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PREFACE

My first contact with speech coding was in 1993 when I was a Field Application
Engineer at Texas Instruments, Inc. Soon after joining the company I was assigned
to design a demo prototype for the digital telephone answering device project.
Initially I was in charge of hardware including circuit design and printed circuit
board layout. The core of the board consisted of a microcontroller sending
commands to a mixed signal processor, where all the signal processing tasks—
including speech coding—were performed. In those days a major concern was the
excessive cost associated with random-access memory (RAM), and compressing
the digital speech before storing was almost a mandatory requirement, as this
greatly improved cost-effectiveness.

Soon after the hardware was finished, the focus switched to software (or firmware)
design, mainly dealing with the control of various on-board peripheral devices. My
true interest, however, was the program code inside the mixed signal processor,
which was developed by a separate team of “advanced’ engineers. I was told that
voice signals were compressed using a code-excited linear prediction (CELP)
algorithm. Also, it was possible to play back fixed announcement messages—such
as numbers and days of the week—with the messages stored in the linear prediction
coding (LPC) format. I had no idea what these algorithms were, nor how they
worked to compress speech. However, I was eager to learn the details, and decided
to go back to school and pursue a PhD with concentration in speech coding.

This book is the result of my personal experience as a researcher and practitioner
in the field of speech coding. Four years ago I decided to put in extra hours, usually
late nights and early mornings as well as weekends, to organize the literature in
speech coding and develop it into a logical presentation in terms of content and
terminology. Speech coding has evolved into a highly matured branch of signal

xiii
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processing, with deployment in a plethora of products, such as, cellular phones,
answering machines, communication devices, and more recently, voice over
internet protocol (VoIP). It is obvious that a thorough textbook is necessary
for students, professors, and engineering professionals to handle the subject
appropriately. My sincere hope is that the availability of a book that collects
many of the techniques used in speech coding and presents them in an accessible
fashion will create excitement and enthusiasm, ensuring continuous rapid advances
in the field.

Philosophy and Approach

Speech Coding Algorithms reflects the core subject of the book, since most coding
techniques are implemented as algorithms, or computational procedures performed
by a processor. However, this is by no means an exhaustive documentation of all
methods developed in this field; it is rather the study of the most successful
techniques, defined as those incorporated in a standard. By doing so we concentrate
our effort on understanding the most influential ideas, which is a rather efficient
manner to navigate this vast territory of knowledge.

In my own personal learning curve, I found that there is a different and
refreshing lesson to be found in every standard. To understand a new standard it
is often necessary to look back into the developed techniques adopted by past
standards or studies. Attempting to learn by reading the official documentation
describing the standard is very often a frustrating experience, since the assumption
made in preparing those materials is that the audience consists of experts in the
subject, and hence the logical order and justification of a given approach is
routinely omitted. Therefore the origin and the reason behind a certain practice
cannot be fully understood. This might not be a problem if one’s objective is to
implement the algorithm without comprehending it. However, for those researchers
eager to delve deeply into its roots, alternative reference sources must be explored,
which can be a strenuous and prolonged process. In this book I have summarized
the knowledge acquired over an extended period of time, with the intention of
filling the void between principles and implementations.

In writing this book, a balance is sought between theory and practice, and
between intuition and rigor. Theoretical ideas are included only if they are used to
solve practical problems, and thorough proofs are provided. Speech coding is
related to human perception, and therefore a degree of fuzziness exists, in the sense
that no absolute right or wrong can be established for certain situations; in other
words, no mathematical proofs are obtainable. In these cases, solutions are often
found and justified on an intuitive basis. For the most part, the book is meant to be
pragmatic, since the discussed techniques are widely used in industry.

Prerequisites

The minimum background required to understand the book is explained, with
reference to popular textbooks where the relevant subjects can be found.
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e Advanced calculus, including complex variables [Churchill and Brown, 1990].

e Discrete-time signals and systems, Fourier transforms, z-transforms, filtering,
and convolution [Oppenheim and Schafer, 1989; Stearns and Hush, 1990].

e Random variables and stochastic processes, expectation, probability, and
wide-sense stationarity [Papoulis, 1991; Peebles 1993].

e Linear algebra, including linear equations, matrices, and vectors [Strang,
1988].

e Experience with high-level programming using a language such as C.

The above list is covered in most undergraduate Electrical Engineering curricula;
with this background, the book is self-contained.

Organization

The text is divided into 19 chapters. Chapter 1 provides an overview of the subjects
covered, with references to various aspects of speech coding, standards, algorithms,
and comments on notation and terminology. Chapter 2 is a review of some signal
processing techniques, some are very general, but others are less known outside
speech coding literature. Chapter 3 contains some foundation for stochastic
processes and models, which are important for an understanding of the theoretical
aspects. Chapter 4 is about linear prediction, the integral part of almost all modern
speech coders. Chapter 5 reviews the various aspects of scalar quantization, which
are utilized routinely by many speech coding algorithms. One of the earliest digital
coding techniques is pulse code modulation (PCM); it and its variants are the topic
of Chapter 6. Chapter 7 deals with vector quantization, which has become more and
more important for the achievement of high efficiency in coding systems. Linear
prediction coefficients (LPC) are normally quantized for transmission as part of the
compressed bit-stream; Chapter 8 covers the various methods for scalar quantiza-
tion of these coefficients. One of the landmarks in low bit-rate speech coding is the
linear prediction coding (LPC) algorithm, discussed in Chapter 9. Chapter 10
is devoted to regular pulse excitation coders, with a thorough description of the
GSM 6.10 standard. Principles of code-excited linear prediction (CELP) are given
in Chapter 11, covering the various aspects of analysis-by-synthesis, signal
calculation, postfilter design, and efficiency. Chapters 12 and 13 present the
structure of two standardized CELP coders: FS1016 and 1S54, respectively; these
are both milestones in speech coding development. Chapter 14 is dedicated to
the G.728 low-delay CELP standard, with thorough explanations of strategies for
delay reduction and detailed structures of the coder. Vector quantization of LPC
is included in Chapter 15, representing a huge advance with respect to scalar
quantization techniques covered in Chapter 8, and methods used by various
standardized coders are analyzed. The highly influential algebraic CELP (ACELP)
algorithm is covered in Chapter 16, where several ACELP-based standards are
described, with focus on the G.729 standard. The mixed excitation linear prediction
(MELP) algorithm is discussed in Chapter 17, and is shown to be an improvement
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upon the LPC coder, covered in Chapter 9. Chapter 18 is devoted to the IS96
variable bit-rate CELP algorithm, which is a source-controlled multimode coder
with the operating mode selected by the input characteristics of the speech signal.
Finally, Chapter 19 is concerned with various methods to assess the quality of
speech signals, especially those processed by a speech coding algorithm.

The following table summarizes the chapters and their prerequisites.

Chapter Title Prerequisites

1 Introduction

2 Signal Processing Techniques 1

3 Stochastic Processes and Models

4 Linear Prediction 1,2,3

5 Scalar Quantization

6 Pulse Code Modulation and its Variants 4,5

7 Vector Quantization 5

8 Scalar Quantization of Linear Prediction Coefficients 4,5

9 Linear Prediction Coding 4,8
10 Regular-Pulse Excitation Coders 4,8
11 Code-Excited Linear Prediction 2,4
12 The Federal Standard Version of CELP 2,8, 11
13 Vector Sum Excited Linear Prediction 8, 12
14 Low-Delay CELP 4,11
15 Vector Quantization of Linear Prediction Coefficients 7,8
16 Algebraic CELP 7,12, 15
17 Mixed Excitation Linear Prediction 9, 15
18 Source-Controlled Variable Bit-Rate CELP 11
19 Speech Quality Assessment 1
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CHAPTER 1

INTRODUCTION

In general, speech coding is a procedure to represent a digitized speech signal using
as few bits as possible, maintaining at the same time a reasonable level of speech
quality. A not so popular name having the same meaning is speech compression.
Speech coding has matured to the point where it now constitutes an important appli-
cation area of signal processing. Due to the increasing demand for speech commu-
nication, speech coding technology has received augmenting levels of interest from
the research, standardization, and business communities. Advances in microelectro-
nics and the vast availability of low-cost programmable processors and dedicated
chips have enabled rapid technology transfer from research to product develop-
ment; this encourages the research community to investigate alternative schemes
for speech coding, with the objectives of overcoming deficiencies and limitations.
The standardization community pursues the establishment of standard speech cod-
ing methods for various applications that will be widely accepted and implemented
by the industry. The business communities capitalize on the ever-increasing
demand and opportunities in the consumer, corporate, and network environments
for speech processing products.

Speech coding is performed using numerous steps or operations specified as an
algorithm. An algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values,
as output. An algorithm is thus a sequence of computational steps that transform
the input into the output. Many signal processing problems—including speech
coding—can be formulated as a well-specified computational problem; hence, a
particular coding scheme can be defined as an algorithm. In general, an algorithm
is specified with a set of instructions, providing the computational steps needed to
perform a task. With these instructions, a computer or processor can execute them

1
Speech Coding Algorithms: Foundation and Evolution of Standardized Coders. Wai C. Chu
Copyright O 2003 John Wiley & Sons, Inc.
ISBN: 0-471-37312-5



2 INTRODUCTION

so as to complete the coding task. The instructions can also be translated to the
structure of a digital circuit, carrying out the computation directly at the hardware
level.

The purpose of this book is to explain the theoretical issues and implementa-
tional techniques related to the fascinating field of speech coding. The topics of dis-
cussion are focused on some of the well-established and widely used speech coding
standards. By studying the most successful standards and understanding their prin-
ciples, performance, and limitations, it is possible to apply a particular technique to
a given situation according to the underlying constraints—with the ultimate goal
being the development of next-generation algorithms, with improvements in all
aspects.

This chapter is organized as follows: an overview of speech coding is provided
first, with the structure, properties, and applications of speech coders explained; the
different classes of speech coders are described next, followed by speech produc-
tion and modeling, covering properties of speech signals and a very simple coding
system. High-level explanation of the human auditory system is given, where the
system properties are used to develop efficient coding schemes. Activities of stan-
dard bodies and many standardized coders are discussed in the next section, fol-
lowed by issues related to analysis and implementation of algorithms. A brief
summary is given at the end of the chapter.

1.1 OVERVIEW OF SPEECH CODING

This section describes the structure, properties, and applications of speech coding
technology.

Structure of a Speech Coding System

Figure 1.1 shows the block diagram of a speech coding system. The continuous-
time analog speech signal from a given source is digitized by a standard connection

Speech_ ! Filter || Sampler |-p! A/D  |-p! Source || Channel
source converter encoder encoder
—p»{ Channel

_p| Channel || Source || D/A [p| Filter |5 Output
decoder decoder converter speech

Figure 1.1 Block diagram of a speech coding system.
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of filter (eliminates aliasing), sampler (discrete-time conversion), and analog-to-
digital converter (uniform quantization is assumed). The output is a discrete-time
speech signal whose sample values are also discretized. This signal is referred to as
the digital speech.

Traditionally, most speech coding systems were designed to support telecommu-
nication applications, with the frequency contents limited between 300 and
3400 Hz. According to the Nyquist theorem, the sampling frequency must be at
least twice the bandwidth of the continuous-time signal in order to avoid aliasing.
A value of 8 kHz is commonly selected as the standard sampling frequency for
speech signals. To convert the analog samples to a digital format using uniform
quantization and maintaining toll quality [Jayant and Noll, 1984]—the digital
speech will be roughly indistinguishable from the bandlimited input—more than
8 bits/sample is necessary. The use of 16 bits/sample provides a quality that is con-
sidered high. Throughout this book, the following parameters are assumed for the
digital speech signal:

Sampling frequency = 8 kHz,
Number of bits per sample = 16.

This gives rise to
Bit-rate = 8 kHz - 16 bits = 128 kbps.

The above bit-rate, also known as input bit-rate, is what the source encoder attempts
to reduce (Figure 1.1). The output of the source encoder represents the encoded
digital speech and in general has substantially lower bit-rate than the input. The
linear prediction coding algorithm (Chapter 9), for instance, has an output rate of
2.4 kbps, a reduction of more than 53 times with respect to the input.

The encoded digital speech data is further processed by the channel encoder,
providing error protection to the bit-stream before transmission to the communica-
tion channel, where various noise and interference can sabotage the reliability of the
transmitted data. Even though in Figure 1.1 the source encoder and channel encoder
are separated, it is also possible to jointly implement them so that source and chan-
nel encoding are done in a single step.

The channel decoder processes the error-protected data to recover the encoded
data, which is then passed to the source decoder to generate the output digital
speech signal, having the original rate. This output digital speech signal is
converted to continuous-time analog form through standard procedures: digital-
to-analog conversion followed by antialiasing filtering.

In this book, the emphasis is on design of the source encoder and source decoder.
For simplicity, they are referred to as the encoder and decoder, respectively
(Figure 1.2). The input speech (a discrete-time signal having a bit-rate of 128 kbps)
enters the encoder to produce the encoded bit-stream, or compressed speech
data. Bit-rate of the bit-stream is normally much lower than that of the input
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Figure 1.2 Block diagram of a speech coder.

speech. The decoder takes the encoded bit-stream as its input to produce the output
speech signal, which is a discrete-time signal having the same rate as the
input speech. As we will see later in this book, many diverse approaches can be
used to design the encoder/decoder pair. Different methods provide differing speech
quality and bit-rate, as well as implementational complexity.

The encoder/decoder structure represented in Figure 1.2 is known as a speech
coder, where the input speech is encoded to produce a low-rate bit-stream. This
bit-stream is input to the decoder, which constructs an approximation of the original
signal.

Desirable Properties of a Speech Coder

The main goal of speech coding is either to maximize the perceived quality at a
particular bit-rate, or to minimize the bit-rate for a particular perceptual quality.
The appropriate bit-rate at which speech should be transmitted or stored depends
on the cost of transmission or storage, the cost of coding (compressing) the digital
speech signal, and the speech quality requirements. In almost all speech coders, the
reconstructed signal differs from the original one. The bit-rate is reduced by repre-
senting the speech signal (or parameters of a speech production model) with
reduced precision and by removing inherent redundancy from the signal, resulting
therefore in a lossy coding scheme. Desirable properties of a speech coder include:

e Low Bit-Rate. The lower the bit-rate of the encoded bit-stream, the less
bandwidth is required for transmission, leading to a more efficient system.
This requirement is in constant conflict with other good properties of the
system, such as speech quality. In practice, a trade-off is found to satisfy the
necessity of a given application.

e High Speech Quality. The decoded speech should have a quality acceptable
for the target application. There are many dimensions in quality perception,
including intelligibility, naturalness, pleasantness, and speaker recognizabil-
ity. See Chapter 19 for a thorough discussion on speech quality and techniques
to assess it.

e Robustness Across Different Speakers / Languages. The underlying technique
of the speech coder should be general enough to model different speakers
(adult male, adult female, and children) and different languages adequately.
Note that this is not a trivial task, since each voice signal has its unique
characteristics.
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e Robustness in the Presence of Channel Errors. This is crucial for digital
communication systems where channel errors will have a negative impact on
speech quality.

o Good Performance on Nonspeech Signals (i.e., telephone signaling). In a
typical telecommunication system, other signals might be present besides
speech. Signaling tones such as dual-tone multifrequency (DTMF) in keypad
dialing and music are often encountered. Even though low bit-rate speech
coders might not be able to reproduce all signals faithfully, it should not
generate annoying artifacts when facing these alternate signals.

o Low Memory Size and Low Computational Complexity. In order for the
speech coder to be practicable, costs associated with its implementation must
be low; these include the amount of memory needed to support its operation,
as well as computational demand. Speech coding researchers spend a great
deal of effort to find out the most efficient realizations.

e Low Coding Delay. In the process of speech encoding and decoding, delay is
inevitably introduced, which is the time shift between the input speech of the
encoder with respect to the output speech of the decoder. An excessive delay
creates problems with real-time two-way conversations, where the parties tend
to “talk over” each other. Thorough discussion on coding delay is given next.

About Coding Delay

Consider the delay measured using the topology shown in Figure 1.3. The delay
obtained in this way is known as coding delay, or one-way coding delay [Chen,
1995], which is given by the elapsed time from the instant a speech sample arrives
at the encoder input to the instant when the same speech sample appears at the
decoder output. The definition does not consider exterior factors, such as commu-
nication distance or equipment, which are not controllable by the algorithm
designer. Based on the definition, the coding delay can be decomposed into four
major components (see Figure 1.4):

1. Encoder Buffering Delay. Many speech encoders require the collection of a
certain number of samples before processing. For instance, typical linear prediction
(LP)-based coders need to gather one frame of samples ranging from 160 to 240
samples, or 20 to 30 ms, before proceeding with the actual encoding process.

Synthetic
Input Bit-stream speech
speech »| Encoder »| Decoder »| Measure
time |  Delay
shift

A 4

Figure 1.3 System for delay measurement.
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Figure 1.4 Illustration of the components of coding delay.

2. Encoder Processing Delay. The encoder consumes a certain amount of time
to process the buffered data and construct the bit-stream. This delay can be
shortened by increasing the computational power of the underlying platform and
by utilizing efficient algorithms. The processing delay must be shorter than the
buffering delay, otherwise the encoder will not be able to handle data from the
next frame.

3. Transmission Delay. Once the encoder finishes processing one frame of input
samples, the resultant bits representing the compressed bit-stream are transmitted to
the decoder. Many transmission modes are possible and the choice depends on the
particular system requirements. For illustration purposes, we will consider only two
transmission modes: constant and burst. Figure 1.5 depicts the situations for these
modes.

In constant mode the bits are transmitted synchronously at a fixed rate, which is
given by the number of bits corresponding to one frame divided by the length of the
frame. Under this mode, transmission delay is equal to encoder buffering delay: bits
associated with the frame are fully transmitted at the instant when bits of the next
frame are available. This mode of operation is dominant for most classical digital
communication systems, such as wired telephone networks.

Encoder buffering delay

Number A
of bits /

Time

\4

p Time

Figure 1.5 Plots of bit-stream transmission pattern for constant mode (fop) and burst mode
(bottom).
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In burst mode all bits associated with a particular frame are completely sent
within an interval that is shorter than the encoder buffering delay. In the extreme
case, all bits are released right after they become available, leading to a negligibly
small transmission delay. This mode is inherent to packetized network and the
internet, where data are grouped and sent as packets.

Transmission delay is also known as decoder buffering delay, since it is the
amount of time that the decoder must wait in order to collect all bits related to a
particular frame so as to start the decoding process.

4. Decoder Processing Delay. This is the time required to decode in order to
produce one frame of synthetic speech. As for the case of the encoder processing
delay, its upper limit is given by the encoder buffering delay, since a whole frame of
synthetic speech data must be completed within this time frame in order to be ready
for the next frame.

As stated earlier, one of the good attributes of a speech coder is measured by its
coding delay, given by the sum of the four described components. As an algorithm
designer, the task is to reduce the four delay components to a minimum. In general,
the encoder buffering delay has the greatest impact: it determines the upper limit for
the rest of the delay components. A long encoding buffer enables a more thorough
evaluation of the signal properties, leading to higher coding efficiency and hence
lower bit-rate. This is the reason why most low bit-rate coders often have high
delay. Thus, coding delay in most cases is a trade-off with respect to the achievable
bit-rate.

In the ideal case where infinite computational power is available, the processing
delays (encoder and decoder) can be made negligible with respect to the encoder
buffering delay. Under this assumption, the coding delay is equal to two times the
encoder buffering delay if the system is transmitting in constant mode. For burst
mode, the shortest possible coding delay is equal to the encoder buffering delay,
where it is assumed that all output bits from the encoder are sent instantaneously
to the decoder. These values are idealistic in the sense that it is achievable only if
the processing delay is zero or the computational power is infinite: the underlying
platform can find the results instantly once the required amount of data is collected.
These ideal values are frequently used for benchmarking purposes, since they repre-
sent the lower bound of the coding delay. In the simplest form of delay comparison
among coders, only the encoder buffering delay is cited. In practice, a reasonable
estimate of the coding delay is to take 2.5 to 3 and 1.5 to 2.5 times the frame
interval (encoder buffering delay) for constant mode transmission and burst
mode transmission, respectively.

Applications of Speech Coders

Speech coding has an important role in modern voice-enabled technology, particu-
larly for digital speech communication, where quality and complexity have a direct
impact on the marketability and cost of the underlying products or services. There
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are many speech coding standards designed to suit the need of a given application.
Some examples are as follows:

e FSI015 LPC (Chapter 9). This coder was created in 1984 to provide secure
communication in military applications. On a battlefield, the messages must
be sent in such a way that the enemy cannot understand them. By deploying a
secret coding scheme, the transmitted messages are safeguarded.

o TIA IS54 VSELP (Chapter 13). This coder was standardized in 1989 for time
division multiple access (TDMA) digital cellular telephony in North America.

o ETSI AMR ACELP (Chapter 16). This coder was standardized in 1999 as part
of the Universal Mobile Telecommunications System (UMTS) linked to the
3rd Generation Partnership Project (3GPP).

More recently, with the explosive growth of the internet, the potential market of
voice over internet protocol (voice over IP, or VoIP) has lured many companies to
develop products and services around the concept. In sharp contrast with conven-
tional telephony, the internet carries voice traffic as data packets over a packet-
switched data network instead of a synchronous stream of binary data. To residen-
tial customers, a major benefit of internet telephony is lower bills for long-distance
voice calls. To corporations, VoIP allows integration of data and voice into a single
network, which is translated into substantial cost saving and administration effi-
ciency. According to one study [Thomsen and Jani, 2000], VoIP traffic grew by
almost 900% from 1998 to 1999 and is projected to grow another 5000% by
2004. Speech coding will play a central role in this revolution.

Another smaller-scale area of application includes voice storage or digital
recording, with some outstanding representatives being the digital telephone
answering device (DTAD) and solid-state recorders. For these products to be com-
petitive in the marketplace, their costs must be driven to a minimum. By compres-
sing the digital speech signal before storage, longer-duration voice messages can
be recorded for a given amount of memory chips, leading to improved cost
effectiveness.

Techniques developed for speech coding have also been applied to other
application areas such as speech synthesis, audio coding, speech recognition, and
speaker recognition. Due to the weighty position that speech coding occupies in
modern technology, it will remain in the center of attention for years to come.

1.2 CLASSIFICATION OF SPEECH CODERS

The task of classifying modern speech coders is not simple and is often confusing,
due to the lack of clear separation between various approaches. This section pre-
sents some existent classification criteria. Readers must bear in mind that this is
a constantly evolving area and new classes of coders will be created as alternative
techniques are introduced.
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TABLE 1.1 Classification of Speech Coders According

to Bit-Rate
Category Bit-Rate Range
High bit-rate >15 kbps
Medium bit-rate 5 to 15 kbps
Low bit-rate 2 to 5 kbps
Very low bit-rate <2 kbps

Classification by Bit-Rate

All speech coders are designed to reduce the reference bit-rate of 128 kbps toward
lower values. Depending on the bit-rate of the encoded bit-stream, it is common to
classify the speech coders according to Table 1.1. As we will see later in this chap-
ter and throughout the book, different coding techniques lead to different bit-rates.
A given method works fine at a certain bit-rate range, but the quality of the decoded
speech will drop drastically if it is decreased below a certain threshold. The mini-
mum bit-rate that speech coders will achieve is limited by the information content
of the speech signal. Judging from the recoverable message rate from a linguistic
perspective for typical speech signals, it is reasonable to say that the minimum lies
somewhere around 100 bps. Current coders can produce good quality at 2 kbps and
above, suggesting that there is plenty of room for future improvement.

Classification by Coding Techniques
Waveform Coders

An attempt is made to preserve the original shape of the signal waveform, and
hence the resultant coders can generally be applied to any signal source. These
coders are better suited for high bit-rate coding, since performance drops sharply
with decreasing bit-rate. In practice, these coders work best at a bit-rate of
32 kbps and higher.

Signal-to-noise ratio (SNR, Chapter 19) can be utilized to measure the quality of
waveform coders. Some examples of this class include various kinds of pulse code
modulation (PCM, Chapter 6) and adaptive differential PCM (ADPCM).

Parametric Coders

Within the framework of parametric coders, the speech signal is assumed to be gen-
erated from a model, which is controlled by some parameters. During encoding,
parameters of the model are estimated from the input speech signal, with the para-
meters transmitted as the encoded bit-stream. This type of coder makes no attempt
to preserve the original shape of the waveform, and hence SNR is a useless quality
measure. Perceptual quality of the decoded speech is directly related to the accu-
racy and sophistication of the underlying model. Due to this limitation, the coder is
signal specific, having poor performance for nonspeech signals.
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There are several proposed models in the literature. The most successful, how-
ever, is based on linear prediction. In this approach, the human speech production
mechanism is summarized using a time-varying filter (Section 1.3), with the coeffi-
cients of the filter found using the linear prediction analysis procedure (Chapter 4).
This is the only type of parametric coder considered in this book.

This class of coders works well for low bit-rate. Increasing the bit-rate normally
does not translate into better quality, since it is restricted by the chosen model. Typi-
cal bit-rate is in the range of 2 to 5 kbps. Example coders of this class include linear
prediction coding (LPC, Chapter 9) and mixed excitation linear prediction (MELP,
Chapter 17).

Hybrid Coders

As its name implies, a hybrid coder combines the strength of a waveform coder
with that of a parametric coder. Like a parametric coder, it relies on a speech pro-
duction model; during encoding, parameters of the model are located. Additional
parameters of the model are optimized in such a way that the decoded speech is
as close as possible to the original waveform, with the closeness often measured
by a perceptually weighted error signal. As in waveform coders, an attempt is
made to match the original signal with the decoded signal in the time domain.
This class dominates the medium bit-rate coders, with the code-excited linear
prediction (CELP, Chapter 11) algorithm and its variants the most outstanding
representatives. From a technical perspective, the difference between a hybrid
coder and a parametric coder is that the former attempts to quantize or represent
the excitation signal to the speech production model, which is transmitted as part
of the encoded bit-stream. The latter, however, achieves low bit-rate by discarding
all detail information of the excitation signal; only coarse parameters are extracted.
A hybrid coder tends to behave like a waveform coder for high bit-rate, and like
a parametric coder at low bit-rate, with fair to good quality for medium bit-rate.

Single-Mode and Multimode Coders

Single-mode coders are those that apply a specific, fixed encoding mechanism at all
times, leading to a constant bit-rate for the encoded bit-stream. Examples of such
coders are pulse code modulation (PCM, Chapter 6) and regular-pulse-excited long-
term prediction (RPE-LTP, Chapter 10).

Multimode coders were invented to take advantage of the dynamic nature of the
speech signal, and to adapt to the time-varying network conditions. In this config-
uration, one of several distinct coding modes is selected, with the selection done by
source control, when it is based on the local statistics of the input speech, or net-
work control, when the switching obeys some external commands in response to
network needs or channel conditions.

Figure 1.6 shows the block diagram of a multimode coder with source control. In
this system several coding modes are selected according to the properties of the
signal at a given interval of time. In an open-loop system, the modes are selected
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Figure 1.6 Encoder (fop) and decoder (bottom) of a source-controlled multimode coder.

by solely analyzing the input signal. While in a closed-loop approach, encoded out-
comes of each mode are taken into account in the final decision. The mode selection
information is transmitted as part of the bit-stream, which is used by the decoder to
select the proper mode.

Most multimode coders have variable bit-rate, where each mode has a particular,
fixed value. Keeping the bit-rate varied allows more flexibility, leading to improved
efficiency and a significant reduction in average bit-rate. Examples of multimode
coders include the TIA 1S96 variable bit-rate CELP coder (Chapter 18), which is
source controlled in nature; and the ETSI AMR ACELP coder (Chapter 16), which
is a network-controlled version.

1.3 SPEECH PRODUCTION AND MODELING

In this section, the origin and types of speech signals are explained, followed by the
modeling of the speech production mechanism. Principles of parametric speech
coding are illustrated using a simple example, with the general structure of speech
coders described at the end.

Origin of Speech Signals

The speech waveform is a sound pressure wave originating from controlled
movements of anatomical structures making up the human speech production
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Figure 1.7 Diagram of the human speech production system.

system. A simplified structural view is shown in Figure 1.7. Speech is basically
generated as an acoustic wave that is radiated from the nostrils and the mouth
when air is expelled from the lungs with the resulting flow of air perturbed by
the constrictions inside the body. It is useful to interpret speech production in terms
of acoustic filtering. The three main cavities of the speech production system are
nasal, oral, and pharyngeal forming the main acoustic filter. The filter is excited
by the air from the lungs and is loaded at its main output by a radiation impedance
associated with the lips.

The vocal tract refers to the pharyngeal and oral cavities grouped together. The
nasal tract begins at the velum and ends at the nostrils of the nose. When the velum
is lowered, the nasal tract is acoustically coupled to the vocal tract to produce the
nasal sounds of speech.

The form and shape of the vocal and nasal tracts change continuously with time,
creating an acoustic filter with time-varying frequency response. As air from the
lungs travels through the tracts, the frequency spectrum is shaped by the frequency
selectivity of these tracts. The resonance frequencies of the vocal tract tube are
called formant frequencies or simply formants, which depend on the shape and
dimensions of the vocal tract.

