010, or 250 */

If you apply bitwise operators to individual bits, the compiler will use bit manipulation instructions,
if they are available. They avoid unintended side effects from reads or writes to other bits.

Page 89

Listing 7.11 Bitwise operationson individual bits

void alternate(void)

{
0300 OD 00 03 BRCLR 6, $00, $0306 PORTB. 2 = ~PCRTA. 6;
0303 15 01 BCLR 2, $01
0305 81 RTS
0306 14 01 BSET 2, $01
0308 81 RTS }
7.6.3—

Bit Shift Operators
Both operands of a bit shift operator must be integer values.

The right shift operator shifts the data right by the specified number of positions. Bits shifted out the
right side disappear. With unsigned integer values, Os are shifted in at the high end, as necessary.
For signed types, the values shifted in is implementation-dependant. The binary number is shifted
right by nunber bits.

X >> nunber;

Right shifting a binary number by n placesis the same as an integer division by 2.

The left shift operator shifts the data right by the specified number of positions. Bits shifted out the
|eft side disappear and new bits coming in are 0s. The binary number is shifted left by nunber bits.

X << nunber;

Left shifting a binary number is equivalent to multiplying it by 2".
Listing 7.12 Shifting bitsleft and right

porta = 0b10000000;
while (porta.7 !'= 1){
porta >> 1;

}

while (porta.0 !'= 1){

}

porta << 1;

Page 90

Shifting by a variable number of bits can create a substantial loop structure in code. This presents an
extracost in ROM space that you must keep in mind.

Listing 7.13 Shifting by a variable number

O0OEB

/* set LED bit based on integer

0303
0305
0307

0309
030B
030D
030F
0310
0311
0313

AD
A0
B7

A6
BE
27
48
5A
26
B7

FB
30
EB

01
EB
04

FC
01

BSR
SUB
STA

LDA
LDX
BEQ
LSLA
DECX
BNE
STA

$0300
#3$30
$EB

#$01
$EB
$0313

$030F
$01

int setting;

I evel from keypad */

setting = getch() - '0';

PORTB = 1 << setting;

Page 91

Chapter 8—
Libraries

Libraries contain functions that serve acommon purpose and a wide range of development projects.
Embedded and desktop systems share some library needs (e.g., enhanced mathematical functionality
or data type conversion). Libraries are the typical generic structure for cataloguing and transporting
this specialized knowledge.

Embedded systems can rely on libraries even more: alibrary can providedevicedrivers for a
common LCD controller or atimer peripheral. Programmers can be overwhelmed by taking
responsibility for everything within an embedded system. A programmer can relax and focus on the
core of the project if they have libraries to help them with direct manipulation of hardware
peripheral devices.

Since Cisintended to be highly portable, libraries are a way to organize platform dependency. Main
line C code written for one specific 8-bit microcontroller can therefore be compiled for and run on a
different microcontroller with very minor changes to the code. Without the portability offered by
libraries, your investment in a particular architecture grows, and it becomes less attractive to seek

out a less-expensive processor option.

Page 92

The Byte Craft Code Development System products ship with arange of useful portable libraries
(and traditional API-style documentation). They provide routines for the most common features of
8-bit embedded systems.

* Standard I/O

With appropriate configuration, you can deal with a keypad and LCD display as standard input and
output.

» SPI (Serial Peripheral Interface)

* MICROWIRE bus

* SCI (Serial Communications Interface)

* UART (Universal Asynchronous Receiver Transmitter)

A UART isaprime candidate for replacement by "bit banging" software, which could be
encapsulated within alibrary.

* Analog to Digital conversion and Digital to Analog Conversion
* |/O ports

While manipulating 1/0 portsis usually a matter of afew assignment statements, there is some
benefit in abstracting the port from the particular implementation.

« LCD displays

These routines can support the standard 1/0 model, and provide convenience routines for clearing
the display and moving the cursor.

* PWM (Pulse Width Modulation)

e Timers

8.1—
Creating Libraries

This section discusses how to create alibrary from scratch.

For the thermostat, we need to display the current time and preset cycle start times, asa string. A
time string is seven bytes long.

"12:00a" /* with a trailing null */
"06:35p" /* leading O to sinplify things */
"23:00h" /* for regions that use 24 hour tinme */

In the thermostat, we are really tracking four times: the current time and three cycle start times.
There are several alternative waysto store these values, each with tradeoffs. Directly manipulating
the string representations is unworkable: it requires consuming a full quarter of working RAM, and
there would be lots of code to perform very odd carries and compares.

Page 93

Unsigned long variables as minute counters (0—1439) proved expensive in terms of ROM, but used
only 8 bytes of RAM (and scratchpad). Structures of time counter components (i.e., hours, minutes,
and am/pm) served better, but an array of them was not possible.

Two arrays of integers, one for hours and one for minutes, seemed best. Array element O is a good
choice for the current time, and 1-3 for the daily cycle start times.

For text representation of the time, we need to trand ate from atime counter value (two integers) into
atimestamp string. Different projects will use this type of functionality, so we will packageit asa
library. We concluded that both 24-hour and 12-hour systems need to be supported, and the switch
between 12-hour and 24-hour should be a run-time configuration.

The library will expose two functions

void M nutesToTime(int hours, int mnutes);
void Ti meToM nutes(int near *hours, int near *minutes);

and two variables

bit use_netric; /* determ nes format for conversion */
char buffer[7]; /* buffer to perform conversion */

To create this library, perform the following steps.

1. Create aC sourcefilenamed t i mest np. c.
2. Writein the following lines.
Listing 8.1 Sourcefile skeleton

#i fndef __TI MESTMP_C
#define __TIMESTMP_C

#pragma |ibrary;
#i ncl ude <tinestnp. h>
/* Decl ared above:

bit use nmetric = 0:

char buffer[7];
*/

Page 94

void M nutesToTine(int hours, int mnutes)

{
}
void Ti mneToM nutes(int near *hours, int near *minutes)

{
}

#pragma endli brary;

#endif /* __TIMESTMP_C */

3. Create a C header filenamed t i nest np. h.

4. Write in the necessary declarations and prototypes.

Listing 8.2 Header file skeleton

#i fndef __TI MESTMP_H
#define __ TI MESTMP_H

bit use_netric;
char buffer[7];

void M nutesToTime(int hours, int mnutes);
void TimeToM nutes(int near *hours, int near *minutes);

#endif /* __ TIMESTMP_H */

5. Compile the Cfile.

c6805. exe tinestnp.c +O O=tinmestnp.lib

Thisisthe skeleton of alibrary. When the library is completed, placethe. | i b file with the other
libraries, and the. h file with the other include files.

Page 95

8.2—
WritingtheLibrary

The library software is much like other embedded programming. We have, in previous sections,
outlined what techniques are safe, what techniques are expensive, and what techniques are
impossible in the embedded environment.

M nut esToTi nme() acceptsan hour integer and a minute integer. It inspectsthe use_netri c
flag, and rendersthetimein buf fer[].

Listing 8.3 Converting hours and minutesto a timestamg

void M nutesToTine(int hours, int mnutes)

{

char i;

/* Set up string */
buffer[5] = '"h'; buffer[6] = 0; buffer[2] ="':";

[* Deal with 12-hour tine */
if(luse_netric) {

buffer[5] = 'a';

i f(hours > 11)

hours = hours - 12;
buffer[5] = "'p';

i f(hours == 0)
{

hours = 12;
}
}

[* Fill in hours */

buffer[0] = "'0";

for(i = '2'; hours >= 10; hours -= 10, i--);
buffer[0] =1i;
buffer[1] = hours + '0';

Page 96

[* Fill in mnutes */

buffer[3] ="'0";

for(i ='5"; mnutes >= 10; minutes -= 10, i--);
buf fer[3] i;

buf fer[4] mnutes + '0';

Alternatively, you could unroll the bottomf or loops to avoid the loop management code.

Ti meToM nut es() , which isn't used in the thermostat project, is the reverse function. Weinclude
it becauseit is simple and useful. In the thermostat project, time adjustments are made with hour and
minute increment buttons, much like an alarm clock. If ROM permitted, the configuration could be
rewritten to allow the user to enter the time using digits: the extra code for checking the digits
entered against valid times was substantial.

Ti meToM nut es() accepts pointers to the hours and minutes integers that should receive the
trandated values. Note they are near pointers, which should prove to be 8-bit values.

Listing 8.4 Converting atimestamp buffer to hoursand minutes

void TimeToM nutes(int near *hours, int near *m nutes)

{
if(buffer[0] <= "'0") buffer[0] ="'0
if(buffer[0] >= '2") buffer[0] ="'2";
*hours = (buffer[0] - '0') * 10;
*hours += (buffer[1] - '0");
if(buffer[3] <= "'0") buffer[0] ="'0
if(buffer[3] >="'5") buffer[0] ="'5";
*mnutes = ((buffer[3] - "0") * 10);
*mnutes += ((buffer[4] - '0"));
if(buffer[5] = '"p') *hours += 12;

Page 97

8.3—
Librariesand Linking

With the Byte Craft compilers, there are two scenarios for library use: traditional linking with
BClink and Absolute Code Mode.

As previously presented, thet i mest np library source files are written for Absolute Code Mode.
To use them, write your main module as follows.

Listing 8.5 Sample source using Absolute Code M ode

#i ncl ude <705j 1la.h> /* insert your device here */
#i ncl ude <tinestnp. h>

void main(void) {
[* ... %
}

#i ncl ude <tinmestnp.c>

Tomaket i mest np suitable for linking, you need to add some conditional definesto the library
header. Ideally, the header file should allow both Absolute Code Mode and traditional linking. Use
the MAKEOBJ ECT symbol to choose between the two as shown in Listing 8.6.

Changet i mest np. h to the following.

Listing 8.6 Header filefor both linking and Absolute Code M ode

#i fndef __TI MESTMP_H
#define _ TI MESTMP_H

i fdef MAKEOBJECT

#i ncl ude <dev_def.h> /* replace dev with your CDS nane */
extern bit use netric;

extern char buffer[7];

extern void MnutesToTinme(int hours, int mnutes);
extern void TineToM nutes(int near *hours, int near *mnutes);

#el se /* MAKEOBJECT */

Page 98

bit use_netric;
char buffer[7];

void M nutesToTime(int hours, int mnutes);
void Ti meToM nutes(int near *hours, int near *minutes);

#endi f /* MAKEOBJECT */

#endif /* __ TIMESTMP_H */

No changes are needed for t i mest np. c if it includes the header file itsealf.
Y ou can define MAKEOBJ ECT on the command line when you create the library object file. Invoke

cds. exe -dMAKEOBJECT timestnp.c +O O=tinestnp.lib

where cds isyour compiler executable name. Copy the. | i b fileto the libraries directory and
the . h fileto the headers directory.

Defining the MAKEOBJ ECT symbol will cause the functions and variables to be ext er n, and will
include a definitions file. The definitions file is a device header file with definitions for all the
important device symbols (e.g., ports, timer registers, and so on). The most common values are
present in it, but these are not important: the compiler uses the definitions file to compile the library
to object without depending upon a particular device header file. During linking, the actual device
values will be matched with the references in the object file.

Some Byte Craft compilers define the symbol MAKEOBJ ECT automatically when compiling to an
object file (+o is present on the command line).

