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Introduction 

In these two books, we shall study three areas of statistical theory, which 
we have labeled detection theory, estimation theory, and modulation 
theory. The goal is to develop these theories in a common mathematical 
framework and to demonstrate how they can be used to solve a wealth of 
practical problems in many diverse physical situations. 

In this chapter we present three outlines of the material. The first is a 
topical 0 
areas by 

utline in which we develop a qualitative understa nding of the three 
examining some typical problems of interest. The second is a 

logical outline in which we explore the various methods of attacking the 
problems. The third is a chronological outline in which we explain the 
structure of the books. 

1.1 TOPICAL OUTLINE 

An easy way to explain what is meant by detection theory is to examine 
several physical situations that lead to detection theory problems. 

A simple digital communication system is shown in Fig. 1.1. The source 
puts out a binary digit every T seconds. Our object is to transmit this 
sequence of digits to some other location. The channel available for trans- 
mitting the sequence depends on the particular situation. Typically, it 
could be a telephone line, a radio link, or an acoustical channel. For 
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Fig. 1.1 Digital communication system. 
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2 1 .l Topical Outline 

purposes of illustration, we shall consider a radio link. In order to transmit 
the information, we must put it into a form suitable for propagating over 
the channel. A straightforward method would be to build a device that 
generates a sine wave, 

for T seconds if the source generated a “one” in the preceding interval, 
and a sine wave of a different frequency, 

so(t) = sin uot, (2) 

for 7’ seconds if the source generated a “zero” in the preceding interval. 
The frequencies are chosen so that the signals so(t) and q(t) will propagate 
over the particular radio link of concern. The output of the device is fed 
into an antenna and transmitted over the channel. Typical source and 
transmitted signal sequences are shown in Fig. 1.2. In the simplest kind of 
channel the signal sequence arrives at the receiving antenna attenuated but 
essentially undistorted. To process the received signal we pass it through 
the antenna and some stages of rf-amplification, in the course of which a 
thermal noise n(t) is added to the message sequence. Thus in any T-second 
interval we have available a waveform r(t) in which 

r(t) = h(t) + w, 0 < t < T, (3) 
if sl(t) was transmitted, and 

r(t) = s*(t) + n(t), OUlT, (4) 
if so(t) was transmitted. We are now faced with the problem of deciding 
which of the two possible signals was transmitted. We label the device that 
does this a decision device. It is simply a processor that observes r(t) and 
guesses whether sl(t) or so(t) was sent according to some set of rules. This 
is equivalent to guessing what the source output was in the preceding 
interval. We refer to designing and evaluating the processor as a detection 
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Fig. 1.2 Typical sequences. 
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Fig. 1.3 Sequence with phase shifts. 

theory problem. In this particular case the only possible source of error in 
making a decision is the additive noise. If it were not present, the input 
would be completely known and we could make decisions without errors. 
We denote this type of problem as the known signal in noise problem. It 
corresponds to the lowest level (i.e., simplest) of the detection problems of 
interest. 

An example of the next level of detection problem is shown in Fig. 1.3. 
The oscillators used to generate sl(t) and so(t) in the preced .ing example 
have a phase drift. Therefore in a part icula r T-second interval the received 
signal corresponding to a “ one” is 

r(t) = sin (qt + 8,) + n(t), Ost<T - 9 (5) 

and the received signal corresponding to a “zero” is 

r(t) = sin (wet + 0,) + n(t), OstsT, (6) 

where 0, and O1 are un 
absence o f noise the inpu 
system the receiver may 
tor phase. If the phase 
perfect measurement is possible. If this is true, the problem is the same as 
above. However, if the measurement is n .ot perfect, we must incorporate 

known con .stant 
t waveform 
include 
varies s 

is not 
phase angles. Thus even in the 
completely kn .own. I n a practical 

auxiliary equipment to measure the oscilla- 
lowly enough, we shall see that essentially 

the signal uncertainty in our 
A corresponding problem 

model. 
arises in the radar and sonar areas. A con- 

ventional radar transmits a pulse at some frequency or), with a rectangular 
envelope : 

s,(t) = sin wJ, 0 < t < T. (7) 

If a target is present, the pulse is reflected. Even the simplest target will 
introduce an attenuation and phase shift in the transmitted signal. Thus 
the signal available for processing in the interval of interest is 

r(t) = VT sin [w,(t - T) + OrI + n(t), 75t<7+T, 

= w9 O<t<7,1+T<t<oo, (8) - 
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if a target is present and 

if a target is absent. We see that in the absence of noise the signal still 
contains three unknown quantities: Vr, the amplitude, 8,, the phase, and 
7, the round-trip travel time to the target. 