Inside the larynx is one of the most important components of the speech produc-
tion system—the vocal cords. The location of the cords is at the height of the
“Adam’s apple”—the protrusion in the front of the neck for most adult males.
Vocal cords are a pair of elastic bands of muscle and mucous membrane
that open and close rapidly during speech production. The speed by which the cords
open and close is unique for each individual and define the feature and personality
of the particular voice.
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Classification of Speech Signals

Roughly speaking, a speech signal can be classified as voiced or unvoiced. Voiced
sounds are generated when the vocal cords vibrate in such a way that the flow of air
from the lungs is interrupted periodically, creating a sequence of pulses to excite the
vocal tract. With the vocal cords stationary, the turbulence created by the flow of air
passing through a constriction of the vocal tract generates unvoiced sounds. In time
domain, voiced sound is characterized by strong periodicity present in the signal,
with the fundamental frequency referred to as the pitch frequency, or simply pitch.
For men, pitch ranges from 50 to 250 Hz, while for women the range usually
falls somewhere in the interval of 120 to 500 Hz. Unvoiced sounds, on the other
hand, do not display any type of periodicity and are essentially random in nature.

To experiment with voice and unvoiced sounds and the involvement of the vocal
cords, try placing your fingers on the front of your neck while you speak. Consider
the “fa” sound as in ‘““father.” First, attempt to pronounce for a few seconds the “f”
sound alone, which is a consonant in American English. Next, pronounce “a” for a
few seconds, which is a vowel. How do your fingers feel for the two cases? In the
first case you shouldn’t feel any vibration in the front of your neck; while in the
second case some pulsation is detected. Speak louder if you have problems feeling
it. The oscillation is associated with the activities of the vocal cords and is present
for the pronunciation of vowels.

Figure 1.8 shows an example speech waveform uttered by a male subject, where
both voiced and unvoiced signals are present. It is possible to appreciate from this
example the nonstationarity nature of speech signals, where statistics of the signal
change constantly with time. We see that for the voiced frame, there is clear peri-
odicity in time domain, where the signal repeats itself in a quasiperiodic pattern;
and also in frequency domain, where a harmonic structure is observed. Note that
the spectrum indicates dominant low-frequency contents, due mainly to the rela-
tively low value of the pitch frequency. For the unvoiced frame, however, the signal
is essentially random. From the spectrum we can see that there is a significant
amount of high-frequency components, corresponding to rapidly changing signals.

It is necessary to indicate that the voiced / unvoiced classification might not be
absolutely clear for all frames, since during transitions (voiced to unvoiced or vice
versa) there will be randomness and quasiperiodicity that is difficult to judge as
strictly voiced or strictly unvoiced.

For most speech coders, the signal is processed on a frame-by-frame basis,
where a frame consists of a finite number of samples. The length of the frame is
selected in such a way that the statistics of the signal remain almost constant within
the interval. This length is typically between 20 and 30 ms, or 160 and 240 samples
for 8-kHz sampling.

Modeling the Speech Production System

In general terms, a model is a simplified representation of the real world. It is
designed to help us better understand the world in which we live and, ultimately,
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Figure 1.8 Example of speech waveform uttered by a male subject about the word
“problems.” The expanded views of a voiced frame and an unvoiced frame are shown, with
the magnitude of the Fourier transorm plotted. The frame is 256 samples in length.

to duplicate many of the behaviors and characteristics of real-life phenomenon.
However, it is incorrect to assume that the model and the real world that it repre-
sents are identical in every way. In order for the model to be successful, it must be
able to replicate partially or completely the behaviors of the particular object or fact
that it intends to capture or simulate. The model may be a physical one (i.e., a
model airplane) or it may be a mathematical one, such as a formula.

The human speech production system can be modeled using a rather simple
structure: the lungs—generating the air or energy to excite the vocal tract—are
represented by a white noise source. The acoustic path inside the body with all
its components is associated with a time-varying filter. The concept is illustrated
in Figure 1.9. This simple model is indeed the core structure of many speech coding
algorithms, as can be seen later in this book. By using a system identification
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Figure 1.9 Correspondence between the human speech production system with a simplified
system based on time-varying filter.

technique called linear prediction (Chapter 4), it is possible to estimate the para-
meters of the time-varying filter from the observed signal.

The assumption of the model is that the energy distribution of the speech signal
in frequency domain is totally due to the time-varying filter, with the lungs produ-
cing an excitation signal having a flat-spectrum white noise. This model is rather
efficient and many analytical tools have already been developed around the concept.
The idea is the well-known autoregressive model, reviewed in Chapter 3.

A Glimpse of Parametric Speech Coding

Consider the speech frame corresponding to an unvoiced segment with 256 samples
of Figure 1.8. Applying the samples of the frame to a linear prediction analysis pro-
cedure (Chapter 4), the coefficients of an associated filter are found. This filter has
system function

1
TS
with the coefficients denoted by a;, i = 1 to 10.

White noise samples are created using a unit variance Gaussian random number
generator; when passing these samples (with appropriate scaling) to the filter, the
output signal is obtained. Figure 1.10 compares the original speech frame, with two
realizations of filtered white noise. As we can see, there is no time-domain corre-
spondence between the three cases. However, when these three signal frames are
played back to a human listener (converted to sound waves), the perception is
almost the same!

How could this be? After all, they look so different in the time domain. The
secret lies in the fact that they all have a similar magnitude spectrum, as plotted
in Figure 1.11. As we can see, the frequency contents are similar, and since the
human auditory system is not very sensitive toward phase differences, all three
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Figure 1.10 Comparison between an original unvoiced frame (fop) and two synthesized
frames.

frames sound almost identical (more on this in the next section). The original
frequency spectrum is captured by the filter, with all its coefficients. Thus, the
flat-spectrum white noise is shaped by the filter so as to produce signals having a
spectrum similar to the original speech. Hence, linear prediction analysis is also
known as a spectrum estimation technique.
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Figure 1.11 Comparison between the magnitude of the DFT for the three signal frames of
Figure 1.10.
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How can we use this trick for speech coding? As we know, the objective is to
represent the speech frame with a lower number of bits. The original number of bits
for the speech frame is

Original number of bits = 256 samples - 16 bits/sample = 4096 bits.

As indicated previously, by finding the coefficients of the filter using linear pre-
diction analysis, it is possible to generate signal frames having similar frequency
contents as the original, with almost identical sounds. Therefore, the frame can
be represented alternatively using ten filter coefficients, plus a scale factor. The
scale factor is found from the power level of the original frame. As we will see later
in the book, the set of coefficients can be represented with less than 40 bits, while
5 bits are good enough for the scale factor. This leads to

Alternative number of bits = 40 bits + 5 bits = 45 bits.

Therefore, we have achieved an order of magnitude saving in terms of the
number of required bits by using this alternative representation, fulfilling in the
process our objective of bit reduction. This simple speech coding procedure is
summarized below.

e FEncoding
Derive the filter coefficients from the speech frame.
Derive the scale factor from the speech frame.
Transmit filter coefficients and scale factor to the decoder.
e Decoding
Generate white noise sequence.
Multiply the white noise samples by the scale factor.

Construct the filter using the coefficients from the encoder and filter the scaled
white noise sequence. Output speech is the output of the filter.

By repeating the above procedures for every speech frame, a time-varying filter
is created, since its coefficients are changed from frame to frame. Note that this
overly simplistic scheme is for illustration only: much more elaboration is neces-
sary to make the method useful in practice. However, the core ideas for many
speech coders are not far from this uncomplicated example, as we will see in later
chapters.

General Structure of a Speech Coder

Figure 1.12 shows the generic block diagrams of a speech encoder and decoder. For
the encoder, the input speech is processed and analyzed so as to extract a number of
parameters representing the frame under consideration. These parameters are
encoded or quantized with the binary indices sent as the compressed bit-stream
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Figure 1.12

(see Chapter 5 for concepts of quantization). As we can see, the indices are packed
together to form the bit-stream; that is, they are placed according to certain prede-
termined order and transmitted to the decoder.

The speech decoder unpacks the bit-stream, where the recovered binary indices
are directed to the corresponding parameter decoder so as to obtain the quantized
parameters. These decoded parameters are combined and processed to generate the
synthetic speech.

Similar block diagrams as in Figure 1.12 will be encountered many times in later
chapters. It is the responsibility of the algorithm designer to decide the functionality
and features of the various processing, analysis, and quantization blocks. Their
choices will determine the performance and characteristic of the speech coder.

1.4 SOME PROPERTIES OF THE HUMAN AUDITORY SYSTEM

The way that the human auditory system works plays an important role in speech
coding systems design. By understanding how sounds are perceived, resources in
the coding system can be allocated in the most efficient manner, leading to
improved cost effectiveness. In subsequent chapters we will see that many speech
coding standards are tailored to take advantage of the properties of the human audi-
tory system. This section provides an overview of the subject, summarizing several
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topics including the structure of the human auditory system, absolute threshold,
masking, and phase perception.

Structure of the Human Auditory System

A simplified diagram of the human auditory system appears in Figure 1.13. The
pinna (or informally the ear) is the surface surrounding the canal in which sound
is funneled. Sound waves are guided by the canal toward the eardrum—a mem-
brane that acts as an acoustic-to-mechanic transducer. The sound waves are then
translated into mechanical vibrations that are passed to the cochlea through a series
of bones known as the ossicles. Presence of the ossicles improves sound propaga-
tion by reducing the amount of reflection and is accomplished by the principle of
impedance matching.

The cochlea is a rigid snail-shaped organ filled with fluid. Mechanical oscilla-
tions impinging on the ossicles cause an internal membrane, known as the basilar
membrane, to vibrate at various frequencies. The basilar membrane is characterized
by a set of frequency responses at different points along the membrane; and a sim-
ple modeling technique is to use a bank of filters to describe its behavior. Motion
along the basilar membrane is sensed by the inner hair cells and causes neural
activities that are transmitted to the brain through the auditory nerve.

The different points along the basilar membrane react differently depending on
the frequencies of the incoming sound waves. Thus, hair cells located at different
positions along the membrane are excited by sounds of different frequencies.
The neurons that contact the hair cells and transmit the excitation to higher auditory
centers maintain the frequency specificity. Due to this arrangement, the human
auditory system behaves very much like a frequency analyzer; and system
characterization is simpler if done in the frequency domain.

i Audilory

Ossicles nerve

\i*z _J

;,

Eardrum
Canul
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Figure 1.13 Diagram of the human auditory system.
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Figure 1.14 A typical absolute threshold curve.

Absolute Threshold

The absolute threshold of a sound is the minimum detectable level of that sound in
the absence of any other external sounds. That is, it characterizes the amount of
energy needed in a pure tone such that it can be detected by a listener in a noiseless
environment. Figure 1.14 shows a typical absolute threshold curve, where the hor-
izontal axis is frequency measured in hertz (Hz); while the vertical axis is the abso-
lute threshold in decibels (dB), related to a reference intensity of 10~'% watts per
square meter—a standard quantity for sound intensity measurement.

Note that the absolute threshold curve, as shown in Figure 1.14, reflects only the
average behavior; the actual shape varies from person to person and is measured by
presenting a tone of a certain frequency to a subject, with the intensity being tuned
until the subject no longer perceive its presence. By repeating the measurements
using a large number of frequency values, the absolute threshold curve results.

As we can see, human beings tend to be more sensitive toward frequencies in the
range of 1 to 4 kHz, while thresholds increase rapidly at very high and very low
frequencies. It is commonly accepted that below 20 Hz and above 20 kHz, the
auditory system is essentially dysfunctional. These characteristics are due to the
structures of the human auditory system: acoustic selectivity of the pinna and canal,
mechanical properties of the eardrum and ossicles, elasticity of the basilar
membrane, and so on.

We can take advantage of the absolute threshold curve in speech coder design.
Some approaches are the following:

e Any signal with an intensity below the absolute threshold need not be
considered, since it does not have any impact on the final quality of the coder.

e More resources should be allocated for the representation of signals within the
most sensitive frequency range, roughly from 1 to 4 kHz, since distortions in
this range are more noticeable.

Masking

Masking refers to the phenomenon where one sound is rendered inaudible because
of the presence of other sounds. The presence of a single tone, for instance, can
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Figure 1.15 Example of the masking curve associated with a single tone. Based on the
masking curve, examples of audible (0) and inaudible (o) tones are shown, which depend on
whether the power is above or below the masking curve, respectively.

mask the neighboring signals—with the masking capability inversely proportional
to the absolute difference in frequency. Figure 1.15 shows an example where a sin-
gle tone is present; the tone generates a masking curve that causes any signal with
power below it to become imperceptible. In general, masking capability increases
with the intensity of the reference signal, or the single tone in this case.

The features of the masking curve depend on each individual and can be mea-
sured in practice by putting a subject in a laboratory environment and asking for
his/her perception of a certain sound tuned to some amplitude and frequency values
in the presence of a reference tone.

Masking can be explored for speech coding developments. For instance, analyz-
ing the spectral contents of a signal, it is possible to locate the frequency regions
that are most susceptible to distortion. An example is shown in Figure 1.16. In this
case a typical spectrum is shown, which consists of a series of high- and low-power
regions, referred to as peaks and valleys, respectively. An associated masking curve
exists that follows the ups and downs of the original spectrum. Signals with power
below the masking curve are inaudible; thus, in general, peaks can tolerate more
distortion or noise than valleys.

Power
Signal spectrum

Masking curve

Frequency

Figure 1.16 Example of a signal spectrum and the associated masking curve. Dark areas
correspond to regions with relatively little tolerance to distortion, while clear areas
correspond to regions with relatively high tolerance to distortion.
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A well-designed coding scheme should ensure that the valleys are well preserved
or relatively free of distortions; while the peaks can tolerate a higher amount of
noise. By following this principle, effectiveness of the coding algorithm is
improved, leading to enhanced output quality.

As we will see in Chapter 11, coders obeying the principle of code-excited linear
prediction (CELP) rely on the perceptual weighting filter to weight the error spec-
trum during encoding; frequency response of the filter is time-varying and depends
on the original spectrum of the input signal. The mechanism is highly efficient and
is widely applied in practice.

Phase Perception

Modern speech coding technologies rely heavily on the application of perceptual
characteristics of the human auditory system in various aspects of a quantizer’s
design and general architecture. In most cases, however, the focus on perception
is largely confined to the magnitude information of the signal; the phase counterpart
has mostly been neglected with the underlying assumption that human beings are
phase deaf.

There is abundant evidence on phase deafness; for instance, a single tone and its
time-shifted version essentially produce the same sensation; on the other hand,
noise perception is chiefly determined by the magnitude spectrum. This latter
example was already described in the last section for the design of a rudimentary
coder and is the foundation of some early speech coders, such as the linear predic-
tion coding (LPC) algorithm, studied in Chapter 9.

Even though phase has a minor role in perception, some level of phase preserva-
tion in the coding process is still desirable, since naturalness is normally increased.
The code-excited linear prediction (CELP) algorithm, for instance, has a mechanism
to retain phase information of the signal, covered in Chapter 11.

1.5 SPEECH CODING STANDARDS

This book focuses mainly on the study of the foundation and historical evolution of
many standardized coders. As a matter of principle, a technique is included only if
it is part of some standard. Standards exist because there are strong needs to have
common means for communication: it is to everyone’s best interest to be able to
develop and utilize products and services based on the same reference.

By studying the supporting techniques of standardized coders, we are indeed
concentrating our effort on understanding the most influential and successful ideas
in this field of knowledge. Otherwise, we would have to spend an enormous amount
of effort to deal with the endless papers, reports, and propositions in the literature;
many of these might be immature, incomplete, or, in some instances, impractical. A
standard, on the other hand, is developed by a team of experts over an extended
period of time, with extensive testing and repeated evaluation to warrant that a set
of requirements is met. Only organizations with vast resources can coordinate
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such endeavors. According to Cox [1995], the time required to complete a
standard from beginning to end under the best of circumstances is around
4.5 years.

This does not mean that a standard is error-free or has no room for improvement.
As a matter of fact, new standards often appear as improvement on the existing
ones. In many instances, a standard represents the state-of-the-art at the time; in
other terms, a reference for future improvement. The relentless research effort
will continuously push existent technology toward unknown boundaries.

Standard Bodies

The standard bodies are organizations responsible for overseeing the development
of standards for a particular application. Brief descriptions of some well-known
standard bodies are given here.

e International Telecommunications Union (ITU). The Telecommunications
Standardization Sector of the ITU (ITU-T) is responsible for creating speech
coding standards for network telephony. This includes both wired and wireless
networks.

o Telecommunications Industry Association (TIA). The TIA is in charge of
promulgating speech coding standards for specific applications. It is part of
the American National Standards Institute (ANSI). The TIA has successfully
developed standards for North American digital cellular telephony, including
time division multiple access (TDMA) and code division multiple access
(CDMA) systems.

e Furopean Telecommunications Standards Institute (ETSI). The ETSI has
memberships from European countries and companies and is mainly an
organization of equipment manufacturers. ETSI is organized by application;
the most influential group in speech coding is the Groupe Speciale Mobile
(GSM), which has several prominent standards under its belt.

o United States Department of Defense (DoD). The DoD is involved with the
creation of speech coding standards, known as U.S. Federal standards, mainly
for military applications.

o Research and Development Center for Radio Systems of Japan (RCR). Japan’s
digital cellular standards are created by the RCR.

The Standards Covered in this Book

As mentioned before, this book is dedicated to standardized coders. Table 1.2 con-
tains the major standards developed up to 1999. The name of a standard begins with
the acronym of the standard body responsible for development, followed by a label
or number assigned to the coder (if available); at the end is the particular algorithm
selected. The list in Table 1.2 is not meant to be exhaustive, and many other stan-
dards are available either for special purpose or private use by corporations.
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TABLE 1.2 Summary of Major Speech Coding Standards

Year Bit-Rate
Finalized Standard Name (kbps) Applications

1972¢ ITU-T G.711 PCM 64 General purpose

1984%  FS 1015 LPC 24 Secure communication

1987° ETSI GSM 6.10 RPE-LTP 13 Digital mobile radio

1990¢ ITU-T G.726 ADPCM 16, 24, 32, 40 General purpose

1990°  TIA 1S54 VSELP 7.95 North American TDMA
digital cellular telephony

1990¢  ETSI GSM 6.20 VSELP 5.6 GSM cellular system

1990  RCR STD-27B VSELP 6.7 Japanese cellular system

1991>  FS1016 CELP 4.8 Secure communication

1992° ITU-T G.728 LD-CELP 16 General purpose

1993”  TIA 1S96 VBR-CELP 8.5,4,2,0.8 North American CDMA
digital cellular telephony

1995¢ ITU-T G.723.1 MP-MLQ / 53,6.3 Multimedia communications,

ACELP videophones

1995>  ITU-T G.729 CS-ACELP 8 General purpose

1996  ETSI GSM EFR ACELP 12.2 General purpose

1996  TIA 1S641 ACELP 7.4 North American TDMA
digital cellular telephony

1997 FS MELP 2.4 Secure communication

1999¢ ETSI AMR-ACELP 12.2, 10.2, 7.95, General purpose

7.40, 6.70, 5.90, telecommunication
5.15,4.75

“Coder is described only partially.
bCoder is fully explained.
“Coder is mentioned only briefly without detailed technical descriptions.

However, the major achievements in speech coding for the past thirty years are well
represented by the coders on the list.

It is important to mention that the philosophy of this book is to explain the whys
and hows of a specific algorithm; most importantly, to justify the selection of a par-
ticular technique for an application. Each standardized coder tends to have its own
idiosyncrasies and minute operational tricks that might not be important for the
understanding of the foundation of the algorithm and hence are often omitted. In
order to develop a bit-stream compatible version of the coder, consultation with
official documentation is mandatory. Even though many documents describing
the standards are available to the general public, it doesn’t mean that it is free
for anyone to use. The standards are created through the efforts of individuals,
and licensing royalties are the way that these individuals get compensated.
On incorporating many of the techniques discussed in this book to commercial
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Figure 1.17 Performance comparison between some standardized coders.

products, readers must be aware of patent licenses and be ready to negotiate
intellectual property rights agreements with the related organizations.

Figure 1.17 shows a quality/bit-rate/delay comparison plot for the various stan-
dards, with quality informally referring to how good the synthetic speech sounds as
a result of the encoding/decoding process associated with a speech coder. The plot
is for illustration purposes and does not mean to be absolutely precise, since quality
measurements (Chapter 19) must be done under various conditions and, in many
instances, it is difficult to establish a fair comparison. The data are compiled
from various sources and give a rough idea of relative performance among the dif-
ferent coders. Delay is reflected by the height of a particular quality/bit-rate coor-
dinate and refers to the encoder buffering delay.

Finally, the fact that certain proposed techniques have not become part of a
standard does not mean that they are worthless. Sometimes there is a need for
refinement; in other instances they are more suitable for special conditions. Since
the standardization process is routinely linked to politics, power, and money,
the adopted technology might not necessarily represent the best choice from a
pure technical perspective. Serious researchers should be ready to learn from

many sources and apply the acquired knowledge to optimize the solution for a
particular problem.

25
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1.6 ABOUT ALGORITHMS

A speech coder is generally specified as an algorithm, which is defined as a com-
putational procedure that takes some input values to produce some output values.
An algorithm can be implemented as software (i.e., a program to command a pro-
cessor) or as hardware (direct execution through digital circuitry). With the wide-
spread availability of low-cost high-performance digital signal processors (DSPs)
and general-purpose microprocessors, many signal processing tasks—done in the
old days using analog circuitry—are predominantly executed in the digital domain.
Advantages of going digital are many: programmability, reliability, and the ability
to handle very complex procedures, such as the operations involved in a speech
coder, so complex that the analog world would have never dreamed of it. In this
section the various aspects of algorithmic implementation are explained.

The Reference Code

It is the trend for most standard bodies to come up with a reference source
code for their standards, where code refers to the algorithm or program written
in text form. The source code is elaborated with some high-level programming
language, with the C language being the most commonly used [Harbison and
Steele, 1995]. In this reference code, the different components of the speech
coding algorithm are implemented. Normally, there are two main functions:
encode and decode taking care of the operations of the encoder and decoder,
respectively.

The reference source code is very general and might not be optimized for speed
or storage; therefore, it is an engineering task to adjust the code so as to suit a given
platform. Since different processors have different strengths and weaknesses, the
adjustment must be custom made; in many instances, this translates into assembly
language programming. The task normally consists of changing certain parts of
the algorithm so as to speed up the computational process or to reduce memory
requirements.

Depending on the platform, the adjustment of the source code can be relatively
easy or extremely hard; or it may even be unrealizable, if the available resources are
not enough to cover the demand of the algorithm. A supercomputer, for instance, is
a platform where there are abundant memory and computational power; minimum
change is required to make an algorithm run under this environment. The personal
computer (PC), on the other hand, has a moderate amount of memory and com-
putational power; so adjustment is desirable to speed up the algorithm, but memory
might not be such a big concern. A cellular handset is an example where memory
and computational power are limited; the code must be adjusted carefully so that
the algorithm runs within the restricted confinements.

To verify that a given implementation is accurate, standard bodies often provide
a set of test vectors. That is, a given input test vector must produce a corresponding
output vector. Any deviation will be considered a failure to conform to the
specification.
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About C and C++

The C programming language has become almost a mandatory medium in software
development for many signal processing tasks. Its popularity is due to several fac-
tors: provision of a fairly complete set of facilities for dealing with a wide variety of
applications—including low-level, high efficiency for implementation and portabi-
lity across various computing platforms. Unfortunately, some of the advantages of
C can also pose problems for programmers. For instance, the efficiency is largely
due to the absence of confining rules that can lead to error-prone programming
habits.

C++ is referred to as an object-oriented language and has closed many holes in
the C language, providing better type checking and compile-time analysis. C+—+
programmers are forced to declare functions so that the compiler can check their
use. On the other hand, systems designed using C++4 are easier to express and
understand, which is especially true for complex projects, where many program-
mers are involved.

At present the speech coding community relies heavily on the C programming
language. Most standard bodies offer reference code written in C. The use of C++
is largely for maintainability and extensibility and often comes with some perfor-
mance penalty, which is due to the many additional features of the language; the
penalty involved might not be acceptable for resource-critical platforms. Recently,
there are movements in the programming world regarding the creation of a new
intermediate language between C and C++. It is essentially C++ but eliminates
many of the cumbersome and often unnecessary features so as to boost efficiency
but, at the same time, conserves the good programming guidelines of an object-
oriented approach.

Fixed-Point and Floating-Point Implementation

One of the earliest decisions that must be made on the implementation of a signal
processing system is whether the algorithms are going to be run on a fixed-point or
floating-point platform. Fixed-point numbers refer to those having limited dynamic
range; for instance, a 16-bit signed integer can represent a maximum of 65536 num-
bers within the interval of [—32768, 32767].

Floating-point numbers, on the other hand, can represent extremely small num-
bers and extremely big numbers. The IEEE Standard for Binary Floating-Point
Arithmetic (ISO/IEEE Std. 754-1985; see Harbison and Steele, [1995]), for
instance, defines the following 32-bit floating-point number:

24
$:20) fi- 2k,
k=1

where s = =£1 is the sign bit, e is the exponent in the range of [—125, 128], and fj,
with k = 1 to 24, equal to 0 or 1 are the binary digits. The smallest positive number
out of this scheme is 27'*° while the biggest is 3.403-10%%.
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Ideally, all algorithms should be implemented with floating-point processors; in
that way the rounding error after each operation will be negligibly small, and the
hazard of numeric overflow is virtually eliminated. Unfortunately, floating-point
processors are relatively expensive, due to the increased size of the processor’s
chip needed to support the more complex operations; also, power consumption is
higher when compared to a fixed-point processor. For cost and power sensitive con-
sumer appliances (i.e., the cellular handset), the fixed-point processor is almost the
mandatory choice.

Software development for floating-point environment is straightforward; under
most normal circumstances the numbers should remain within the wide dynamic
range supported by the processor. This is not quite the case for a fixed-point envir-
onment: it is tricky and a considerable amount of time must be spent on finding out
the range of each intermediate variable so as to ensure that all numbers remain
within the limited range. Texas Instruments, Inc. [1990] offers some guidelines
of fixed-point programming on a digital signal processor.

For early development and research, floating-point operations are normally
assumed, so that effort can be concentrated on the algorithm, instead of being
distracted by rounding errors and precision issues. After the operations of the algo-
rithm are well tested in a floating-point environment, it will be translated to fixed-
point (if that is the goal), which could be a time-consuming process; in some
instances, part of the algorithm must be modified or adjusted in order to run properly.

Due to the fact that many speech coders are targeted to consumer products, the
final cost becomes a primary concern. Thus, many standard bodies specify the refer-
ence code using fixed-point operations. In this way, the algorithm can run under a
fixed-point environment in a straightforward manner.

Description of Algorithms

The notation used in this book for algorithmic descriptions are illustrated with a
simple example. Given the array of samples s[n], n = 0 to 200, consider the task
of autocorrelation calculation:

200

R[] = slnlsin -1

n=I

for [ = 20 to 50, followed by peak search over the autocorrelation values within this
interval and returning the peak value and its position as results.

The block diagram description of the aforementioned algorithm is given in
Figure 1.18. As we can see, the input and output are clearly specified, with the

Autocorrelation RIl] o Peak » Pesk
calculation 7| search

n] ——p

—» position

Figure 1.18 Example of algorithm and its block diagram.
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Figure 1.19 Example of algorithm and its flowchart.

involved operations grouped into blocks. This type of description provides high-
level visualization of the operations and the relationships among the various com-
ponents. Many implementational details, however, remain hidden.

A flowchart contains more details about how the algorithm is implemented.
Figure 1.19 contains the flowchart of our example algorithm. It still preserves the
block structure, but the meaning and ordering of each block are precise, allowing
direct translation into program code. This type of description represents an inter-
mediate level between a high-level block diagram and the actual program code.

Ultimately, the algorithm is translated into program code. In this book, we shall
describe algorithms as programs written in a pseudocode that is very much like C.
Anyone who has been exposed to programming in high-level language should have
little trouble reading the code. For our example, the pseudocode description is as
follows:

AUTO_PEAK(s)
1. peak < —c; position« 20

2. for 1~ 20to50

3. R0

4. for n«+— 1Ito 200

5. R~ s[nl+«s[n-1] +R
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6. if R> peak
7. peak «— R; position« 1
8. return peak, position

13 ER]

Note the use of assignment operator “«” instead of equal sign “="" like in
many programming languages. The expression a < b means that the content of
b is assigned to a; after the operation, b remains intact while a is modified (having
same content as b). With the popularity of programming languages in recent years,
the meaning of ‘="’ has shifted from the traditional equal to that of assignment. To
many mathematicians, it is unacceptable since confusion occurs with common
practices in equation writing. To avoid problems with this regard, this book pre-
serves the old meaning of “="", and assignments are explicitly indicated with “«"".