One other customization is helpful: buf f er [] isa7-byte stringin RAM that you may wish to
declare in other ways (for instance, as SPECI AL memory). Y ou can conditionalize its declaration
with an #i f ndef if you are using Absolute Code Mode.

Page 99

Chapter 9—
Optimizing and Testing Embedded C Programs

Asin any other programming endeavour, getting the code to compile ensures only linguistic
correctness. Without understanding the capabilities of the compiler, we have no real certainty about
how to read the generated code.

Without understanding the compiler's limitations, we have no way of adding in human intuition.
Compilers are best at relieving drudgery: they are no match for inspired programming.

Testing embedded software differs significantly from testing desktop software. One new central
concern arises. embedded software often plays a much more visceral role. Where a protection fault
on a desktop machine may cost the user hours of work, a software fault in an embedded system may
threaten:

* the user's safety or physical comfort,
« alifeline of communication, or

« the physical integrity of the hosting equipment.

Page 100

The issue of life-supporting devices is outside the scope of this book. Devices meant for human
implant, or for monitoring or regulating health-related factors, are life-supporting devices. It is
debatable whether compiled code should be used in these devices. The motivation for compiled code
isrelief from having to write assembly code from scratch. The risks of life-supporting activities
cannot permit such luxury.

Decisions about development testing software are first made when evaluating processor options. For
more information about tools, see Section 3.7, Development Tools for a Microcontroller.

9.1—
Optimization

Anyone interested in the art and science of compilers soon learns that optimization is the perpetual
goal of the compiler writer. Any interesting fact about the code that the compiler can recognize
becomes a candidate for optimization.

While some might feel that laborious hand-coding of assembly is the only way to really massage the
code, acompiler that is detached and objective can find otherwise hidden patterns suitable for
reduction.

The need for optimization is never greater than in embedded environments. For the 8-bit
microcontroller, successful optimization primarily reduces the amount of ROM and RAM used. This
isthe acid test of code generation. Increasing execution speed comes a distant second.

Thereisahost of traditional strategies for optimizing generated code. Y ou can trust that the
compiler watches for these factors.

Algebraically Equivalent Variables If areferenceto avariable causesit to be loaded into a
register, and a reference to another variable that is known to have the same value immediately
follows, the compiler can omit the extra load operation.

Register Data Flow The compiler can recognize if avariable will be loaded into aregister twice,
and remove the redundancy.

Code That IsRedundant or Dead Code governed by expressions that will never prove true can be
ignored at compile time. Code following a br eak or cont i nue statement that will never be
executed, due to constants within the control structure, can be discarded.

Page 101

Adjacent Instruction Reductions A pattern of simple instructions can be reduced into amore
complex operation, such as an instruction with an auto-increment side-effect.

Constant Folding This evaluates constant values in the source and combines them if they are the
same.

Lofting Instructions within aloop that do not directly pertain to it can be lofted to an enclosing
syntax level.

Arithmetic Operations Involving Low Value Constants Operands of zero, one, and two can be
changed into instructions like increment or decrement to reduce code size and improve execution
time. No code is generated for adding O, subtracting 0, or multiplying or dividing by 1.

Edge Effects Code that causes values to roll over within their variables can be a candidate for
special treatment.

Long Operations In controllers that have only 8-bit registers, long operations cost far more than
twice the instructions (some controllers can pair registersinto a 16-bit variable and use it for longs).
Any knowledge about the range of possible values can determine whether to ignore either the top or
bottom bytes of a 16-bit variable.

Array Calculations Fixed referencesto an array element are dereferenced at compile time. This
avoids overwriting an index register.

9.1.1—
I nstruction Set-Dependent Optimizations

Some optimizations are possible because of features of the instruction set.
» Adding 1 becomes an increment, and subtracting 1 becomes a decrement.

* ++ increments a memory location, and - - decrements a memory location. If the variable islong,
the carry must be preserved with subsequent instructions.

* Bit operations can be conducted using bit set and bit clear instructions instead of using a multibyte
sequence that does aload, bitwise AND or CR, and store.

Page 102

9.2—
Hand Optimization

If acompiler is charged with taking a high-level program and generating optimized machine
language, why should hand optimization be a concern? For all its capability, a compiler cannot see
"the big picture”. Sometimes it follows your high-level directions too well.

These are some strategies for conserving ROM and RAM.

Examining Register Use In small routines, aregister that starts out holding a function parameter
may be otherwise unused, especially if the routine manipulates memory directly (i.e., bit

manipul ation with specialized instructions). Our normal reflex isto declare function parameters as
I nt , which will most likely cause local RAM to be reserved for the value. Declaring the function

parameter as aregister type (r egi st er a or equivalent on Byte Craft compilers) saves the byte.

Rolling and Unrolling f or Loops It may seem unintuitive to unroll an easily-understood short

loop, but the savings in ROM space may make it profitable. The opportunity to look for is expensive
code generated for the condition and action parts of the loop.

Using Portsas Variables Do not underestimate the desperation with which embedded
programmers pursue savingsin RAM usage. If an output port can be read safely to determine the
current state of the output pins, and the port needs a looping operation, there is no reason not to use
the port itself as an index variable. Consider the following.

Listing9.1 Using aport asavariable
#pragma portrw PORTA @ 0x00;
voi d wal k_t hrough_A(voi d)

for (PORTA = 0x01; PORTA != 0; ASL(PORTA))
del ay_100us(10);

If, in this example, a separate char had been used to index the loop and assign to the port, thereis
no reason to think that the compiler could omit the otherwise unused variable. The compiler
considers ports volatile, but we

Page 103

can determine from the design whether the port in this case will act in avolatile manner.

9.2.1—
Manual Variable Tweaking

In atraditional C environment, compilers can allocate variables without too much hand-wringing.
For instance, it is common to allocate a new location for each counter variable name within a scope.

Listing 9.2 Local counter variables

voi d up_and_down(voi d)

{
int up, down; /* probably separate |ocations */
for(up = 0; up < 128; up++)
porta = up;
[* ... %]
for(down = 127; down > 0; down--)
porta = down;
}

To minimize RAM usage, embedded systems devel opers will often create global loop counter
variables. Any function can then use this allocated block of data memory when a counter or
temporary variable is needed. The programmer oversees conflicts between enclosing loops.

An dternative solution leaves the variables as strictly local: some C compilers support an extension
which fixes the location of a symbol in memory. Y ou can use this feature to manage how variables
are placed in data memory space. Here is suitable notation for the Byte Craft compiler.

Listing 9.3 Local counter variables overlay on another
voi d up_and_down(voi d)
{

int up;

int dowmn @up; /* overlay */

for(up = 0; up < 128; up++)

Page 104

porta = up;

[*...%]

for(down = 127; down > 0; down--)
porta = down;

Because the declaration is so specific, the compiler will obey it asis. Thisis auseful technique for
reusing allocated variable space without resorting to macros or other techniques. If memory opens
up, only the unobtrusive @ | ocat i on extension needs to be removed.

9.3—
Debugging Embedded C

After learning how to interpret the results of the compiler's code generation, you can begin
debugaing.

There are some pitfalls in debugging C on an embedded system.

9.3.1—
Register Type Modifier

Those compilers that implement ther egi st er keyword may not actually grant exclusive access to
aregister. 8-bit MCUs do not have many registers to spare. Instead, the compiler may allocate from
the fastest available memory.

Other keywords, such as Byte Craft's r egi st er a and equivalents will associate an identifier with
the appropriate register, but the resulting variable should be considered volatile. Y ou have
immediate access to all the assembly code used in your system; with it, you can determine by
Inspection whether the compiled code is meddling with register contents.

9.3.2—
Local Memory

If your compiler supports variables with local scope, you should determine the manner in which the
compiler alocates memory for variablesin function calls.

There are three strategies for local memory allocation:

Within a Stack Frame This requires explicit stack-relative addressing, which is very much a
luxury. It isn't always a preferred code option, and the compiler may not use it even if available.

Page 105

From the Global Heap Variables are ssmply allocated from RAM as needed. Globals and locals
intermingle.

"Dedicated" Local Memory Thisisused and reused from within multiple function calls.

9.3.3—
Pointers

Because Harvard architecture MCUs have two address spaces that are chosen by context, pointers
must target either program (ROM) space or data (RAM) space. The resulting code sequences can be
confusing.

In some architectures, far pointer variables can only be accomplished by self-modifying code. For
more information, see Section 9.6, Debugging by Inspection.

9.4—
Mixed C and Assembly

Embedded systems code lives in a much more spartan environment than traditional application
software. Resorting directly to assembly code is undesirable, unless you have to observe fixed
timing, or you want to use pre-existing assembly code in your current project.

9.4.1—
Calling Conventions

Embedded C cross-compilers generate |ess-standardized code for calling functions. When
debugging your program, you should know the answers to the following questions.

» Does your compiler set up page bits, or perform bank switching, prior to calling a subroutine?
 Does the compiler or processor handle saving and restoring state during an interrupt?

» How are function arguments passed? How are results returned? It's amost guaranteed that an 8-bit
result will be left the accumulator.

9.4.2—
Accessto C Variables from Assembly

Does your assembly code properly address C identifiers? While the compiler may allow you to use a
C identifier as an argument in an assembly mnemonic, it may not check the size of the value against
the prescribed size of

Page 106

theinstruction. As aresult, the program may load one byte of a multiple byte value, without regard
for its significance.

9.5—
Exercising Hardware

If you have access to a prototype of the target hardware, a small program to test the hardware will
confirm your beliefs about its configuration and performance.

If your main project does not behave as predicted in an emulator or development system, the same
technique will determine whether a problem liesin hardware or software.

9.6—
Debugging by Inspection

The compiler can help you inspect code by generating different reports. The Byte Craft compiler
assembles all reportsin the listing file that centres around the generated code and the source code
from which it came. These reports can assist in the chores of hand optimization, as described in
Section 9.2, Hand Optimization.

The compiler should generate amap of all symbolsthat it recognizes. The symbol table generated
by the Byte Craft compiler follows the format shown in Listing 9.4.

Listing 9.4 Symbol table exerpt

SYMBOL TABLE

LABEL VALUE LABEL VAL UE
cC 0000 | COPC 0000
COPR 07F0 | DDRA 0004
DDRB 0005 | | RQE 0007
| RQF 0003 | | RQR 0001
| SCR 000A | LOCAL_START 00EB

The symbols listed are declared variables and functions, and preprocessor symbols. Identifiers
declared by other means, such as #pr agnma statements, also appear. Thisis an inventory of all
identifiers understood by the compiler.

Page 107

Desktop programmers don't usually deal with a pointer's actual value. Typically, they assign the
address of an object to a pointer variable, and manipulate the pointer (increment or decrement). The
actual number is best left unknown, because it will change.

Since code and variables will not be relocated on an 8-bit embedded system, and since RAM is
precious, it is more useful to examine RAM allocation in the embedded environment.

Listing 9.5 RAM usage map excer pt

RAM USAGE MAP

0050 use_netric si gned char

0051 buffer unsi gned char|[6]

0000 CC register cc

0000 PORTA portrw

0001 PORTB portrw

0057 tenmp unsi gned | ong 0100 0114
0051 buffer unsi gned char|[6]

005D hours unsi gned char 011A 01DE
005E mi nut es unsi gned char 011A 01DE

This report presents all the symbols that have memory allocated for their values, and the location of
each. Thisisthe location returned by the & (address-of) operator. Local variables are listed with the
program range where the variable isin scope.

