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Classical Detection
and Estimation Theory

2.1 INTRODUCTION

In this chapter we develop in detail the basic ideas of classical detection and
estimation theory. The first step is to define the various terms.

The basic components of a simple decision-theory problem are shown in
Fig. 2.1. The first is a source that generates an output. In the simplest case
this output is one of two choices. We refer to them as hypotheses and label
them H, and H, in the two-choice case. More generally, the output might
be one of M hypotheses, which we label H,, Hy, ..., Hy_,. Some typical
source mechanisms are the following:

1. A digital communication system transmits information by sending
ones and zeros. When “one” is sent, we call it H,, and when “zero” is
sent, we call it H,.

2. In a radar system we look at a particular range and azimuth and try
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Fig. 2.1 Components of a decision theory problem.
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20 2.1 Introduction

to decide whether a target is present; H, corresponds to the presence of a
target and H, corresponds to no target.

3. In a medical diagnosis problem we examine an electrocardiogram.
Here H, could correspond to the patient having had a heart attack and H,
to the absence of one.

4. In a speaker classification problem we know the speaker is German,

British, or American and either male or female. There are six possible
hypotheses.

In the cases of interest to us we do not know which hypothesis is true.
The second component of the problem is a probabilistic transition
mechanism; the third is an observation space. The transition mechanism
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Fig. 2.2 A simple decision problem: (¢) model; (b) probability densities.
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can be viewed as a device that knows which hypothesis is true. Based on
this knowledge, it generates a point in the observation space according to
some probability law.

A simple example to illustrate these ideas is given in Fig. 2.2. When H, is
true, the source generates + 1. When H, is true, the source generates — 1.
An independent discrete random variable n whose probability density is
shown in Fig. 2.2b is added to the source output. The sum of the source
output and » is the observed variable r.

Under the two hypotheses, we have

Hy:r =1+ n,
Ho:r = —1 + n. (1)

The probability densities of r on the two hypotheses are shown in Fig.
2.2b. The observation space is one-dimensional, for any output can be
plotted on a line.

A related example is shown in Fig. 2.3a in which the source generates
two numbers in sequence. A random variable n; is added to the first

number and an independent random variable », is added to the second.
Thus

H12r1 = l + n1
ro =1+ ny,
@
Ho:rl = -1+ n;
Fog = _1 + No.

The joint probability density of r, and r, when H, is true is shown in
Fig. 2.3b. The observation space is two-dimensional and any observation
can be represented as a point in a plane.

In this chapter we confine our discussion to problems in which the
observation space is finite-dimensional. In other words, the observations
consist of a set of N numbers and can be represented as a point in an
N-dimensional space. This is the class of problem that statisticians have
treated for many years. For this reason we refer to it as the classical
decision problem.

The fourth component of the detection problem is a decision rule. After
observing the outcome in the observation space we shall guess which
hypothesis was true, and to accomplish this we develop a decision rule that
assigns each point to one of the hypotheses. Suitable choices for decision
rules will depend on several factors which we discuss in detail later. Our
study will demonstrate how these four components fit together to form the
total decision (or hypothesis-testing) problem.

The classical estimation problem is closely related to the detection
problem. We describe it in detail later.
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Fig. 2.3 A two-dimensional problem: (a) model; (5) probability density.

Organization. This chapter is organized in the following manner. In
Section 2.2 we study the binary hypothesis testing problem. Then in
Section 2.3 we extend the results to the case of M hypotheses. In Section
2.4 classical estimation theory is developed.

The problems that we encounter in Sections 2.2 and 2.3 are characterized
by the property that each source output corresponds to a different hypoth-
esis. In Section 2.5 we shall examine the composite hypothesis testing
problem. Here a number of source outputs are lumped together to form a
single hypothesis.

All of the developments through Section 2.5 deal with arbitrary prob-
ability transition mechanisms. In Section 2.6 we consider in detail a special
class of problems that will be useful in the sequel. We refer to it as the
general Gaussian class.