These two examples represent the second level of detection problems. 
We classify them as signal with unknown parameters in noise problems. 

Detection problems of a third level appear in several areas. In a passive 
sonar detection system the receiver listens for noise generated by enemy 
vessels. The engines, propellers, and other elements in the vessel generate 
acoustical signals that travel through the ocean to the hydrophones in the 
detection system. This composite signal can best be characterized as a 
sample function from a random process. In addition, the hydrophone 
generates self-noise and picks up sea noise. Thus a suitable model for the 
detection problem might be 

40 = sn(t) + n(t) (10) 

if the target is present and 

40 = n(t) (11) 

if it is not. In the absence of noise the signal is a sample function from a 
random process (indicated by the subscript Q). 

In the communications field a large number of systems employ channels 
in which randomness is inherent. Typical systems are tropospheric scatter 
links, orbiting dipole links, and chaff systems. A common technique is to 
transmit one of two signals separated in frequency. (We denote these 
frequencies as CC)~ and wg.) The resulting received signal is 

if sl(t) was transmitted and 

r(t) = ho(t) + n(t) (13) 

if so(t) was transmitted. Here snJt) is a sample function from a random 
process centered at al, and +,(t) is a sample function from a random 
process centered at oo. These examples are characterized by the lack of any 
deterministic signal component. Any decision procedure that we design 
will have to be based on the difference in the statistical properties of the 
two random processes from which sa,(t) and Sal(t) are obtained. This is 
the third level of detection problem and is referred to as a random signal 
in noise problem. 
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In our examination of representative examples we have seen that detec- 
tion theory problems are characterized by the fact that we must decide 
which of several alternatives is true. There were only two alternatives in 
the examples cited; therefore we refer to them as binary detection prob- 
lems. Later we will encounter problems in which there are A4 alternatives 
available (the Wary detection problem). Our hierarchy of detection 
problems is presented graphically in Fig. 1.4. 

There is a parallel set of problems in the estimation theory area. A 
simple example is given in Fig. 1.5, in which the source puts out an 
analog message a(t) (Fig. 1.5~). To transmit the message we first sample it 
every T seconds. Then, every T seconds we transmit a signal that contains 

Level 1. Known signals in 
noise 

Level 2. Signals with unknown 
parameters in noise 

Level 3. Random signals in 
noise 

Detection theory 

1. Synchronous digital communication 

2. Pattern recognition problems 

1. Conventional pulsed radar or sonar, 
target detection 

2. Target classification (orientation of 
target unknown ) 

3. Digital communication systems without 
phase reference 

4. Digital communication over slowly- 
fading channels 

1. Digital communication over scatter 
link, orbiting dipole channel, or 
chaff link 

2. Passive sonar 

3. Seismic detection system 

4. Radio astronomy (detection of noise 
sources ) 

Fig. 1.4 Detection theory hierarchy. 
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Fig. 1.5 (a) Sampling an analog source; (6) pulse-amplitude modulation; (c) pulse- 
frequency modulation ; (d) waveform reconstruction. 

a parameter which is uniquely related to the last sample value. In Fig. 1.5b 
the signal is a sinusoid whose amplitude depends on the last sample. Thus, 
if the sample at time nT is A,, the signal in the interval [nT, (n + l)T] is 

A system of this type is called a pulse amplitude modulation (PAM) 
system. In Fig. 1.5~ the signal is a sinusoid whose frequency in the interval 
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differs from the reference frequency w, by an amount proportional to the 
preceding sample value, 

44 4 = sin (w,t + f&J), nT < t < (n + 1)T. (15) 
A system of this type is called a pulse frequency modulation (PFM) system. 
Once again there is additive noise. The received waveform, given that A, 
was the sample value, is 

r(t) = s(t, An) + n(t), nT < t < (n + 1)T. (16) 
During each interval the receiver tries to estimate A,. We denote these 
estimates as A,. Over a period of time we obtain a sequence of estimates, 
as shown in Fig. 1.54 which is passed into a device whose output is an 
estimate of the original message a(t). If a(t) is a band-limited signal, the 
device is just an ideal low-pass filter. For other cases it is more involved. 