The compiler should give you an overall ROM usage count. Thisisthe acid test for programmers
and compilers: can a different code passage, a different theoretical approach, or a different method
of optimization save afew extra bytes of ROM?

The program listing itself can be customized. As a convenience, the compiler can list execution
times for each opcode. Y ou can count them to gauge how long an interrupt service routine runs, for
example. Thisinformation can in turn help you calibrate timing-dependent functions.

In the Byte Craft compilers, one helpful listing file option outlines the nesting level of each block of
C statements, as the compiler understands

Page 108
them. A similar option reveals the hierarchy of function callsin a separate report.

#pragnma option NESTI NGLEVEL;
#pragna opti on CALLNAP;

The most useful aspect of CALLMAP isto determine how much of the stack is used. The compiler
takes a static setting for the depth of the stack. Using CALLMAP and your knowledge of the system,
you can tailor stack size to save unused space.

The compiler can also present the values that it knows are held in the processor registers. If you are
working without the benefit of an emulator, this provides some of the information an emulator
would track.

9.7—
Dummy L oads

One way to test the software of amicrocontroller isto cause the controller to operate within a
dummy load environment. Thisis a hardware technique more than a software chore, but the gist of
it isto replicate with simple buttons, relays, and lights each external component of the target system.
Using your knowledge of how the target system should behave, you can recreate the signals
expected by the controller and watch for the controller to react.

9.8—
Working with Emulatorsand Simulators

After aprogram is compiled, it must be tested using a simulator or an emulator.

9.8.1—
Simulators

A simulator is a host-based or desktop software application that evaluates a program designed for an
embedded target machine. The simulator recreates the running conditions of the target machine and
interprets the executable.

Using asimulator, you can step through your code while the program is running. The simulator will
report on register and status values, peripheral register contents, and RAM usage.

Since simulators are not hardware-based, they lack the particular character of a physical electrical
device. A simulator can be written according to the microprocessor documentation, and therefore
will omit any hardware quirks introduced in fabrication.

Page 109

9.8.2—
Emulators

An emulator is ahardware device that behaves electrically and logically like atarget processor. It
may include a similar processor, but with extra programming to support development host control
and communication. The emulator has a link to the development system, to provide a window into
the device under test. Since microcontrollers usually contain the ROM and RAM the system needs,
this too is under external control.

Emulators work best when the program being inspected is unaltered from its intended production
version, though thisis not always possible for reasons explained in the foll owing text.

Common emulator features include the
following.

» Capability to set breakpoints

Good emulators set breakpoints based on an "external” table of addresses. When emulated execution
arrives at the location, the breakpoint stops execution and waits for user intervention.

The alternative isto rewrite the program: an emulator might save the value at the breakpoint
location and write in a software interrupt instruction. The software interrupt will in turn invoke
management code that returns control to the emulator host.

* Support to examine and change registers and memory locations

Once in abreakpoint, the emulator will report on the internal state of the target processor,
nondestructively.

* Trace buffersto analyse bus traffic

While not directly software-related, an expensive emulator will give detailed information on the
electrical and timing signals presented to the target processor.

One particular challenge in debugging and testing via emulator is a frequently-invoked interrupt. An
interrupt that happens too often or is too short-lived will lap the emulator easily. Only high-end
emulators with extensive trace buffers can properly record the execution of these events.

Another challenge grows from the advances in semiconductor packaging. In-circuit emulator s need
to attach to atarget system in place of a microcontroller. MCU packaging has shrunk from DIP-
sized (often socketed) to tiny surface-mount parts. The required stable physical connection is
increasingly difficult to engineer.

The issue with external emulators is cost; the specialized hardware is low-volume, high-complexity,
and therefore expensive. Emulators deal with the external signals of the MCU: they may sacrifice
speed to adopt asimple

Page 110

manipulation technique, or may provide real -time signal emulation and monitoring at a tremendous
increase in complexity and cost.

There are two ways to resolve the cost issue.

1. Less complex than an emulator that replaces the microcontroller,a ROM emulator replacesan
external program memory device in your target system. It responds to instruction fetches by
returning the opcodes of your program, and can insert software interrupts at any point. Furthermore,
it can also provide the monitor code needed by the target microprocessor to service the breakpoints.

2. Many new MCU designs are incorporating on-chip emulation facilitiesinto each production
device. The aim here isto build a complete prototype with a normal sample or production processor
permanently in place. Rather than use a specialized emulation device, developers can use built-in
emulation facilities to interrogate the processor.

The link to the controlling host is provided by a 2- to 4-pin seria interface. On the prototype, the
emulation signals are routed to a header strip, and a small cable and jack can provide the link to the
host, perhaps through a serial port. The final design will probably not feature the header, unlessit is
needed to provide access to field engineers; the traces can be left in with little worry.

9.9—
The Packaging of Embedded Softwar e

An embedded program is usually compiled into a proprietary hexadecimal or binary representation.
Thisoutput is suitable for the following.

* Download to a programming device

For testing and short runs, individual parts with programmable ROM may have the binary image
created by the compiler burnt into them.

» Submitting for masked part production

For long runs, afabrication facility can write the binary information into the masks used for silicon
production. Each part is created with ROM cells set according to the binary image.

Page 111

Chapter 10—
Sample Project

This chapter covers technical topics about the thermostat project not previously discussed.

Sour ce code for the thermostat is available on the CD. If you wish to build the thermostat,
detailed information is available on the CD. This chapter comments on several technical topicsin
detail, but the discussion will be helpful in other projects as well.

Updates and revised information is available via the website at
http://www.bytecraft.com/embedded C/

10.1—
Har dwar e Exer cise Programs

These are the programs that were used to test the thermostat hardware. We wrote them to get to
know the challenges the board would impose. They are good examples to enter and modify, to
experiment with C and the JICS emulator.

Page 112

10.1.1—
"Hello World!"

Since we don't have any indicator LEDs on the thermostat board, we toggle one of the
heating/cooling unit relays. The LCD library was not yet configured.

Listing 10.1 "HeloWorld!" through areay

#pragma option s5; /* map file for jics */
#pragma option f O; /* no page breaks in listing file */

#i ncl ude <705j la. h>
#i ncl ude <port. h>

unsi gned | ong counter;

voi d pause(void)
{

for(counter = 0; counter < 255; counter++)

NOP() ;
}
}

voi d nmai n(voi d)

{
PORTB. 0 = 0;
DDR_MASKED(PORTB,
DDR_WAI T() ;

C, 00000000) ;

whi | e(1)
{

pause() ;
PORTB.0 = 1;

Page 113

pause() ;
PORTB. 0 = 0;

10.1.2—
Keypad Test

Next we configure the keypad. Depending upon your hardware setup, the keypad library may
require customization. In our example, it required some modification.

Listing 10.2 Keypad test program

#pragnma option s5; /* map file for jics */
#pragma option f 0; /* no page breaks in listing file */

#i ncl ude <705j la. h>
#i ncl ude <del ay. h>
#i ncl ude <port. h>

#def i ne KEYPAD PORT PORTA
#defi ne KEYPAD DDR REG STER DDRA
#i ncl ude <keypad. h>

voi d mai n(voi d)

{

int8 store;

/* must keep LCD E | ow */
PORTB = O0;

DDR(PORTB, 00000000) ;
DDR_WAI T() ;

keypad_init();

whi | e(1)
{

}

swi t ch(keypad_getch())
case '0' :
case '6'
case '#

}

#i ncl ude <keypad.c>
#i ncl ude <port.c>
#i ncl ude <del ay. c>

10.1.3—

LCD Test

Thisisasimple program for testing the LCD display.

PORTB. 0
PORTB. 0
PORTB. 0

=

1; break;
0; break;
~PORTB. 0;

Page 114

Note the configuration needed by the LCD library. The symbols and possible values are documented

in the library reference materials and in thefilel cd. h.

Listing 10.3 LCD test program

#pragma option s5;
#pragma option f O;

#i ncl ude <705j la. h>
#i ncl ude <del ay. h>
ude <port. h>

#i ncl

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#i ncl

ne
ne
ne
ne
ne
ne
ne
ne

LCD DL 0
LCD_UPPER4 1
LCD_DATA PORTA
LCD_RS PORTB. 2
LCD_RW PORTB. 3
LCD_E PORTB. 4
LCD_CD DDRB

LCD CDM __ CCC _
ude <l cd. h>

/* map file for jics */
/* no page breaks in listing file */

Page 115
voi d nmai n(voi d)
lcd_init();
whi | e(1)

{
puts("Hello World");

del ay_100us(10);
| cd_send_control (LCDCLR)
del ay_100us(10);

}

#i ncl ude <l cd.c>
#i ncl ude <del ay. c>

10.2—
Talking to Ports

One of the most challenging aspects of working with librariesis ensuring that they work with each
other when sharing ports. Should alibrary not assume complete control of the ports it needs, and,
more importantly, leave them in a stable state, you run the risk of misdriving the external devices.

Thetypica character-based LCD interface uses
« eight or four wires for data transfer,

» one wire for command select or data select,

* one wire for read or write, and

* one wire for enable.

In the thermostat design, the data wires of the LCD display are multiplexed with four wires of the
keypad matrix.

These are the guidelines we devised for keeping accesses of both the keypad and LCD
organized.

» Ensure the LCD enable lineis disabled after writing or reading data. This was accomplished by
quick code inspection.

» Determine the routines that require port direction setup. Thel cd_read() andl cd_wite()
functions required data direction setup, as they actually drive the LCD interface; other library
routines such as

Page 116

| cd_set address() usethesefunctions, and therefore don't need their own port direction
Setup.

Even though keypad_get ch() useskeypad_kbhit () , they both need data direction setup.
keypad_kbhi t () isintended for the user's own polling loops; however, keypad_get ch()
does not return until akey is pressed.

10.3—
A/D Converter Theory

This design features asimple A/D converter circuit, in place of a dedicated converter peripheral as
described in Chapter 3. Removing the requirement for an integrated A/D peripheral opens up the
number of part choices.

The main feature of thisdeviceisthat it isinexpensive, an important consideration for a mass-
produced device. The tradeoff isthat it is software-intensive.

Thisisthe circuit. Please note that Ri is athermistor.

+5W

Ri
{Thesmisbat)
R

+ Pf
Microcondroller

Fi
R
Figure 10.1

A/D converter circuit

c1

The A/D converter assumes that the input impedance of an embedded microprocessor port is
relatively high, and that the switch point remains constant with little hysteresis.

It also assumes that the junction between Ri and Rf is a current-summing junction, with capacitor
C1 integrating the error current. The microprocessor has the ability to modulate the current through
Rf by sending a pulse stream out of the Pf port bit. The ratio of the total number of onesto total bits
emitted is afunction of the average voltage on Pf. Consider the microprocessor as a high gain op-
amp that attempts to keep voltage at the summing junction on the threshold of Pi low to high sense

voltage.

Page 117

Physically, Pf is PORTB bit 5 and Pi isthe IRQ input, disabled as an interrupt source. Pi must be
reset when it latches, but isin other ways like an input bit. To get an idea of the A/D) converter
input range, run the following code on the thermostat.