Another note is the use of multicharacter variables. Typically, variables in the
equations are expressed using single characters, which could be extracted from
the English or Greek alphabets. With the increasing complexity of algorithms,
the use of multicharacter variables is imperative to give a clear description of the
problem at hand. Thus, we frequently see variable names such as dl, d2, energy,
peak, position, and so on.

What separates pseudocode from “real’’ code is that, in the former, we employ
whatever expressive method is most clear and concise to specify a given algorithm.
Another difference is that for pseudocode, there is no concern with issues of soft-
ware engineering, such as data abstraction, modularity, and error handling. Atten-
tion is directed only to the essence of the algorithm.

Conventions for pseudocode writing are the use of indentation to indicate block
structure. The program constructs, such as for, if, and return, are represented using
bold characters. Meanings of these statements are essentially the same as for stan-
dard C. Consult a C manual when in doubt. Also, the variables are local to the given
procedure (such as n and /). We shall not use global variables without explicit
indication.
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Analysis of Algorithms

Analyzing an algorithm implies the prediction of resource requirements necessi-
tated to run it. The resources are often measured in terms of memory and comput-
ation constituting the two fundamental cost components of digital hardware. These
two components are explained next.

Memory Cost

Many types of memory devices are available for use in modern hardware. Most
software developers think of memory as being either random-access (RAM) or
read-only (ROM). But in fact there are subtypes of each and even hybrid memories;
see Barr [1999] for detail descriptions. ROM is needed to hold the instructions
corresponding to the program code and the supporting data; its contents are normally
unchanged during execution and its size depends on the complexity of the
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algorithm. RAM is needed to store the input, output, and intermediate variables.
Program code can usually be optimized so as to remove unnecessary operations,
leading to reduced memory size. Also, an algorithm may be modified to use less
memory, with possible speed penalty.

Computational Cost

Given a certain amount of input data, it is desirable to process them as quickly as
possible so as to generate the corresponding output data. Depending on the selected
technique, one algorithm can be more efficient than another. The running time is
measured by the number of primitive operations required to complete the mission.
For signal processing, it is common to count the number of sum (adding two num-
bers) and the number of product (multiplying two numbers) as measurements of the
computational cost. These two quantities can be found for different algorithms and
compared; the one offering the lowest counts is the most efficient.

Computational cost is often platform dependent; that is, counting the number of
primitive operations alone might not make sense for a certain processor. For
instance, the DSP families of Texas Instruments [1990, 1993] can often perform
one addition and one multiplication in one step; thus, a more meaningful
performance measure would be the maximum between the number of sums and
the number of products. On the other hand, the Intel Pentium processor [Intel,
1997] can perform four operations in parallel; an algorithm running on this
processor is normally modified to take advantage of the enhanced architecture,
and an alternative performance measure is necessary for meaningful comparison.
A commonly used reference measure between processors is millions-of-
instructions-per-second (MIPS). The final performance, however, depends on other
architectural features, as well as the specific algorithm; see Eyre [2001] for
additional details.

1.7 SUMMARY AND REFERENCES

This introductory chapter provided an overview to the general aspects of speech
coding, with guidelines to the rest of the materials covered in this book. The
purpose, operation, and classification of speech coders are described; origin and
modeling of speech signals are explained with revelation of the structure of a
simple parametric coder. Structure of the human auditory system is analyzed,
with the most important properties explained; these properties can be used to
develop efficient coding schemes for speech. The mission of standard bodies and
various aspects of algorithm design are described. Since speech coding is related
to human perception, it is often not possible to outline an absolute design guideline.
For instance, what is perceived as good by one person might not be so good for
another person. In fact, experts disagree on methodologies and techniques applied
to a given situation. Therefore, speech coding is a combination of art and science, in
the sense that an engineering framework is applied but very often it is refined
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according to human perception, which cannot be absolutely justifiable from a
mathematical perspective.

See Spanias [1994] and Kleijn and Paliwal [1995b] for alternative classification
criteria, as well as a more diversified survey on existing speech coding technology.
Das et al. [1995] provides detailed descriptions of multimode and variable bit-rate
coders. See Rabiner and Schafer [1978] for discussions of acoustic modeling of
speech production, as well as early modeling attempts using digital means. In
Deller et al. [1993], similar acoustic modeling is described, together with an
interesting historical recount on how a mechanical system was built for speech
generation, using principles of acoustic filters in 1939. Many references are avail-
able for human auditory system and psychoacoustics; see Rabiner and Juang [1993]
for an introduction and simple modeling; more extensive studies appear in Moore
[1997] and Zwicker and Fastl [1999]; a more signal-oriented treatment of sound
perception is found in Hartmann [1998].

Standardization procedures are discussed in Cox [1995]. Many issues related to
algorithm analysis and design can be found in Cormen et al. [1990]. There are a
plethora of books available for introductory C/C++ programming; see Harbison
and Steele [1995] for reference in the features of C, and Eckel [2000] for C++
programming. An overview of the historical evolution of digital signal processors
appears in Eyre and Bier [2000]. Appendix C contains some research directions in
the speech coding arena.



CHAPTER 2

SIGNAL PROCESSING TECHNIQUES

The basic and commonly used signal processing techniques in speech coding are
explained in this chapter, including pitch period estimation, all-pole/all-zero filters,
and convolution. Some topics are very general while others are specific to speech
processing.

Properties of speech signals constantly change with time. To process them
effectively it is necessary to work on a frame-by-frame basis, where a frame
consists of a certain number of samples. The actual duration of the frame is known
as length. Typically, length is selected between 10 and 30 ms or 80 and 240
samples. Within this short interval, properties of the signal remain roughly constant.
Thus, many signal processing techniques are adapted to this context when deployed
to speech coding applications.

2.1 PITCH PERIOD ESTIMATION

One of the most important parameters in speech analysis, synthesis, and coding
applications is the fundamental frequency, or pitch, of voiced speech. Pitch
frequency is directly related to the speaker and sets the unique characteristic of a
person. Voicing is generated when the airflow from the lungs is periodically inter-
rupted by movements of the vocal cords. The time between successive vocal cord
openings is called the fundamental period, or pitch period.

For men, the possible pitch frequency range is usually found somewhere
between 50 and 250 Hz, while for women the range usually falls between 120
and 500 Hz. In terms of period, the range for a male is 4 to 20 ms, while for a
female it is 2 to 8§ ms.

Speech Coding Algorithms: Foundation and Evolution of Standardized Coders. Wai C. Chu
Copyright 0 2003 John Wiley & Sons, Inc.
ISBN: 0-471-37312-5
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Pitch period must be estimated at every frame. By comparing a frame with past
samples, it is possible to identify the period in which the signal repeats itself,
resulting in an estimate of the actual pitch period. Note that the estimation
procedure makes sense only for voiced frames. Meaningless results are obtained
for unvoiced frames due to their random nature.

Design of a pitch period estimation algorithm is a complex undertaking due to
lack of perfect periodicity, interference with formants of the vocal tract, uncertainty
of the starting instance of a voiced segment, and other real-world elements such as
noise and echo. In practice, pitch period estimation is implemented as a trade-off
between computational complexity and performance. Many techniques have been
proposed for the estimation of pitch period and only a few are included here.

The Autocorrelation Method

Assume we want to perform the estimation on the signal s[n], with n being the time
index. We consider the frame that ends at time instant m, where the length of the
frame is equal to N (i.e., from n =m — N + 1 to m). Then the autocorrelation value”

R[l,m] = Z s[n]s[n — 1] (2.1)

n=m-N+1

reflects the similarity between the frame s[n], n =m — N + 1 to m, with respect to
the time-shifted version s[n — [], where [ is a positive integer representing a time
lag. The range of lag is selected so that it covers a wide range of pitch period values.
For instance, for [ =20 to 147 (2.5 to 18.3 ms), the possible pitch frequency values
range from 54.4 to 400 Hz at 8 kHz sampling rate. This range of [ is applicable for
most speakers and can be encoded using 7 bits, since there are 27 = 128 values of
pitch period.

By calculating the autocorrelation values for the entire range of lag, it is possible
to find the value of lag associated with the highest autocorrelation representing
the pitch period estimate, since, in theory, autocorrelation is maximized when the
lag is equal to the pitch period. The method is summarized with the following
pseudocode:

PITCH(m, N)

1. peak+ o0

2. for 1+—20to 150

3. autoc+ 0

4. forn—m-N+1tom

5. autoc— autoc+s[n]sln-1]

“In Chapter 3, it is shown that the described quantity is actually an estimate of the true autocorrelation
function E{s[n]s[n + []}, without the scaling factor.
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6. if autoc>peak
7. peak— autoc
8. lag+1
9. return lag

It is important to mention that, in practice, the speech signal is often lowpass
filtered before being used as input for pitch period estimation. Since the
fundamental frequency associated with voicing is located in the low-frequency

region (<500 Hz), lowpass filtering eliminates the interfering high-frequency
components as well as out-of-band noise, leading to a more accurate estimate.

Example 2.1 The autocorrelation method is demonstrated here using the portion
of voiced speech signal shown in Figure 2.1, which is clearly periodic. Computing
the autocorrelation according to (2.1) for / =20 to 150 gives the plot in Figure 2.2.
As we can see, two strong peaks are obtained together with minor peaks. The lag
corresponding to the highest peak is 71 and is the pitch period estimate for
m = 1500 and N = 180. This estimate is close to the period of the signal in time
domain.

Note that the next strong peak is located at a lag of 140, roughly doubling our
pitch period estimate. This is expected since a periodic waveform with a period of T
is also periodic with a period of 27, 37, ..., and so on.

2-10%

snj 0 T- H

-210° 1000 1500 2000

n

Figure 2.1 A voiced portion of a speech waveform used in pitch period estimation.



36 SIGNAL PROCESSING TECHNIQUES
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Figure 2.2 Autocorrelation values obtained from the waveform of Figure 2.1.

Magnitude Difference Function

One drawback of the autocorrelation method is the need for multiplication, which is
relatively expensive for implementation, especially in those processors with limited
functionality. To overcome this problem, the magnitude difference function is
invented. This function is defined by

m

MDF[l,m]= > |s[a] = s[n 1. (2.2)

n=m—-—N+1

For short segments of voiced speech it is reasonable to expect that s[n] — s[n — []
is small for /=0, £7, +£2T,..., with T being the signal’s period. Thus, by
computing the magnitude difference function for the lag range of interest, one
can estimate the period by locating the lag value associated with the minimum
magnitude difference. Note that no products are needed for the implementation
of the present method. The following pseudocode summarizes the procedure:

PITCH_MD(m, N)

1. min«<oo

2. forl+20to 150

3. mdf « 0

4. forn—m-N+1tom
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5. mdf «—mdf + |s[n] —-sln-1]|
6. if mdf < min

7. min«— mdf

8. lag+1

9.

return lag

Further computational saving is obtainable from the fact that the magnitude
difference function is bounded. This fact is derived from (2.2) where MDF
[/, m] > 0. From the same equation, each additional accumulation of term causes
the result to be greater than or equal to the previous sum since each term is positive.
Thus, it is not necessary to calculate the sum entirely; if the accumulated result at
any instance during the iteration loop is greater than the minimum found so far,
calculation stops and resumes with the next lag. The idea is implemented with
the following:

PITCH_MD1 (m, N)
1. min«<oo
for 120 to 150
mdf « 0
forn—m-N+1tom
mdf —mdf + |sln] —sln- 11|
if mdf > min break
if mdf <min
min«— mdf

O 00 3 60 U b W N

lag<— 1

[
@)

return lag

In this new implementation, whenever the accumulated result (mdf, Line 5) exceeds
the minimum found so far (min, Line 6), the loop is terminated and the algorithm
moves on to verify the next lag /. On average, a substantial computational saving is
achieved. Note that the approach is not applicable for autocorrelation computation,
because it relies on the finding of a peak, which normally must evaluate the entire
sum before any decision can be made. Low computational cost and lack of
multiplication make the magnitude difference function attractive for practical
applications.

Example 2.2 The same situation as in Example 2.1 is considered, where magni-
tude difference is computed for [ € [20, 150]. The plot is shown in Figure 2.3. Low-
est MDF occurs at [ =70 with the next lowest MDF point located at [ = 139.
Compared with the results of Example 2.1, the present method yields a slightly
lower estimate.
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Figure 2.3 Magnitude difference values obtained from the waveform of Figure 2.1.

Fractional Pitch Period

The methods discussed earlier can only find integer-valued pitch periods. That is,
the resultant period values are multiples of the sampling period (8 kHz) ' =
0.125 ms. In many applications, higher resolution is necessary to achieve good
performance. In fact, pitch period of the original continuous-time (before sampling)
signal is a real number; thus, integer periods are only approximations introducing
errors that might have negative impact on system performance.

Multirate signal processing techniques can be introduced to extend the
resolution beyond the limits set by fixed sampling rate. Interpolation, for instance,
is a widely used method, where the actual sampling rate is increased. Medan, Yair,
and Chazan (1991) published an algorithm for pitch period determination, which is
based on a simple linear interpolation technique. The method allows the finding of a
real-valued pitch period and can be implemented efficiently in practice. This
method is explained in detail as follows.

Optimal Integer-Valued Pitch Period

Consider a speech frame that ends at time instant n =m, with a length of N
(Figure 2.4). The frame can be expressed by

snl=b-sln—N]+e[n, m—N+1<n<m. (2.3)

The above equation expresses {s[n], m — N+ 1 < n < m} as the sum between the
product of a coefficient b with the frame {s[n — N],m —2N+ 1 <n <m — N} and
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A 9l
| \/‘\1 \/\+ >
m-2N+1 m-N+1 m

Figure 2.4 Signal frames in pitch period estimation.

the error signal” e[n]. Note from Figure 2.4 that two consecutive frames of length N
are involved. The optimal pitch period at time instant n = m can be defined as the
particular value of N, denoted by N, that minimizes the normalized sum of squared
error

m

> (sl] = bsln — N])?
J[m,N] === . (2.4)

m

2. s

n=m—N+1

The normalization term (denominator) is required to compensate for the variable
size of the speech segments involved and the uneven energy distribution over the
pitch interval. Denoting N, as our optimal pitch period, we have

N, = {N|J[m,N] < J[m,M], Npyin < N, M < Nma }, (2.5)

where N, and N, are the minimum and maximum limits for the pitch period,
respectively. These two are parameters of the algorithm that can be set according to
the application. For instance, Ny, = 20 and Ny, = 147.

The optimal value of b can be found by differentiating J with respect to b and
setting the result to zero. This gives

3 s[n]s[n — N]
b__n:mfg+1 (26)
) Z;NHsz[n —N]

* This indeed is the concept of linear prediction, where the signal of the current frame is predicted from
the past, with the prediction calculated as the product of the past with a coefficient. Chapter 4 contains
further details on the topic.
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Substituting (2.6) in (2.4) and manipulating yields

{ 2 s —N}}2

Jm,N =1-— - - . (2.7)
> sn=N 3 s
n=m—N+1 n=m—N+1
Optimal Fractional Pitch Period
Consider the continuous-valued pitch period 7, defined by
T, = (N, +m,)T; (2.8)

where T is the sampling period (8 kHz)~! =0.125ms and m, is the fractional
pitch period.
Here we assume 0 < m, < 1 so that

T,
——1<N,<
TY o =

S

, (2.9)
or
N, = EJ (2.10)

with || the floor function. Assume that the integer pitch period N, is known. The
problem of fractional pitch period estimation consists of the determination of

n =mn, so that
" 2
{ 2 S[n]S[n—No—n]}
n=m—N,+1

m m

> Sh=No—m] 3 s

n=m—N,+1 n=m—N,+1

Jm,N, +n]=1—

(2.11)

is minimized, with 0 < 1 < 1. In (2.11) the discrete-time signal is being delayed by
a real-valued amount and can be obtained with interpolation [Oppenheim and
Schafer, 1989]. In this case, a simple linear combination is used to interpolate,
which is given by

sln+mn] = (1 —n)s[n] + nsn + 1]. (2.12)
Applying (2.12) to s[n — N, — n],

s[n—N, —m] = (1 —n)s[n — N,] + ns[n — N, — 1]. (2.13)
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Substituting (2.13) in (2.11) and expanding leads to

Jm,N, + ]
-1— {(1 _n)ocl[m7N0]+nd2[m’N0]}2
o [m,ND]{(l — )20, N,] + 20(1 — n)otglm, N,] + 12as [m,NO}}
(2.14)
where

oy [m, N,| = ) Z s[n]s[n — N,], (2.15)
wlm N = > sllslh—N, — 1], (2.16)

n=m-—N,+1
oslm, N, = i s*[n], (2.17)

n=m-—N,+1
oy[m, N,| = Zm: s?[n — N,], (2.18)

n=m—N,+1
ots[m, N, = Zm: s*[n—N, — 1], (2.19)

n=m—N,+1
o [m, N,| = zm: s[n — N,)s[n — N, — 1]. (2.20)

It is left as an exercise to verify the validity of equations (2.14) to (2.20). The
optimal fractional pitch period n, is the one that minimizes (2.14). Differentiating
(2.14) with respect to 1 and equating to zero, the optimal fractional pitch is found
to be

0l [m7N0]0(4 [m7N0] — 0 [m,No]O(G [m,ND]
oa[m, N, (otg[m, N,| — ag[m, N,]) + oty [m, N, (ots[m, N, — og[m, N,])
(2.21)

no [m7 NO] =

In some cases, n, may fall outside the interval [0,1]. This happens when
the integer pitch period N, deviates by one sampling period from the value
defined in (2.9). In such cases, the integer period is incremented by one when
No > 1, and decremented by one when m, < 0. Then m, is recalculated from
(2.21).
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1 1
Jm,N] 051 Jm N] 05 —
0 50 100 150 65 70 75
N N

Figure 2.5 Left: Normalized sum of squared error obtained from the waveform of
Figure 2.1. Right: Expanded view showing the minimum point at N = 72.

Summary of Algorithm

The Medan—Yair—Chazan method is summarized as follow:

Step 1. For N < Npin to Npax, compute the normalized sum of squared error from
2.7.

Step 2. Find the minimum value of J[m, NJ; the corresponding value of N is the
optimal integer pitch period N,,.

Step 3. Compute 1, from (2.21).

Step 4. If n, < 0, N, — N, — 1, go back to Step 3.

Step 5. If n, > 1, N, <— N, + 1, go back to Step 3.

Minimization of J[m, N] in Step 2 is equivalent to the maximization of the
normalized autocorrelation

s[n]s[n — N]
r[m,N} _ n=m—N+1 (222)
= Z:N+1S2[n7N} = Zf:1V+1S2[n]

since J[m, N] > 0. Thus, Step 2 can be replaced by the maximization of (2.22).
The normalized autocorrelation

r[m, N, + 1]
(1 = m)ou[m,N,| + noz[m, No]

Nl {1 = )2 o]+ 2001 = )l ]+ s,

(2.23)

is often used to measure the amount of periodicity of the signal at the specified lag
and is derived directly from (2.14).
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Example 2.3 The same speech data as in Example 2.1 are utilized to illustrate
fractional pitch period estimation. Figure 2.5 shows the normalized sum of squared
error, where the global minimum is found at N, = 72. From (2.21), the fractional
pitch period is found to be equal to —0.224; since it is negative, N, is decreased by
one. Recalculating yields a fractional pitch period of 0.517. Thus, the final pitch
period estimate is equal to 71.517. Note that this final result is consistent with
the error plot in Figure 2.5, where the global minimum is more likely to be located
between 71 and 72, than between 72 and 73.

Checking for Multiples of a Pitch Period

Consider an autocorrelation-based estimation procedure where a peak-picking
strategy is applied. In this approach, autocorrelation of the signal is computed
for a range of lag; the particular lag providing the highest autocorrelation is selected
as the estimated pitch period.

This peak-picking approach might lead to erroneous outcome, whereas the result
actually corresponds to multiples of the fundamental pitch period; this is mainly
due to the fact that a periodic signal with period T is also periodic with periods
2T, 37, ..., and so on, since the signal repeats itself for those time intervals.
Thus, in the ideal case, the autocorrelation plot develops peaks at regular intervals
separated by the period 7. Figure 2.6 shows an example of an ideal autocorrelation
plot, together with the plot of a real-world quasiperiodic signal, such as a voiced
speech frame. In many practical situations, the fundamental period (shortest period

r[l]

A
r[T]
Thin T 2T 3T T
]
A
r[T]
or[T] N\ ’-\

Twin T3 T2 T Tiax

Figure 2.6 Top: Autocorrelation plot of an ideal periodic signal with period 7. Bottom:
Typical autocorrelation plot of a real-world quasiperiodic signal.
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associated with strong autocorrelation) is occluded from the autocorrelation plot
due to various conditions, such as:

e Period of the signal is not constant; that is, its value changes with time, such
as most speech frames.

e Limited time resolution of a discrete-time system.
e Noise and distortion applied to the signal.

Following a peak-picking strategy without further analyzing the data can lead to
disasters in speech coding applications, because the quality of the synthetic speech
relies heavily on an accurate estimation. An abrupt change in the value of the pitch
period for consecutive frames, for instance, introduces highly annoying artifacts.
Thus, given a certain estimated period, it is desirable to verify whether the period
itself is actually multiples of some fundamental period.

A simple procedure is presented here that allows multiplicity check. The main
idea is to verify the autocorrelation values at lags of 7/i, i =2, 3, 4,..., where T
is the estimated pitch period. If r[7/i] > or[T], where r[-] is the autocorrelation

Start

| i < Dmax
N|

| Ti « round(T/i) |

ie—i-1

+

return T | | returnT;

Figure 2.7 Flowchart of an algorithm for multiplicity check of pitch periods.
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function and o < 1 is a positive scaling constant, then the estimated pitch period
becomes 77/i. The purpose of o is to lower the peak autocorrelation value r{7] so as
to form a decision threshold; this is necessary since r[7] is the peak within
the search range. A value of o in the interval [0.5, 1] is a reasonable choice in
practice. Figure 2.7 shows the flowchart of the proposed algorithm, where the inputs
are the candidate pitch period T and the autocorrelation function r{/]. The algorithm
starts by dividing the input period by a range of denominators, denoted by i; with i
beginning at Dmax, which is a constant integer determining the minimum possible
pitch period estimate. A value of Dmax within the interval of [5, 10] is appropriate
for most practical purposes. Intermediate check points are found by dividing T by i
and rounding the results. If the autocorrelation value at the check point is greater
than that at 7 multiplied by the scaling factor o, T; = round(77i) is returned as the
fundamental period sought, where the round(-) operator rounds a number to the
nearest integer. Otherwise, the denominator i is reduced by one and the operation
repeated until i < 2. Even though the autocorrelation function is indicated here,
other approaches such as the magnitude difference function can be included with
little modification.

Note that once the algorithm finds a suitable period satisfying the threshold
constraint, it will end and return the result; thus, it starts searching from the shortest
lag, or highest denominator, since the purpose is to locate the fundamental pitch
period, corresponding to the lowest value.

2.2 ALL-POLE AND ALL-ZERO FILTERS

The filters with system function

H@) == (2.24)

or

AR =1+ az" (2.25)

i=1

are of particular importance to speech coding. In (2.24) an all-pole filter is
described, since only poles are present, while the all-zero filter has the system
function given in (2.25). As we can see, H(z) and A(z) are the inverse of each other.
The constant M is the order of the filter and the a; are the filter’s coefficients. These
filters appear in all linear-prediction-based speech coders. As explained in
Chapter 4, M is also known as the prediction order, while the a; are referred to
as the linear prediction coefficients.



46 SIGNAL PROCESSING TECHNIQUES

Direct Form Realization

With x[n] being the input to the filter and y[n] the output, the time-domain
difference equation corresponding to (2.24) is

M

yln) = xln) = > aiyln — i (2.26)

i=

and for (2.25)

y[n] = x[n] + Zaix[n —1]. (2.27)

i=1

Figure 2.8 shows the signal flow graphs of the above difference equations. Filters
implemented in this manner are called direct form. Note that the impulse response
of an all-pole filter has an infinite number of samples with nontrivial values due to
the fact that the scaled and delayed version of the output samples are added back to
the input samples. This is referred to as an infinite-impulse-response (IIR)
filter. For the all-zero filter, however, the impulse response only has M+ 1
nontrivial samples (the rest are zeros) and is known as a finite-impulse-response
(FIR) filter.

x{n] —> P yin
Z—l
Z—l
Z—l
—am
71 71! 71
X[n]
1 a 7 am
—> —> —> » i

Figure 2.8 Signal flow graph for direct form implementation of an all-pole filter (rop) and
all-zero filter (bottom).
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Figure 2.9 Signal flow graph for lattice implementation of an all-pole filter (fop) and all-
zero filter (bottom).

Lattice Realization

Figure 2.9 shows an alternative realization for the filters, called the lattice structure.
The parameters ki, ..., ky, are known as the reflection coefficients. The reflection
coefficients can be found from the direct form coefficients (ay, . . ., a;) through the
computational loop specified below.

Forl=M, M—1,...,1:

k = —a’, (2.28)

20D a + ka)!, i

, s o

where a; = a;*”. The above relations are obtained directly by deriving the input—
output difference equation of the lattice form and comparing to that of the direct

form. Chapter 4 presents a derivation of (2.28) and (2.29). For the all-pole filter,
the set of equations

-1, (2.29)

vy—1[n] = x[n] + kyupr—1[n — 1],

vm—2[n] = vy—1[n] + kpy—1up—2[n — 1],
vi[n] = waln] + kouy[n — 1],
yln] = viln] + kiy[n — 1], (2.30)
ui[n] = —kyy[n] +y[n — 1],
up[n] = —kovi[n] + uy[n — 1],

up—1n] = —ky—1vm—a2[n] + uy—2[n — 1]
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are solved successively to find out the output sequence y[n]. While for the all-zero
filter,

]
uin] = —kix[n] + xn — 1],
va[n] = vi[n] — kauy [n — 1],
up[n] = —kovi[n] + ur[n — 1], (2.31)
yln] = vay1[n] — kypupr—1[n — 1].
Example 2.4 Given the filter’s coefficients, a; = —0.9, a,=0.64, and a3 =

—0.576, the difference equations for direct form implementation are
y[n] = x[n] + 0.9y[n — 1] — 0.64y[n — 2] 4+ 0.576y[n — 3]
for the all-pole filter, and
y[n] = x[n] — 0.9x[n — 1] + 0.64x[n — 2] — 0.576x[n — 3]
for the all-zero filter. Reflection coefficients are found to be:

k3 = —da3 = 0.576,
@) _ 0(13) + k3a<23> _at+ksay

- = —0.79518
a, 11— &2 1 -2 ’
(3) k (3) k
JP =B tha _etla_ 61975
1 —k3 1 — k3
ky = —al’) = —0.181975,
() k 2
al) = TN 67276,
1— &3
ki = 0.67276.

The difference equations for lattice form implementation are

va[n] = x[n] + 0.576us[n — 1],
vi[n] = va[n] — 0.182uy[n — 1],
v

= —0.6728y[n] + y[n — 1],
0.182v[n] + us[n — 1],

[n]
[n]
y[n] = vi[n] 4+ 0.6728y[n — 1],
[n]
[n]
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for the all-pole filter, and

for the all-zero filter.

Comparison Between the Two Realizations

Direct form realization is often the preferred approach in practice due to its
simplicity and lower computational requirement (Exercise 2.8). The lattice
structure, however, does provide some advantage.

To appreciate the benefit offered by the lattice form realization, some
background from Chapter 4 is needed. Readers are free to skip this paragraph
and reread it later after familiarizing themselves with the material in Chapter 4.
During linear prediction analysis, the method used to solve the normal equation
could be the Levinson—Durbin algorithm—where the linear prediction coefficients
(LPC or direct form coefficients) and reflection coefficients are both returned upon
completion. Likewise, it could as well be the Leroux—Gueguen algorithm—where
only the reflection coefficients are obtained. The lattice structure allows processing
to be performed directly using the reflection coefficients, without converting them
to LPCs; this is desirable for systems with limited numerical precision since
precision loss during conversion may lead to filter instability. Also note that using
the reflection coefficients allows a straightforward supervision of stability status,
since the condition |k;| < 1 can easily be monitored. This is less of a concern for
systems with sufficient numerical precision, and direct form is customarily
implemented due to diminished computational burden.

Calculation of Output Sequence on a Frame-by-Frame Basis

For practical implementation of speech coding, the signal is processed on a frame-
by-frame basis. In filtering, for instance, the input signal is partitioned into frames
having N samples according to

(2.32)

{)c[n—i—rN]7 0<n<N-1,
x[n] =

0, otherwise,

where x[n] is the input signal, defined for — oo < n < co. Each frame is indexed by
the variable r, with r =0, 1, 2, .. ., and the rth frame is denoted by x,[n]. Figure 2.10
illustrates the notation; note that n actually ‘“wrap-around” from frame to frame.
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»F
0 1 2 3
"
0 N-1
"
0 N-1
n
H—»
0 N-1

Figure 2.10 Illustration of time notation.

Thus, each frame consists of N samples, with n =0 to N — 1 addressing samples
inside the frame.

Two methods are presented next, allowing the computation of the filter output on
a frame-by-frame basis. We will only consider direct form realization of all-pole
filters; however, the techniques can be applied in a straightforward manner to other
configurations and filters.