If, however, the parameters in this example were known and the noise 
were absent, the received signal would be completely known. We refer 
to problems in this category as known signal in noise problems. If we 
assume that the mapping from A, to s(t, A,) in the transmitter has an 
inverse, we see that if the noise were not present we could determine A, 
unambiguously. (Clearly, if we were allowed to design the transmitter, we 
should always choose a mapping with an inverse.) The known signal in 
noise problem is the first level of the estimation problem hierarchy. 

Returning to the area of radar, we consider a somewhat different 
problem. We assume that we know a target is present but do not know 
its range or velocity. Then the received signal is 

r(t) = VT sin [(oc + WJ(t - 7) + &] + n(t), 71f17+T, 

= n(t), O<t<r,T+T<t<oo, 

(17) 
where wd denotes a Doppler shift caused by the target’s motion. We want 
to estimate 7 and wd. Now, even if the noise were absent and 7 and ct)d 
were known, the signal would still contain the unknown parameters Vr 
and 8,. This is a typical second-level estimation problem. As in detection 
theory, we refer to problems in this category as signal with unknown 
parameters in noise problems. 

At the third level the signal component is a random process whose 
statistical characteristics contain parameters we want to estimate. The 
received signal is of the form 

r(t) = ShZ(t, 4 + n(t), (18) 

where s&t, A) is a sample function from a random process. In a simple 
case it might be a stationary process with the narrow-band spectrum shown 
in Fig. 1.6. The shape of the spectrum is known but the center frequency 
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Fig. 1.6 Spectrum of random signal. 

Level 1. Known signals in noise 

Level 2. Signals with unknown 1. Range, velocity, or angle measurement in 
parameters in noise radar/sonar problems 

Level 3. Random signals in noise 

Estimation Theory 

1. PAM, PFM, and PPM communication systems 
with phase synchronization 

2. Inaccuracies in inertial systems 

(e.g., drift angle measurement) 

2. Discrete time, continuous amplitude communication 

system (with unknown amplitude or phase in 

channel) 

1. Power spectrum parameter estimation 

2. Range or Doppler spread target parameters 

in radar/sonar problem 

3. Velocity measurement in radio astronomy 

4. Target parameter estimation; passive sonar 

5. Ground mapping radars 

Fig. 1.7 Estimation theory hierarchy. 
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is not. The receiver must observe r(t) and, using the statistical properties 
of sn(t, A) and n(t), estimate the value of A. This particular example could 
arise in either radio astronomy or passive sonar. The general class of 
problem in which the signal containing the parameters is a sample function 
from a random process is referred to as the random signal in noise problem. 
The hierarchy of estimation theory problems is shown in Fig. 1.7. 

We note that there appears to be considerable parallelism in the detection 
and estimation theory problems. We shall frequently exploit these parallels 
to reduce the work, but there is a basic difference that should be em- 
phasized. In binary detection the receiver is either “right” or “wrong.” 
In the estimation of a continuous parameter the receiver will seldom be 
exactly right, but it can try to be close most of the time. This difference 
will be reflected in the manner in which we judge system performance. 

The third area of interest is frequently referred to as modulation theory. 
We shall see shortly that this term is too narrow for the actual problems. 
Once again a simple example is useful. In Fig. 1.8 we show an analog 
message source whose output might typically be music or speech. To 
convey the message over the channel, we transform it by using a modula- 
tion scheme to get it into a form suitable for propagation. The transmitted 
signal is a continuous waveform that depends on a(t) in some deterministic 
manner. In Fig. 1.8 it is an amplitude modulated waveform: 

s[t, a(t)] = [I + ma(t)] sin (u$). 