Listing 10.4 Simple A/D driver code

#i ncl ude <705j la. h>
#pragma nor @x7F1 = LEVEL;
#i ncl ude <port. h>

#defi ne Pf PORTB. 5
#define Pi | SCR. | RQF

void main (void)

{
DDRB = 00000000;
Pf = 0;
ISCR.IRQE = 0; /* No interrupts please */
ISCRIRQR = 1; /* Reset IRQF/Pi to start */
whil e(1)
Pf = Pi; /* If using a normal bit for input, invert */
if(Pi) ISCRIRQR = 1; /* reset the Pi latch */
}
}

Scope pin Pf, and warm or cool the thermistor.

This mode is actually using the microcomputer as a high-gain operational amplifier. The scope will
show a pulse stream whose duty cycle will vary with input voltage from Ri. Theratio of zeros on the

scope trace to the total timeisadirect function of input voltage. It isthisratio we ultimately want to
measure using software.

The range of the input voltage that can be measured is dependent on the sense voltage (Vs) of the

input port, the output voltage of Pf in high and low states (Vh and V1), and the value of the resistors
Ri and Rf. The following

Page 118

equations determine the minimum and maximum input voltage that can be read by the A/D
converter.

Vi n
Vmax

(Vh - Vs) * (Ri / Rf)
(Vs - VI) * (Ri / Rf)

The value of Vmin occurs when Pi is consistently just at the sense threshold, and the processor is
aways feeding back a1 to the Pf pin. At an input of Vmax, a0 is always being fed back from Pf.
The A/D valueislinear and scaled between Vmin and Vmax. It is determined from the ratio of 1s
read on Pi (N1) to the total testsin a sample. The accuracy of the system is alinear function of test
sample size (N). Vi can be calculated using the following relationship.

Vi = (N1 / N * (Vmax - Vnin)

The value of C1isnot critical, it isused to control the slew rate and noise immunity of the system.
For atypical system measuring an input from 0-5 volts, start with 47K resistors and a.01-.1 micro-
farad capacitor.

Finally, ratiometric measuring systems like this one provide conversion accuracy that is afunction
of conversion time, and results can be easily scaled to the application. This eliminates conversion
multiplies and divides created by changing the sample size.

Page 119

Appendix A—
Table of Contents

Introduction 123
Using the Libraries 125
Device Header Files and Definition Files 126
Math Library 126
Library Definitions 127
DEF. H 127
STDI O 129
STDIO Hand STDI O. C 129
get s and put s 129
STDLI B 130
STDLI B 130
rand and r andmi ze 130

abs and| abs 131

ui 16t oa, ui 8t oa,i 16t oa,andi 8t oa
aht oi 16, aht oi 8, at oi 16, and at oi 8
gsort
pow
STRI NG
STRI NG Hand STRI NG. C
size_t
mencpy, menchr, and mencnp
strcat,strchr,andstrcnp
strlen
strset,strupr,andstrl w
CTYPE
CTYPE. H
i sxyz,toascii,tol ower,andtoupper
DELAY
DELAY. Hand DELAY. C
del ay_ns
KEYPAD
KEYPAD. Hand KEYPAD. L
keypad_get ch and keypad_kbhi t
LCD

LCD. Hand LCD. C

142

142

142

143

143

Page 120

LCD_DATA 144

lcd init,lcd send control,andl cd_busy check 145
| cd_putch,lcd_getch,andl cd_got oXY 146
| 2C_EE 147
| 2C_EE. Hand | 2C EE. C 147
[2C witeandl 2C read 148
MN RE_EE 149
MAf RE_EE. Hand MW RE_EE. C 149
mai re_bus_del ay 150
mv re_enable,mvi re_di sable,mvre write, 151

mMre read,andmvre wite_ all

MATH
MATH. Hand MATH. C
acos, asi n, at an, and at an2
cei |l andfl oor
cos andcosh
f abs
f mod
exp,l og,andl 0gl10
nmodf
powandsqrt
FLOAT
FLOAT. H
UART
UART
uart _getch,uart _putch,anduart kbhit
PCRT
PORT. H, PORT. C, and PORTDEFS. H

DDR() , DDR_MASKED() , and DDR_WAI T()

152

152

155

156

156

Page 121

Page 123

Appendix A—
Embedded C Libraries

I ntroduction

Pressure to cut development costs leads naturally to the urge to standardize hardware and software
products. Standardized computers led to standardized development languages and (quasi -)
standardized operating systems. Aswell, devel opers created standard libraries of useful functions
with widespread appeal .

In contrast, the popular notion of 8-bit embedded systemsis that each new design is a one-of-a-kind
programming task. The variety of applications doesn't lend itself to standard hardware. Only in latter
years have compilers equalled and surpassed hand-coded assembly efficiency. Finally, the intimate
level of programming forbids making any assumptions about third-party software.

Our experience is that programming 8-bit systems can take advantage of the development practices
that evolved for mainstream computer systems. Even though the architectures vary, embedded
hardware is standardized, functionally speaking. For instance: 1/0 facilities have port-pin features,
such as selectable tristate, but in alimited number of permutations. Aswell,

Page 124

controllers often use highly standardized buses like SPI or CAN: even though the interfaces differ,
the expected results remain similar.

Thisrelative similarity in hardware leads to standardized devel opment languages. We have found
that the vast majority of embedded applications can be implemented in C, and compiled for more
than one of the leading microcontroller architectures on the market. Just as in desktop computing
development, choosing a standard devel opment language loosens your dependence on a specific
architecture and supplier. Thisin turn can provide downward pressure on costs.

What remains largely unexplored isthe feasibility of standardized C libraries for the 8-bit
environment. Can they play the same role in embedded systems as they do in desktop computer
software development? The ideal s they represent are attractive.

Reduced Timeto Market Thisisasimple savings in keystrokes per product. Libraries represent
necessary steps already taken.

Reusable Code Libraries represent predigested knowledge, an investment in awell known, well
structured, and well documented body of code. The return arrives with the reduced time and effort
needed to customize or configure them. In C, configuration is a matter of answering afew questions
using #def i nes.

Product Reliability Each development project that reuses alibrary can reinspect it for quality
assurance. Since each user of the libraries should have access to the source code, local
customizations and fixes can be integrated into the libraries for posterity. Reinventing the wheel
each time disrupts a potentially valuable revision history or paper trail.

The downside, of course, isthe challenge of reconciling awide range of unforseen applications into
an authoritative standard.

Working with libraries themselvesis not a problem. Software that performs multiplication, division,
or modulusis best supplied as an external set of library functions, which the compiler readsin as
necessary. However, there is little debate about the design of the intended functionality: being
operators, they have the most common calling interface of all.

The interface presents the largest stumbling block. Extended mathematics and peripheral
functionality are the targets that need a standard functional interface and library implementation.
Floating-point practices, 8-bit

Page 125
implementation tradeoffs, and logical division of functionality are al likely points of contention.
The chalengeisto find arobust general interface that accomodates some embedded-specific needs.

Efficient Function Calls Eight-bit architectures with little stack space are not candidates for
frivolous function calling. The formal parameters of alibrary call will always include one too many
values for some users.

If you make the reasonable assumption that there will not be more than one compiler at work on a
project, the physical part of function invocation has no unknowns. The compiler can do anything to
overcome the limits on resources of the target device.

Physical Differences Underlying Logically Similar Functions Input and output bits are likely to
represent the actual voltage levels on 1/O pins, but there is no consensus for data direction settings.

C can easily accommodate symbolic changes: see the port library for an excellent abstraction.

External Design Decisions Thisoneisnot so easily dismissed. If two peripherals are multiplexed
on one port, as is the case with the thermostat, they can cause mutual interactions that a standard
library might not contemplate. C can easily accommodate multiple levelsof symbolic changes, but
the design challenge moves from tricky to inscrutable.

The latter point is one of the reasons why it's important to ship the library source code with the
compiler. Product reliability, discussed previoudly, is another. Fortunately, contemporary software
industry practice, from a business point of view, permits, and even encourages, the distribution of
source code. Byte Craft realized early on the importance of shipping library source with each
compiler.

The subsequent sections outline arobust standard library interface. At this point, the libraries are
useful and portable. We have obeyed the C (desktop) library interface as closely as possible, where
needed.

UsingtheLibraries
Y ou can easily use the libraries in your programs with the following steps.

* Add thei ncl ude subdirectory to your environment's | NCLUDE environment variable (the full
path names will vary depending upon your instal-

Page 126

lation). Alternatively, specify the i ncl ude subdirectory on the command line with the n=
command-line option.

* Add thel i b subdirectory to your environment's LI BRARY environment variable (the full path
name will vary depending upon your installation). Alternatively, specify the | i b subdirectory on
the command line with the t = command-line option.

* Use#i ncl ude <> to add their header files at the top of your source code. For example:

#i ncl ude <stdio. h>
/* your main function and other code */

Thisisreferred to in the compiler manual as Absolute Code Mode. The compiler will search for a
matching library file for every header file included at the top of your source.

Device Header Files and Definition Files

The Code Development System relies upon header files for definitions and constants. These often
vary between part numbers. They are usually named for the part to which they apply, witha. h
extension.

For more information, see "Library Definitions' on page 127.

Math Library

The math library for the Code Devel opment System is contained in a file whose name matches the
name of the product. It isusually supplied in source form, but witha . | i b file extension. Thus, the
compiler can read it in and compile it when necessary.

The math library supplies functions to implement the* , / , and %operators on 8- and 16-bit values.
The relevant function names are as follows.

Oper ator Functions

* __MJL8x8(voi d)
__MJL16x16(voi d)

/ __DIvaBY8(voi d)
__LDI'V(voi d)

% __RMOD(voi d)

Page 127

To adjust the math routines to your liking, back up the library file and make your changesto it
directly. For instance: for a Code Development System product named ABC, the math library file
itself would be ABC. LI B.

It is not necessary to #i ncl ude thislibrary, because the compiler will automatically include it if
necessary. It searches for the library

* in the current directory and
» dong the LI BRARY path.

Accordingly, it isimportant to have the Byte Craft library subdirectory in your LI BRARY path.

Library Definitions
DEF. H
Note

The name of the definitions header will change between CDS products. Look for afile named
abc_def . h, where abc isthe name of the CDS product.

Description
The definitions header is useful for compiling libraries.

When writing libraries of common code, you may not know for which target part to compile.
Without including a device header file, you cannot write code using the standard identifiers that
make your routines easier to read and maintain.

The solution to this dilemmais to include the library definitions header in place of any specific
device header. The library definitions file defines all the standard identifiers present in each device
header.

When compiling your library to an object file, Byte Craft compilers will ignore the values defined in
the definitions file, preserving only the identifiers. During the linking process, the compiler will link
the identifiers to the actual values specified in the particular device header file.

Page 128

Example

This example assumes you will use Absolute Code Mode (i.e., not using BCLink). If you do link
libraries with BCLink, remember to properly declare library functions as ext er n. The presence of
the MAKEOBJ ECT definition can help you decide to do so conditionally.

When writing thelibrary ny _|i brary. |i b, includethedef . h header file.

#pragma |ibrary
#pragma option +l /* keep library code in the listing */

#i ncl ude <abc_def. h>
void my_funcl(void)

PORTO. 1 = 0; /* uses general definition in abc_def.h */
}

#pragma endlibrary

Compile the file to an object file, rename the object filewith a. | i b extension, and placeitina
directory in the LI BRARY path.

Create alibrary header file.

void my_funcl(void);

Savethefileasny |i brary. h,inadirectory inyour | NCLUDE path.
Create your program source file and include both the device header and the library header file.