State-Save Method

This method saves the state of the current frame for use by the next frame. The state
of the filter in this case refers to the values stored in the delay elements (the z ~ ' in
the signal flow graphs, Figure 2.8). From (2.26), the procedure is executed frame-
by-frame with

yr[n] = y,-1[n +NJ, —M <n< -1, (2.33)
ye[n] = x[n] — Za;y,[n —i], 0<n<N-1; (2.34)

i=1

that is, M output values are saved and used to compute the next frame.

Zero-Input Zero-State Method

This method also saves the current state for future use; however, it separates the
filter’s output into two different responses and computes them separately. The
zero-input response is the output of the filter due exclusively to the state or history
of the filter with no input, or in other terms, zero input. The zero-state response is
the output of the filter due to the input frame, with the assumption that the filter has
zero initial state. The two responses are added together to form the overall response.
This approach is possible because of the linearity of the filter and can easily be
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s7[n]

;’ H@@
Z A

x[n —p (;'érz()))

yi[nl

Figure 2.11 Illustration of the zero-input zero-state method.

shown to produce the same final result as the state-save method. Figure 2.11
illustrates the technique where two filters are involved. The first filter contains
the initial state carried over from a prior frame and is indicated in the block diagram
by the arrow entering the bottom of the filter, meaning that the overall response
(from the prior frame) is used to initialize the state of the filter at n = 0. In addition,
note that the filter input is ‘““‘grounded,” a symbol borrowed from electronic circuit
diagrams to imply the fact that input to the filter is zero. The second filter is marked
with “zero’” and has an initial state of zero; that is, the values stored in the
delay elements z~ ! are all zeros at n=0. From (2.26) the method is executed
frame-by-frame with

e Zero-input response (s%):

sin) =yraln+N), M <n< -1, (2.35)

-
M

sii[n]:—Za;sfi[n—i], 0<n<N-1L (2.36)
i=1
e Zero-state response (s%°):

52 =0, M <n<-1, (2.37)

s%[n] = x,[n] — Zaisfs[n —i, 0<n<N-1 (2.38)

M
i=1

e Overall response (y):

y[n] =s%m +s%n, 0<n<N-—1. (2.39)

So why would we bother with the extra complications associated with this me-
thod (Excerise 2.9)? The answer becomes clear when we study the CELP coder in
Chapter 11.
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2.3 CONVOLUTION

Given the linear time-invariant (LTI) system with impulse response h[n], and
denoting the system’s input as x[n] and the output as y[n], we have

o0 o0

i = > xlkhln — k] = Y x[n— kh[k]. (2.40)

k=—00 k=—00

The above equation is known as the convolution sum between x[n] and h[n] and
is one of the fundamental relations in signal processing. In this section, we will
explore the usage of the convolution sum for the calculation of the output sequence
on a frame-by-frame basis, with emphasis on the all-pole filter.

Impulse Response of an All-Pole Filter

A straightforward way to find the impulse response sequence is by using the time-
domain difference equation (2.26), when the input is a single impulse: x[n] = 5[n].
That is,

h[n] = 8[n] — Zaih[n —1]. (2.41)

hln] =0, n<O0,

AN = 1] ==Y "ah[N -1 —i].

i=1

Thus, the impulse response sequence is determined by the filter coefficients.

All-Pole Filter: Calculation of Output Sequence on a Frame-by-Frame
Basis Using the Zero-Input Zero-State Method

Due to the IIR nature of the all-pole filter, it is in general not possible to use a
segment of the impulse response to compute the filter’s output on a frame-by-frame
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TABLE 2.1 Amount of Computation Spent by Each
Individual Output Sample in the Convolution Sum

Sample Sums Number of Products
y[0] 0 1
y{1] 1 2

y[N —1] N-1 N

basis. However, it is possible to find the zero-state response using a segment of the
impulse response to compute the convolution sum. Here, the zero-input zero-state
method described in last section is modified to accommodate the convolution.

Given the impulse response sequence h[n], n=0,..., N— 1, the zero-state
response (2.38) is found with

§Z[n) = zn:x,[k]h[n —k, 0<n<N-1, (2.43)
=0

which is the convolution sum adapted from (2.40). Equation (2.43) provides an
alternative to compute the zero-state response of the frame. The total number of
sums and products needed to find the N samples of the output sequence are
summarized in Table 2.1. By adding the numbers in each column, we have

Number of sums = (N — 1)N/2, (2.44)
Number of products = N(N + 1)/2; (2.45)

representing the total computational costs involved with this approach. Table 2.1 is
obtained by counting the number of sums and products in the following equations,
obtained from (2.43):

$210] = x{0Jn[0],
(1] = x{0[1] + x, [1][0],

(2.46)
s¥IN — 1] = x,[0JA[N — 1] + - - - 4+ x,[N — 1]A[0].
The above equations can be written in matrix form:
s =H-x, (2.47)

where

& — [sZS[O] s[] -o SSIN - 1]]T (2.48)
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is the N x 1 zero-state response vector,
X =x[0 x[1] - xN-1]" (2.49)

is the N x 1 input vector, and

h[0] 0 - 0
h[1] ho] -+ 0

H= : : o (2.50)
hw;u MN;ﬂ -+ h[0]

is the N X N impulse response matrix.

Comparing the computational cost associated with the convolution sum ((2.44)
and (2.45)) to that involved with a direct application of the time-domain difference
equation ((2.38), Exercise 2.9)), one can see that the number of operations of the
latter is less than the former. Thus, the practicality of the convolution sum approach
is in doubt. Use of the convolution sum in the calculation of the zero-state response
can reduce the computational cost significantly for the case of CELP coders, where
the zero-state response must be computed in a repetitive manner (Chapter 11).

Recursive Convolution

Given the sequence x[n], n=0,..., S(L— 1)+ N — 1, with S, L, and N positive
integers, we define the following L sequences:

(2.51)
xEV[n) = x[n].
For n=0 to N — 1, in general, we write
XD =xn+(L—-1-1)8]; 1=0,1,....L—1; n=01,....n—1. (2.52)
Figure 2.12 illustrates the relationship between x[n] and x(l)[n]. Note that
X =x0n—8); S<n<N-1. (2.53)

That is, xX°[n] is obtained by extracting N samples from the sequence x[n] from
different positions. Given a system with impulse response /[n], it is desired to find
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ke SL-1)+N 3|
I | xn]
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Figure 2.12 Obtaining the input sequences in recursive convolution.

the zero-state responses corresponding to the input sequences x[n]. Let’s denote
these responses as y”[n], in matrix form:

y? =H x". (2.54)

The above equation suggests the computation of the system responses by
applying an independent convolution operation to each input sequence. However,
the total computation can be reduced, since the input sequences share common
samples. To explore the situation, consider

n—S
YOI =8 =Y xVn—5— klhkl; (2.55)
k=0
then
Y ) = yO[n - 5]
n—S n
=3 (X k] — 2O — 5 — k])h[k] + Y A kalk. (2.56)
k=0 k=n—S+1

Using (2.53), we come to the conclusion that

n

S xH D[ — k]h[k], 0<n<S—1,
] = ¢ =0 . (2.57)
Yn—=84+ S " D[n—khk], S<n<N-—1.
k=n—S+1

Therefore, if the /th response is available, only the first S samples of the (/ 4+ 1)st
response need to be computed via the usual convolution. The last (N — §) samples
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can be found using a simpler, less complex operation. The equation is known as
recursive convolution, since the convolution of one sequence can be found from
the previous response in a recursive fashion.

Recursive convolution is widely used by CELP-type speech coders (Chapter 11),
where the zero-state responses must be found from a codebook having overlapping
codevectors. The computational procedure shown in (2.57) improves the efficiency
dramatically, enabling the practical implementation of these types of coders. See
Exercise 2.12 for computational cost and comparison with regular convolution.

The Case of Single-Shift

When § =1, a rather simple expression arises. From (2.57)

(1)1 _ x(lﬂ)[o}h[o]: n=0 2.58
y [n] - (l) (l+l) ( . )
YW =1 +x"V[0aRk], 1<n<N-1.
With the definition that y”)[ — 1] =0, we have

(l+l) — (Z) _ 1 (1+1) 0 h 2 59
y ] =y n — 1] +xV[0]A[n] (2.59)

for 0 < n < N—1. From (2.52) we can derive an alternative expression
Y[R =y D[ — 1] + x[L — I — 2)h[n] (2.60)

or

yO[n] = =V n — 1] + x[L — 1 — 1)h[n). (2.61)

In (2.59), (2.60), and (2.61) it is assumed that each y”[n], =0 to L —1,
occupies separate arrays. That is, different memory space is needed for each
sequence. In-place computation can be performed using the following pseudocode,
with the assumption that y(o)[n] is available and is initially stored in the y[n]
array.

1. for Il —1toL-1

2 for n— N-—1downto 1

3. yln] « y[ln-1] + x[L-1-11h[n]

4 y[0] « x[L-1-1]1h[O0]

5 // New sequence is available: do something.

Note how the sample of the new sequence replaces the old one by going
backward in n. This method is applied if there is no need to store all L sequences
in memory, leading to substantial memory cost reduction.
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2.4 SUMMARY AND REFERENCES

This chapter presented several fundamental techniques that are widely used in sig-
nal processing. In the next chapters, we will see their application in actual imple-
mentations of speech coders. For a general reference on digital signal processing,
see Oppenheim and Schafer [1989]. Additional algorithms for convolution can be
found in Burrus and Parks [1985].

Pitch period estimation was an intense research topic back in the 1960s and
1970s. See Sondhi [1968] for evaluation of three pitch estimation methods; in
Rabiner et al. [1976], a comparative study of seven estimation algorithms is
described. Since the search procedure associated with pitch period estimation is
quite computationally demanding, many implementations put priority on complex-
ity reduction; alternative techniques are given in subsequent chapters.

EXERCISES

2.1 An effective and simple technique to improve the accuracy of the
autocorrelation method in pitch period estimation is center clipping. In this
method, a clipping function is applied to the speech signal prior to auto-
correlation calculation. One such function is

X +c, x < —c
flx) =<0, —c<x<c
x—c, x>c

where ¢ is a positive constant known as the clipping limit. Typically, the
clipping limits are set to £30% of the absolute maximum of the waveform.
One problem associated with the autocorrelation method is that the first
formant frequency, which is often near or even below the fundamental pitch
frequency, can interfere with its detection. If the first formant is particularly
strong, a competing periodicity will be present in the autocorrelation values.

Clipping reduces the interference due to formant frequencies since the
magnitude spectrum is flattened. By clipping the signal, low-amplitude
samples are eliminated, leaving only the high-amplitude peaks of the wave-
form where most information related to pitch harmonics is located. The
resultant magnitude spectrum is less affected by the formant frequencies of
the vocal cavity, and the harmonic peaks will have more uniform amplitude.
Since the spectrum is flattened, the contribution of formant frequency
components to the periodicity present in the autocorrelation function is
reduced, making pitch period estimation more accurate.

Using a portion of voiced speech waveform, implement the autocorrelation
method utilizing the clipped speech signal as input. Plot the resultant
autocorrelation curve and compare to the case of no clipping.
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2.3
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2.5

2.6
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In speech coding applications, it is common to use only the low-frequency
portion of the signal for pitch period estimation. Thus, the input signal is first
lowpass filtered, with a typical bandwidth between 500 and 800 Hz. Imple-
ment this technique by first designing a lowpass filter. Plot the autocorrelation
curve and compare to the case where the lowpass filter is absent.

Decimation is the process of lowpass filtering a signal followed by down-
sampling [Oppenheim and Schafer, 1989]. Consider the pitch period estima-
tion algorithm where the signal is first decimated by a factor of 2; a first pitch
period estimation is found in the decimated domain. Then a refined result is
obtained in the original domain by searching the neighborhood near the first
estimate. Specify the algorithm by drawing the block diagram and writing
down all relevant equations. What is the advantage of this approach?

Autocorrelation can also be computed by

R[l,m] = f: s[n]s[n + 1.
n=m—N+1

In practice, both approaches yield similar results. Explain possible advantages
or disadvantages between the two methods.

The normalized autocorrelation function, defined by
m

> snlsln =1

] _ n=m—N+1

)
m

S o2k Y 2k

n=m—N+1 n=m—N+1

is often employed for pitch period estimation. Due to the addition of the
normalizing term (denominator), the resultant correlation values are compen-
sated for changing signal amplitudes, leading to more precise estimations.
Using a portion of a voiced speech waveform, apply the normalized
autocorrelation method and compare with the original approach.

Given the samples x[0], x[1], ..., x[N — 1] and assuming that they are sorted
in ascending order of magnitude

0] < xf1] < <N - 1],
then the sample median x of these numbers is defined by

. {x[(N+l)/2], N odd,
L (x[N/2] + x[N/2 +1])/2, N even.

Median filtering can be applied as an alternative to eliminate multiples of a
pitch period. For instance, suppose the sequence of pitch period under
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consideration is 50, 51, 100, 52, 49, and the value being processed is 100;

the median filter chooses the sample median of the five numbers and returns

51 as a result. After median filtering, the new sequence becomes 50, 51, 51,

52, 49. The technique is in fact a low-complexity alternative for the removal

of multiplicity in a sequence of pitch period.

(a) Obtain a sequence of pitch period values by analyzing a speech signal
with the autocorrelation method. Apply the median filter and compare
the input-output values; change the number of samples under considera-
tion by the median filter and record its effects.

(b) Discuss the advantages/disadvantages of the method when compared to
the approach discussed in the present chapter.

Given the second order filter with a; = —0.9, a, = 0.6,
(a) Find the reflection coefficients.

(b) Find the difference equations corresponding to direct form and lattice
form realizations for both the all-pole and all-zero configurations.

(c) Via a substitution/elimination process, manipulate the lattice equations
into one single equation relating the output to the input. Show at the end
that direct form and lattice form produce the exact same output.

Given the Mth order all-pole filter, find out the computational complexity
associated with direct form realization and lattice realization. The answer
should be expressed as the number of additions and multiplications per
output sample. Which realization is more efficient? Repeat for an all-zero
filter.

Find out the number of additions and products required per frame for the
state-save method and the zero-input zero-state method. Express the answers
in terms of the filter’s order (M) and the frame length (N), with the
assumption that N > M. Partial answer: The latter requires twice the
amount of computation as the former.

On a sample-by-sample basis, find the impulse response of an all-zero filter
using the time-domain difference equation. Express the answer in terms of
the filter’s coefficients. How many nontrivial samples are there?

Find out the computational cost involved with the calculation of N samples
of the impulse response i[n] of an all-pole filter (n =0 to N — 1) using the
time-domain difference equation, with N > M. For computational cost, fill
out Table 2.2 and add the numbers in each column to yield the total number
of sums and products. Show that

Number of sums = w+ (N=M)(N—1),
(M—-2)(M—1)

Number of products = +(N—-MM.

2
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TABLE 2.2 Computational Cost for Exercise 2.11

n Number of Sums Number of Products
0 0 0
1 0
2 1 1
3
M—1
M<n<N-1

2.12 (a) Show that for a direct convolution sum, computational costs involved
with an N-sample sequence are

Number of sums = (N — 1)N/2,
Number of products = N(N + 1)/2.

(b) In the application of recursive convolution, show that the computational
costs are given below.

Number of sums = S2N —§ —1)/2,
Number of products = S2N — S+ 1)/2.

‘What happen when S = N? For N = 40, compare the computational cost of the
two schemes when S =1 and § = 2.

2.13 Within the context of recursive convolution, consider the alternative
definition for input sequences:

x(l)[n]:x[n—i—lS]; [1=0,1,...,L—1; n=0,1,...,n—1.

Derive the equation for recursive convolution based on this definition.



CHAPTER 3

STOCHASTIC PROCESSES
AND MODELS

This chapter is devoted to the study of stochastic processes or random signals and
their analysis through statistical signal processing. Speech is very often modeled as
random with certain properties that can be captured using a simple model. By esti-
mating the parameters of the underlying model, information related to the signal
can be represented using alternative media.

Power spectral density plays an important role in speech processing due to the
fact that the human auditory system relies heavily on the power distribution in the
frequency domain. Many diverse methods have been developed in the past to esti-
mate the power spectral density from signal samples, a vast field known as spectrum
estimation. Here the discussion is limited to the practical methods and procedures.
A relatively simple method known as the periodogram is first presented followed by
the autoregressive model. With the model, the signal spectrum is assumed to take
on a specific functional form, controlled by a few parameters. The spectral estima-
tion problem is then one of estimating the unknown parameters of the model rather
than estimating the spectrum itself. Substituting the parameters into the model leads
to the actual signal spectrum. The approach is known as the parametric method of
spectral estimation.

The autocorrelation function is often estimated first from the signal sequence
while dealing with parametric spectral estimation based on the autoregressive
model. In fact, it is shown that the autocorrelation function and the power spectral
density form a Fourier transform pair. Different methods used to estimate the auto-
correlation function are presented with an analysis and discussion of advantages
and disadvantages of each method. Other signal models are described at the end
of the chapter, which are not very commonly applied to speech coding applications
due to the complexity involved.
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In dealing with these topics, many authors consider the general case of complex-
valued signals. Since the underlying signal is real for most speech processing appli-

cations, we will deal exclusively with real-valued signals for simplicity.

3.1 POWER SPECTRAL DENSITY

The power spectral density (PSD), also referred to as the power spectrum, is a
description of the second-order statistics of a stochastic process in the frequency
domain. Here the definition of PSD is provided, and its relationship with the auto-
correlation function is found; it is shown that the autocorrelation function is the

time-domain counterpart of the power spectral density.

Average Power of a Deterministic Signal

The average power of the deterministic signal x[n] is given by

R )
P =l .
NN 1 n;N bel]]
By defining
x[n], |n| <N,
xy[n] = .
0, otherwise,
we have
. 1 & L[ [Xn ()
P = 1 = — 1. P d
NI 2N + 1n;m el = 25 Jwﬂ&( YRR b
where

xln] < X ().
That is, they form a Fourier transform pair:

o0

XN(ejw) = Z XN[I’l]eijmn,
1 (" . .
xxln] :%J Xy ()" doo.

The Parseval theorem is used to derive (3.3); see Exercise 3.1 for a proof.

(3.1)

(3.4)
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Average Power of a Stochastic Process

For the stochastic process* x[n], (3.3) only represents the power in one sample
realization. By taking the expected value, we obtain the average power P for the
random signal as follows:

L (E(xa(e®)P)
P= %J Jim, (W) dw (37)

with E{-} the expectation operator.

Definition of Power Spectral Density

The power spectral density function S(e/®) of a stochastic process is defined in
general by

1

P=—
2n

r S(e®) do, (3.8)

where P is the average power of the stochastic process x[n]. Comparing (3.7) to
(3.8) we arrive at the following relation for the PSD:

S(e®) = lim (w) . (3.9)

N—oo 2N +1

Average Power as Time Average of the Second Moment

Applying the expectation operator to (3.1) leads to

N

> E(FI]} = A{E{[n]}}, (3.10)

n=—N

P = lim

where x[n] is assumed to be real. Therefore, the average power of the stochastic
process x[n] is given by the time average of its second moment. For a wide-sense
stationary (WSS) process, E{x*[n]} is constant with n and so is the average power P.
The time average operator A{-} is defined by

A{}y = Jim 2N1—|— 1n;v(')' (3.11)

* The simplified notation for stochastic process is used here, where x[n] for n fixed is a random variable. A
stricter notation would be x([n, ¢], where ( is a variable representing the outcome of an experiment. In this
latter notation, if » and ¢ are fixed, x[n, (] is a number. See Papoulis [1991] for details.
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We are especially interested in the WSS process since the resultant mathematics
are simple and tractable. For speech coding, the WSS assumption can be applied to

short intervals.

Theorem 3.1. Given a stochastic process x[n] with autocorrelation function

Rlny,nmp] = E{x[n]x[na]}, (3.12)
then
S(e®) = i A{R[n,n + I}, (3.13)
I=—00
and
U™ o o o
A{Rnn+ 1} = EJ_ S(e™)e! do. (3.14)

Equations (3.13) and (3.14) show that S(¢/®) and A{R[n,n + ]} form a Fourier
transform pair, denoted by

A{R[n,n + 1]} < S(e/®). (3.15)
Proof. From (3.4),
00 N
Xy(e®) = Z xy[nle 7" = Z x[n]e 7", (3.16)
n=-—00 n=—N

Substituting (3.16) in (3.9) gives

N
5= g {nz e 3 i)

1:7N ny=—

N N
= Jm oy 2, 2 Eimldlle G

The expectation within the summation of the above equation is identified as the
autocorrelation function of x[n], (3.12). Thus,

li n n|)
S(e) = NﬂmzNH Z Z y, mJe 0 (3.18)

ny=—N np=—N
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Now consider the change of variables with n =n; and I =n, —ny =n; —n.
Equation (3.18) becomes

SE) =" {NWZN Z [, n+ 1] }e‘-"‘“l. (3.19)

I=—00

The quantity within braces is recognized as the time average of the autocorrelation
function. Thus, the theorem is proved.

Theorem 3.2. Given a WSS stochastic process with autocorrelation function
R[l] = E{x[n]x[n + 1]}, then

S(e®) = i R[lje 7! (3.20)

l=—00
and
_ 1 " i\ jol .
R[] _EJ_R S(e®)e™ doy; (3.21)
that is,
R[] < s(e®). (3.22)

See Exercise 3.2 for a proof of this result.

Example 3.1: White Noise White noise is a stochastic process characterized by a
constant PSD, given by

S(e®) = o2, (3.23)

where o2 represents the variance of the signal. The autocorrelation function is
therefore

R[l] = o?8]1]. (3.24)

That is, the autocorrelation function is a delta function. If follows from (3.24) that a
white noise signal must have zero mean (Exercise 3.3) and two samples from dif-
ferent time instances are uncorrelated (Exercise 3.4).

White noise is generated in practice using a random number generator and, in
most cases, is either uniformly distributed or normally distributed (Gaussian).
Gaussian distribution is preferred in certain applications due to its analytic ele-
gance: linear combination of any number of independent normal random variables
with zero mean always leads to a normal random variable. Also, the central limit
theorem states that under certain general conditions, the sum of independent ran-
dom variables (any distribution) results in a normally distributed random variable
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[Papoulis, 1991]. In order to approach the behavior of theoretical white noise, the
random number generator must possess certain ‘“good’ qualities, namely, the
sequence of numbers generated must be statistically independent from each other.
Many tests exist that provide measurement of the property of random number gen-
erators [Banks and Carson, 1984].

Theorem 3.3. Correlation Relations Between the Input and Output of a Linear
Time-Invariant (LTI) System. We are given an LTI system with impulse response
h[n]. The system input is the WSS process x[n] with output y[n]. Then

Ryxll] = h[l] * RJ[1], (3.25)
Royll] = h[~1) = Ri{1], (3.26)
Ry[l] = h[l] * Ry [l], (3.27)
Ry[l] = hll] * h[—1] * R[l], (3.28)

where Ryy[ni,no] = E{x[ni]y[no]} is the cross-correlation between x[n] and y[n].
When x[n] and y[n] are jointly WSS—as in the present case—the cross-correlation
depends only on / = n; — ng; hence, Ry, [l] = E{x[n]y[n — ]}

The last equation indicates that the autocorrelation function of the output process
is a twofold convolution of the input autocorrelation function with the system’s
impulse response.

Proof. From the convolution sum,
y[n] = Z hlk]x[n — k]. (3.29)
k=—00

Evaluating the above relation at n = n; and multiplying both sides by x[no] gives

y[ni]x[no] = Z hlk]x[n, — k|x[no]. (3.30)
k=—00
Taking the expectation,

o0

Ryx[ni,nol = > kIR — no — kJ. (3.31)

k=—00

Since x[n] is a WSS process, R, is a function only of the difference n; — ng, imply-
ing that x[n| and y[n| are jointly stationary. Substituting the variable [ = n; — ng
produces

Rull = > WKR, &) (3.32)

which is (3.25).
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Equation (3.26) is a direct consequence of (3.25) and the symmetric properties
of cross-correlation and autocorrelation. By using a procedure parallel to the one
used to find (3.25) (multiplying both sides of (3.29) by y[no] instead of x[no]),
(3.27) is derived. Finally, (3.28) is found by substituting (3.26) in (3.27).

Theorem 3.4: Power Spectral Density of the Output of an LTI System. We are

given an LTI system with transfer function H(e/®). The system input is the WSS
process x[n] with PSD S, (¢/®), and the output process is y[n]. Then

$y(¢°) = |H(&”)[*S (") (3.33)
is the PSD of the output process y[n]. This result is obtained by applying the Fourier

transform to (3.28). The function |H(¢/®)|* is sometimes referred to as the power
transfer function.

3.2 PERIODOGRAM

Consider an N-point sequence x[n],n=0,...,N — 1. The periodogram Iy(e/®) is
defined to be

Iy(€®) = % |Xn ()2, (3.34)
where
N—1
Xy (e®) = Zx[n]e_j"“) (3.35)
n=0

is the Fourier transform of the finite-length sequence x[n].
When the finite-length sequence is selected through a window sequence win],
that is,

N—1

Xy () = Zw[n]x[n]e‘j”m, (3.36)

n=0

the resultant frequency function, as defined in (3.34), is known as the modified per-
iodogram, or simply periodogram.

Theorem 3.5. We are given the N-point real sequence x[n],n =0,...,N — 1. Then
Iv(@®)= Y Rl (3.37)

—(N-1)
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with
= ]%] z_: wm + lw[m|x[m + [|x[m] (3.38)
m=0

being the autocorrelation function of the sequence w{n]x[n]. Thus, the periodogram
is related to the autocorrelation function through the Fourier transform
equation (3.37).

Proof. From (3.34),

In(€®) = = Xn(e)Xy ()

Z| =

1N 1 N-1

Z win [m]e—joa(n—m)

n=0m=0

NZsz: wim + I)x[m]x[m + e ', (3.39)

= |

2 \

Note that w(n] is zero outside the interval n € [0, N — 1]; hence,
= Z Zw wlm + lx[m]x[m + l]e 7, (3.40)
J=—

which completes the proof.

Comparing (3.37) with (3.20) one can reach the conclusion that the periodogram
is similar to the power spectral density. Indeed, the periodogram is an estimate of
the PSD using a finite number of samples from the signal source, with the estimate
being an approximate calculation of the true function. Due to its simplicity,
the periodogram is often used in practice to study the signal source of interest in
the frequency domain. References are given at the end of the chapter where
more extensive discussion regarding the statistical properties of periodogram can
be found.

The choice of the window depends on frequency resolution and spectral leakage.
The ideal window spectrum is an impulse, which would require a window sequence
of infinite length. Many options are available for finite-length window, with
the Hamming window being one of the most widely used. In practice, the sample
mean of the finite-length sequence is often subtracted before computing the peri-
odogram. This avoids leakage due to the zero-frequency component that interferes
with the low-frequency zone.
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3.3 AUTOREGRESSIVE MODEL

A model is used for any hypothesis that may be applied to explain or describe the
hidden laws that are supposed to govern or constrain the generation of some data of
interest. One common method for modeling random signals is to represent them as
the output of an all-pole linear filter driven by white noise. Since the power spec-
trum of the filter output is given by the constant noise spectrum multiplied by the
squared magnitude of the filter (see (3.33)), random signals with desired spectral
characteristics can be produced by choosing a filter with an appropriate denomina-
tor polynomial.

The sequence values x[n],x[n — 1],...,x[n — M] represent the realization of an
autoregressive (AR) process of order M if it satisfies the difference equation

x[n] +aix[n — 1]+ - - - + ayx[n — M] = v[n], (3.41)

where the constants a;,a, . .., ay are known as the AR parameters and v[n] repre-
sents a white noise process; the above equation can be written as

xn] = —ayx[n — 1] —apx[n — 2] — -+ - — ayx[n — M| + v[n]. (3.42)

Therefore, the present value of the process, x[n], is equal to a linear combination of
past values of the process, x[n — 1],...,x[n — M], plus an error term v[n]. The
process x[n] is said to be regressed on x[n — 1],x[n — 2], ..., x[n — M]; in particular,
x[n] is regressed on previous values of itself, hence the name ‘‘autoregressive.”

System Function of the AR Process Analyzer

Taking the z-transform of (3.41) and manipulating yields

/—\
N

Hy(

=> a7’ (3.43)

i=0

><
N

where Hy(z) denotes the system function of the AR analyzer, which is a filter that
takes x[n] as input and produces v[n] at its output. The parameter ag is equal to one
in the above equation. Thus, the AR analyzer transforms an AR process at its
input to white noise at its output. Figure 3.1 shows the direct form realization
[Oppenheim and Schafer, 1989] of the AR analyzer. Note that the AR process
analyzer is an all-zero filter and hence of FIR nature.