(This is conventional double-sideband AM with modulation index m.) In 
Fig. 1.8~ the transmitted signal is a frequency modulated (FM) waveform : 

Sk 401 = sin [t+t + /laa(u)du]. 

When noise is added the received signal is 

40 = s[t, a(t)] + n(t). (21) 

Now the receiver must observe r(t) and put out a continuous estimate of 
the message a(t), as shown in Fig. 1.8. This particular example is a first- 
level modulation problem, for if n(t) were absent and a(t) were known the 
received signal would be completely known. Once again we describe it as 
a known signal in noise problem. 

Another type of physical situation in which we want to estimate a 
continuous function is shown in Fig. 1.9. The channel is a time-invariant 
linear system whose impulse response h(7) is unknown. To estimate the 
impulse response we transmit a known signal x(t). The received signal is 

r(t) = 
s 

Q) h(T) x(t - T) dT + n(t). 
0 

(22) 
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Fig. 1.8 A modulation theory example: (a) analog transmission system; (b) amplitude 
modulated signal; (c) frequency modulated signal; (d) demodulator. 
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Fig. 1.9 Channel measurement. 
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The receiver observes r(t) and tries to estimate h(7). This particular example 
could best be described as a continuous estimation problem. Many other 
problems of interest in which we shall try to estimate a continuous wave- 
form will be encountered. For convenience, we shall use the term modula- 
tion theory for this category, even though the term continuous waveform 
estimation might be more descriptive. 

The other levels of the modulation theory problem follow by direct 
analogy. In the amplitude modulation system shown in Fig. 1.86 the 
receiver frequently does not know the phase angle of the carrier. In this 
case a suitable model is 

r(t) = (1 + ma(t)) sin (o,t + 0) + n(t), (23) 

1. Known signals in noise 

2. Signals with unknown 
parameters in noise 

3. Random signals in noise 

Modulation Theory (Continuous waveform estimation) 

1. Conventional communication systems 
such as AM (DSB-AM, SSB), FM,and 
PM with phase synchronization 

2. Optimum filter theory 

3. Optimum feedback systems 

4. Channel measurement 

5. Orbital estimation for satellites 

6. Signal estimation in seismic and 
sonar classification systems 

7. Synchronization in digital systems 

1. Conventional communication systems 
without phase synchronization 

2. Estimation of channel characteristics when 
phase of input signal is unknown 

1. Analog communication over 
randomly varying channels 

2. Estimation of statistics of 
time-varying processes 

3. Estimation of plant characteristics 

Fig. 1.10 Modulation theory hierarchy. 
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where 0 is an unknown parameter. This is an example of a signal with 
unknown parameter problem in the modulation theory area. 

A simple example of a third-level problem (random signal irt noise) is one 
in which we transmit a frequency-modulated signal over a radio link whose 
gain and phase characteristics are time-varying. We shall find that if we 
transmit the signal in (20) over this channel the received waveform will be 

a(u) du + e(t) 1 + n(t), (24) 

where V(t) and B(t) are sample functions from random processes. Thus, 
even if a(u) were known and the noise n(t) were absent, the received signal 
would still be a random process. An over-all outline of the problems of 
interest to us appears in Fig. 1.10. Additional examples included in the 
table to indicate the breadth of the problems that fit into the outline are 
discussed in more detail in the text. 

Now that we have outlined the areas of interest it is appropriate to 
determine how to go about solving them. 

1.2 POSSIBLE APPROACHES 

From the examples we have discussed it is obvious that an inherent 
feature of all the problems is randomness of source, channel, or noise 
(often all three). Thus our approach must be statistical in nature. Even 
assuming that we are using a statistical model, there are many different 
ways to approach the problem. We can divide the possible approaches into 
two categories, which we denote as “ structured ” and “ nonstructured. ” 
Some simple examples will illustrate what we mean by a structured 
approach. 