#i ncl ude <specific_device. h>
#i ncl ude <ny_library. h>

voi d nmai n(voi d)

{
[* . .. %
my_funcl();
[* . .. %
}

Compile the program source file as usual .

Page 129
STDI O
STDI O Hand STDI O C
Name
st di o isstandard input and output functions.
Description

st di 0 isagood example of the way C can make embedded programming more palatable. Though

an operating system with streamsis not generally possible on an 8-bit microprocessor, programmers
can call some of the familiar functions to perform input and output operations to the predictable
devices.

st di o can also provide embedded interpretations of more complex functionality. One possibility
that has been briefly investigated isascanf () function that reads characters from the user-
supplied get ch() , and evaluates keycodes against template charactersin a buffer ('O’ for digits, 'a’
for letters, and so on). A trial implementation consumed about 200 bytes of ROM.

gets and put s
Name

get s() andput s() input and output strings.

Synopsis

#def i ne BACKSPACE .

#i ncl ude <stdio. h>

void puts(char far * str);

voi d gets(char near * str, int8 size);

Description

put s() outputs anull-terminated string to a device understood to be the standard outpui.

Page 130

get s() retrievesaline from adevice understood to be the standard input, and placesit in the
buffer st r , which hassizesi ze. It retrieves characters up to anewline or carriage return, or to
size - 1.Itzerosthelast position of the buffer.

Defining the symbol BACKSPACE to a character allows get s() to backtrack when it receives
BACKSPACE from get ch() . get s() actually uses BACKSPACE to perform the backtrack, so the
get ch() device must provide BACKSPACE, and the put ch() device must understand
BACKSPACE to be a character that moves the input point or cursor back one space.

These routines rely upon the library functionsget ch() and put ch() , which must be declared
elsewhere. Possible definitionsfor get ch() and put ch() are

* keypad_get ch() inthekeypad library,
*lcd_getch() andl cd_put ch() inthel cd library, or

suart_getch() anduart_putch() intheuart library.

STDLI B

STDLI B

Name

stdl i bisalibrary of standard functions.
Description

st dl i b holdsavariety of useful utility functions.
rand and r andm ze

Name

rand() andrandm ze() generate pseudorandom numbers.

Page 131

Synopsis

#i ncl ude <stdlib. h>

#def i ne SEED 0x3045 /* Seed nust not be 0. */
#defi ne srand(SEED) Rand_16=SEED

#define randm ze() Rand_16=RTCC

int16 rand(void);

Description
rand() providesand manages a pseudorandom number sequence.
randm ze() initializes the pseudorandom number sequence.

To initialize the pseudorandom number sequence, call r andmi ze() inyour initialization
procedures. Then, call r and() for each new random number.

The current random number is stored in a static-duration data object, and is updated on each call to
rand().

Requirements

Requires a part header file or definitions file and the string library.
abs and | abs

Name

abs() and| abs() determine the absolute value.

Synopsis

#i ncl ude <stdlib. h>
int8 abs(int8 i)
intl6 labs(intl6 I)

Description

abs() acceptsasigned word value and returns the absol ute value as a positive signed word value.

| abs() acceptsasigned i nt 16 value and returns the absolute value as a positive signed i nt 16
value.

Page 132
ui 16t oa, ui 8t oa,i 16t oa,andi 8t oa

Name

ui 16t oa(),ui 8toa(),i 16toa(),andi 8t oa() convert unsigned or signed integers to
ASCII representations.

Synopsis

#i ncl ude <stdlib. h>
voi d ui 16toa(unsi gned int16 val ue, char near * str,
unsi gned i nt8 radix);
voi d ui 8toa(unsigned int8 val ue,char near * str,unsigned int8 radix);
void il6toa(intl6 val ue,char near * str,unsigned int8 radix);
void i8toa(int8 val ue,char near * str,unsigned int8 radix);

Description

ui 16t oa() convertsan unsigned i nt 16 integer to a null-terminated ASCII string. It accepts a
pointer to a string buffer, a value to be converted to a string representation, and the radix in which to
represent the number.

r adi x may be one of the following values. The string buffer must be long enough to contain all
characters created by the conversion. Therefore, the buffer must be sized accordingly.

Radix Representation Required Buffer Size
2 Binary 16 characters

8 Octal 6 characters

10 Decimal 5 characters

16 Hexadecimal 4 characters

ui 8t oa() issimilar totheui 16t oa() , except that it translates unsigned word values (8 bits).
Therefore, the space reguirements for the output buffer are as follows.

Representation Required Buffer Size
Binary 8 characters
Octal 3 characters

(table continue on next page)

Page 133

(table continued from previous page)

Representation Required Buffer Size
Decimal 3 characters
Hexadecimal 2 characters

I 16t oa() convertsasignedi nt 16 integer to anull-terminated ASCI|I string. It accepts a pointer
to astring buffer, avalue to be converted to a string representation, and the radix in which to
represent the number.

r adi x may be one of the following values. The string buffer must be long enough to contain al
characters created by the conversion. Furthermore, a negative value has aminus sign () prepended
to it. Therefore, the buffer must be sized accordingly.

Radix Representation Required Buffer Size
2 Binary 16 characters

8 Octal 7 characters

10 Decimal 6 characters

16 Hexadecimal 5 characters

i 8t oa() issmilartothei 16t oa(), except that it translates signed word values (8 bits).
Therefore, the space requirements for the output buffer are as follows.

Representation Required Buffer Size
Binary 8 characters
Octal 4 characters
Decimal 4 characters
Hexadecimal 3 characters

aht oi 16, aht oi 8, at oi 16, and at 0i 8

Name

aht oi 16() ,aht 0i 8(),atoi 16(),andat oi 8() convert an ASCII string value representing
adecimal or hexadecimal number into an integer.

Page 134
Synopsis
#i ncl ude <stdlib. h>
unsi gned int16 ahtoi 16(char near * str);
unsi gned int8 ahtoi 8(char near * str);

intl1l6 atoil6(char near *str);
int8 atoi 8(char near * str);

Description

aht oi 16() convertsanull -terminated ASCII string representing an unsigned hexadecimal
number into ai nt 16 integer value.

aht oi 8() convertsanull-terminated ASCII string representing an unsigned hexadecimal number
into aword integer value.

at oi 16() convertsanull-terminated ASCII string representing a signed number into a signed
i nt 16 vaue.

The string should be in one of the following forms.

- 0b1000000000000000 to _
0b1111111111111111 Binary

- 00100000 toQOol17777 Octal

- 0100000 to 0177777 Octal

- 32768 1065535 Decimal

- 0x8000to Oxf fff Hexadecimal

at oi 8() convertsanull-terminated ASCII string representing a signed number into a signed word
value.

The string should be in one of the following forms.

- 0b10000000to0Ob11111111 Binary

- 00200 to 00377 Octal
- 0200 to 0377 Octd
-128to 255 Decimd

- 0x80 to OxFF Hexadecima

gsort
Name

gsort () quicksortsanarray in
place.

Page 135
Synopsis
#i ncl ude <stdlib. h>
void gsort(void near * base,size t nelem size t size);
Description
gsort () sortsthe elementsof an array. The elements are left in place.

The function accepts a pointer to the array, a number of elementsin the array (nel en) and asize of
each element (si ze). nel emandsi ze areof typesi ze_t , whichisdefinedinstri ng. c.

gsort () comparesthe array elements using an external function that must have been defined as

#defi ne QSORT_COWMPARE(argl, arg2)

If not defined, QSORT_ COVPARE defaultsto st rcnp() instring. c. QSORT_COVPARE must
accept two pointers and return an i nt 8 value. The return value must be:

e <0if thefirst argument isless than the second,

* = 0if thefirst argument is equal to the second, or

* > 0if thefirst argument is greater than the second.

pow

Name

pow() raisesanumber to an exponent.

Synopsis

#i ncl ude <stdlib. h>

unsi gned int16 pow(unsigned int8 base, unsigned int8 exponent);
Description

Thisfunction raisesbase to the power exponent.

Page 136
STRI NG
STRI NG Hand STRI NG C
Name
st ri ng performs operations on null-terminated and known-length strings.
Description
Routinesin this library perform operations on both null-terminated and known-length string buffers.
size_t
Name
si ze_t isthetypefor "size of" variables.
Synopsis
#i ncl ude <string. h>
typedef unsigned int8 size_ t;
Description

Byte Craft libraries accept "size of" parametersastype si ze_t.A si ze_t parameter usually
represents the size of another parameter or object.

mencpy, menchr, and mencnp
Name

mencpy(), menchr (), and mencnp() copy, search, and compare buffers.

Page 137

Synopsis

#i nclude <string.h>

voi d nencpy(char near * dest,const char far * src,size_ t n);

void * nenchr(const void * s,int8 c,size_t n);

int8 nencnp(unsigned char far * strl,unsigned char far * str2
size_t n);

Description

mencpy() copies n bytes of memory from location sr ¢ to location

menchr () searchesan array for a character. It begins at address s, and searches for the first
element of the array of size n that equals (unsi gned char) c. It returns the address of the
matching element, or a null pointer if no match was found.

menctnp() comparestwo arrays of unsi gned char,str1,andstr 2, tofind differences
between them. If all elements are equal, menctnp() returnsO.

Where a difference occurs, if the element of st r 1 isgreater than that of str 2, mencnp() returns
apositive value. If theelement of st r 1 islessthanthat of str2, mencnp() returns anegative
value.

Both arrays must be of size n.
strcat,strchr,andstrcnp

Name

strcat(),strchr(),andstrcnp() copy, search, and compare null -terminated strings.

Synopsis

#i ncl ude <string. h>

voi d strcat(char near * dest,char far * src);

void * strchr(const void * str,int8 c);

int8 strcnp(unsigned char far * strl,unsigned char far* str2);
voi d strcpy(char near * dest,char far * src);

Page 138
Description

strcat () copieseementsof the null-terminated string sr ¢, including its null termination
character, to the array dest .

st rchr () searchesthe null-terminated string st r for the first occurrence of (char) c.strchr
() examinesthe terminating null of st r as part of the string. st r chr () returnsapointer to the
matching character of st r, or anull pointer if no match was found.

strcnp() comparestwo null-terminated strings, st r 1 and st r 2, to find differences between
them. If all elements are equal, st r cnp() returnsO.

Where a difference occurs, if the element of st r 1 isgreater than that of str 2, strcnp() returns
apositive value. If theelement of st r 1 islessthanthat of str2,strcnp() returnsanegative
value.

If one string is shorter than the other, st r cnp() does not finish the longer string.

strcpy() copiesthe null-terminated string sr ¢, including terminating null, to the array of char
pointed to by dest .

strlen

Name

strl en() determinesthelength of anull-terminated string.
Synopsis

#i ncl ude <string. h>

unsigned int8 strlen(char far * str);

Description

strl en() returnsthe number of charactersin the null-terminated string st r . The count does not
include the terminating null character.

strset,strupr,andstrlw
Name

strset(),strupr(),andstrlw () renitialize or convert anull-terminated string.

Page 139

Synopsis
#i ncl ude <string. h>
voi d strset(char near * str,char ch);

voi d strupr(char near * str);
void strlw (char near * str);

Description

strset () stores(unsi gned char) ch ineach of the elements of the array pointed to by st r .

st rupr () convertsall lowercase characters in the null-terminated string st r to uppercase. It
convertsthe string in place.

strlw () convertsall uppercase characters in the null-terminated string st r to lowercase. It
converts the string in place.