In many cases of practical importance we can develop the ““optimum”
decision rule according to certain criteria but cannot evaluate how well the
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test will work. In Section 2.7 we develop bounds and approximate expres-
sions for the performance that will be necessary for some of the later
chapters.

Finally, in Section 2.8 we summarize our results and indicate some of
the topics that we have omitted.

2.2 SIMPLE BINARY HYPOTHESIS TESTS

As a starting point we consider the decision problem in which each of
two source outputs corresponds to a hypothesis. Each hypothesis maps
into a point in the observation space. We assume that the observation
space corresponds to a set of N observations: ry, 7y, rg, . . ., ry. Thus each
set can be thought of as a point in an N-dimensional space and can be
denoted by a vector r:

n

rA ’f 3)

ry

The probabilistic transition mechanism generates points in accord with
the two known conditional probability densities py ., (R|H;) and
Prin,(R|Hy). The object is to use this information to develop a suitable
decision rule. To do this we must look at various criteria for making
decisions.

2.2.1 Decision Criteria

In the binary hypothesis problem we know that either H, or H, is true.
We shall confine our discussion to decision rules that are required to make
a choice. (An alternative procedure would be to allow decision rules with
three outputs (a) H, true, (b) H, true, (c) don’t know.) Thus each time the
experiment is conducted one of four things can happen:

1. H, true; choose H,.
2. H, true; choose H,.
3. H, true; choose H;.
4. H, true; choose H,.

The first and third alternatives correspond to correct choices. The second
and fourth alternatives correspond to errors. The purpose of a decision
criterion is to attach some relative importance to the four possible courses
of action. It might be expected that the method of processing the received
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data (r) would depend on the decision criterion we select. In this section
we show that for the two criteria of most interest, the Bayes and the
Neyman-Pearson, the operations on r are identical.

Bayes Criterion. A Bayes test is based on two assumptions. The first is
that the source outputs are governed by probability assignments, which are
denoted by P; and P,, respectively, and called the a priori probabilities.
These probabilities represent the observer’s information about the source
before the experiment is conducted. The second assumption is that a cost is
assigned to each possible course of action. We denote the cost for the four
courses of action as Cyo, Ci0, Cyy, Cos, respectively. The first subscript
indicates the hypothesis chosen and the second, the hypothesis that was
true. Each time the experiment is conducted a certain cost will be incurred.
We should like to design our decision rule so that on the average the cost
will be as small as possible. To do this we first write an expression for the
expected value of the cost. We see that there are two probabilities that we
must average over; the a priori probability and the probability that a
particular course of action will be taken. Denoting the expected value of
the cost as the risk R, we have:

R = CyoP, Pr (say Hoy|H, is true)
+ CyoPo Pr (say H,|H, is true)
+ C,,P, Pr (say H,|H, is true)
+ Co Py Pr (say Hy|H, is true). 4

Because we have assumed that the decision rule must say either H, or
H,, we can view it as a rule for dividing the total observation space Z into
two parts, Z, and Z,, as shown in Fig. 2.4. Whenever an observation falls
in Z, we say H,, and whenever an observation falls in Z, we say H,.

Say Hyp

Z: observation space

PﬂHl(R!Hl) Zy Zo
R \%
Source
R
Py| n, (RIHo)
Say H;

Fig. 2.4 Decision regions.
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We can now write the expression for the risk in terms of the transition
probabilities and the decision regions:

R = CooPo j Persry (R Ho) dR
0
+ CroPs L Pority(R| Ho) dR
+ Ci1 Py fz PrlHI(R‘Hl) dR
1

+ Cor Py L Prn, (R|H,) dR. (O]

For an N-dimensional observation space the integrals in (5) are N-fold
integrals.

We shall assume throughout our work that the cost of a wrong decision
is higher than the cost of a correct decision. In other words,

Cio > Coo,
6

Now, to find the Bayes test we must choose the decision regions Z, and
Z, in such a manner that the risk will be minimized. Because we require
that a decision be made, this means that we must assign each point R in
the observation space Z to Z, or Z,.