Example I. The input to a linear time-invariant system is r(t): 

r(t) = s(t) + w(t) Ozx<T, 
= 0, elsewhere. (25) 

The impulse response of the system is h(7). The signal s(t) is a known function with 
energy E, 

s 

T 

ES = s”(t) dt, (26) 
0 

and w(t) is a sample function from a zero-mean random process with a covariance 
function : 

&St, u> = 2 No 8(t-u). (27) 

We are concerned with the output of the system at time T. The output due to the 
signal is a deterministic quantity: 

so(T) = 
s 

T h(r) s(T - r) dr. (28) 
0 
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The output due to the noise is a random variable: 

c,(T) = 
s 

T h(r) n(T - 7) dr. (29 
0 

We can define the output signal-to-noise ratio at time T as 

where E(e) denotes expectation. 
Substituting (28) and (29) into 

S 
iv= 

s, so2(T) 
N - E[no2(T)f 

(30), we obtain 

2 

7) dr 1 
E ffh(f) h(u) n(T - r) n(T - u) dr du 

0 1 
By bringing the expectation inside the integral, using (27), and 
integration with respect to u, we have 

2 

r) dr 1 -= . 
N 

Noi2 
s 

T h2(r) dr 
0 

(30) 

(31) 

performing the 

(32) 

The problem of interest is to choose h(T) to maximize the signal-to-noise ratio. 
The solution follows easily, but it is not important for our present discussion. (See 
Problem 3.3.1.) 

This example illustrates the three essential features of the structured 
approach to a statistical optimi zation problem : 

Stvuctrcre. The processor was required to be a linear time-invariant 
filter. We wanted to choose the best system in this class. Systems that were 
not in this class (e.g., nonlinear or time-varying) were not allowed. 

th 
C&e&n. In this l case we wanted to maximize a quantity that we called 
.e signal-to-noise ratio. 

Information. To write the expression for S/N we had to know the signal 
shape and the covariance function of the noise process. 

If we knew more about the process (e.g., its first-order probability 
density), we could not use it, and if we knew less, we could not solve the 
problem. Clearly, if we changed the criterion, the information required 
might be different. For example, to maximize x 

So4V) 
x = E[no4(T)]’ 

the covariance function of the noise process would not be adequate. 
natively, if we changed the structure, the information 

Alter- 
might required 

(33) 
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change. Thus the three ideas of structure, criterion, and information are 
closely related. It is important to emphasize that the structured approach 
does not imply a linear system, as illustrated by Example 2. 

Example 2. The input to the nonlinear no-memory device shown in Fig. 1.11 is r(t), 
where 

r(t) = s(t) + n(t), --co<t<cQ. (34) 
At any time t, s(t) is the value of a random variable s with known probability 

density p,(S). Similarly, n(t) is the value of a statistically independent random 
variable n with known density p,(N). The output of the device is y(t), where 

YW = a0 + a&Q)1 + a&(t)l” (3% 
is a quadratic no-memory function of r(t). [The adjective no-memory emphasizes that 
the value of y(to) depends only on r(to).] We want to choose the coefficients ao, al, and 
a2 so that y(t) is the minimum mean-square error estimate of s(t). The mean-square 
error is 

I(0 a E([YW - SW211 
= E((a0 + aJr(t)] + a2[r2(t)] - s(t)}2) (36) 

and ao, al, and a2 are chosen to minimize t(t). The solution to this particular problem 
is given in Chapter 3. 

The technique for solving structured problems is conceptually straight- 
forward. We allow the structure to vary within the allowed class and choose 
the particular system that maximizes (or minimizes) the criterion of 
interest. 

An obvious advantage to the structured approach is that it usually 
requires only a partial characterization of the processes. This is important 
because, in practice, we must measure or calculate the process properties 
needed. 

An obvious disadvantage is that it is often impossible to tell if the struc- 
ture chosen is correct. In Example 1 a simple nonlinear system might 

Nonlinear no-memory device 

Fig. 1.11 A structured nonlinear device. 

a2 
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be far superior to the best linear system. Similarly, in Example 2 some 
other nonlinear system might be far superior to the quadratic system. 
Once a class of structure is chosen we are committed. A number of trivial 
examples demonstrate the effect of choosing the wrong structure. We shall 
encounter an important practical example when we study frequency 
modulation in Chapter 11-2. 