System Function of the AR Process Synthesizer

With the white noise v[n] acting as input, we can use the system function given by

Xz 1 1
Hs(z) = VE @ S ar (3.44)
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x[n] ;v[n]
z! r =t 1
z' ¥ av-1 1
'y a 1

Figure 3.1 Direct form realization of the AR process analyzer filter.

to synthesize the AR process x[n]. Direct form realization is shown in Figure 3.2.
Note that the AR process synthesizer is an all-pole filter whose impulse response
length is infinite (IIR). The synthesizer takes white noise as input and produces an
AR signal at its output. From (3.44) we see that the system function of the analyzer
is the inverse of the system function for the synthesizer; we can also write

1

Hg(z) = , 3.45

&) (L=piz ) (1 =poz7t) -+ (1 = puz™") (343)
where p1,pa, ..., pu are poles of Hg(z) and are roots of the characteristic equation
l+aiz ' a2+ +auz™=0. (3.46)

Thus, an AR process is synthesized by filtering white noise using an all-pole
filter.

PSD of an AR Process

As explained earlier, an AR process is the output of the LTI system characterized by
Hs(z), when the input is a white noise process. From (3.23) it follows that the input

v[n] p XN
—a r 71
a1 y Z_l
— aM 4 7 1

Figure 3.2 Direct form realization of the AR process synthesizer filter.
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Figure 3.3 Signal plots for (a) white noise and (b) AR signal (150 samples). PSD (solid)
and periodogram (dots, calculated with 400 samples) plots for (c) white noise and (d) AR

signal.

PSD is constant and equal to o2, the variance of the input signal v[n]. From (3.33)
the PSD of the output AR process x[n] is

$:(¢) = |Hs(¢*) "o}

(3.47)
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That is, the PSD of an AR process is given by the product between the magni-
tude squared of the transfer function of the synthesizer and the variance of the input
white noise.

Example 3.2 White noise is generated using a random number generator
with uniform distribution and unit variance. This signal is then filtered by an AR
synthesizer with

a; = 1.534 a, =1 az = 0.587 as = 0.347 as = 0.08
as = —0.061 a7 =—-0.172 ag = —0.156 a9 = —0.157 aj;o = —0.141

Segments of the signals are plotted in Figure 3.3. Note that for white noise, correla-
tion is almost nonexistent between adjacent samples; that is, signal values are inde-
pendent from each other. For the AR signal, however, a strong correlation exists
between adjacent samples, where the value of the signal at a given time instant
tends to follow the close-by samples.

From the same figure, the theoretical PSDs of the two signals are plotted
together with the periodogram using N = 400 samples and a rectangular window.
The periodogram values, even though noise-like, fluctuate around the theoretical
functions, confirming the fact that it is indeed an estimate of the PSD. Note that,
for white noise, the theoretical PSD is constant and equal to one (3.23) while for the
AR signal, it is given by (3.47). The periodogram is significantly different from the
theoretical PSD because a single ensemble realization of the random process is con-
sidered in the experiment. By evaluating a large number of realizations, the average
result will converge toward the theoretical functions.

Other observations can be drawn from the signal plots. First, the AR signal is
“colored,” meaning that its PSD is not flat, as opposed to that of the white noise,
with the shape or contour of the spectrum being determined by the synthesizer. If
the AR signal is filtered by the corresponding analyzer, white noise can be obtained
at its output. Thus, the analyzer filter is often referred as the ‘“‘whitener,” which
decorrelates an input signal by flattening its power spectrum.

Normal Equation

Since v[n] represents a white noise sample at time instant #, it is not correlated with
x[n — 1] for I > 1. That is,

E{vnlxln =0} =0; 1=1,2,...,M. (3.48)
Multiplying both sides of (3.41) by v[n| and taking expectation yields

E{v[n]x[n]} = c>. (3.49)

v
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That is, the cross-correlation between x[n] and v[n] is given by the variance of v[n].
Multiplying both sides of (3.41) by x[n — 1],/ =0, 1,..., M, and taking expectation
yields the system of equations

RO] + iR [1] + - - + auR[M] = &2,
Rl] + aiR 0] + - - + ayR:[M — 1] = 0,
(3.50)
RiM] 4+ a1Ry[M — 1] + - - - + ayR,[0] = 0.
Or in matrix form,
Rx[o] Rx[l] Rx[M] 1 6‘2)
RJ[l]  RJ[0] - RM-1]|]| a
= (3.51)
thM] RX[M —1] Rx.[O] a;u 0

The above equation is known as the normal equation* for WSS AR processes.
Given the autocorrelation sequence R,[0], R[1],...,R[M], (3.51) can be solved
to yield the model parameters a;. See Exercises 3.7 and 3.8 for alternative forms
of the equation.

3.4 AUTOCORRELATION ESTIMATION

In the previous sections we mentioned that the periodogram is an estimate of the
PSD. It was also shown that the autocorrelation function and PSD form a Fourier
transform pair. Based on this fact, the autocorrelation function can be estimated first
from the signal; the Fourier transform is then computed for the purpose of spectrum
estimation.

As we will see in later chapters, the autocorrelation function plays an important
role in linear prediction analysis: a procedure used to calculate the autoregressive
parameters, or linear prediction coefficients of the signal model. Thus, it is impor-
tant to study the different estimation methods available for autocorrelation.

Since speech is nonstationary, the autocorrelation values must be estimated and
changed for every short interval of time; that is, their values are recalculated in each
signal frame. Fundamentally, two types of procedure exist: nonrecursive and recur-
sive. The difference between the two types of estimation methods is analogous to
digital filters: FIR and IIR. In a nonrecursive approach the window used for extrac-
tion has finite length, while an infinite-length window is used for recursive methods.
The use of either of these techniques depends on the particular application.

*The normal equation is also known as the Yule—Walker equation or Wiener—Hopf equation in the
literature.



74  STOCHASTIC PROCESSES AND MODELS
The autocorrelation function of a real discrete-time signal x[n] at lag [ is defined
by*
N

Rull] = A{xlnlx|n + 1]} = lim ﬁ S e+ (352)

N—oo N
Implementations of various estimators are explained next.

Nonrecursive Estimation Methods

Nonrecursive methods are based on a well-defined window sequence win| to extract
the signal frame of interest for further processing, with the Hamming window being
one of the most widely used. The causal Hamming window is defined with

. —0. 2nn < < _
W[n]:{054 0.46 cos(2), 0<n<N-1, (3.53)

N-1
0, otherwise,

with N being the window length (number of nonzero samples). Figure 3.4 shows a
plot of the window sequence. In practice, the values of the window sequence are
often stored in memory.

win]

0 200
n

Figure 3.4 Plots of the rectangular and Hamming window, with a length of N = 240.

*In the application of the theory of stochastic processes, we will assume that the signals under
consideration are “ergodic in correlation,” meaning that the time average A{x[n]x[n + {]} is equal to the
expectation E{x[n|x[n + I]}.
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Assume we want to perform the estimation on the frame that ends at time instant
m, where the length of the frame is equal to N (i.e., fromn = m — N 4 1 to m). One
approach is

R[l,m] :% i x[n)w[m — n)x[n + {lwim — n — 1. (3.54)

n=—00

Figure 3.5 illustrates the situations for / > 0 and / < 0. Note that the window
sequence w{n] is causal. Taking into account the limits of the summation, the above
equation can be manipulated to yield

Rll,m] = 1 i x[n]w[m — n)x[n — |l|jwim — n + ||]. (3.55)

n=m—N+1+|l|

The estimator represented by (3.54) and (3.55) has the following properties:

w[n]
@ i
n
N-1
w[m-n]
®) | ‘/\
m-N+1 m n
wlm—n—I]
>0 /\
(©
n
m-N+1-1 m-|
wm—n—I]
I <0
(d)
n
m—N+1-1 m-|

Figure 3.5 (a) A causal window sequence with N samples. (b) The time-reversed and
-shifted window w[m — n]. (c) wim —n —I] for I > 0. (d) wim —n —[] for [ < 0.
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e R[l,m] is a biased estimator of R,[l]. If x[n] is a realization of a WSS, ergodic,
random process, then by taking the expected value of (3.55) we find (assuming
a rectangular window)

E{R[L, m]} :% S E{alnlsln— i} :N;,“'RXM (3.56)
n=m—N+1+||

In statistical terms, the estimator is biased when E{R[l,m]} # R,[l] with the
bias being the difference E{R[l,m|} — R,[l]. The bias is a measure of the error
involved by using the estimator: the smaller the bias the better the estimator.

e R[l,m] is asymptotically unbiased. From (3.56),
A}im E{R[l,m]} = R,[1]. (3.57)

Thus, R[l, m] is asymptotically unbiased by definition.

See Exercises 3.10 and 3.11 for other versions of the nonrecursive estimator and
their statistical properties.

Recursive Estimation Methods

For most speech coding applications, the frame length N is on the order of 200 sam-
ples, since it is roughly the time interval during which the signal remains stationary.
An example is illustrated in Figure 3.6 (a), where a window of length 200 is used to
calculate the autocorrelation values every 200 samples. In some applications it
might be necessary to perform the calculation in an interval that is much shorter
than 200, for instance, 40. By updating the estimates more frequently, delay asso-
ciated with the buffering process (required to gather the input samples) is greatly
reduced, which is highly desirable in practice. Figure 3.6(b) shows the solution

@ W
Y _ 50NN

Figure 3.6 Illustration of nonrecursive autocorrelation estimation. (a) Estimation is
performed every 200 samples; a window of length 200 is used. (b) Estimation is performed
every 40 samples; a window of length 40 is used. (c¢) Estimation is performed every 40
samples; a window of length 200 is used. Note that the windows overlap each other.
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where a window of length 40 is used. A short window, however, will increase
the bias of the estimates, leading to inaccurate results. For higher precision, the
situation depicted in Figure 3.6(c) can be applied, where a 200-sample window
is employed every 40 samples, leading to overlapping. A disadvantage of this latter
approach is in the computational aspect: for every short interval of time (40 samples
in this case), 200 samples must be stored to compute the autocorrelation values,
which is repeated for every 40-sample intervals. Since the windows are overlap-
ping, some information should be reusable from interval to interval; in the present
(nonrecursive) scheme, however, the procedure is not taking advantage of the
situation, leading to a high degree of inefficiency.

To overcome these problems, a recursive approach is desirable. In this case,
information from the past frames is used to update the estimates of the present
frame so as to increase efficiency. Consider an estimator of autocorrelation based
on the following relation:

Rll,m] = io: x[n]w[m — n)x[n — w[m — n + 1, (3.58)

n=—00

which is essentially (3.54) without the scaling constant 1/N. In most applications,
only the relative magnitude between the autocorrelation values for different lag [ is
important; thus, the scaling constant can be omitted. The type of window that we
consider here has the shape shown in Figure 3.7, where it is causal with a decaying
amplitude (wn] — 0 as n — o0). Since the infinite-length window has very small
amplitude outside a certain region, say, a region of length N, similar statistical
properties can be drawn as in the nonrecursive case.

Barnwell Window

Barnwell (1981) proposed the following infinite-length sequence as the window
used for autocorrelation estimation:

wln] = (n+ 1)o"uln], (3.59)

with o a real positive constant smaller than one and u[n] the unit step function. The
window sequence w{n] has z-transform

W) =——. (3.60)

w(n]

| » n

Figure 3.7 A causal window sequence of infinite length.
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30 T T T

R g 0.984 —
20 /: o /

w[n]

Figure 3.8 Barnwell window for four different values of a.

That is, it is an all-pole function with second-order pole located at z = .. Figure 3.8
shows various window sequences for different values of a.

Note that the magnitude of the window is negligible outside a certain finite-
length interval; the length of this interval is a function of the constant o. By
choosing the right o, it is possible to include more or less data for the estimation
process. Typical window lengths are on the order of 30 ms in speech coding or 240
samples for an 8-kHz sampling rate; a constant o near 0.98 is a good choice to meet
the specification.

Let’s define
] = xlnlxn — 1] (3.61)
and
wiln] = winlwln +1). (3.62)
Equation (3.58) can be rewritten as
Rllm = 3 xlnwn — ] = xfn] < i, (363)

That is, the autocorrelation estimate with lag / and at the frame end time m is given
by the convolution between the sequence x;[m] and w;[m]. R[l, m] can therefore be
considered as the output of an LTI filter with impulse response w;[m] and input
x;[m]. Recalling the fact that w;[m] is a causal sequence, (3.63) can be rewritten
as

m

R[l,m] = Z xi[n]w;[m — n]. (3.64)

n=—0o0
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1 Xelml
X[ p p W@ —p RO,m
zt X[ 1]
—»@—» W@ | R1,m]
1 X2[m]
z —»@—» W2 | R2,m]
z* x[m]

Figure 3.9 Block diagram of the system needed for recursive calculation of autocorrelation
estimates.

Now, we seek the system function W;(z) of the LTI filter whose impulse response
is wy[m]. It can be shown (Exercise 3.12) that

(I+ Dol — (1 — D271
Wilz) = 1 — 302771 4+ 304772 — abz73" (3.65)

Equation (3.65) is the system function of the LTI filter needed for the estimation
of autocorrelation. Figure 3.9 shows the system needed for recursive calculation of

(I + o'

x[m] > > » p R[I, m]
,1 “ .
zZ A 4

307 A
> <
—1
-(I-Da'*? A z
-3¢
i
-
S zt
o’
|
(I + 1o
x[m] > > » R, m|
~1
302 z
i |-
- v 1+2
)\ | -(-Do
-3¢
<
! S zt
o

Figure 3.10 Direct form I (fop) and direct form II (bottom) implementation of W;(z).
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the autocorrelation estimates. The system function W;(z) can be implemented in
direct form I or direct form II as shown in Figure 3.10. [Oppenheim and Schafer,
1989]. Direct form II realization has some important advantages: the filter can be
separated into a recursive section where the multipliers 302, —30%, and of are
involved, and a nonrecursive section constructed with the multipliers (I + 1)a
and —(I — 1)o/*2. The two products in the nonrecursive portion of the filters
need only be carried out once on every frame interval and not on every sample,
leading to substantial computational savings. In contrast, direct form I provides
no such benefit.

To summarize, the Barnwell windowing method for recursive autocorrelation esti-
mation presents the following differences when compared to nonrecursive techniques:

e Since the parameter o completely controls the window length, the same
amount of computation is required regardless of the window length or frame
size. In a nonrecursive approach using a finite-length window, the amount of
computation is proportional to the window length.

e The scaling constants in the recursive sections of the linear filters for different
lag [ are all identical. This allows for less constant storage and simpler filter
realizations.

e Since all the window information is contained in the linear filter coefficients,
no extensive ROM storage is needed to support the window function. In
contrast, nonrecursive methods often require samples of the window to be
stored in memory, with the actual amount dependent on the window length.

Chen Window

In the aforementioned Barnwell windowing technique, the products of the current
signal sample and previous samples are passed through a bank of third-order IIR
filters, and the autocorrelation coefficients are obtained at the outputs of the filters.
For fixed-point arithmetic, rounding is necessary and introduces errors that tend
to accumulate as noise in the recursive structure of IIR filters. Since most target
processors for speech coding applications are of the fixed-point type, use of the
Barnwell window presents serious implementational problems. To avoid the pro-
blem associated with a recursive structure, a conventional blockwise nonrecursive
window (such as the Hamming window) can be used. However, as mentioned ear-
lier, with frequent updates and a high degree of window overlapping, the resulting
scheme is inefficient, with excessive complexity.

Chen proposed a hybrid window consisting of a recursively decaying tail and a
section of nonrecursive samples at the beginning [Chen, 1995]. The recursive part is
exponentially decaying while the nonrecursive part is a section of the sine function.
The overall shape is very similar to the Barnwell window. The purpose of the non-
recursive portion is to mimic the general shape of the Barnwell window, while the
purpose of the recursive portion is to enable recursive calculation so as to reduce
complexity (with respect to a nonrecursive approach). By using this window,
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numerical sensitivity is greatly reduced (with respect to Barnwell window),
enabling the deployment of a hybrid window with sufficient accuracy using
fixed-point arithmetic.

The window is defined by

0, n <0,
wln] = ¢ sin(en), 0<n <L, (3.66)
b L > L4,

where L is the length of the nonrecursive section of the window and o, b, and ¢ are
constants that must be found for a particular window specification. To ensure a
smooth junction between the sine function and the exponential function at
n =L+ 1, two conditions are imposed:

e Values of the two functions are equal at n = L + 1, which means

sin(c(L+ 1)) = b. (3.67)

e Slopes of the two functions (derivatives with respect to n) are equal at
n =L+ 1, implying

ccos(cn) = b(Ino)o" =1, (3.68)
Atn=L+1,
Ino = cctg(e(L+ 1)) (3.69)
or
o = explectg(e(L + 1))]. (3.70)

Summarizing, the following procedure is used for window design.

Step 1. The decaying factor « is first fixed; its choice depends on how long we want
the effective length of the exponential tail to be.

Step 2. Length of the nonrecursive part is L. Its value is chosen based on how we
want to shape the initial part of the window and how much computational com-
plexity we are willing to have. Obviously, the larger the number L, the higher the
complexity. Also, more storage is required for the longer nonrecursive window.

Step 3. Once o and L are known, (3.69) or (3.70) is solved for the constant c. This
can be done with a graphical approach.

Step 4. Equation (3.67) is used to find b.

Example 3.3 The window design procedure is illustrated for the case when
o = 0.5/40 = 0.9828205985 and L = 30. These specifications correspond to the
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11

0.9
0.04 0.06 0.08

Figure 3.11 Graphical approach to finding the parameter ¢ of the Chen window.

window used for the perceptual weighting filter of the ITU-T G.728 LD-CELP
coder (Chapter 14). Thus, Steps 1 and 2 of the design procedure are already com-
pleted. For Step 3, we use a graphic method to solve c¢. In Figure 3.11, (3.70) is
plotted as a function of c¢. From there we can see that when ¢ ~ 0.06, the desired
value of « is reached; the range of ¢ used to search for the result is found experi-
mentally. Fine tuning its value yields the final result of ¢ = 0.0597731696, which is
done manually on a trial-and-error basis. (Note that a simple computer program
can be created to search for c.) In Step 4, the value of c is substituted in (3.67)
to give b = 0.96. The window is therefore completely specified and is plotted in
Figure 3.12.

w[n] 05 —

0 100 200 300
n

Figure 3.12 Chen window with oo = 0.5'/%0 and L = 30.
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wln] w[m-n]

— n . = n
0 L L+1 0 m-L-1 m-L m

Figure 3.13 Chen window showing the nonrecursive and recursive portion (left), together
with the time-reversed and -shifted version (right).

Computational Procedure for Chen Window

For causal windows, (3.58) reduces to

R[l,m] = Xm: x[nlw[m — n)x[n — w[m — n +1]. (3.71)

n=—00

The time-reversed and -shifted window sequence w[m —n| is shown in
Figure 3.13, where the limits separating the recursive and nonrecursive portions
are shown. Equation (3.71) can be written as

R, m] = m_i: x[nlwlm — nlxln — Dwlm — n + I
+ niLx[n]w[m — lx[n — Owlm — n+ 1. (3.72)
Let’s define
R,[l,m] = m_zz x[nlwlm — nlxln — Qwlm — n + 1, (3.73)

which represents the recursive part of the estimation equation. Assume now that we
want to compute the recursive autocorrelation estimate at the frame end time
m + N, with N being a positive integer. We can write

m+N—L—1
R,[l,m+ N] = x[plwm+ N —nlx[n — llwim + N —n + 1]
mfzfl
= Z x[plwm+ N —nlx[n — llwm + N — n+ ]
7m+N7L71

+ > nwim+N —nlxp — Qwim+N —n+1.  (3.74)

n=m—L
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wim=n] w[m+ N-n]
n n
m-L-1 m-Lm m+N-L-1. m+N
wim-n+1] wim+N-n+1]
"’//////// ”/////////
t n n
m—L+I—1\ m+]1 m+N-L+[-1 m+ N+
m—-L+1

Figure 3.14 Relative positions of various time-reversed and -shifted window sequences.

Figure 3.14 shows the relative positions of the window sequences. We can see
that the limits in the summations of (3.73) and (3.74) involve only the recursive part
of the window. Substituting the actual expression for the window (3.66) in (3.73)

leads to

m—L—1

R,[l,m] = b*oPm—2L=2H Z x[n)x[n — o=, (3.75)
Similarly, for (3.74) we have
m—L—1
R,[l,m + N] = pPo 222N Z x[n)x[n — No="
m+N—L—1
+ Z x[nlx[n — wm + N —nlwim+ N —n+1. (3.76)
n=m—L

Comparing (3.75) and (3.76) gives

R,[l,m + N] = o*R,[l,m] + m+NziLilx[n]x[n —llwim+N —nlwm+N —n+1].
(3.77)



OTHER SIGNAL MODELS 85

Therefore, R,[/,m + N] can be calculated recursively from R,[/,m] using (3.77).
The autocorrelation estimate at m + N is thus given by

m—+N
RlLm+N] =Ro[lm+N]+ > x[nlwlm+N —nlx[n — wim + N —n+1].
n=m+N—L

(3.78)

Note from Figure 3.14 that a total of N + L + l,.x + 1 values of the window
must be stored. Discounting the first value of zero, a total of N 4+ L + [« values
are needed. This number can also be found from the limits of the summations in
(3.77) and (3.78).

The following pseudocode performs the calculations:

1. Ro[1,m] 0

2. temp< 0

3. forn—m-Ltom+N-L-1

4. temp — temp +x[n]lx[n- 1lwlm+ N-nlwlm+ N-n+ 1]
5. Roll,m+ N] —o®YR,[1,m]+temp

6. temp+ 0O

7. forn—m+ N-Ltom+ N

8. temp «— temp + x[n]lx[n—- 1lwlm+ N-nlw[m+ N- n+ 1]
9. R[1,m+ N]«<R,[1,m+ Nl+temp//Results are here

10. m«—m+ N

11. goto?2

3.5 OTHER SIGNAL MODELS

Besides the AR model presented in Section 3.3, there are other linear models that
are encountered less frequently; however, they are sometimes applied for specific
tasks. The models included in this section are the moving average (MA) model and
the autoregressive—moving average (ARMA) model.

MA Model

The moving average process x[n] of order K satisfies the difference equation
x[n] = v[n] + bvin — 1] + - - - + bgvin — K], (3.79)

where the constants by, by, . . ., bk are known as the MA parameters and v[n] repre-
sents a white noise process. Thus, an MA process is formed by a linear combination
of (K + 1) white noise samples. Figure 3.15 shows the MA process analyzer and
synthesizer filters.
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Figure 3.15 Direct form realization of the MA process analyzer filter (top) and the
synthesizer filter (bottom).

ARMA Model

The autoregressive—-moving average process x[n] of orders (M,K) satisfies the
difference equation

x[p]+ax[n — 1]+ -+ ayx[n — M] =v[n] + byv[n — 1] + - - - 4+ bgv[n — K],
(3.80)

where the constants ay,...,ay,by,...,bx are the ARMA parameters, with v[n]
a white noise process. The ARMA model is the most flexible of all three linear
models; however, its design and analysis are more difficult than the AR or the
MA model.

3.6  SUMMARY AND REFERENCES

Important concepts in statistical signal processing are presented in this chapter,
which form the foundations for many speech coding algorithms. As we will see
in later chapters, many coding schemes attempt to estimate the parameters of a
time-varying filter, used to capture the PSD of the original speech. Since the
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number of parameters needed to specify the time-varying filter is far less than the
number of speech samples, a high compression ratio is achievable.

Further reading in spectrum estimation can be found in Stearns and Hush [1990]
and Therrien [1992]. Foundation of stochastic processes are found in Papoulis
[1991] and Peebles [1993]. A comprehensive discussion of finite-length effects in
DSP systems, and noise performance of FIR and IIR filters are found in DeFatta
et al. [1988].

EXERCISES

31

3.2

3.3

34

3.5

The Parseval theorem in the Fourier transform states that if
F o
xln] <5 X ()

then

> blalf = [ e Fa

Use the theorem to derive (3.3).

Derive (3.20) from (3.13) based on the fact that R[n,n + I] = R[] for a WSS
random signal. That is, the autocorrelation is constant with respect to the time
variable n.

The zero mean condition for white noise can be verified as follows. Given the
white noise signal x[n] with zero mean (E{x[n|} = 0), form another signal with
y[n] = x[n] + p, where p#0 is a constant. Show that the autocorrelation
function of y[n] does not satisfy the white noise definition.

The random variables x and y are uncorrelated if the cross-covariance defined
by

Cry = E{(x = ) (y — 1y)}

is zero, with p, and py being the mean of x and y, respectively. Argue why,
for a white noise signal, samples from different time instances are
uncorrelated.

Cross-covariance for the jointly WSS random processes x[n] and y[n] is defined
by

Coll] = E{(x[n] = n)(y[n = 1] = ) }5

that is, it is a correlation function for the random processes with the mean
removed (u, is the mean of x[n] and p, is the mean of y[n]). Derive the



88

3.6

3.7

3.8

3.9

STOCHASTIC PROCESSES AND MODELS

following equations:

where similar conditions as for (3.25) to (3.28) apply.

We are given an LTI system with transfer function H(e/®). The system input is
the WSS process x[n] with PSD S, (¢/®); the output process is y[n]. Then

Syc(€”) = H(e")S (),
Suy(€”) = H' ()8 (),
Sy(e"%) = H(e") Sy ().

Sy and Sy, are the cross PSD between x[n] and y[n] and are defined as the
Fourier transform of the respective cross-correlation functions.

Show that the normal equation can be written in the form

I @ o ay\ [ RO o2
a l4+a --- 0 Rx[l] 0
ay ay— 1 Rx[M] 0

This form of the equation can be used to solve for the autocorrelation sequence
R,[l] given the model coefficients a; and the white noise variance c2.
Ignoring the relation containing the white noise variance (c2), show that the
normal equation can be written as

R,[0] R[1] R{M —1]\ /. R[]
R[] R,[0] R M — 2] a R.[2]
RIM—1] RM—2] -  R]0] a;w RX[.M]

Thus, the AR parameters a; can be found from the experimentally accessible
quantities R,[/]; that is, R.[l] can be estimated from actual data samples of
x[n].

For the ten-order AR model presented in Example 3.2, use the alternative form
of the normal equation as shown in Exercise 3.7 to solve for the variance of the
AR signal, assuming that the input white noise has unit variance.
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Consider the /-dependent rectangular window

_N_ _ _
wln] = \/NT”, n=0,1,...,N—1,
0, otherwise.

Substituting in (3.54) yields the estimator

1 m

Rl = 5= o lnlxln — 1]

n=m—N-+1+]l|

with |I| < N. Show that R[l,m] is an unbiased autocorrelation estimator.

One problem with this estimator is that when |/| approaches N, the
denominator in the above estimation equation approaches zero, leading to
numerical problems. Thus, even though the estimator is unbiased, it is
seldom used in practice.

Consider the autocorrelation estimator

o0

Rl m] = % S xfnxln — [{]wm — ).

n=-—00

In this estimator, the signal product is computed first; it is then multiplied by
the window to calculate the autocorrelation. For a rectangular window of
length N show that

m

Ritm) == >° xlalsln ]

n=m—N+1

is an unbiased estimator.

Given

wi[n] = winlwin + 1],
where

win] = (n+ 1)o"u[n],
prove that

(I+ D)ol — (1= 1)a27!
1 =302z + 30772 — 00773

Wi(z) =

where wy[n] and W;(z) form a z-transform pair. Hins: Use the time-shift
property of the z-transform [Oppenheim and Schafer, 1989]

win + 1] < Z'W(z).

For o < |z| < oo, apply the complex convolution theorem and solve the
contour integral based on the residue theorem [Churchill and Brown, 1990].
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3.13 Repeat the Chen window design procedure for (a) o = 0.75'/4° L = 35 and
(b) o = 0.751/8,L = 20. Find the values of b and ¢ for both cases. These
specifications are used by the ITU-T G.728 LD-CELP coder (Chapter 14),
where the first one is for the synthesis filter while the second one is for the
log-gain predictor.

3.14 Draw the signal flow graphs for the ARMA process analyzer/synthesizer
filters.



CHAPTER 4

LINEAR PREDICTION

Linear prediction (LP) forms an integral part of almost all modern day speech cod-
ing algorithms. The fundamental idea is that a speech sample can be approximated
as a linear combination of past samples. Within a signal frame, the weights used to
compute the linear combination are found by minimizing the mean-squared predic-
tion error; the resultant weights, or linear prediction coefficients (LPCs"), are used
to represent the particular frame.

Within the core of the LP scheme lies the autoregressive model (Chapter 3).
Indeed, linear prediction analysis is an estimation procedure to find the AR para-
meters, given samples of the signal. Thus, LP is an identification technique where
parameters of a system are found from the observation. The basic assumption is that
speech can be modeled as an AR signal, which in practice has been found to be
appropriate.

Another interpretation of LP is as a spectrum estimation method. As explained
earlier, LP analysis allows the computation of the AR parameters, which define the
PSD of the signal itself (Chapter 3). By computing the LPCs of a signal frame, it is
possible to generate another signal in such a way that the spectral contents are close
to the original one.