CTYPE

CTYPE. H

Name

ct ype routines operate on characters.

Description

Routinesin thislibrary perform type recognitions and conversions on characters.
| sxyz,toascii,tol ower,andt oupper

Name

i sal num() ,isal pha() ,isascii(),iscntrl (),isdigit(),islower(),isupper
(),isxdigit(),toascii(),tolower(),andtoupper() evaluateand convert characters.

Page 140

Synopsis

#i ncl ude <ctype. h>
int8 isalnun(int8 ch);
int8 isal pha(int8 ch);
int8 isascii(int8 ch);
int8 iscntrl(int8 ch);
int8 isdigit(int8 ch);
int8 islower(int8 ch);
int8 isupper(int8 ch);
int8 isxdigit(int8 ch);
#define toascii (CH) CH&Ox7f
int8 tolower(int8 ch);
int8 toupper(int8 ch);

Description

i sal nun() evauatesthe character ch and returns a nonzero valueif it is alowercase character
(2=2), uppercase character (A-Z), or decimal digit (0-9). If not, it returns zero.

I sal pha() evauatesthe character ch and returns anonzero valueif it is alowercase character
(2=2) or uppercase character (A-2). If not, it returns zero.

I sasci i () evauatesthe character ch and returns a nonzero valueif it isan ASCII character
(high bitis0).

I scntrl () evauatesthe character ch and returns a nonzero value if it isan ASCII control
character. (ASCII control charactersinclude characters 0-31 and 127.) If not, it returns zero.

I sdi gi t () evaluatesthe character ch and returns a nonzero valueif it isanumeric digit (0-9). If
not, it returns a zero.

I sl ower () evauatesthe character ch and returns anonzero valueif it is alowercase character
(2=2). If not, it returns a zero.

| supper () evaluatesthe character ch and returns a nonzero valueif it is an uppercase character
(A=2). If not, it returns a zero.

I sxdi gi t () evauatesthe character ch and returns anonzero valueif it is a hexadecimal digit (0—
9, af, or A-F). If not, it returns a zero.

t oascii () zerosthe upper bit of CH.

t ol ower () evaluates ch and, if ch isan uppercase character, returns the corresponding lowercase
character. Otherwisg, it returns ch unchanged.

Page 141

t oupper () evauates ch and, if ch isalowercase character, returns the corresponding uppercase
character. Otherwise, it returns ch unchanged.

DELAY
DELAY. Hand DELAY. C

Name

del ay routines cause embedded programs to
wait.

Description

These routines provide a consistent interface for invoking delays.
Requirements

Requires a part header file or a definitionsfile.
del ay _ns

Name

del ay_ms() delaysanumber of milliseconds.
Synopsis

#i ncl ude <del ay. h>

voi d delay_ns(unsigned int8 ns);
Description

del ay_ns() waitsthe specified number of milliseconds and then returns.

Page 142
KEYPAD
KEYPAD. Hand KEYPAD. L
Name
keypad drives amatrix keypad.
Description
The routinesin this library operate a matrix keypad connected to a single, 8-bit 1/0 port.
Requirements
Requires the port and delay libraries.
keypad_get ch and keypad_kbhi t
Name
keypad _get ch() and keypad_kbhi t () scanfor and get a character from a matrix keypad.
Synopsis
#def i ne KEYPAD_PORT

#defi ne keypad_debounce_del ay() del ay_ns(0x20)
#i ncl ude <keypad. h>

unsi gned char keypad_getch(void);

unsi gned i nt8 keypad_kbhit(void);

Description

The user must define KEYPAD_PORT to the register used to read from and write to the port.

A default definition may be available. Consult the source for the keypad
library.

Page 143

The user must define afunction KEYPAD READ to set up KEYPAD PORT for reading. The
implementation will vary depending upon the circuitry of the keypad.

A default definition may be available, depending upon your Code Devel opment System product.
Consult the source for the keypad library.

keypad_debounce_del ay() iscaled by keypad_get ch() . If not redefined,
keypad_debounce_del ay() waits 20 milliseconds to debounce the keyboard.

keypad_get ch() waitsfor akeypad contact, and returns the appropriate character from the array
keypad_table[].

If not defined elsewhere, keypad _t abl e defaults to the standard tel ephone keypad.

const char keypad_table[]="123A"
" 456B"
" 789C"
"*O#D";

keypad_kbhi t () looksfor akeypad contact and returns 1 when a contact is made.
LCD

LCD. Hand LCD. C

Name

| cd provides support for | cd controllers.

Requirements

Requires the port library.

Description

The LCD library provides routines to drive a Hitachi HD44780 LCD controller.

Page 144

A typical LCD module configuration uses 3 wires for read/write, register select (command or data),
and enable, and either four or eight wires for data transmission.

The module needs to be initialized by a sequence of writes that sets parameters, including the width
of the data bus. Thisisaccomplished by | cd_i ni t () . Afterinitialization, the LCD panel may
occasionally bebusy. | cd_busy check() determineswhether the module can accept new data.

| cd_put ch() andl cd_get ch() areintended to be used as put ch() and, lesslikely, get ch
() forthest di o library.

Configuration
| cd. h defines anumber of important constants for LCD Software Commands.

The following symbols need to be defined. Defaults are provided in| cd. c.

#define LCD E PORT PORT1 /* LCD Enable */

#define LCD_E PIN 2 /* LCD Enable */

#def i ne LCD_DATA PORT1

#define LCD RS _PORT PORTO /* LCD Register Select */
#define LCD RS PIN O /* LCD Register Select */
#define LCD_RW PORT PORTO /* LCD Read/~Wite */
#define LCD RWPIN 1 /[* LCD Read/~Wite */
LCD DATA

Name

LCD DATA I N CONTROL_QUT() and LCD_DATA QOUT_CONTROL_I N() are macrosto
control the LCD data and control ports.

Page 145

Synopsis
#define LCD_DATA | N _CONTROL_OUT() ...

#def i ne LCD_DATA OUT_CONTROL_QUT() ..
#i ncl ude <l cd. h>

Description

LCD _DATA I N CONTROL_QUT() setsthe LCD data port for input.

LCD DATA QUT_CONTROL_QUT() setsthe LCD dataport for
output.

cd_init,lcd_send_control,andl cd_busy_check

Name

lcd_init(),l cd_send_control (),andl cd_busy_check() initialize and control the
LCD module.

Synopsis
#i ncl ude <l cd. h>
void lcd_init(void)

void |l cd_send control (char control);
voi d | cd_busy_check(void);

Description

| cd_i nit () performsseveral LCD initialization tasks, including turning on the LCD display and
cursor, clearing the display, and setting the display to increment mode.

| cd_send _control () (sendsacontrol character to the LCD controller.

| cd_busy_check() waitsuntil the busy bit of the LCD controller isclear. Y ou can then safely
write to the controller.

Page 146
| cd_putch,l cd _getch,and 1cd_got oXY

Name

lcd_init(),lcd _putch(),andl cd_getch() writeto and read from the LCD module, and
move the cursor.

Synopsis

#i ncl ude <l cd. h>

void | cd_putch(char ch);

char I cd_getch(void);

void lcd_gotoXY(int8 x, int8 vy);

Description

| cd_put ch() writesacharacter to the LCD panel.

| cd_get ch() reads acharacter from the LCD panel.

| cd_got oXY() movesthe LCD insert point to a specific character cell.

The cdlls are numbered as follows.

X 0 1 2 3 4 5 6 7 8 9

Thus, to move the insert point to the final cell of the bottom row of a 2-line, 40-space pandl, use

| cd_got oXY(1, 39);

Page 147
| 2C_EE
| 2C_EE. Hand | 2C EE. C
Name
| 2C_EE provides useful routines for the 12C 24LC01B/02B serial EEPROM.
Description

[2C™ jsastandard of Phillips Electronics N.V. It isa serial peripheral interface that operates across
two wires. The two lines consist of the serial data line and the serial clock line, which are both
bidirectional. It is synchronous.

It isamultimaster, multislave network interface with collision detection. Up to 128 devices can exist
on the network. Each device has an address made up of several fixed bits (assigned by the 12C
committee) and several programmable bits usually determined by pin connections. In this way,
several identical devices can coexist within one system. Either 7- or 10-bit addressing is available.

There are also several reserved addresses for broadcasting to all devices and other expansion
needs.

12C has two speeds: In standard mode, 100 kbit/second, and in fast mode, 400 kbit/second. Effective
data rates are dependent upon configuration and addressing mode used.

The standard does not specify a programming interface for controllers that implement it. This
section deals exclusively with a serial EEPROM connected by 12C.

Requirements

Requires the port and delay libraries.

Page 148

Configuration

To configure the 12C port, the following settings must be adjusted. If not changed, the 12C control
(clock) lineisbit O of port 1 and the datalineis bit 5 of port 2.

#define | 2C_PORT_DDR READ() GPlI O CONFI G = PORTO RESI STIVE | \
PORT1_CMOS | PORT2_RESI STI VE | PORT3_RESI STl VE; PORT2=0xf f
#define |1 2C_PORT_DDR WRI TE() GPI O CONFI G = PORTO RESI STIVE | \
PORT1_CMOS | PORT2_CMOS | PORT3_RESI STI VE

#define |1 2C_PORT_DDR() GPI O CONFI G = PORTO RESI STIVE | \
PORT1_CMOS | PORT2_RESI STI VE | PORT3_RESI STI VE; PORT2=0xf f
#define | 2C_CONTROL PORT1

#def i ne | 2C_DATA PORT2

#define 12C_SCL O

#define 12C_SDA 5

#define i 2c_bus_delay() delay_ns(1)

|2C witeand| 2C read

Name

| 2C wite() andl 2C read() communicate over the |2C bus.
Synopsis

#i ncl ude <i 2c_ee. h>
void 12C wite(unsigned int8 address, unsigned int8 data);
unsigned int8 | 2C read(unsi gned int8 address);

Description

| 2C write() writestheword dat a at the memory location addr ess on the serial EEPROM.

| 2C_r ead() readsthevalueat memory location addr ess..

Page 149
MW\ RE_EE
MN RE_EE. Hand MW RE_EE. C
Name
mM r e_ee createsa MICROWIRE connection to a serial EEPROM.
Description

MICROWIRE and MICROWIRE/PLUS are a proprietary standard of National Semiconductor. In
some implementations, they are SPI -compatible.

MICROWIRE/PLUS is aserial peripheral interface that operates across three wires. It is
synchronous, relying on either an internal (to the bus master) or external clock. It is bidirectional. A
chip-select signal must also be implemented.

The programming interface includes the following.

* A control register CNTRL that configures the interface (including the internally-generated shift
rate)

* A read/write serial input/output register
These registers are memory-mapped.

The MICROWIRE Shift Clock (SK) isafactor of internal clock speed, dividing the system clock by
2, 4, or 8. Each byte transmitted or received by MICROWIRE requires 8 SK cycles.

Software can cause atransmit by setting the BUSY flag of the PSW (processor status word). The
BUSY flag will clear when the transmit is complete. Some parts provide a vectored maskable
interrupt when BUSY is reset.

The following routines deal directly with an EEPROM connected via MICROWIRE.
Requirements

Requires a device header file or adefinitions file. Requires an external function as shown in the
following text.

Page 150
Configuration

Y ou must define the following symbols before using the mai r e _ee library. If not defined, default
values are used.