At first glance it appears that one way to get around the problem of 
choosing the proper strucutre is to let the structure be an arbitrary non- 
linear time-varying system. In other words, the class of structure is chosen 
to be so large that every possible system will be included in it. The difficulty 
is that there is no convenient tool, such as the convolution integral, to 
express the output of a nonlinear system in terms of its input. This means 
that there is no convenient way to investigate all possible systems by using 
a structured approach. 

The alternative to the structured approach is a nonstructured approach. 
Here we refuse to make any a priori guesses about what structure the 
processor should have. We establish a criterion, solve the problem, and 
implement whatever processing procedure is indicated. 

A simple example of the nonstructured approach can be obtained by 
modifying Example 2. Instead of assigning characteristics to the device, 
we denote the estimate by u(t). Letting 

we solve for the u(t) that is obtained from r(t) in any manner to minimize 6. 
The obvious advantage is that if we can solve the problem we know that 
our answer, is with respect to the chosen criterion, the best processor of all 
possible processors. The obvious disadvantage is that we must completely 
characterize all the signals, channels, and noises that enter into the 
problem. Fortunately, it turns out that there are a large number of 
problems of practical importance in which this complete characterization 
is possible. Throughout both books we shall emphasize the nonstructured 
approach. 

Our discussion up to this point has developed the topical and logical 
basis of these books. We now discuss the actual organization. 

1.3 ORGANIZATION 

The material covered in this book and Volume II can be divided into 
five parts. The first can be labeled Background and consists of Chapters 2 
and 3. In Chapter 2 we develop in detail a topic that we call Classical 
Detection and Estimation Theory. Here we deal with problems in which 
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the observations are sets of random variables instead of random wave- 
forms. The theory needed to solve problems of this type has been studied 
by statisticians for many years. We therefore use the adjective classical 
to describe it. The purpose of the chapter is twofold: first, to derive all 
the basic statistical results we need in the remainder of the chapters; 
second, to provide a general background in detection and estimation theory 
that can be extended into various areas that we do not discuss in detail. 
To accomplish the second purpose we keep the discussion as general as 
possible. We consider in detail the binary and M-ary hypothesis testing 
problem, the problem of estimating random and nonrandom variables, and 
the composite hypothesis testing problem. Two more specialized topics, 
the general Gaussian problem and performance bounds on binary tests, 
are developed as background for specific problems we shall encounter later. 

The next step is to bridge the gap between the classical case and the 
waveform problems discussed in Section 1.1. Chapter 3 develops the 
necessary techniques. The key to the transition is a suitable method for 
characterizing random processes. When the observation interval is finite, 
the most useful characterization is by a series expansion of the random 
process which is a generalization of the conventional Fourier series. When 
the observation interval is infinite, a transform characterization, which is a 
generalization of the usual Fourier transform, is needed. In the process of 
developing these characterizations, we encounter integral equations and we 
digress briefly to develop methods of solution. Just as in Chapter 2, our 
discussion is general and provides background for other areas of 
application. 

With these two chapters in the first part as background, we are prepared 
to work our way through the hierarchy of problems outlined in Figs. 1.4, 
1.7, and 1.10. The second part of the book (Chapter 4) can be labeled 
Elementary Detection and Estimation Theory. Here we develop the first 
two levels described in Section 1.1. (This material corresponds to the 
upper two levels in Figs. 1.4 and 1.7.) We begin by looking at the simple 
binary digital communication system described in Fig. 1.1 and then 
proceed to more complicated problems in the communications, radar, and 
sonar area involving M-ary communication, random phase channels, 
random amplitude and phase channels, and colored noise interference. By 
exploiting the parallel nature of the estimation problem, results are 
obtained easily for the estimation problem outlined in Fig. 1.5 and other 
more complex systems. The extension of the results to include the multiple 
channel (e.g., frequency diversity systems or arrays) and multiple parameter 
(e.g., range and Doppler) problems completes our discussion. The results 
in this chapter are fundamental to the understanding of modern com- 
munication and radar/sonar systems. 
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The third part, which can be labeled lMo&lation Theory or Continuous 
Estimation Theory, consists of Chapters 5 and 6 and Chapter 2 of Volume 
II. In Chapter 5 we formulate a quantitative model for the first two levels 
of the continuous waveform estimation problem and derive a set of 
integral equations whose solution is the optimum estimate of the message. 
We also derive equations that give bounds on the performance of the 
estimators. In order to study solution techniques, we divide the estimation 
problem into two categories, linear and nonlinear. 