LP can also be viewed as a redundancy removal procedure where information
repeated in an event is eliminated. After all, there is no need for transmission if
certain data can be predicted. By displacing the redundancy in a signal, the amount

“In some literature, the linear prediction coefficients are referred to as LPC parameters, with the acronym
meaning ““linear prediction coding,” which is the name assigned to an early standardized coder covered in
Chapter 9. Since linear prediction is a general tool that might not apply to coding applications, we take the
simpler approach in this book by referring to the coefficient as LPC. Hence, the LPC acronym bears two
different meanings, which is normally clear from the context.
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of bits required to carry the information is lowered, therefore achieving the purpose
of compression.

In this chapter, the basic problem of LP analysis is stated, followed by its adapta-
tion toward nonstationary signals. Examples of processing on actual speech samples
are provided. Two computationally efficient procedures, namely, the Levinson—
Durbin algorithm and the Leroux—Gueguen algorithm, are explained. The concept
of long-term linear prediction is described, followed by some LP-based speech
synthesis models. Practical issues related to speech processing are explained,
with an alternative prediction scheme based on the moving average (MA) model
given at the end of the chapter. LP is by no means confined to the speech processing
arena; in fact, it is widely applied to many diverse areas. Readers are encouraged to
consult other sources for additional information on the topic.

4.1 THE PROBLEM OF LINEAR PREDICTION

Here, linear prediction is described as a system identification problem, where the
parameters of an AR model are estimated from the signal itself. The situation is
illustrated in Figure 4.1. The white noise signal x[n] is filtered by the AR process
synthesizer to obtain s[n]—the AR signal—with the AR parameters denoted by a;.
A linear predictor is used to predict s[n] based on the M past samples; this is done with

S[n] = — Zais[n — 1, (4.1)

where the g; are the estimates of the AR parameters and are referred to as the linear
prediction coefficients (LPCs)". The constant M is known as the prediction order.
Therefore, prediction is based on a linear combination of the M past samples of the
signal, and hence the prediction is linear. The prediction error is equal to

e[n] = s[n] — s[n]. (4.2)
AR Predicted
1 signal " signal
SNl i qn|
- - Naz
qn] ——> i - Z,&
White y 4
noise =
AR process Predictor -
synthesizer
. elnl
Signal source Prediction
error

Figure 4.1 Linear prediction as system identification.

“In some literature, the sign convention for the LPC is reversed.
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s[n] P e[n]
1
z \ 4
a
1
> ® -4n
71y a
2
Z1 A 4 aM

Figure 4.2 The prediction-error filter.

That is, it is the difference between the actual sample and the predicted one.
Figure 4.2 shows the signal flow graph implementation of (4.2) and is known
as the prediction-error filter: it takes an AR signal as input to produce the
prediction-error signal at its output.

Error Minimization

The system identification problem consists of the estimation of the AR parameters
a; from s[n], with the estimates being the LPCs. To perform the estimation, a criter-
ion must be established. In the present case, the mean-squared prediction error

J=E{n]} =E (s[n] + Zais[n — l]) (4.3)

is minimized by selecting the appropriate LPCs. Note that the cost function J is
precisely a second-order function of the LPCs. Consequently, we may visualize
the dependence of the cost function J on the estimates ay, ay, ..., ay as a bowl-
shaped (M + 1)-dimensional surface with M degrees of freedom. This surface is
characterized by a unique minimum. The optimal LPCs can be found by setting
the partial derivatives of J with respect to a; to zero; that is,

M
a@_] = ZE{ (s[n] + Zais[n — l]) sln — k]} = (4.4)
ay i=1

for k =1,2,..., M. At this point, it is maintained without proof that when (4.4) is
satisfied, then a; = a;; that is, the LPCs are equal to the AR parameters. Justification
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of this claim appears at the end of the section. Thus, when the LPCs are found,
the system used to generate the AR signal (AR process synthesizer) is uniquely
identified.

Normal Equation

Equation (4.4) can be rearranged to give

E{s[n]s[n — k|} + Za,-E{s[n —ilsln—k]} =0 (4.5)
i=1
or
> " aiR]i — k] = —R,[K] (4.6)

for k =1,2,...,M, where
Ry[i — k| = E{s[n — i]s[n — k]}, (4.7
Ri[k] = E{s[n]s[n — k]}. (4.8)

Equation (4.6) defines the optimal LPCs in terms of the autocorrelation R,[/] of the
signal s[n]. In matrix form, it can be written as

Ria = —r, (4.9)
where

R,[0] R[1] R,M — 1]

Ry[1] R([0] -+ RyM -2
Rs = . . . . : (4.10)

RyM — 1] RJ[M. —2] R;[0]

a= [(11 an aM]T, (411)
rs=[RJ[1] R[] --- R(M]". (4.12)

Equation (4.9) is known as the normal equation. Assuming that the inverse of the
correlation matrix Ry exists, the optimal LPC vector is obtained with

a=—R,'r,. (4.13)

Equation (4.13) allows the finding of the LPCs if the autocorrelation values of s[n]
are known from [ =0 to M.
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Prediction Gain

The prediction gain of a predictor is given by

PG = 10 log,, <G§> ~10 log“)(M) (4.14)

o? E{e*[n]}

e

and is the ratio between the variance of the input signal and the variance of the
prediction error in decibels (dB). Prediction gain is a measure of the predictor’s per-
formance. A better predictor is capable of generating lower prediction error, leading
to a higher gain.

Example 4.1: Predicting White Noise Consider the situation when s[n] is a white
noise signal; that is, Ry[l] = o23[/]. From (4.12) we see that ry is the zero vector and
from (4.10) Ry is a diagonal matrix, leading to the LPC vector a = 0. Hence,
e[n] = s[n] and the prediction gain is PG = 0 dB. The result means that white noise
is unpredictable: nothing can be gained with a predictor. The unpredictability is due
to the fact that no correlation exists between white noise samples. For most
real-world signals, like speech, correlation exists and hence it is possible to obtain
higher than zero gain with a linear predictor.

Minimum Mean-Squared Prediction Error

From Figure 4.1 we can see that when a; = a;, e[n] = x[n]; that is, the prediction
error is the same as the white noise used to generate the AR signal s[n]. Indeed,
this is the optimal situation where the mean-squared error is minimized, with

Jmin = E{ez[n]} = E{x2[n]} = o2, (4.15)

or equivalently, the prediction gain is maximized.

The optimal condition can be reached when the order of the predictor is equal to
or higher than the order of the AR process synthesizer. In practice, M is usually
unknown. A simple method to estimate M from a signal source is by plotting the
prediction gain as a function of the prediction order. In this way it is possible to
determine the prediction order for which the gain saturates; that is, further increas-
ing the prediction order from a certain critical point will not provide additional
gain. The value of the predictor order at the mentioned critical point represents a
good estimate of the order of the AR signal under consideration.

As was explained before, the cost function J in (4.3) is characterized by a unique
minimum. If the prediction order M is known, J is minimized when a; = @;, leading
to e[n] = x[n]; that is, prediction error is equal to the excitation signal of the AR
process synthesizer. This is a reasonable result since the best that the prediction-
error filter can do is to “whiten” the AR signal s[n]. Thus, the maximum prediction
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gain is given by the ratio between the variance of s[n] and the variance of x[n] in
decibels.

Taking into account the AR parameters used to generate the signal s[n], we
have

M
Jimin = 5)25 = Rs[o] + ZaiRSMa (416)
i=1

which was already derived in Chapter 3. The above equation can be combined with

(4.9) to give
Rs 0 Z- 1 Jmin
N @

and is known as the augmented normal equation, with 0 the M x 1 zero vector.
Equation (4.17) can also be written as

M
ot [ Jminy k=0
Ej%&ﬁ_k“‘{o, k=1,2,....M (4.18)

i=0 T ’

where ag = 1.

4.2 LINEAR PREDICTION ANALYSIS
OF NONSTATIONARY SIGNALS

So far the discussion is focused on a WSS stochastic process. Due to the dynamic
nature of a speech signal, the LPCs must be calculated for every signal frame.
Within a frame, one set of LPCs is determined and used to represent the signal’s
properties in that particular interval, with the underlying assumption that the statis-
tics of the signal remain unchanged within the frame. The process of calculating the
LPCs from signal data is called linear prediction analysis.

The problem of linear prediction is restated as follows. It is desired to calculate
the LPCs on the N data points ending at time m: sfm— N+ 1], sijm— N+
2],...,s[m]. The LPC vector is written as

afm] = [am] axfm] - ay[m]]" (4.19)

with M being the prediction order. From the last section, we need to solve the
normal equation, rewritten here in a time-adaptive form

R[m]a[m] = —r[m], (4.20)
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with
R[0, m] R[1,m] R[2,m] -+« RM—1,m]
R[1,m] R[0, m] R[1,m] -++ R[M —2,m|
R[m] = R[2,m] R[1,m] R[0, m] -+ R[M —3,m]
RIM—1,m] RM—2,m RM—3,m -  RO,m]
(4.21)
and
rjm) = [R[1,m] R[2,m] --- RM,m]". (4.22)

Hence, for the case of nonstationary signals, LP analysis is performed for every
signal frame ending at time m. The autocorrelation values R|[l, m] are estimated for
each frame and the normal equation is solved to yield the set of LPCs associated
with the particular frame. Methods of autocorrelation estimation are extensively
discussed in Chapter 3.

Prediction Schemes

Different prediction schemes are used in various applications and are decided by
system requirements. Generally, two main techniques are applied in speech coding:
internal prediction and external prediction. Figure 4.3 illustrates the schemes. For
internal prediction, the LPCs derived from the estimated autocorrelation values
using the frame’s data are applied to process the frame’s data themselves. In exter-
nal prediction, however, the derived LPCs are used in a future frame; that is, the

Interval where the
autocorrelation
values are estimated.

Interval where the
autocorrelation
values are estimated.

m—-N+1 N m m—N+1 fN+m
The LPCs derived from the Interval where the
estimated autocorrelation derived LPCs from the
values are used to predict the estimated autocorrelation
signal samples within the same values are used to predict
interval. the signal samples.

Figure 4.3 [Illustration of internal prediction (leff) and external prediction (right).
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LPCs associated with the frame are not derived from the data residing within the
frame, but from the signal’s past. The reason why external prediction can be used is
because the signal statistics change slowly with time. If the frame is not excessively
long, its properties can be derived from the not so distant past.

Many speech coding algorithms use internal prediction, where the LPCs of a
given frame are derived from the data pertaining to the frame. Thus, the resultant
LPCs capture the statistics of the frame accurately. Typical length of the frame
varies from 160 to 240 samples. A longer frame has the advantage of less computa-
tional complexity and lower bit-rate, since calculation and transmission of LPCs are
done less frequently. However, a longer coding delay results from the fact that the
system has to wait longer for sample collection. Also, due to the changing nature of
a nonstationary environment, the LPCs derived from a long frame might not be able
to produce good prediction gain. On the other hand, a shorter frame requires more
frequent update of the LPCs, resulting in a more accurate representation of the sig-
nal statistics. Drawbacks include higher computational load and bit-rate. Most
internal prediction schemes rely on nonrecursive autocorrelation estimation
methods, where a finite-length window is used to extract the signal samples.

External prediction is prevalently used in those applications where low coding
delay is the prime concern. In that case, a much shorter frame must be used (on
the order of 20 samples, such as the LD-CELP standard—Chapter 14). A recursive
autocorrelation estimation technique is normally applied so that the LPCs are
derived from the samples before the time instant n =m — N + 1 (Figure 4.3).
Note that the shape of the window associated with a recursive autocorrelation
estimation technique puts more emphasis on recent samples. Thus, the statistics
associated with the estimates are very close to the actual properties of the frame
itself, even though the estimation is not based on the data internal to the frame.

In many instances, the notions of internal and external become fuzzy. As we will
see later in the book, many LP analysis schemes adopted by standardized coders are
based on estimating several (usually two) sets of LPCs from contiguous analysis
intervals. These coefficients are combined in a specific way and applied to a given
interval for the prediction task. We skip the details for now, which are covered
thoroughly in Chapter 8, when interpolation of LPCs is introduced.

Prediction Gain

Prediction gain is given here using a similar definition as presented in the last sec-
tion, with the expectations changed to summations

" S2 n
PG[m] = 10 log,, (—%{:Zﬁ 82[[’1]]) , (4.23)

eln] = s[n] — 3[n] = s[n] + Za,-[m]s[n —i; n=m—-N+1,....m. (4.24)
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The LPCs a;[m] are found from the samples inside the interval [m — N + 1, m] for
internal prediction, and n < m — N + 1 for external prediction. Note that the pre-
diction gain defined in (4.23) is a function of the time variable m. In practice, the
average performance of a prediction scheme is often measured by the segmental
prediction gain, defined with

SPG = A{PG|m]}, (4.25)

which is the time average of the prediction gain for each frame in the decibel
domain.

Example 4.2 White noise is generated using a random number generator with
uniform distribution and unit variance. This signal is then filtered by an AR synthe-
sizer with

a; =1.534 a =1 a3z = 0.587 ay = 0.347 as = 0.08
as = —0.061 a; = —0.172 ag = —0.156 a9 =—0.157 a0 =-0.141

The frame of the resultant AR signal is used for LP analysis, with a length of 240
samples. Nonrecursive autocorrelation estimation using a Hamming window is
applied. LP analysis is performed with prediction order ranging from 2 to 20; pre-
diction error and prediction gain are found for each case. Figure 4.4 summarizes the
results, where we can see that the prediction gain grows initially from M = 2 and is
maximized when M = 10. Further increasing the prediction order will not provide
additional gain; in fact, it can even reduce it. This is an expected result since the AR
model used to generate the signal has order ten.

10
PG 95 — —
9
0 10 20
M

Figure 4.4 Prediction gain (PG) as a function of the prediction order (M) in an experiment.
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Theoretically, the curve of prediction gain as a function of the prediction order
should be monotonically increasing, meaning that PG(M;) < PG(M,) if M} < M,.
In the present experiment, however, only one sample realization of the random
process is utilized; thus, the general behavior of the linear predictor is not fully
revealed. For a more accurate study on the behavior of the signal, a higher number
of sample realizations for the random signal are needed.

Figure 4.5 compares the theoretical PSD (defined with the original AR para-
meters) with the spectrum estimates found with the LPCs computed from the signal
frame using M = 2, 10, and 20. For low prediction order, the resultant spectrum is
not capable of fitting the original PSD. An excessively high order, on the other
hand, leads to overfitting, where undesirable errors are introduced. In the present
case, a prediction order of 10 is optimal. Note how the spectrum of the original
signal is captured by the estimated LPCs. This is the reason why LP analysis is
known as a spectrum estimation technique, specifically a parametric spectrum
estimation method since the process is done through a set of parameters or
coefficients.

10 10

s(e'”) sE")

001 | 0.01 '

@ o/t (b) o/t

10

0.01
(@ o/T

Figure 4.5 Plots of PSD (solid trace) together with several estimates (dot trace) using the
LPC found with (a) M =2, (b) M = 10, and (c) M = 20.
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Figure 4.6 The speech frames used in the experiment. Left: Unvoiced (m = 400). Right:
Voiced (m = 1000).

4.3 EXAMPLES OF LINEAR PREDICTION ANALYSIS OF SPEECH

So far the linear prediction analysis technique was described in a general context.
For applications involving a speech signal, the signal itself is often assumed to
satisfy the AR model. Facts related to LP analysis of speech are derived in this sec-
tion from real speech samples, where accuracy of the AR assumption is evaluated.
The observations made are used to tailor the scheme of LP as applied to speech
coding.

Example 4.3 Speech samples of a male subject are used in the experiment. Figure
4.6 shows the speech frames considered. As we can see, the frame ending at
m = 400 is unvoiced, and the frame ending at m = 1000 is voiced, with a pitch per-
iod approximately equal to 49 time-units. Also note that the unvoiced frame has
amplitude far lower than the voiced frame, which is commonly the case in practice.
Length of each frame is equal to 240 samples—a popular value used in speech
coding. Periodograms of the two frames are plotted in Figure 4.7. Note that the

1e 105 1. 105
1e 104 — — 1e 104
1000 [~ ] 1000
100 100
1€’ 10 1€ 10
1 1
0.1 0.1
0.01 | 0.01 |
0.001 0.001
0.5 1 0 0.5 1
o/n o/r

Figure 4.7 Periodograms of the signal frames in Figure 4.6. Left: Unvoiced. Right: Voiced.
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Figure 4.8 Autocorrelation values for the signal frames in Figure 4.6. Left: Unvoiced.
Right: Voiced.

spectrum of the unvoiced frame is relatively smooth, while for the voiced frame a
harmonic structure is present, indicating a strong fundamental component in the
signal. Obviously the harmonics are associated with periodicity in the time domain.

Periodicity can also be detected or measured from the autocorrelation values
shown in Figure 4.8, where the lag ranges from O to 100. For the noise-like
unvoiced frame, the values of the autocorrelation have low magnitude when the
lag is higher than ten, indicating the fact that correlation between distant samples
is low. For the voiced frame, on the other hand, high correlation exists between
samples, which is particularly strong when the lag is equal to the pitch period
and is around 49 in the present case. As expected, the value of the autocorrelation
gradually decreases with increasing lag in both cases since correlation between
samples tends to weaken. These results show that it is possible to classify a frame
as unvoiced or voiced by calculating its autocorrelation, and pitch period can be
determined by locating the peaks of the autocorrelation.

15
Voiced
AN
5 S . M
Unvoiced
0
1 10 100

Figure 4.9 Plot of prediction gain (PG) as a function of the prediction order (M) for the
signal frames in Figure 4.6.
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The selected frames are used for LP analysis, where the derived LPCs are
employed to predict the samples within the frame (internal prediction). The predic-
tion gain results are found for prediction order ranging from 2 to 100 and are plotted
in Figure 4.9.

STATEMENT 1: For a given prediction order, the average prediction gain obtainable
for voiced frames is higher than for unvoiced frames.

The above statement is partially reflected in Figure 4.9 and is true in general
when a large number of frames are analyzed. This can be understood from the nat-
ure of the signal itself. An unvoiced frame is highly random, with low correlation
between samples, and therefore less predictable than a voiced frame.

Back to Figure 4.9, we observe that for the unvoiced frame, prediction gain
increases abruptly when the prediction order goes from 2 to 5. Further increasing
the prediction order provides additional gain increase, but at a milder pace. For
M > 10, prediction gain remains essentially constant, implying the fact that corre-
lation between far separated samples is low.

For the voiced frame, prediction gain is low for M < 3, it remains almost con-
stant for 4 < M < 49, and it reaches a peak for M > 49. The phenomenon is due to
the fact that, for the voiced frame under consideration, the pitch period is approxi-
mately equal to 49. For M < 49, the number of LPCs is not enough to remove the
correlation between samples one pitch period apart. For M > 49, however, the
linear predictor is capable of modeling the correlation between samples one pitch
period apart, leading therefore to a substantial improvement in prediction gain.
Further note that the change in prediction gain is abrupt: between M = 48 and
49, for instance, a jump of nearly 3 dB in prediction gain is observed.

STATEMENT 2: For a voiced frame, the prediction gain associated with a predictor
having a prediction order large enough to cover one pitch period is substantially
higher than the prediction gain associated with a predictor having a prediction
order lower than one pitch period.

The above statement is a key observation to develop the concept of long-term
prediction (described later), which is an efficient modeling strategy for voiced
signals.

The effectiveness of the predictor at different prediction orders can be studied
further by observing the level of “whiteness” in the prediction-error sequence.
The prediction-error filter associated with a good predictor is capable of removing
as much correlation as possible from the signal samples, leading to a prediction-
error sequence with a flat PSD. Figure 4.10 illustrates the prediction-error sequence
of the unvoiced frame and the corresponding periodogram for different prediction
order. Note that M = 4 is not enough to “whiten” the original signal frame, where
we can see that the periodogram of the prediction error does not mimic the flat
spectrum of a white noise signal. For M = 10, however, flatness is achieved in the
periodogram and, hence, the prediction error becomes “‘roughly”” white.
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Figure 4.10 Plots of prediction error and periodograms for the unvoiced frame in Figure
4.6. Top: M = 4. Bottom: M = 10.

Figure 4.11 shows the prediction-error sequences and the corresponding period-
ograms of the voiced frame. We can see that for M = 3, a high level of periodicity is
still present in the prediction-error sequence and a harmonic structure is observed in
the corresponding periodogram. When M = 10, the amplitude of the prediction-
error sequence becomes lower. However, the periodic components remain. As we
can see, the periodogram develops a flatter appearance, but the harmonic structure
is still present. For M = 50, periodicity in the time domain and frequency domain is
reduced to a minimum. Hence, in order to effectively “whiten’ the voiced frame, a
minimum prediction order equal to 50 is required.

STATEMENT 3: To remove the correlation between samples using a linear predictor,
a much higher prediction order is required for a voiced frame than for an unvoiced
frame. For effective whitening of a voiced frame, the prediction order should be
greater than or equal to the underlying pitch period of the signal.

For many speech coding algorithms where the LPCs are quantized and trans-
mitted as information on the frame, a prediction order of ten is normally used. In
general, an order of ten can describe quite well the PSD of an unvoiced frame, but it
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Figure 4.11 Plots of prediction error and periodograms for the voiced frame in Figure 4.6.
Top: M = 3. Middle: M = 10. Bottom: M = 50.

is definitely inadequate for a voiced frame. As we will see later in this book, dif-
ferent coding algorithms use different strategies to recreate the spectrum of a voiced
frame. Most of these algorithms rely on a predictor of order ten to capture the
“envelope” of the PSD. The idea of the envelope of the spectrum is illustrated
in Figure 4.12, where the PSD of the voiced frame using the derived LPCs is super-
imposed with the periodogram of the speech signal. We can see that the spectrum
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Figure 4.12 LPC-based spectrum estimate (dotted line) and periodogram (solid line) for a
voiced speech frame. Left: M = 10. Right: M = 50.

estimate with a prediction order of ten represents a smoothed version, or the envel-
ope of the signal spectrum. When M = 50, the spectrum estimate becomes much
closer to the periodogram.

Example 4.4: External Prediction Using the Chen Window The Chen window
(Chapter 3) with o0 = 0.5!/%0 and L = 30 is used in autocorrelation estimation. With
a prediction order of 50, a linear predictor is derived from the autocorrelation values
and used in external prediction, where the frame length is varied from 10 to 50.
Segmental prediction gain is measured using roughly 40 seconds of speech material.
Figure 4.13 summarizes the results, where the segmental prediction gain is plotted as

11

10 — -

G

N

Figure 4.13 Segmental prediction gain (SPG) as a function of the frame’s length (V) in an
external prediction experiment.
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a function of the frame’s length. As we can see, prediction gain is the highest for
short frames, which is expected, since as the frame’s length increases, the statistics
derived from the signal’s past become less and less accurate for representing the
frame itself; therefore prediction gain drops. In the ITU-T G.728 LD-CELP coder
(Chapter 14), the frame’s length is equal to 20 samples and is a trade-off between
computational complexity, coding delay, and quality of the synthesized speech.

4.4 THE LEVINSON-DURBIN ALGORITHM

The normal equation as given in (4.9) can be solved by finding the matrix inverse
for Ry, with the solution provided in (4.13). In general, inverting a matrix is quite com-
putationally demanding. Fortunately, efficient algorithms are available to solve the
equation, which take advantage of the special structure of the correlation matrix.
This section discusses the Levinson—Durbin algorithm while the next one is con-
cerned with the Leroux—Gueguen algorithm, both highly suitable for practical
implementation of LP analysis. Consider the augmented normal equation of form

RO] R} - R[M] 1 J
R[1]  R[0] - RM-1]||a 0

: , , =1 (4.26)
R[M] R[M.— 1] . R[O] am 0

with the objective being the solution for the LPCs a;,i = 1,..., M, given the auto-
correlation values R[l],l =0,1,...,M. J represents the minimum mean-squared
prediction error or the variance of the input white noise for the AR process synthe-
sizer. In a practical situation, the autocorrelation values are estimated from the
signal samples and J is usually unknown; however, the Levinson—Durbin solution
is formulated to solve for this quantity as well.

The Levinson—-Durbin approach finds the solution to the Mth-order predictor
from that of the (M — 1)th-order predictor. It is an iterative-recursive process where
the solution of the zero-order predictor is first found, which is then used to find the
solution of the first-order predictor; this process is repeated one step at a time until
the desired order is reached. The algorithm relies on two key properties of the
correlation matrix:

e The correlation matrix of a given size contains as subblocks all the lower-
order correlation matrices.

o If

=|. | (4.27)
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then
RO R[] RM T ay 1 T by
R[1] R[0] RM —1] | | ay by -1
= : (4.28)
RM] RM—1] ---  R[0] a bo

that is, the correlation matrix is invariant under interchange of its columns
and then its rows. The mentioned properties are direct consequences of the
fact that the correlation matrix is Toeplitz. We say that a square matrix is
Toeplitz if all the elements on its main diagonal are equal, and if the elements
on any other diagonal parallel to the main diagonal are also equal.

We consider the solution to the augmented normal equation starting from zero
prediction order. It is shown that the solution for a certain order can be obtained
from the lower prediction order results.

Predictor of Order Zero
In this case we consider the equation

R[0] = Jo, (4.29)

which is already solved. The above relation states basically that the minimum
mean-squared prediction error achievable with a zero-order predictor is given by
the autocorrelation of the signal at lag zero, or the variance of the signal itself.
For zero order the prediction is always equal to zero; hence, the prediction error
is equal to the signal itself. Expanding (4.29) to the next dimension, we have

™ W[
= , 4.30
[R[l] R[0] | | O Ao (4-30)
which is the two-dimensional (2-D) version of (4.26) with a; = 0. Since a; = 0, the
optimal condition cannot be achieved in general, and the term 4 is introduced on
the right-hand side to balance the equation. This quantity is found from the equation
as

Ao = R[1]. (4.31)

From the property of the correlation matrix, (4.30) is equivalent to

mﬂ 2{(1)” m - ﬁ(ﬂ (4.32)

Equations (4.30) and (4.32) are used in the next step.
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Predictor of Order One

We seek to solve

(IR
(

where a,l) is the LPC of the predictor; the superscript denotes the prediction order
of one. J; represents the minimum mean-squared prediction error achievable using
a first-order predictor. Thus, we have two unknowns in (4.33): agl) and J;. Consider

a solution of the form
1 1 0
L] =[o] -4 [0) (34

with k; being a constant. Multiplying both sides by the correlation matrix, we

have
iy o)) = Lo o) # i ol l3] o

Substituting (4.30), (4.32), and (4.33) gives

R S
Then
ki = ?—f = %], (4.37)

where (4.31) is used. The LPC of this predictor is readily found from (4.34) to be
al) = k. (4.38)

Using (4.36) and (4.37), we find
Ji=Jo(1 = k7). (4.39)

Thus, the first-order predictor is completely specified. The parameter k; is
known as the reflection coefficient (RC), representing an alternative form of LPC.
Note that k; (and therefore agl) and J;) is derived from the results of the previous
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step: the zero-order predictor. In a similar manner, we can expand (4.33) to dimen-
sion three:

RO] R[] R2]]T 1 7
R[] RlO] RI]||d"] =10 (4.40)
R[2] R[] R[0] Ai

or
R[0] R[] R[2] A
R[] RO] R]||d"|=1]0 |, (4.41)
R2] R[1] R0]|L 1 N

where A; represents the additional term necessary to balance the equation when a
first-order predictor is used and R[2] # 0. This quantity is solved as

Ay = R[2] +a\"R[1]. (4.42)

Predictor of Order Two

We go one step further by solving
Jr

1] R0] R1]|[d?]=]0]. (4.43)
0

The unknowns in this case are the LPCs a<12> and a§2> and the minimum mean-

squared prediction error J,. Consider a solution of the form

(1 ) 1 0

2

a’ | = agl) —k a<11> . (4.44)
a(zz) 0 1

with k, as the RC. Multiplying both sides by the correlation matrix leads to

.12 J] Al
o|=]10/|—k|o0| (4.45)
0 A Ji
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where (4.40), (4.41), and (4.43) are used to derive the above relation. The RC %, can

be found from (4.45) and using (4.42) for A;:

1

bzz@m+ﬁWQ.

From (4.44), we find
a<22> = _k27

a<12> = a<11> — k2a(11).

Finally, J, is found from (4.45) and (4.46) as
L=1(1-58).

For the next step, (4.43) is expanded according to

R0] R[1] R[2] RB]1T 1 7
R} Rl0] RO RR2I||a”| |0
R[2] R[] R[] R{]||a? 10
R3] R R[] RO L g Ao
or
R[0] R[1] R[2] R[(]]T O A,
Rl RO] R[] R2||a”| | o
R[2] R[] R[0] R{]||4? 10
R3] R[2 R[] RO]] L 72

Note that

A, = R3] + aPR[2] + a'RI1).

Predictor of Order Three

In this case, the solution to be considered has the form

1 1 0
3

ag ) a<12> L agz)
3) | = — K3

a’ o o

(4.46)

(4.50)

(4.51)

(4.52)

(4.53)
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Proceeding in a similar manner, one arrives at the solution

ks = % (R3] + i RP2) + R ). (4.54)
a) = —ks, (4.55)
a? = al?) — kal?, (4.56)
a’ = a? - kzal?, (4.57)

J=0(1-K). (4.58)

The procedure continues until the desired prediction order is reached.