MA RE_CONTROL port used to access the MICROWIRE control lines
MN RE_CLK pin used for clock

MA RE_CS pin used for chip select

MA RE_DATA port used to access the MICROWIRE datalines
MAN RE_DO pin used for data output

MA RE_DI pin used for datainput

MA RE_PORT_DDR_READ() macro setting port data direction for read
MA RE_PORT_DDR_WRI TE() macro setting port data direction for write

MW RE_PORT_DDR() macro setting default data direction for
MICROWIRE port

mv re_bus_del ay
Name
ma re_bus_del ay() isauser-defined delay function.

Synopsis

#i ncl ude <mni re_ee. h>
void mmM re_bus_del ay() {
/* Your preferred delay code */

}

Description

To properly time the MICROWIRE bus, you must write a delay function to wait between half clock
cycles. You can accomplish this by

« defining it as a function containing NOPs or

* define it asacall to adelay function.

Page 151

mM re_enable,mM re_di sable,mvre wite,mnire_read,and
mvre wite_all

Name

mvi re_enabl e(), maire_disable(), mire_wite(), mire_read(),and
mMre wite_all () communicate over MICROWIRE.

Synopsis

#i ncl ude <mnvire_ee. h>

#define mv re_enabl e()

#define mnv re_di sabl e()

#defi ne mni re_er ase(ADDRESS)

void mvire wite(unsigned i nt8 address, unsigned intl6 data);
unsigned intl16 mvre_read(unsigned int8 address);

void mvire wite_all (unsigned intl6 data);

Description

mM re_enabl e() and mni re_di sabl e() enable and disable, respectively, the MICROWIRE
connection to the serial EEPROM.

mu re_erase() erasesthe value at memory location ADDRESS on the serial
EEPROM.

mM re_write() writesthevalue of datato the location addr ess on the EEPROM.
mM re_read() readsand returnsthe value at location addr ess from the serial EEPROM.

mMre_wite_all () writesthe samevaueto al locations of the serial EEPROM.

MATH

MATH. Hand MATH. C

Name

mat h implements math functions.
Description

Thislibrary implements math functions.
Requirements

Requiresf | oat . h

acos, asi n, at an, and at an2
Name
acos(),asin(),atan(),andatan2() aretrigonometric functions.
Synopsis

#i ncl ude <math. h>

float acos(float x);

float asin(float x);

float atan(float x);

float atan2(float y, float Xx);

Description
acos() returnsthe anglein radians (from O to pi) whose cosineisx.

asi n() returnsthe anglein radians (from —pi/2 to pi/2) whose sineis X.

at an() returnsthe anglein radians (from —pi/2 to pi/2) whose tangent is x.

at an2() returnsthe anglein radians (from —pi to pi) whose tangent isy/ x.

Page 152

Page 153
ceil andfl oor
Name
ceil () andfl oor () returnthe next higher or lower integer value.
Synopsis
#i ncl ude <math. h>

float ceil (float Xx);
float floor(float x);

Description

cei |l () returnsx (if aninteger), or the next higher integer value.

f1 oor () returns x (if an integer), or the next lower integer value.

cos and cosh

Name

cos(),cosh(),sin(),sinh(),tan(),andtanh() aretrigonometric functions.
Synopsis

#i ncl ude <math. h>
float cos(float x);
float cosh(float x);
float sin(float x);
float sinh(float x);
float tan(float x);
float tanh(float x);

Description
cos() returnsthe cosine of x, wherex isan anglein radians.

cosh() returnsthe hyperbolic cosine of x.

si n() returnsthe sine of x, wherex isan angle in radians.

si nh() returnsthe hyperbolic sine of x.

t an() returnsthe tangent of x, wherex isan anglein radians.

t anh() returnsthe hyperbolic tangent of x.

f abs

Name

f abs() calculatesthe absolute value of afloating point number.

Synopsis

#incl ude <mat h. h>

float fabs(float x);

Description

fabs() returnsthe absolute value of x.

f nod

Name

f mod() calculatesthe remainder of x/ y.

Synopsis
#i ncl ude <math. h>
float frod(float x, float y);

float frexp(float x, int * pexp);
float I|dexp(float x, int exp);

Description

f mod() returnsthe remainder of x/ y.

Page 154

frexp() caculatesamantissaand exponent for the float value x. f r exp() returnsthe

mantissa and places the exponent in * pexp. The exponent is a power of 2.

Page 155

| dexp() calculates afloating point value for the mantissa x and the exponent (of base-2) exp.
exp,l og,and | 0ogl0

Name

exp(),log(),andl 0gl0() caculate exponentsand logarithms.

Synopsis

#i ncl ude <nmth. h>

float exp(float x);

float log(float x);
float |0gl0(float x);

Description

exp() returnsthe exponential of x (e raised to the power x).
| og() returnsthe natural logarithm of Xx.
| 0g10() returnsthe base-10 logarithm of x.

nmodf

Name

nodf () calculatesinteger and fraction portions of afloating point number.
Synopsis

#i ncl ude <mmath. h>

float nodf(float x, float * pint);

Description

nodf () calculatestheinteger and fraction portions of the value X, returns the fraction portion, and
stores the integer portion in * pi nt . Both the integer and fraction portions have the same sign asx.

Page 156
powand sqrt
Name

pow) andsqrt () calculate apower or aroot of afloating point
number.

Synopsis

#i ncl ude <math. h>
float pow(float x, float y);
float sqgrt(float x);

Description

pow() returnsx raised tothey power.

sqrt () returnsthe square root of x.

FLOAT
FLOAT. H
Name

f 1 oat isalibrary of floating point definitions.

Synopsis

#i ncl ude <fl oat. h>
#define FLT_ DI G
#define FLT_EPSI LON
#define FLT_MANT_DI G
#define FLT_MAX
#define FLT_MAX 10_EXP
#defi ne FLT_MAX EXP
#define FLT_MN

Page 157

#define FLT_M N_10_EXP
#define FLT_M N_EXP
#define FLT_RADI X
#defi ne FLT_ROUNDS

Description

If you employ floating point variables or operations, the filef | oat . h provides some required
definitions.

Definitions

FLT_DI G determines the number of digits of precision for float
variables.

FLT_EPSI LON determines the smallest possible nonzero value for afloat variable.

FLT_MANT DI Gisthe number of mantissa digits for float variables. The value is of base
FLT_RADI X.

FLT_MAX isthe largest possible value for afloat variable.

FLT_MAX 10 EXP isaninteger exponent. When 10 is raised to the power of
FLT_MAX 10 EXP, theresult isthe largest power-of-10 value for afloat variable.

FLT_MAX_EXP isaninteger exponent. When FLT_RADI X israised to the power of
FLT_MAX_EXP- 1, the result isthe largest power-of -FLT_RADI X value for afloat variable.

FLT_M N provides the smallest possible value for afloat variable.

FLT_M N_10_EXP isaninteger exponent. When 10 is raised to the power of
FLT_M N_10_EXP, theresult isthe smallest power-of-10 value for afloat variable.

FLT_M N_EXPisaninteger exponent. When FLT_RADI X israised to the power of
FLT_M N_EXP- 1, the result is the smallest power-of-FLT_RADI X value for afloat variable.

The exponent of f | oat type valuesisan exponent of FLT_RADI X.
FLT_ROUNDS represents the rounding method used by floating point calculations. The following
value for FLT_ROUNDS sets the accompanying rounding method:

1 Thecompiler will round toward the nearest representable value.

Page 158
UART
UART
Name
UART provides UART functionsin software.
Requirements
Reguires apart header file or definitions file, and the port and delay libraries.
Definitions
The following settings are required for UART operation.

UART_TD_PORT

Users must define this as the port intended for UART transmission. By default, thisis defined as
PORT1.

UART_TD_PI N

Users must define this as the pinin UART_TD_PORT intended to drive the TD line. By default, this
isdefined as 1.

UART_RD_PORT

Users must define this as the port intended for UART reception. By default, thisis defined as
PORT2.
UART_RD_PI N

Users must define this as the pinin UART_RD_PORT intended to read the RD line. By default, this
Is defined as 4.

Variables

uart _node

Configuresthe uar t library at run time as described in the following text.

Page 159
Configuration

Users must set the uart _node variable with an CRed combination of constants.

Baud Rate Stop Bits Parity Data Bits

BAUD_300 STOP 1 PARI TY_NONE DATA 7
BAUD_1200 STOP 2 PARI TY_EVEN DATA_8
BAUD_2400 PARI TY_ODD

BAUD_4800

BAUD_9600

BAUD_19200

BAUD_38400

BAUD_ 57600

BAUD_ 115200

Example:

uart_node = BAUD 115200 | STOP_2 | PARITY_NONE | DATA_S;

uart _getch, uart _putch,anduart_kbhit

Name

uart _getch(),uart_putch(),anduart_kbhit () perform UART
1/0.

Synopsis

char uart _getch(void);
voi d uart_putch(char);
char uart _kbhit (void);
Description

uart _getch() getsacharacter fromthe UART.

uart _put ch() outputsa character to the
UART.

uart _kbhi t () returns1if abyteisbeingreceived, or O if thereis no datato be received.

Page 160
PORT
PORT. H, PORT. C, and PORTDEFS. H
Name
port provides platform-independent port access.
Requirements
Reguires a part header file or definitionsfile.
Description

This header file includes some useful functions for manipulating ports. Many Byte Craft libraries
depend upon these definitions.

All single-chip MCUs have I/O ports of some nature. This library tries to smooth out the differences
between their peculiarities.

port. h causesportdefs. htobereadin. port def s includes definitions for each possible
setting of a data direction register. In these definitions, 'l * stands for "input" and '0" stands for
"output." Thisisto resolve the question of which state (zero or one) stands for input or output. For
example:

/* DDR uses 1 for output and O for input */
#defi ne 00000000 0b11111111
#def i ne 00000001 0Obl11111110
/[* ... and so on ... */
#define 00001111 0b11110000
/[* ... and so on ... */
#define 1111110 0b00000001
#define 1111111 0Ob00O000000

por t def s also includes definitions for bit masks to be used in DDR_MASKELD) . In these
definitions, ' _' (underscore) means "no change”, and 'C' means change.

Page 161

DDR() , DDR_MASKEDY) , and DDR_WAI T()
Name

DDR() , DDR_MASKED() , and DDR_WAI T() manipulate the data direction of a port.

Synopsis
#i ncl ude <port. h>
DDR(port, direction)

DDR_MASKED(port, nask, direction)
DDR_WAI T()

Description

These functions manipulate a port's data direction. They use direction and mask definitions read in
fromportdefs. h.

DDR() accepts aport and direction definition, and configures the port's data direction register to
operate accordingly.

DDR_MASKED() performs the same action, but only on the pins selected in the mask definition.
DDR_MASKED) helps solve the conflict between several library routines addressing different bits
on the same port. To change one or two bits, the compiler may use bit-change instructions if
available, leaving the rest untouched. Otherwise, the compiler will preserve the state of masked-out
DDR hitswhen it reads and modifies the DDR value.