Thus

Z=Zy+2Z, AZyV2Z,. @)

Rewriting (5), we have

R = PyCyo L prlHo(R‘HO) dR + P,Cy, fz

; Prmo(R|Ho) dR

+ P,Co, J‘z Pr|H1(R|H1) dR + P,Cy, fz z prlHl(RlHl) dR. (8)
0 0

Observing that
fz ety (RIHo) dR = L e, RIH)dR = 1, )

(8) reduces to
R = PyCyo + P1Cyy

+ f {[Px(Co1 — Ci)pmm, (RIHL)]
Zy

— [Po(C1o — COO)prlHo(RlHO)]} dR. (10)
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The first two terms represent the fixed cost. The integral represents the
cost controlled by those points R that we assign to Z,. The assumption in
(6) implies that the two terms inside the brackets are positive. Therefore
all values of R where the second term is larger than the first should be
included in Z, because they contribute a negative amount to the integral.
Similarly, all values of R where the first term is larger than the second
should be excluded from Z, (assigned to Z,) because they would contribute
a positive amount to the integral. Values of R where the two terms are
equal have no effect on the cost and may be assigned arbitrarily. We shall
assume that these points are assigned to H, and ignore them in our sub-
sequent discussion. Thus the decision regions are defined by the statement:
If

P(Cor — C11)pria,R|H;) = Py(Cyo — Coo)Prin,(R|Hy), (1

assign R to Z; and consequently say that H, is true. Otherwise assign R
to Z, and say H, is true.

Alternately, we may write

PrlH;(RlHl) H>1 Po(Clo - COO) (12)
pr[Ho(RIHO) H<o P(Coy — Cy1)

The quantity on the left is called the likelihood ratio and denoted by A(R)

A pr|H1(R|H1).
AR) S Ry (13)

Because it is the ratio of two functions of a random variable, it is a
random variable. We see that regardless of the dimensionality of R, A(R)
is a one-dimensional variable.

The quantity on the right of (12) is the threshold of the test and is
denoted by 7: © ,

A Po(Cio — Coo .
"2 PiCos = Cu1) a9

Thus Bayes criterion leads us to a likelihood ratio test (LRT)

A(R):><: . (15)

We see that all the data processing is involved in computing A(R) and
is not affected by a priori probabilities or cost assignments. This invariance
of the data processing is of considerable practical importance. Frequently
the costs and a priori probabilities are merely educated guesses. The result
in (15) enables us to build the entire processor and leave n as a variable
threshold to accommodate changes in our estimates of a priori probabilities
and costs.
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Because the natural logarithm is a monotonic function, and both sides
of (15) are positive, an equivalent test is

H
In A(R) ;?1 In 7. (16)
o

Two forms of a processor to implement a likelihood ratio test are
shown in Fig. 2.5.

Before proceeding to other criteria, we consider three simple examples.

Example 1. We assume that under H, the source output is a constant voltage m.
Under H, the source output is zero. Before observation the voltage is corrupted by
an additive noise. We sample the output waveform each second and obtain N samples.
Each noise sample is a zero-mean Gaussian random variable n with variance o2. The
noise samples at various instants are independent random variables and are indepen-
dent of the source output. Looking at Fig. 2.6, we see that the observations under the
two hypotheses are

Hyrp=m+n i=l,2,...,N,
Hy:r, = n i=12,...,N, an
and
1 X2
PuiX) = = exp (~33): as)
m

because the noise samples are Gaussian.
The probability density of r, under each hypothesis follows easily:

1 R, — m)?
Priuy (R Hy) = po (R — m) = —=——exp (_(‘_2—2'”)-) 19)
2n o o
and
Pr\H (RIIHO) = Dn (R() = —l_——exp (—R_‘z)‘ (20)
! ° : \/217 o 202
Threshold
R R Data A(R) _ _d_t_avice Decision
processor N >
AR)Z9n
(a)
InA @) Threshold b
R Data n device ecision
= processor “InA (_16 N
ZInn
(%)

Fig. 2.5 Likelihood ratio processors.
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Fig. 2.6 Model for Example 1.