A Summary

The Levinson—-Durbin algorithm is summarized as follows. Inputs to the algorithm
are the autocorrelation coefficients R[/], with the LPCs and RCs the outputs.

e Initialization: [ = 0, set
Jo = R[0].
e Recursion: forl=1,2,...,M
Step 1. Compute the /th RC
1 o (-1 .
ki = i (R[l] + ;ai R[l - 4) . (4.59)

Step 2. Calculate LPCs for the /th-order predictor:

o) =k, (4.60)
a’ =a™V —kaDV; i=12,.0-1 (4.61)
Stop if I = M.

Step 3. Compute the minimum mean-squared prediction error associated
with the /th-order solution

Ji=Jd(1-£&). (4.62)

Set [ «— [+ 1; return to Step 1.



THE LEVINSON-DURBIN ALGORITHM 113

The final LPCs are
i=1,2,....,M. (4.63)

Note that in the process of solving the LPCs, the set of RCs (k;, i = 1,2,..., M) is
also found.

A virtue of the Levinson—Durbin algorithm lies in its computational efficiency.
Its use results in a huge saving in the number of operations and storage locations
compared to standard methods for matrix inversion. Another benefit of its use is in
the set of RCs, which can be used for the verification of the minimum phase prop-
erty of the resultant prediction-error filter. A system is minimum phase when its
poles and zeros are inside the unit circle. Thus, a minimum phase system has a
stable and causal inverse [Oppenheim and Schafer, 1989]. Dependence of the mini-
mum phase condition on RCs is stated in the following theorem.

Theorem 4.1. The prediction-error filter with system function

M
Alz) =1+ Za,z*", (4.64)
i=1

where the a; are the LPCs found by solving the normal equation, is a minimum
phase system if and only if the associated RCs k; satisfy the condition

k| <1; i=1,2,...,M. (4.65)

See Appendix A for a proof of the theorem.

The fact that A(z) represents a minimum phase system implies that the zeros of
A(z) are inside the unit circle of the z-plane. Thus, the poles of the inverse system
1/A(z) are also inside the unit circle. Hence, the inverse system is guaranteed to be
stable if the RCs satisfy condition (4.65). Since the inverse system is used to synthe-
size the output signal in an LP-based speech coding algorithm, stability is manda-
tory with all the poles located inside the unit circle. Therefore, by using the
Levinson—-Durbin algorithm to solve for the LPCs, it is straightforward to verify
the stability of the resultant synthesis filter by inspecting the RCs. If the magnitudes
of the RCs are less than one, the filter is stable.

What should we do in the case where the filter is unstable? A simple heuristic is
commonly applied to fix the situation. For instance, the LPC from the last frame
(representing a stable filter) can be taken and used in the present frame. Since adja-
cent frames often share similar statistical properties, the distortion introduced is
perceptually small.

Conversion of Reflection Coefficients to Linear Prediction Coefficients

As mentioned earlier, the RC represents an alternative form of the LPC. Indeed, a
one-to-one correspondence exists between the two sets of parameters. RCs possess
several desirable properties, making them the preferred parameters to deal with in
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many practical situations. Here we consider the problem of finding the LPCs given
the set of RCs. Consider the set of RCs k;,i = 1,..., M. It is desired to find the
corresponding LPCs qg;. The problem can be solved directly from the equations
in the Levinson—-Durbin algorithm, summarized as follows:

Forl=1,2,....M,

al([) . (4.66)
o) =a™ —kalV; i=12,.0- 1 (4.67)

At the end of the loop, the desired result is a; = aEM>.

Conversion of Linear Prediction Coefficients to Reflection Coefficients

Given the set of LPCs a;,i =1,...,M, it is desired to find the corresponding
RCs k;. This problem can again be solved using the Levinson—Durbin algorithm,
working in a reversed fashion. By changing the index in (4.67) to

a =a"V — ka!™" (4.68)

l

and substituting (4.68) in (4.67) to eliminate a'"." leads to

a = agl_l) — klal(lji — klza(l_l)

i i 9
or

20D — a + ka”,
! 1K

(4.69)
M"{he above equation is used to find the RCs based on the following loop, with
a; = a;.
Fori=M,M—-1,...,1,

k= —a), (4.70)
0t k",
a,(’_”:%; i=1,2,...,1—1. (4.71)
-

4.5 THE LEROUX-GUEGUEN ALGORITHM

A potential problem with the Levinson—Durbin algorithm lies in the values of the
LPCs, since they possess a large dynamic range and a bound on their magnitudes
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cannot be found on a theoretical basis. The issue is of little concern if the algorithm
is implemented under a floating-point environment. However, it could present some
difficulties for fixed-point implementation.

Example 4.5 A total of 1300 frames having 240 samples each are used to demon-
strate the typical distribution of LPCs and RCs. These frames are LP analyzed with
a prediction order of ten. Figure 4.14 shows the histogram plots for the LPCs ay, a,,
as, ag, a7, and ajg. In general, we observe that the low-order coefficients tend to
have a wider dynamic range. For high-order coefficients, the magnitudes tend to

40 40
% 201 — % 201 —
0 4...111]]11“]]][“"]1“]]._ 0 ‘mmnﬂﬂﬂ]]ﬂﬂm[h]ﬂ—
-5 0 5 -5 0 5
a az
40 T 40 T
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% 201 - % 20 l —
0 = 0
-5 0 5 -5 0 5
ay aio

Figure 4.14 Histogram plots of some LPCs, obtained from 1300 frames of speech material.
Vertical axis is the percentage of occurrence, while the horizontal axis is the value of the
coefficients.
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be small and most coefficients are gathered around the origin. Even though high-
magnitude (>4) coefficients are scarce, no clear bounds exist, leading to problems
in fixed-point implementation of the Levinson—Durbin algorithm.

Figure 4.15 shows the histogram plots of the corresponding RCs, where &, k»,
k3, ke, k7, and ko are displayed. Note that in all cases they are bounded so that
|k;] < 1. This bound is important for efficient design of algorithms under a fixed-
point environment since usage of the finite numerical range can be maximized.
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20 20
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10 10
0 o 0
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Figure 4.15 Histogram plots of some reflection coefficients, obtained from 1300 frames of
speech material. Vertical axis is the percentage of occurrence, while the horizontal axis is the
value of the coefficients.
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The Leroux—Gueguen Solution

Leroux and Gueguen [1979] proposed a method to compute the RCs from the
autocorrelation values without dealing directly with the LPCs. Hence, problems
related to dynamic range in a fixed-point environment are eliminated. Consider
the parameter

eD[k] = E{e"] =Y "d"r (4.72)

i=0

where

e(l)[ | = prediction error using an /th-order prediction-error filter,

@\ = LPC of an Ith-order predictor,

l

R[k] = autocorrelation value of the signal s[n].

A fixed-point implementation arises from the fact that the parameters €, as
defined in (4.72), have a fixed dynamic range. This is stated in the following
theorem.

Theorem 4.2. Given the parameters € as defined in (4.72), then

eV [k]| < R[0]. (4.73)

Proof. Given any two random variables x and y, the condition

(E{xy})’< E{x*}E{y*}, (4.74)

known as the Schwarz inequality [Papoulis, 1991], is satisfied. Applying the
inequality to our problem leads to

ek = |E{eV n)sln — K} < E{(eV[n])}E{s*[n — K]} = JiR[0),
with J; denoting the variance of the prediction error. Since the power of the predic-
tion error (J;) is in general less than or equal to the power of the signal s[n] (R[0]),

we have | [k]|* < R[0]* and the theorem is proved.

To derive the Leroux—Gueguen algorithm, relations between the € parameters
and variables in the Levinson—Durbin algorithm are found. First, note that

M, (4.75)
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and is found directly from (4.72) and (4.59). Substituting the recursive relation for
the LPCs, (4.61) gives

eO[K] = (a?’*” - klay:l.U)R[i — k] — kR[l — K]

(DR + &k — 1.

l

I
NQA
L
=,
|
=
|
=
Q

Note that the relation R[l] = R[—/] is used. Comparing with (4.72) leads to
eD[k] = e VK] — ke V]I — k). (4.76)

The above equation relates the € parameters at the /th order with the parameters at
order [ — 1. From (4.72) we observe that

eO[k] = R[K]. (4.77)

Hence, (4.75) and (4.76) can be used to solve the RCs recursively starting
from [ = 1. Higher-order solutions are built on solutions from a previous order.
The question to ask next is how many € parameters need to be computed at each
order / or what is the range of k. The answer can be found by deriving the range of k
at each /, descending from [ = M, with M being the desired prediction order. At
=M,

Thus, we only need
eMD[0), &MV [m]
from order M — 1. At order M — 1, we need to solve

My — ]
gm0

eMDIM] = eMD[M] — kyy_ g™ 2[—1]
eM=D[0] = ™2

ky—1

7

] — kM_lE.(Miz) [M — 1]

(=)

Hence, the parameters

S(Miz) [71]7 S(Miz) [0]7 8<M72> [M - 1]7 8<M72) [M]
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TABLE 4.1 The ¢ Parameters Required at Each Order / in the
Leroux—-Gueguen Algorithm

l Parameters Required
M
M—1 eM=[0], eV [M]
M-2 eM=2[_1],eM=-20], eM-2[M — 1], M-I [M]
M -3 eM=3)[2] ... eM=I0],eM-I[M —2],..., M3 [M]
M—4 eM-9[=3] ... g™ [0],e™H[M —3],... M H[M]
1 eM[—M +2],...,10],eM2),..., eV [M]
0 eO-M +1),...,9[0],eO[1],...,e@Mm]

are needed at order M — 2. Proceeding in this way we can find the parameters
needed at each order /. Table 4.1 summarizes the results.
The Leroux—Gueguen algorithm can now be summarized as follows.

e Initialization: [ = 0, set
O] =Rk, k=-M+1,... M. (4.78)
e Recursion: for [=1,2,... M

Step 1. Compute the /th RC

(4.79)

Stop if I = M.

Step 2. Calculate the € parameters:

gDk = e VK] — ke VI —k]; k=-M+I1+1,...,0,[+1,...,M. (4.80)

Set [ « [+ 1; return to Step 1.

Leroux—Gueguen Versus Levinson-Durbin

The Leroux—Gueguen algorithm is better suited for fixed-point implementation
since all intermediate variables have known bound. A drawback is the fact that
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only RCs are returned as the result, which is not a problem if the associated filter is
in lattice form. LPCs are required for the direct-form filter and can be obtained
either using the Levinson-Durbin method or the Leroux—Gueguen algorithm
followed by the conversion procedure explained in Section 4.4.

Use of a lattice filter is often uninviting due to the increased amount of compu-
tation. In addition, for a time-varying situation, coefficient update from frame to
frame introduces a stronger undesirable transient in the lattice structure. On the
other hand, the Leroux—Gueguen approach followed by RC-to-LPC conversion
does not provide significant computational saving, if any, when compared to the
Levinson—Durbin algorithm. All these factors combined make the Levinson—Durbin
approach more popular in practice, even though it is known to have numerical
problems.

In the practical implementation of the Levinson—Durbin algorithm under a fixed-
point environment, careful planning is necessary to ensure that all variables are
within the allowed range. See Chen et al. [1991] for a discussion on the selection
between the two algorithms within the context of LD-CELP coder design, with the
Levinson—-Durbin method choosen at the end.

4.6 LONG-TERM LINEAR PREDICTION

Experiments in Section 4.3 using real speech data have shown that the prediction
order must be high enough to include at least one pitch period in order to model
adequately the voiced signal under consideration. A linear predictor with an order
of ten, for instance, is not capable of accurately modeling the periodicity of the
voiced signal having a pitch period of 50. The problem is evident when the predic-
tion error is examined: a lack of fit is indicated by the remaining periodic compo-
nent. By increasing the prediction order to include one pitch period, the periodicity
in the prediction error has largely disappeared, leading to a rise in prediction gain.
High prediction order leads to excessive bit-rate and implementational cost since
more bits are required to represent the LPCs, and extra computation is needed dur-
ing analysis. Thus, it is desirable to come up with a scheme that is simple and yet
able to model the signal with sufficient accuracy.

Important observation is derived from the experimental results of Section 4.3
(Figure 4.9). An increase in prediction gain is due mainly to the first 8 to 10 coeffi-
cients, plus the coefficient at the pitch period, equal to 49 in that particular case.
The LPCs at orders between 11 and 48 and at orders greater than 49 provide essen-
tially no contribution toward improving the prediction gain. This can be seen from
the flat segments from 10 to 49, and beyond 50. Therefore, in principle, the coeffi-
cients that are not contributing toward elevating the prediction gain can be elimi-
nated, leading to a more compact and efficient scheme. This is exactly the idea of
long-term linear prediction, where a short-term predictor is connected in cascade
with a long-term predictor, as shown in Figure 4.16. The short-term predictor is
basically the one we have studied so far, with a relatively low prediction order M
in the range of 8 to 12. This predictor eliminates the correlation between nearby
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Figure 4.16 Short-term prediction-error filter connected in cascade to a long-term
prediction-error filter.

samples or is short-term in the temporal sense. The long-term predictor, on the
other hand, targets correlation between samples one pitch period apart.

The long-term prediction-error filter with input e,[n] and output e[n] has system
function

H(z)=1+bz . (4.81)

Note that two parameters are required to specify the filter: pitch period 7 and long-
term gain b (also known as long-term LPC or pitch gain). The procedure to deter-
mine b and T is referred to as long-term LP analysis. Positions of the predictors in
Figure 4.16 can actually be exchanged. However, experimentally it was found that
the shown configuration achieves on average a higher prediction gain [Ramachan-
dran and Kabal, 1989]. Thus, it is adopted by most speech coding applications.

Long-Term LP Analysis

A long-term predictor predicts the current signal sample from a past sample that is
one or more pitch periods apart, using the notation of Figure 4.16:

és[n] = —besln — T, (4.82)

where b is the long-term LPC, while 7 is the pitch period or lag. Within a given time
interval of interest, we seek to find b and T so that the sum of squared error

T=> (efn] = &[n])* = (esln] + bes[n — T])° (4.83)

n

is minimized. Differentiating the above equation with respect to b and equating to
zero, one can show that

2o &slnjesln — T

S Syl

(4.84)

which gives the optimal long-term gain as a function of two correlation quantities
of the signal, with the correlation quantities a function of the pitch period 7. An
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exhaustive search procedure can now be applied to find the optimal 7. Substituting
(4.84) back into (4.83) leads to

2
7= - (2, eslnlecln — 11) (4.85)

Zn 632, [l’l - T]

The step-by-step procedure of long-term LP analysis is summarized with the fol-
lowing pseudocode:

1. Jpin <

2. for T« Tyin to Thax

3. (Use (4.84) to compute b)

4. (Use (4.83) or (4.85) to compute J)
5. if J< Jnin

6. Jnin — J

7. bopt — b

8. Topt < T

9. return bope, Topt

The parameters Ty, and Ty« in Line 2 define the search range within which the
pitch period is determined. The reader must be aware that the pseudocode is not
optimized in terms of execution speed. In fact, computation cost can be reduced
substantially by exploring the redundancy within the procedure (Exercise 4.8).

Example 4.6 The same speech frame as in Example 4.3 is used here, where long-
term LP analysis is applied to the 240-sample frame ending at time m = 1000. As
was explained earlier in this section, analysis is done on the prediction-error
sequence obtained at the output of the short-term prediction-error filter (with a

1.2.10°

1.1.10°

1.10°

9.10*
20 40 60 80 100 120 140

Figure 4.17 Example of the sum of squared error (J) as a function of the pitch period (7) in
long-term LP analysis.
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Figure 4.18 Left: Input to long-term prediction-error filter (short-term prediction error).
Right: Output of the long-term prediction-error filter (overall prediction error).

prediction order of 10). That is, short-term LP analysis is applied to the frame at
m = 1000, and short-term prediction error is calculated using the LPC found. Of
course, short-term prediction error prior to the frame under consideration is avail-
able so that long-term LP analysis can be completed.

The sum of the squared error as a function of the pitch period (20 < T < 140) is
plotted in Figure 4.17. The overall minimum is located at 7 = 49 and coincides
roughly with the period of the waveform in the time domain. Figure 4.18 shows
the short-term prediction error and the overall prediction error, with the
latter slightly lower in amplitude. In this case, prediction gain of the long-term
prediction-error filter is found to be 0.712 dB.

The Frame/Subframe Structure

Results of Example 4.6 show that the effectiveness of the long-term predictor on
removing long-term correlation is limited. In fact, the overall prediction-error
sequence is very much like the short-term prediction-error sequence, containing a
strong periodic component whose period is close to the pitch period itself.

The crux of the problem is that the parameters of the long-term predictor need to
be updated more frequently than the parameters of the short-term predictor. That is,
it loses its effectiveness when the time interval used for estimation becomes too
long, which is due to the dynamic nature of the pitch period as well as long-term
LPCs. Experiments using an extensive amount of speech samples revealed that by
shortening the time interval in which the long-term parameters were estimated from
20 to 5 ms, an increase in prediction gain of 2.2 dB was achievable [Ramachandran
and Kabal, 1989].

The idea of frame and subframe was born as a result of applying short-term LP
analysis to a relatively long interval, known as the frame. Inside the frame, it is
divided into several smaller intervals, known as subframes. Long-term LP analysis
is applied to each subframe separately. The scheme is depicted in Figure 4.19. Typi-
cal numbers as used by the FS1016 CELP coder (Chapter 12) are 240 samples for
the frame, which is comprised of four subframes having 60 samples each.
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Figure 4.19 The frame/subframe structure.

More frequent update of the long-term predictor obviously requires a higher bit-
rate. However, the resultant scheme is still more economical than the one using 50
or more LPCs to capture the signal’s statistics.

Example 4.7 The same experimental setup as in Example 4.6 is considered, with
the exception that long-term LP analysis is applied to the four subframes within the
frame defined by n € [761, 1000]. Intervals of the subframes are n € [761, 820],
[821,880], [881,940], and [941, 1000]. Figure 4.20 shows the error curves for the

610" I I 3-10*
5.10%
J J
2:10* |-
4.10* -
Subframe 0 Subframe 1
3.10* ' 1.10* '
50 100 150 50 100 150
T T
4
2.10"* 2:10 T |
15.10*
3 J 15.10% -
1.10* |- —
Subframe 2 Subframe 3
5000 ' 1010 '
50 100 150 50 100 150
T T

Figure 4.20 Example of the sum of squared error (J) as a function of the pitch period (7'
for the four subframes.
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TABLE 4.2 Results Summary for an Example of
Long-Term LP Analysis

Subframe Number b T
0 —0.833 97
1 —0.638 147
2 —0.735 49
3 —-0.627 99

four subframes, where the minimums indicate the optimal pitch periods (20 <
T < 147). Parameters of the long-term predictor are summarized in Table 4.2.
Note that both the long-term gain and pitch period change drastically from sub-
frame to subframe.

Figure 4.21 shows the final prediction-error sequence. Compared to the outcome
of Example 4.6 (Figure 4.18), it is clear that in the present case the sequence is
“whiter,” with lower amplitude and periodicity largely removed. A prediction
gain of 2.26 dB is registered, which is a substantial improvement with respect to
the 0.712 dB obtained in Example 4.6.

Fractional Pitch Period

One error source that limits the resolution and hence the accuracy of the long-term
predictor is time discretization, or quantization of the estimates of pitch period. The
problem is introduced by the sampling process, where a continuous-time signal is

100
| |

ol 0 W%V/ ‘\ I

-100
800 900 1000

n

Figure 4.21 Example of long-term prediction-error filter’s output.
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transformed to discrete time. A pitch estimate, expressed as an integer multiple of
the sampling interval, contains a time quantization error, which may lead to audible
distortions.

Another problem with integer pitch period is the phenomenon of pitch multipli-
cation. For periodic signals the current period is not only similar to the previous one
but also to periods that occurred multiple periods ago. Quantization error of the
continuous-valued pitch period can lead to mismatch during correlation calculation,
resulting in the exhaustive search procedure producing the best delay value to be
equal to a multiple of the “true” pitch period. Pitch multiplication is disadvanta-
geous for coding since a smooth pitch contour can be encoded more efficiently. In
addition, the sudden jump of pitch might lead to artifacts in the synthesized speech.
This effect is clearly observed in Example 4.7 (Figure 4.20 and Table 4.2), where
the four values of the pitch period are clearly multiples of a “true” value located
between 48 and 50.

Fractional pitch period is introduced as a mean to increase temporal resolution.
In this case, the pitch period is allowed to have a fractional part plus the integer
part. Analysis is performed using short-term prediction error delayed by a fractional
quantity and is obtained via interpolation. In general, long-term predictors with
high temporal resolution suffer less from pitch multiplication than low-resolution
ones. Experimental results have shown that by using fractional delay, the average
prediction gain is increased by 1.5 to 2.5 dB [Kroon and Atal, 1991]. The improve-
ment is more notorious for female speech since the shorter pitch period makes it
more susceptible to quantization errors.

Example 4.8 The same experimental setup as in Example 4.7 is considered with
the difference that long-term LP analysis is performed using fractional pitch period.
Only 1 bit is used to code the fractional part of the pitch period. Thus, the fraction
can only take two values: 0 or 0.5. Fractional delay is calculated using a simple
linear interpolation approach, where the fractionally delayed version of the short-
term prediction error (input to long-term prediction-error filter) is calculated
with

es[n+0.5] = 1 (esn] + e,[n + 1]). (4.86)

The same exhaustive search procedure can be applied to find the optimal long-
term gain and pitch period. In this particular case, a difference is observed only for
the last subframe, where the error curve as a function of the pitch period is shown in
Figure 4.22. The optimal pitch period for the subframe is found to be T = 49.5 with
long-term gain b = —1.086. Compared to the results of Example 4.7, we can see
that pitch multiplication of the last subframe is eliminated. Overall prediction gain
due to long-term prediction is 2.41 dB, a 0.15-dB improvement with respect to the
case of integer pitch period.
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Figure 4.22  Error curve for subframe 3 when fractional delay is applied (compare to Figure
4.20).

4.7 SYNTHESIS FILTERS

So far we have focused on analyzing the signal with the purpose of identifying the
parameters of a system, based on the assumption that the system itself satisfies the
AR constraint. The identification process is done by minimizing the prediction
error. If the prediction error is “white” enough, we know that the estimated system
is a good fit; therefore, it can be used to synthesize signals having similar statistical
properties as the original one. In fact, by exciting the synthesis filter with the system
function

1

Hz) =—————
& 1+ air

(4.87)

using a white noise signal, the filter’s output will have a PSD close to the original
signal as long as the prediction order M is adequate. In (4.87), the a; are the LPCs
found from the original signal. Figure 4.23 shows the block diagram of the synth-
esis filter, where a unit-variance white noise is generated and scaled by the gain g
and is input to the synthesis filter to generate the synthesized speech at the output.
Since x[n] has unit variance, gx[n] has variance equal to g*. From (4.16) we can
readily write

g =7, |R[0] + Za,-Rs[i]. (4.88)
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Figure 4.23 The synthesis filter.

Thus, the gain can be found by knowing the LPCs and the autocorrelation values of
the original signal. In (4.88), v is a scaling constant. A scaling constant is needed
because the autocorrelation values are normally estimated using a window that
weakens the signal’s power. The value of y depends on the type of window selected
and can be found experimentally. Typical values of y range from 1 to 2. In addition,
it is important to note that the autocorrelation values in (4.88) must be the time-
averaged ones, instead of merely the sum of products.

Example 4.9 The same voiced frame as in Example 4.3 is analyzed to give a set
of 50 LPCs, corresponding to a predictor of order 50. The derived predictor is used
in synthesis where white noise with uniform distribution and unit variance is used
as input to the synthesis filter. The gain g is found from (4.88) with y = 1.3. The
synthesized speech and periodogram are displayed in Figure 4.24. Compared to the
original signal (Figures 4.6 and 4.7), we can see that the two signals share many
common attributes in both the time and frequency domains. In fact, sounds gener-
ated by the two waveforms are very much alike.

As discussed earlier in the chapter, using high prediction order (> 12) is compu-
tationally expensive and in most instances inefficient. Thus, many LP-based speech
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Figure 4.24 Plots of waveform and periodogram of the synthesized speech signal and
periodogram in an experiment.
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Figure 4.25 Long-term and short-term linear prediction model for speech production.

coding algorithms rely on a prediction order between 8 and 12, with order ten being
the most widely employed. Since this low prediction order is not sufficient to recre-
ate the PSD for voiced signal, a non-white-noise excitation is utilized as input to the
synthesis filter. The choice of excitation is a trade-off between complexity and qual-
ity of synthesized speech. Different algorithms use different approaches to target
the problem and the details are given in subsequent chapters.

Long-Term and Short-Term Linear Prediction
Model for Speech Synthesis

The long-term predictor studied in Section 4.6 is considered for synthesis purposes.
A block diagram is shown in Figure 4.25, known as the long-term and short-term
linear prediction model for speech production. The parameters of the two predictors
are again estimated from the original speech signal. The long-term predictor is
responsible for generating correlation between samples that are one pitch period
apart. The filter with system function

1

HP(Z) = m7

(4.89)

describing the effect of the long-term predictor in synthesis, is known as the long-
term synthesis filter or pitch synthesis filter. On the other hand, the short-term
predictor recreates the correlation present between nearby samples, with a typical
prediction order equal to ten. The synthesis filter associated with the short-term pre-
dictor, with system function given by (4.87), is also known as the formant synthesis
filter since it generates the envelope of the spectrum in a way similar to the vocal
track tube, with resonant frequencies known simply as formants. The gain g in Fig-
ure 4.25 is usually found by comparing the power level of the synthesized speech
signal to the original level.

Example 4.10 The magnitude of the transfer functions for the pitch synthesis fil-
ter and formant synthesis filter obtained from Example 4.7 are plotted in Figure
4.26. In the same figure, the product of the transfer functions is also plotted. Since
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Figure 4.26 Magnitude plots of the transfer functions for (a) a pitch synthesis filter, (b) a
formant synthesis filter, and (c) a cascade connection between pitch synthesis filter and
formant synthesis filter.

the two filters are in cascade, the overall transfer function is equal to their product.
Parameters of the filters are

b= —-0.735 T=49
a; = —1.502 a, = 1.738 a3 = —2.029 as = 1.789 as = —1.376
as = 1.255 a; = —0.693 ag = 0.376 ag = —0.08 a;p=0.033

Note that the pitch synthesis filter generates the harmonic structure due to the
fundamental pitch frequency, while the formant synthesis filter captures the spec-
trum envelope. Product of the two recreates the original signal spectrum. Compared
to Figure 4.7, we can see that the spectrum due to the synthesis filters has a shape
that closely matches the PSD of the original signal.

Stability Issues

In many coding situations, the synthesis filters are excited by a random noise
sequence; stability of the filters is a prime concern. For the formant synthesis filter
with system function (4.87), we already know from Theorem 4.1 that it is a
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minimum-phase system as long as the RCs have magnitude less than one, which
can be verified while solving the normal equation during LP analysis.

For the pitch synthesis filter with system function (4.89), the system poles are
found by solving

1+bz77=0

or
7T =—b. (4.90)

There are a total of T different solutions for z, and hence the system has T
different poles. These poles lie at the vertices of a regular polygon of T sides
that is inscribed in a circle of radius |b|1/ " Thus, in order for the filter to be stable,
the following condition must be satisfied:

Ib| < 1. (4.91)

An unstable pitch synthesis filter arises when the absolute value of the numerator
is greater than the denominator as in (4.84), resulting in |b| > 1. This usually arises
when a transition from an unvoiced to a voiced segment takes place and is marked
by a rapid surge in signal energy. When processing a voiced frame that occurs just
after an unvoiced frame, the denominator quantity Ye?[n — 7] involves the sum of
the squares of amplitudes in the unvoiced segment, which is normally weak. On the
other hand, the numerator quantity Yeg[n]es[n — T] involves the sum of the products
of the higher amplitudes from the voiced frame and the lower amplitudes from the
unvoiced frame. Under these circumstances, the numerator can be larger in magni-
tude than the denominator, leading to |b| > 1. Therefore, an unstable pitch synth-
esis filter can arrive when the signal energy shows a sudden increase. To ensure
stability, the long-term gain is often truncated so that its magnitude is always
less than one.

Maintaining the long-term gain to have a magnitude strictly less than one is often
not a good strategy, since subjective quality could be adversely affected. This is true
for various kinds of speech sounds generated by a sudden release of pressure, such
as the stop consonants b and d. By easing the constraint on the long-term gain,
sounds of a transient, noncontinuant nature can be captured more accurately by
the underlying model, leading to an increase in subjective quality. Thus, it is com-
mon for various coding algorithms to tolerate short-term instability in the pitch
synthesis filter. A popular choice for the upper bound of the long-term gain is
between 1.2 and 2.