DDR_WAI T() inserts ashort delay to alow the data direction change to propagate.
Example

To set the bits of port PORTX to all output, invoke:

DDR(PORTX, 00000000); /* note letter '"0Q', not zero */

DDR_WAI T() ;

To set the low and high nibbles to output and input, respectively, use:

DDR(PORTX, 11110000); /* letters 'I' and '0' */
DDR_WAI T() ;

Page 162

To set only bit 1 of PORTX to output, use:

DDR_MASKED(PORTX, C__, 00000000); /* other '0' bits don't
matter */
DDR_WAI T() ;

Appendix B—
ASCII Chart

Page 163

It's aways difficult to find an ASCII chart when you want one. Here is a chart of hex values and
their ASCII meanings.

Table B.1 ASCII characters

HEX
00
01
02
03
04

(table continue on next page)

ASCII

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT

HEX
20
21
22
23
24
25
26
27
28
29

HEX

5

47

49

ASCII

I 0T mMmoOOoO > g

HEX

61
62

& R

67

69

ASCII

> Q —™ 0o o O T 9

Page 164

(table continued from previous page)

HEX ASCII HEX ASCII HEX ASCII HEX ASCII
0A LF 2A * A J 6A j
0B VT 2B + 4B K 6B k
oC FF 2C , aC L 6C |
oD CR 2D - 4D M 6D m
0E o) pis 4 N 6E n
OF S 2F / aF o) 6F 0
10 DLE 30 0 50 P 70 p
11 DC1 31 1 51 Q 71 q
12 DC2 7] 2 52 R 72 r
13 DC3 3 3 53 s 73 s
14 DC4 34 4 54 T 74 t
15 NAK 'S 5 55 U 75 u
16 SYN 3% 6 56 Y 76 v
17 ETB 37 7 57 W 77 w
18 CAN 38 8 58 X 78 X
19 EM 39 9 59 Y 79 y
1A SUB 3A : 5A z 7A z
1B ESC 3B ; 58 [7B {
1C FS 3c 5C \ 7C |
1D GS 3D = 5D] 7D }
1E RS 3E > 5E A 7E ~

1F us 3F ? 5F 7F DEL

Page 165

Appendix C—
Glossary

A

accumulator
Also"A", "AC", or other names. The register that holds the results of ALU operations.

A/D
Analog to digital.

addressing mode
The math used to determine a memory location in the CPU, and the notation used to expressit.

ALU
Arithmetic Logic Unit. Performs basic mathematical manipulations, such as add, subtract,
complement, negate, AND, and CR.

AND
Logical operation in which theresult is 1 if ANDed terms both have the value 1.

ANSI C
American National Standards Institute standards for C.

assembly language
A mnemonic form of a specific machine language.

Page 166

B

bank
A logical unit of memory as determined by addressing modes and their restrictions.

bit field
A group of bits considered as a unit. A bit field may cross byte boundaries if supported by the
compiler.

block
Any section of C code enclosed by braces, {} . A block is syntactically equivalent to asingle
instruction, but adds in a new variable scope.

breakpoint
A set location to stop executing program code. Breakpoints are used in debugging programs.

C

CAN
Controller Area Network, developed by Bosch and Intel. It is an intermodul e bus that links
controlled devices.

cast
Also coerce. Convert a variable from one type to another.

checksum
A valuethat is the result of adding specific binary values. A checksum is often used to verify the
integrity of a sequence of binary numbers.

computer operating properly

Also COP. A peripheral or function that resets microcontroller function under questionable
execution conditions. COP, as aword, is the name of the COP8 microcontroller product line from
National Semiconductor.

cross assembler

An assembler that runs on one type of computer and assembles the source code for a different target
computer. For example, an assembler that runs on an Intel x86 and generates object code for
Motorola's 68HCO5.

cross compiler

A compiler that runs on one type of computer and compiles source code for a different target
computer. For example, a compiler that runs on an Intel x86 and generates object code for
Motorola's 68HCO5.

D

debugger
A program that helps with system debugging where program errors are found and repaired.
Debuggers support such features as breakpoints, dumping, and memory modify.

Page 167

declaration
A specification of the type, name, and possibly the value of avariable.

dereference
Also * or indirection. Access the value pointed to by a pointer.

E

EEPROM
Electrically erasable programmable read only memory.

embedded
Fixed within a surrounding system or unit. Also, engineered or intended to perform one specific
function in a specific environment.

endianness
The distinction of multibyte data storage convention. Little-endian stores the least-significant byte
first in memory. Big-endian stores the most-significant byte first in memory.

G

global variable
A variable that can be read or modified by any part of a program.

H

hysteresis
The delay between the switching action of a control and the effect. Can be enforced to prevent rapid
short-term reversals in the control's state.

index register

Also known as"X" or other names. The register used to hold a value that becomes afactor in an
Indexed addressing mode. Frequently used for arithmetic operations, though without as many
capabilities as an accumulator.

interrupt

A signal sent to the CPU to request service. Essentially a subroutine outside the normal flow of
execution, but with many extra considerations.

J

J1850
An intermodul e bus endorsed by the SAE (Society of Automotive Engineers).

L

local variable
A variable that can only be used by a specific module or modules in a program.

logical operator
Operators that perform logical operations on their operands. For example, ! , &, and | | .

Page 168

M

machine language
Binary code instructions that can be understood by a specific CPU.

mask
A group of bits designed to set or clear specific positions in another group of bits when used with a
logical operator.

maskable interrupt
Interrupts that software can activate and deactivate.

memory-mapped
A virtual address or device associated with an actual addressin
memory.

N

NOP
No operation. An instruction used to create a delay.

NOT
Logical negation. A 0 becomesal, and a1 becomesa0.

O

object code
Machine language instructions represented by binary numbers not in executable form. Object files
are linked together to produce executable files.

oper ator
A symbol that represents an operation to be performed on operands. For example, +, *,
and/ .

R
A Boolean operation that yields 1 if any of its operandsisal.

P

paging
A pageisalogical block of memory. A paged memory system uses a page address and a
displacement address to refer to a specific memory location.

port
A physical 1/0 connection.

program counter
Also PC. A register that holds the address of the next instruction to be executed. The program
counter isincremented after each byte of each instruction is fetched.

programmer's model
The description of registers that make up the microprocessor's visible interface. Includes the
registers such as the accumulator and index register, program counter, and stack pointer.

PROM
Programmabl e read-only memory. ROM that can be programmed.

Page 169

R

real time
A system that reacts at a speed commensurate with the time an actual event occurs.

register
A byte or word of memory that exists within the microprocessor proper. Registers directly interface
to the ALU and other microprocessor functionality, as opposed to externa RAM.

reset
To return the microcontroller to a known state. This operation may or may not alter processor
registers, and memory and peripheral states.

ROM
Read only memory.

ROMable
Code that will execute when placed in ROM.

RS-232
A standard serial communication port.

S

SCI

Also UART (Universal Asynchronous Receiver Transmitter). SCI is an asynchronous serial interface.
The timing of thissignal is compatible with the RS-232 serial standard, but the electrical
specification is board-level only.

SPI
Serial Peripheral Interface bus. A board-level serial peripheral bus.

scope
A variable's scopeis the areas of a program in which it can be
accessed.

shift
Also rotate, with subtle differences between them. Move the contents of a register bitwise to the | eft
or right.

side-effect
An unintentional change to avariable, or the work of instructions within afunction not directly
related to the calculation of its return value.

simulator
A program that recreates the same input and output behaviour as a hardware device.

stack
A section of RAM used to store temporary data. A stack is alast-in-first-out (L1FO) structure.

stack pointer
A register that contains the address of the top of the stack.

Page 170

static
A variable that is stored in areserved area of RAM instead of in the stack. The areareserved cannot
be used by other variables.

T

timer
A peripheral that counts independent of program execution.

U

UART
Universal asynchronous receiver transmitter. A seria -to-paralel and parallel -to-serial converter.

Vv

volatile

The quality of avalue that changes unexpectedly. The compiler cannot trust that the value of a
volatile variable remains constant over time, and therefore cannot perform certain optimizations.
Declared explicitly by the programmer, or determined by the compiler.

w

watchdog (timer)
Another name for computer operating properly circuitry.

I ndex

A
abs() 131
acknowledgement
asynchronous 26
synchronous 26
acos() 152
address spaces named 22
aht oi 16() 134
ahtoi 8() 134
arbitration 27
architecture
Harvard 24
von Neumann 23
asin() 152
asynchronous acknowledgement 26
atan() 152
atan2() 152
atoi 16() 134

atoi 8() 134

B
block 79
bus 18

C
ceil() 153

central processing unit See CPU

character data type 60

Page 171

constant 71
cos() 153
cosh() 153
CPU (Centra Processing Unit) 18
D
data type
character 60
doubl e 63

fl oat 63

integer 61

| ong 61

| ong doubl e 63
parameter 60

short 61

E
emulator 108

exp() 155

=
fabs() 154

floating point numbers 63
floor() 153

flowchart 9

FLT DI G157
FLT_EPSI LON 157
FLT_MANT_DI G157
FLT MAX 157

FLT _MAX 10 EXP 157
FLT MAX_EXP 157
FLT M N 157

FLT M N 10 _EXP 157
FLT_M N_EXP 157
FLT_RADI X 157
fnod() 154

frexp() 154

H

Harvard architecture 24

header file 63

Page 172

I

I 16t oa() 133

12C 147

| 8toa() 133

identifier
constant 71

integer datatype 61
assigning to afloat 63

interrupts 18, 26

K

keypad_debounce_del ay() 143

L

| abs() 131
LCD DATA 144
LCD E 144
LCD_RS 144
LCD RW144

| dexp() 155

LED 54
LI BRARY environment variable 127

log() 155
1 0g10() 155
| ong datatype 61

| ong doubl e datatype 63

M
maskable interrupts 26
math library 126

microcontroller 19

MICROWIRE 149

modf () 155

MW RE configuration symbols 150
mM re_bus_del ay() 150

mu re_di sabl e() 151

mu re_enabl e() 151

mv re_erase() 151

mM re_read() 151

mMre read all () 151

mvre wite() 151

N
nonmaskabl e interrupts 26

nonvectored arbitration 27
P

parameters 60

pow() 135,156
processor state 29

pseudocode 9

Q
gsort() 135

QSORT_COMPARE 135

R

radix 132, 133
RAM 58

rand() 131
randm ze() 131
real numbers 63

S

scopes 21

short datatype 61
simulator 108
sin() 153
sinh() 154
size t 136
sqrt() 156
srand() 131
stack 20

state diagram 9

Page 173

strcat () 138
strchr() 138
strecnp() 135,138
symbol table 59

synchronous acknowledgement 26

T

tan() 154

tanh() 154

timer 24

typographical conventions 4
bold 4
italic Letter Gothic font 4
Letter Gothic font 4

U
ui 16t oa() 132

ui 8toa() 132

V
variables 9
vectored arbitration 27

von Neumann architecture 23

W
watchdog timer 25
whil e 79

Page 180
What's on the CD-ROM

The CD-ROM the accompanies C Programming for Embedded Systems includes aworking
C6805 Code Development System tailored for the Motorola MC68705J1A microcontroller. The CD
also includes:

* A schematic for the thermostat project

* Test programs in source code form

» Complete source for the thermostat control software

* Librariesto support the test and control software

* Pictures of afinished thermostat system

 Supplementary documentation

System Rquirements

The software runs on Microsoft Windows 95, 98, and NT.
To Install the Contents of the CD-ROM

1. Place of CD-ROM in your drive, and choose Start|Run.. . .
2. Enter D: \ set up. exe, replacing "D:" for the drive ietter of your CD-ROM drive.

3. Follow the instructions given by the installer.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