In Chapter 6 we study linear estimation problems in detail. In the first 
section of the chapter we discuss the relationships between various criteria, 
process characteristics, and the structure of the processor. In the next 
section we discuss the special case in which the processes are stationary and 
the infinite past is available. This case, the Wiener problem, leads to 
straightforward solution techniques. The original work of Wiener is ex- 
tended to obtain some important closed-form error expressions. In the 
next section we discuss the case in which the processes can be characterized 
by using state-variable techniques. This case, the Kalman-Bucy problem, 
enables us to deal with nonstationary, finite-interval problems and adds 
considerable insight to the results of the preceding section. 

The material in Chapters 1 through 6 has two characteristics: 
1. In almost all cases we can obtain explicit, exact solutions to the 

problems that we formulate. 
2. Most of the topics discussed are of such fundamental interest that 

everyone concerned with the statistical design of communication, radar, or 
sonar systems should be familiar with them. 

As soon as we try to solve the nonlinear estimation problem, we see a 
sharp departure. To obtain useful results we must resort to approximate 
solution techniques. To decide what approximations are valid, however, 
we must consider specific nonlinear modulation systems. Thus the precise 
quantitative results are only applicable to the specific system. In view of 
this departure, we pause briefly in our logical development and summarize 
our results in Chapter 7. 

After a brief introduction we return to the nonlinear modulation problem 
in Chapter 2 of Volume II and consider angle modulation systems in great 
detail. After an approximation to the optimum processor is developed, its 
performance and possible design modification are analyzed both theoreti- 
cally and experimentally. More advanced techniques from Markov process 
theory and information theory are used to obtain significant results. 

In the fourth part we revisit the problems of detection, estimation, and 
modulation theory at the third level of the hierarchy described in Section 
1.1. Looking at the bottom boxes in Figs. 1.4, 1.7, and 1.10, we see that 
this is the Random Signals in Noise problem. Chapter II-3 studies it in 
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detail. We find that the linear processors developed in Chapter I-6 play a 
fundamental role in the random signal problem. This result, coupled with 
the corresponding result in Chapter 11-2, emphasizes the fundamental im- 
portance of the results in Chapter I-6. They also illustrate the inherent 
unity of the various problems. Specific topics such as power-spectrum 
parameter estimation and analog transmission over time-varying channels 
are also developed. 

The fifth part is labeled Applications and includes Chapters II-4 and II-5 
Throughout the two books we emphasize applications of the theory to 
models of practical problems. In most of them the relation of the actual 
physical situation can be explained in a page or two. The fifth part deals 
with physical situations in which developing the model from the physical 
situation is a central issue. Chapter II-4 studies the radar/sonar problem in 
depth. It builds up a set of target and channel models, starting with slowly 
fluctuating point targets and culminating in deep targets that fluctuate at 
arbitrary rates. This set of models enables us to study the signal design 
problem for radar and sonar, the resolution problem in mapping radars, 
the effect of reverberation on sonar-system performance, estimation of 
parameters of spread targets, communication over spread channels, and 
other important problems. 

In Chapter II-5 we study various multidimensional problems such as 
multiplex communication systems and multivariable processing problems 
encountered in continuous receiving apertures and optical systems. The 
primary emphasis in the chapter is on optimum array processing in sonar 
(or seismic) systems. Both active and passive sonar systems are discussed; 
specific processor configurations are developed and their performance is 
analyzed. 

Finally, in Chapter II-6 we summarize some of the more important 
results, mention some related topics that have been omitted, and suggest 
areas of future research. 