4.8 PRACTICAL IMPLEMENTATION

In general, LP analysis is a well-behaved procedure in the sense that the resultant
synthesis filter is guaranteed to be stable as long as the magnitudes of the RCs are
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less than one (Section 4.4). In practice, however, there are situations under which
stability can be threatened. For instance, under marginally stable conditions, the
limited precision of the computational environment can lead to errors high enough
to produce an unstable filter; this could happen for signals with sustained oscilla-
tion, where the spectrum is associated with poles close to the unit circle. In this
section we study several techniques employed in speech coding to fix the described
problem, all of them aimed at alleviating ill-conditioning during LP analysis and, at
the same time, improving the stability of the resultant synthesis filter, as well as the
quality of the synthetic speech. These techniques can be used in an isolated fashion
or combined together.

Pre-emphasis of the Speech Waveform

The typical spectral envelope of the speech signal has a high frequency roll-off due
to radiation effects of the sound from the lips. Hence, high-frequency components
have relatively low amplitude, which increases the dynamic range of the speech
spectrum. As a result, LP analysis requires high computational precision to capture
the features at the high end of the spectrum. More importantly, when these features
are very small, the correlation matrix can become ill-conditioned and even singular,
leading to computational problems. One simple solution is to process the speech
signal using the filter with system function

Hz) =1-oaz", (4.92)

which is highpass in nature. The purpose is to augment the energy of the high-
frequency spectrum. The effect of the filter can also be thought of as a flattening
process, where the spectrum is ““whitened.” Denoting x[n] as the input to the filter
and y[n] as the output, the following difference equation applies:

y[n] = x[n] — ox[n — 1]. (4.93)

The filter described in (4.92) is known as the pre-emphasis filter. By pre-emphasiz-
ing, the dynamic range of the power spectrum is reduced. This process substantially
reduces numerical problems during LP analysis, especially for low-precision
devices. A value of o near 0.9 is usually selected.

It is common to find in a typical speech coding scheme that the input speech is
first pre-emphasized using (4.92). To keep a similar spectral shape for the synthetic
speech, it is filtered by the de-emphasis filter with system function

1

O = T

(4.94)

at the decoder side, which is the inverse filter with respect to pre-emphasis. Figure
4.27 shows the magnitude plots of the filter’s transfer functions.
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Figure 4.27 Magnitude plots of the transfer functions of the pre-emphasis filter.

Bandwidth Expansion Through Modification of the LPC

In the application of linear prediction, the resultant synthesis filter might become
marginally stable due to the poles located too close to the unit circle. The problem
is aggravated in fixed-point implementation, where a marginally stable filter can
actually become unstable (with the poles located outside the unit circle) after quan-
tization and loss of precision during processing. This problem creates occasional
“chirps” or oscillations in the synthesized signal.

Stability can be improved by modifying the LPCs according to

Qpew, = YV'ai; i=1,2,.... M, (4.95)

with v < 1 a positive constant. The operation moves all the poles of the synthesis
filter radially toward the origin, leading to improved stability. By doing so, the
original spectrum is bandwidth expanded, in the sense that the spectrum becomes
flatter, especially around the peaks, where the width is widened. Typical values for
v are between 0.988 and 0.996.

Another advantage of the bandwidth expansion technique is the shortening of the
duration of the impulse response, which improves robustness against channel
errors. This is because the excitation signal (in some speech coders the excitation
signal is coded and transmitted) distorted by channel errors is filtered by the synth-
esis filter, and a shorter impulse response limits the propagation of channel error
effects to a shorter duration.
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Figure 4.28 Magnitude of the transfer function (left) and impulse response (right) of the

original (solid line) and bandwidth-expanded (dotted line) synthesis filters.

Example 4.11 The LPCs from Example 4.10 are modified for bandwidth expan-
sion, using a constant y of 0.92. Figure 4.28 shows a comparison between the ori-
ginal and modified magnitude response and impulse response. Note how the
bandwidth-expanded version has a smoother, flatter frequency response; in addi-
tion, the impulse response decays faster toward zero. Poles of the system function
are plotted in Figure 4.29, where, after bandwidth expansion, they are pulled toward

the origin.
1 B S N .
- >< 5
g X h
X N
Im(p;) 0
Y >/\/ l>"<
- x ) l‘-
-1 soeo ==c=
-1 0 1
Re(p;)

Figure 4.29 Plot of poles for the original (x) and bandwidth-expanded (<) synthesis

filters.
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Figure 4.30 Comparison between the magnitude plots of the synthesis filter’s transfer
functions before and after white noise correction.

White Noise Correction

White noise correction mitigates ill-conditioning in LP analysis by directly redu-
cing the spectral dynamic range and is accomplished by increasing the autocorrela-
tion coefficient at zero lag by a small amount. The procedure is described by

R[0] < A.R[0]

with A > 1 a constant. The constant A is usually selected to be slightly above one.
For the G.728 LD-CELP coder (Chapter 14), A = 257/256 = 1.00390625, an
increase of 0.39%. The process is equivalent to adding a white noise component
to the original signal with a power that is 24 dB below the original average power.
This directly reduces the spectral dynamic range and reduces the possibility of ill-
conditioning in LP analysis. The drawback is that such an operation elevates the
spectral valleys. By carefully choosing the constant A, the degradation in speech
quality can be made imperceptible.

Example 4.12 Figure 4.30 compares the magnitude plots of the synthesis filter
before and after white noise correction, where the LPCs are the same as in Example
4.10 and A = 257/256. Note that the dynamic range of the original function is
reduced, where the lowest portion is elevated significantly.

Spectral Smoothing by Autocorrelation Windowing

In the bandwidth expansion method described earlier, the spectrum represented by
the LPCs is smoothed by manipulating the values of the coefficients. The technique
is applied after the LPCs are obtained.
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Figure 4.31 Gaussian windows and their Fourier transforms (magnitude normalized).

On some occasions, it is desirable to introduce some smoothing before obtaining
the LPCs, since the solution algorithms (Levinson—Durbin or Leroux—Gueguen)
require many computational steps leading to error accumulation. This can be
done by windowing the autocorrelation function. Since the autocorrelation function
and the power spectral density form a Fourier transform pair (Chapter 3), multiply-
ing the autocorrelation values with a window (in lag domain) has the effect of con-
volving the power spectral density with the Fourier transform of the window (in
frequency domain) [Oppenheim and Schafer, 1989]. By selecting an appropriate
window, the desired effect of spectral smoothing is achieved. Given the autocorre-
lation function R[l], windowing is performed with

Ruewl]] = R[] -w[l]; 1=0,1,...,M; (4.96)
a suitable choice for w[l] is the Gaussian window defined by
wll] = e P*, (4.97)

where B is a constant. Figure 4.31 shows some plots of a Gaussian window for
various values of .

The described technique can be used to alleviate ill-conditioning of the normal
equation before it is solved; after convolving in the frequency domain, all sharp
spectral peaks are smoothed out. The spectral dynamic range is reduced with the
poles of the associated synthesis filter farther away from the unit circle.

Example 4.13 The autocorrelation values corresponding to the LPCs of Example
4.10 are Gaussian windowed with § = 0.01. Figure 4.32 compares the original
spectrum with the one obtained after smoothing: note how the sharp peaks are low-
ered and widened. The net effect is similar to a bandwidth expansion procedure
with direct manipulation of the LPCs.



MOVING AVERAGE PREDICTION 137

100 |
10
IHE")|
0.1
0.01
0 0.5 1
olr

Figure 4.32 Comparison between the magnitude plots of the synthesis filter’s transfer
functions before and after spectral smoothing.

4.9 MOVING AVERAGE PREDICTION

The discussion so far is based on the AR model. Figure 4.33 shows the block
diagrams of the AR process analyzer and synthesizer filters, where a predictor
with the difference equation given by (4.1) is utilized. It is straightforward to verify
that these block diagrams generate the exact same equations for the AR model. In
practical coding applications, parameters of the predictor are often found from the
signal itself since a computationally efficient procedure is available, enabling real-
time adaptation.

The MA model, as explained in Chapter 3, is in a sense the dual of the AR
model. Figure 4.34 shows the predictor-based block diagrams of the analyzer and
synthesizer filters. In this case, however, the difference equation of the predictor is
given by

S[n] = — Z bix[n — i, (4.98)
i1

sn| x[n]  x[n] gn]

n n
Predictor Nl sin Predictor

Figure 4.33 Block diagram of the AR analyzer filter (left) and synthesizer filter (right).
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Figure 4.34 Block diagram of the MA analyzer filter (leff) and synthesizer filter (right).

with K the order of the model and b; the MA parameters. When compared with
(4.1) we can see that “prediction” is now based on a linear combination of excita-
tion or samples of prediction error x[n], which in theory are white noise.

Unlike the AR model, where the optimal parameters can be found by solving a
set of linear equations based on the statistics of the observed signal, the MA para-
meters can only be found using a set of nonlinear equations, and in practice highly
computationally demanding. Hence, other approaches are normally applied to find
the model parameters; these include spectral factorization [Therrien, 1992] and
adaptive filtering techniques such as the least-mean-square (LMS) algorithm
[Haykin, 1991], as well as other iterative methods.

Even though (4.98) is a sort of “linear prediction’ scheme, where the prediction
is based on a linear combination of samples, the name of LP is traditionally asso-
ciated with AR modeling. When prediction is based on the MA model, it is expli-
citly referred to as ““MA prediction” in the literature. Why do we bother with MA
prediction? The technique offers some unique advantages and will be explained in
Chapter 6, where differential pulse code modulation (DPCM) is introduced, and
also in Chapter 7 with the introduction of predictive vector quantization (PVQ).
Finally, in Chapter 15, MA prediction is applied to the design of a predictive quan-
tizer for linear prediction coefficients.

4.10 SUMMARY AND REFERENCES

In this chapter, a theoretical foundation and practical implementation of linear
prediction are thoroughly explained. Linear prediction is described as a system
identification problem, where the parameters of an underlying autoregressive model
are estimated from the signal. To find these parameters, autocorrelation values are
obtained from the signal and a set of linear equations is solved. The resultant esti-
mation is optimal in the sense that the variance of the prediction error is minimized.
For nonstationary signals such as speech, the LP analysis procedure is applied to
each short interval of time, known as a frame. The extracted LPCs from each frame
result in a time-varying filter representing the activity of the human speech produc-
tion organs. LP is often associated with the acoustic tubes model for speech produc-
tion. Details can be found in Rabiner and Schafer [1978]. Efficient algorithms to
solve the normal equation were introduced. Two such procedures—the Levinson—
Durbin algorithm and the Leroux—Gueguen algorithm—can be used, with the latter
more suitable for fixed-point implementation since all intermediate quantities of the
procedure are bounded.
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The method of LP analysis presented in this chapter is known in the literature as
the autocorrelation method. Other schemes exist for LP analysis. The covariance
method, for instance, formulates the problem in a different way, with the sum of
squared error minimized inside the frame. This method has not received wide
acceptance mainly because it cannot be solved as efficiently as the autocorrelation
method. Also, no simple procedure allows a stability check. For additional informa-
tion readers are referred to classical textbooks such as Markel and Gray [1976] and
Rabiner and Schafer [1978]. A discussion of the computational cost for various LP
analysis procedures is found in Deller et al. [1993].

Long-term linear prediction is an efficient scheme where correlation of the
speech signal is modeled by two predictors. The short-term predictor is in charge
of correlation between nearby samples, while the long-term predictor is in charge of
correlation located one or multiple pitch periods away. The method described in
this chapter is known as the one-tap predictor; that is, prediction is based on one
single sample from the distant past. For a multitap long-term predictor, see
Ramachandran and Kabal [1989]. However, the extra complexity and slight perfor-
mance improvement limit the application of the multitap long-term predictor in
practice [Kroon and Atal, 1991]. See Veeneman and Mazor [1993] for additional
insight.

Several techniques to alleviate ill-conditioning, improve stability, and increase
quality of the synthetic speech are presented. In a typical speech coding algorithm,
these methods are used separately or combined together, and they are often
included as standard computational steps. These procedures are cited in subsequent
chapters, where different standard coders are studied. Autocorrelation windowing
was introduced in Tohkura et al. [1978], developed originally to combat bandwidth
underestimation. See Chen [1995] for a discussion of the incorporation of white
noise correction, autocorrelation windowing, and bandwidth expansion to the
framework of the LD-CELP coder.

Prediction can also be defined within the context of other signal models, such as
MA. A good coverage of various statistical models can be found in Therrien [1992],
as well as other textbooks such as Haykin [1991] and Picinbono [1993].

One of the criticisms about the application of LP in speech modeling is the fact
that no zeros are incorporated in the system function of the synthesis filter, which
introduces inaccuracies when representing certain classes of signals, such as nasal
sounds. Difficulties related to a pole-zero type of system function, or ARMA mod-
el, are mainly due to the lack of efficient computational procedure to locate the
parameters of the model. See Lim and Lee [1993] for pole-zero modeling of speech
signals.

EXERCISES

4.1 Within the context of linear prediction, let e[n] denote the prediction error
under optimal conditions. Show that

E{e[n]sin—k]} =0
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4.2

4.3

4.4

4.5

4.6

LINEAR PREDICTION

for k =1,2,...,M. That is, e[n] is orthogonal to s[n — k]. The relation is
known as the principle of orthogonality.

An alternative way to obtain

Jmin = R +Z(1R

is by substituting (4.6), the condition required to minimize the cost function
J(4.3), into J itself. Show the details of this alternative derivation.

In internal prediction where the analysis interval (for autocorrelation estima-
tion) is the same as the prediction interval (the derived LPCs are used to
predict the signal samples), find out the prediction gain when different
windows are involved in the LP analysis procedure. Using a prediction order
of ten and a frame length of 240 samples, calculate the segmental prediction
gain by averaging the prediction gain results for a large number of signal
frames for the two cases where the rectangular window or Hamming window
is involved. Which window provides higher performance?

Consider the situation of external prediction where the autocorrelation values
are estimated using a recursive method based on the Barnwell window. Using
a prediction order of 50 and a frame length of 20 samples, measure the
prediction gain for a high number of frames. Repeat the experiment using
various values of the parameter o of the window (Chapter 3). Plot the resultant
segmental prediction gain as a function of o. Based on the experiment, what is
the optimal value of the parameter o?

From the system function of the pitch synthesis filter, find the analytical
expression of the impulse response. Plot the impulse response of the pitch
synthesis filter for the following two cases:

(@ b=05,T=50.
(b) b=15,T =50.

What conclusions can be reached about the stability of the filter?

Within the context of the Levinson—Durbin algorithm, (a) prove that

(a) I
I=n][0-8),
i=1

which is the minimum mean-squared prediction error achievable with an
Ith-order predictor.

(b) Prove that the prediction gain of the /th-order linear predictor is

!
PG; = —10 logm(H (1-#) )

i=1
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Figure 4.35 Equivalent signal flow graph of a long-term prediction-error filter with
fractional delay.

4.7

4.8

4.9

In Example 4.8, where the simple linear interpolation procedure is applied to
create fractional delay, show that the long-term prediction-error filter can be
implemented as in Figure 4.35, with the long-term LPC summarized in Table
4.3, where b is the long-term gain given by (4.84). Thus, the considered long-
term predictor with fractional delay is indeed a two-tap long-term predictor.
What happens with the cases when two or more bits are used to encode the
fractions?

In the long-term LP analysis procedure, minimization of J is equivalent to
maximizing the quantity

(32, eslnlesn — 1))
S,En—1

Justify the above statement. Develop a more efficient pseudocode to perform
the task.

One suboptimal way to perform long-term LP analysis is by determining the
pitch period T based on maximizing the autocorrelation

RITI =" es[nles[n — T].

Note that the sum of squared error J is not necessarily minimized. An
advantage of the method is the obvious computation saving. Write down
the pseudocode to perform long-term LP analysis based on the described
approach. Mention the property of the resultant long-term gain b. Hint: The
maximum autocorrelation value is in general greater than or equal to zero.

TABLE 4.3 Long-Term LPC for a Prediction Error
Filter with Two Fractional Values: 0 or 0.5

Fraction by b,

0 b 0
172 b2 b/2
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4.10

4.11

4.12

4.13
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Use some speech signal to obtain a set of autocorrelation values for a 10th
order predictor. Find the corresponding LPCs and plot the magnitude of the
response for the associated synthesis filter. Also, plot the poles of the system
function. Repeat using the LPCs obtained by first applying a white noise
correction (A = 257/256), followed by a Gaussian windowing (§ = 0.001),
and finally apply bandwidth expansion with y = 0.98 to the resultant LPCs.

Within the context of AR modeling, where the prediction error is e[n] and the
prediction is $[n], derive the difference equation relating e[n] to $[n] and show
that the system function of the filter with e[n] as input and $[n] as output is

H() — — Ty
L4 > @i

Develop the pseudocode to perform long-term LP analysis using the

fractional delay scheme described in Example 4.8. Consider two cases: an

exhaustive search approach, where all possible delay values are evaluated,

and a two-step suboptimal scheme, where the integer pitch period is located

first followed by a fractional refinement near the integer result found.

In the long-term and short-term linear prediction model for speech produc-
tion, the long-term predictor has a delay of 7, while the short-term predictor
has an order of M, with T > M. Is it functionally equivalent to replace the
cascade connection of pitch synthesis filter and formant synthesis filter with
a single filter composed of a predictor of order T with system function

T

§ : —i

- az -,
i=1

where ¢; =0 fori=M+1,M+2,...,T —1? Why or why not?



CHAPTER 5

SCALAR QUANTIZATION

Representation of a large set of elements with a much smaller set is called quanti-
zation. The number of elements in the original set in many practical situations is
infinite, like the set of real numbers. In speech coding, prior to storage or transmis-
sion of a given parameter, it must be quantized. Quantization is needed to reduce
storage space or transmission bandwidth so that a cost-effective solution is
deployed. In the process, some quality loss is introduced, which is undesirable.
How to minimize loss for a given amount of available resources is the central
problem of quantization.

In this chapter, the basic definitions involved with scalar quantization are given,
followed by an explanation of uniform quantizers—a common type of quantization
method widely used in practice. Conditions to achieve optimal quantization are
included with the results applied toward the development of algorithms used for
quantizer design. Algorithmic implementation is discussed in the last section,
where computational cost is addressed. The presentation of the material is intended
to be rigorous mathematically. However, the main goal is to understand the practi-
cal aspects of scalar quantization, so as to incorporate the techniques in the coding
of speech.

5.1 INTRODUCTION
In this section the focus is on the basic issues of scalar quantization.

Definition 5.1: Scalar Quantizer. A scalar quantizer Q of size N is a mappin from
the real number x € R into a finite set Y containing N output values (also known
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as reproduction points or codewords) y;. Thus,
O:R—Y

where

(y]7y2)"~7yN) € Y
Y is known as the codebook of the quantizer. The mapping action is written as
Ox)=y;x€R, i=1,...,N. (5.1)

In all cases of practical interest, N is finite so that a finite number of binary digits is
sufficient to specify the output value. We further assume that the indexing of output
values is chosen so that

yi<y2<---<Jyn.

Definition 5.2: Resolution. We define the resolution r of a scalar quantizer as
r=1og; N =IgN, (5.2)
which measures the number of bits needed to uniquely specify the quantized value.

Definition 5.3: Cell. Associated with every N point quantizer is a partition of the
real line R into N cells R;, i = 1, ..., N. The ith cell is defined by

Ri={xeR Q(x) =y} =0"(n) (5.3)
It follows that
R =R (5.4)
and if { # j
R, NR; = ©. (5.5)

Definition 5.4: Granular Cell and Overload Cell. A cell that is unbounded is
called an overload cell. The collection of all overload cells is called the overload
region. A cell that is bounded is called a granular cell. The collection of all granular
cells is called the granular region.

The set of numbers

Xo < xp <xp <---<Xxpn,
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known as the boundary points, are used to define the cells for the quantizer, which
are given by

R,v:(xi,l,x,-]; izl,...,N, (56)

where x € (a, b] implies a < x < b. Based on this definition, we have xo = —oo and
xy = 00. Two overload cells exist: Ry = (xg, x1] = (=00, x1] and Ry = (xy_1, xy] =
(xy_1, 00]. The number of granular cells is equal to N — 2, defined by (5.6) with
i=2toN—1.

Definition 5.5: Regular Quantizer. A quantizer is defined to be regular if each
cell R; is an interval such that y; € (x;_1, x;).

Since most quantizers for coding applications are regular, only regular quanti-
zers are considered in this book. Figure 5.1 shows an example of the transfer
characteristic of a regular quantizer.

Definition 5.6: Encoder and Decoder. Every quantizer can be viewed as the
combined effect of two successive operations—an encoder E and a decoder D:

E:R — 1,
D:1 — R,
QX
Ys C
O=
O_"_.

Xp = —o0 X1 X X3

Xs Xo X7 Xg = o

'b‘ Y1

Figure 5.1 Example of the transfer characteristic for a regular quantizer with eight output
levels.
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with I the index set {1, 2,..., N}. Thus, if Q(x) = y;, then E(x) = i and D(i) = y;.
Furthermore,

%= 0(x) = D(EW) =y (5.7)

Definition 5.7: Distance or Distortion Measure. A distance or distortion measure
is an assignment of a nonnegative cost d(x, Q(x)) associated with quantizing any
input value x with a reproduction point Q(x):

0, O(x) = x,

5.8
>0, otherwise. (58)

atv.000) = {

Given a distortion measure we can quantify the performance of a system by the
expected value of d. Let x denote a continuously distributed random variable with a
specified PDF f,(x). Then the expected value of the distortion can be expressed as

D= E{d(x, 0(x))} = | dlx. QWAL (59)

—00

The performance of a quantizer is often specified in terms of a signal-to-noise
(SNR) ratio, given by

(52
SNR;:IObgm<2§> (5.10)

measured in decibels, with 62 denoting the variance of x. Taking into account the
partition into cells, (5.9) can be rewritten as

N
D:Ej;mgmm@w. (5.11)
i=1 i
This is equivalent to
N
D= P{x € R}E{d(x,y))|x € R;}, (5.12)
i=1

12

with P{-} denoting the probability of an event. A conditional expectation term is
incorporated.

Example 5.1: Mean-Squared Error Criterion. Due to its simplicity and analyti-

cal elegance, the mean-squared error is widely used in many practical situations.
Consider the distortion measure defined by the squared error:

d(x,%) = (x — %) (5.13)
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Then from (5.11), the expected value of the distortion, or mean-squared error, is
given by

N

D=Elx- 0007} =Y | x-ylhar=Y [ oP At

i=1 i=1 Jxic1

(5.14)

5.2 UNIFORM QUANTIZER

A uniform quantizer is one of the simplest to design and widely used in practice.
For a uniform quantizer, the transfer characteristic Q(x) is such that

yi+1—yi=A; i:1,2,...,N—1, (5153)

Xit+l — Xi = A; Xiy Xit1 finite (515}))

with A a constant known as the step size. The output levels for a uniform quantizer
are given by

yi=xi—A/2; i=1,...,N—1, (5.16a)

v =xn-1 +A)2. (5.16b)

Figure 5.2 shows an example of a uniform quantizer. Quantization error is defined
by

e(x) =x— Q(x). (5.17)
QX
Ys C
Oo—e
—_—> A €
Oo—
Xy, X2 X3 N
- > X
O % % X
H oV
R B T
-0 Y1

Figure 5.2 Example of the transfer characteristic for a uniform quantizer with eight output
levels.
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e@

Xs = Xe X7 A

Overload —>|€——— Granular ————>|<— Overload

Figure 5.3 Example of quantization error for a uniform quantizer with eight output levels.

Figure 5.3 plots the error e(x) corresponding to the quantizer of Figure 5.2. Note
that

le(x)] <A/2, A" <x<AT, (5.18)

with
AT =xy 1+ A (5.19a)

and
AT =x — A (5.19b)

One design technique for uniform quantizers is to assign A* and A~ to be equal
to the maximum and minimum of the input value, respectively. Hence, excessive
overload error is eliminated. Once the values of AT and A~ are known, the step
size A can be found from (5.19) and Figure 5.3, given by

At — A~

A= (5.20)

Uniform Input Distribution

Consider the case of a uniform quantizer, where the input is bounded with values
lying in the range [A~, A™]. Further assume that the input is uniformly distributed
within that range. It is readily seen from Figure 5.3 that the quantizer error consid-
ered as the continuous random variable e has a uniform PDF in [—-A /2, A/2]. This
is shown in Figure 5.4. Thus, the mean of the quantization error is

E{e} =0 (5.21)
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fe(e)

1/A

-Al2 Al2 e

Figure 5.4 Probability density function of the quantization error for uniform input
distribution.

with variance
var{e} = E{e’} = A?/12. (5.22)

Equation (5.22) is equal to the expected value of the distortion if the mean-
squared error criterion is adopted. Therefore, to reduce the expected distortion,
the step size must be decreased, which is accomplished by increasing the quantizer
size N (see (5.20)). An excessively high N, however, requires a large amount of bits,
translating directly to higher coding cost.

5.3 OPTIMAL QUANTIZER

The primary goal of quantizer design is to select the reproduction levels and the
partition regions or cells so as to provide the minimum possible average distortion
for a fixed number of levels N, or equivalently a fixed resolution r. Here, condi-
tions for a quantizer to achieve optimality are given. These conditions will serve
as references to develop the optimization procedure required for quantizer design.

Definition 5.8: Optimal Quantizer. A quantizer Q of size N is said to be optimum
if it minimizes the expected value of the distortion
N

D= E(d(x,000)} = Y- | dlxylhtodr (523)

i=1 JRi

with R; the cells of the quantizer and f,(x) the PDF of the input random variable x.

Therefore, for optimal operation, it is necessary to specify the output points y;
and partition cells R; for a given PDF of x so as to minimize D.

The Nearest-Neighbor Condition for Optimality
For a given codebook Y of size N, the optimal partition cells satisfy

R = {x:d(x,y;) <d(x,y)} (5.24)
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for all i # j. That is, Q(x) = y; only if d(x,y;) < d(x,y;). Hence,

d(x,0(x)) = rniin d(x,y;). (5.25)

To show that (5.24) yields a minimum expected distortion D, consider the
relation

D = [ (e, 0(x)a(x) > [ i ) o) s (5.26)

and this lower bound is indeed attained when Q(x) performs the nearest-neighbor
mapping with the given codebook Y.

Definition 5.9: Centroid. We define the centroid cent(R,), of any nonempty set
R, € R, as the value y, (if it exists) that minimizes the expected distortion between

x and y,, given that x lies in R,. Thus,

cent(R,) = {yo: E{d(x,y,)|x € R,} < E{d(x,y)|[x € R.}}; VyeR. (527)

The Centroid Condition for Optimality

Given a partition {R;; i = 1,..., N}, the optimal codewords satisfy
yi = cent(R;). (5.28)

The statement can be proved in the following manner. From (5.12), the average
distortion is written as

D =Y P{x€R}E{d(x,y)Ix € R} > Y P{x R} min E{d(x, y)|x € Ri}
i=1 i=1

L

(5.29)
and the inequality becomes an equality if the y; are the centroids.
The Centroid Optimality Condition for Squared Error
Distortion Measure
Given a partition {R;: i = 1,..., N}, if the distortion measure is the squared error

defined by

d(x,yi) = (x = i), (5.30)
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then the optimal codewords satisfy

Jr Hfx(x) dx
yi=cent(R;)) = E{x|x e R} =—"——. (5.31)
fR,-fx (x) dx
The result is obtained by writing the expected value of the distortion as
N
D=> P{x€R}E{(x—y)’[x € R}, (5.32)

i=1

which can be minimized by choosing the appropriate codeword y; for each cell. The
value of y; that minimizes (5.32) is precisely given by the conditional mean
indicated in (5.31). See Exercise 5.6 for a proof.

5.4 QUANTIZER DESIGN ALGORITHMS

Given the codebook size N, it is desired to find the input partition cells and code-
words such that the average distortion D = E{d(x,Q(x))} is minimized, with
x being the input random variable or the source with a given PDF.

The Lloyd Iteration for Codebook Improvement
It is possible to improve the quantizer by following the two iteration steps indicated

below, known as the Lloyd iteration.

Step 1. Given the codebook Y,, = {ym;; i = 1, 2,..., N}, find the optimal partition
into quantization cells; that is, use the nearest-neighbor condition to form the
nearest-neighbor cells:

Rm‘i - {X : d(xaym.i) S d(X, ym,j)}

for all j # i.

Step 2. Using the centroid condition, find Y,;, the optimal reproduction
codewords for the cells just found. Note that the input PDF must be known in
order to compute the centroids.

The Lloyd Algorithm

The Lloyd iteration can be used to improve a quantizer starting from an initial
codebook. If the input PDF is not mathematically tractable, a sample distribution
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based on empirical observations is used instead. The actual algorithm of Lloyd for
quantizer design is stated as follow:

Step 1. Begin with an initial codebook Y;. Set m = 1.

Step 2. Given the codebook Y,,, perform the Lloyd iteration to generate the
improved codebook Y, ;.

Step 3. Compute the average distortion for Y,,, | (D,,). If it has changed by a
small enough amount since the last iteration, stop. Otherwise, set m + 1 — m and
go to Step 2.

One reasonable stopping criterion is to use the fractional drop in distortion,
(D, — D,,,;1)/D,,. The algorithm stops when the ratio is below a suitable threshold.

It can easily be shown that the al