Because the n; are statistically independent, the joint probability density of the r,
(or, equivalently, of the vector r) is simply the product of the individual probability

densities. Thus

v (R — m)"’)
priu(R|Hy) = E Wi aexp ( 207 ’

and

R?

N 1
prano®if) = 175 e (~3)

Substituting into (13), we have

AR) = i=1

I exp (——R—‘z)
i=1V2no 20*

After canceling common terms and taking the logarithm, we have

or, equivalently,

2n

(22)

(23

(24)

(25)

(26)

We see that the processor simply adds the observations and compares them with a

threshold.
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In this example the only way the data appear in the likelihood ratio test
is in a sum. This is an example of a sufficient statistic, which we denote by
I(R) (or simply / when the argument is obvious). It is just a function of the
received data which has the property that A(R) can be written as a function
of I In other words, when making a decision, knowing the value of the
sufficient statistic is just as good as knowing R. In Example 1, / is a linear
function of the R;. A case in which this is not true is illustrated in Example 2.

Example 2. Several different physical situations lead to the mathematical model of
interest in this example. The observations consist of a set of N values: ry,rs, 1, .. ., .
Under both hypotheses, the r; are independent, identically distributed, zero-mean
Gaussian random variables. Under H, each r, has a variance o,2. Under H, each r;
has a variance o,?. Because the variables are independent, the joint density is simply
the product of the individual densities. Therefore

(R|Hy) = ﬁ L exp (— R‘z) @7
Priny 1) = IR o 20,2
and
= ﬁ——l—ex (_ﬁ‘i). 28)
Pr|H0(R|Ho) =L Py p 2002
Substituting (27) and (28) into (13) and taking the logarithm, we have
1(1 1\ & ao M1
3 (;;—2 ;-1—2) S RZ NI Iy, 9)
In this case the sufficient statistic is the sum of the squares of the observations
N
IR) = > R (30)
it=1
and an equivalent test for 0,2 > ¢¢? is
H1 204%0,2 0o
> _£0 71 — L) A
® z 2o (ln n— Nln al) Ay, @1)

For ¢, < 0y? the inequality is reversed because we are multiplying by a negative
number:

200%0,2

Ho g ,
R 2 2% (N2 —tnn) 295 (0f < o). 32)

These two examples have emphasized Gaussian variables. In the next
example we consider a different type of distribution.

Example 3. The Poisson distribution of events is encountered frequently as a model of

shot noise and other diverse phenomena (e.g., [1] or [2]). Each time the experiment is

conducted a certain number of events occur. Our observation is just this number

which ranges from 0 to o and obeys a Poisson distribution on both hypotheses; that s,
(m,

Pr(n events):—n#‘)"e""«, n=0,1,2...,i=0,1, (33)

where my; is the parameter that specifies the average number of events:

E(n) = my. 34
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It is this parameter m; that is different in the two hypotheses. Rewriting (33) to
emphasize this point, we have for the two Poisson distributions

H,:Pr (n events) = mn—‘,"e""l, n=012,..., @395)

Ho:Pr (n events) = ’:—"'e""o, n=0,1,2,.... (36)
Then the likelihood ratio test is

n H
A@=(%)apb@u—mmén )

or, equivalently,
Hilng + my — mo .
> T — —Y f
Fo Inm; — In my it My > Mo,
(38)
n">°ln'q + my — mg

if mg > my.
H<1 lnml—lnmo 0 !

This example illustrates how the likelihood ratio test which we originally
wrote in terms of probability densities can be simply adapted to accom-
modate observations that are discrete random variables. We now return
to our general discussion of Bayes tests.

There are several special kinds of Bayes test which are frequently used
and which should be mentioned explicitly.

If we assume that Cy, and C,, are zero and Cy; = C;o = 1, the expres-
sion for the risk in (8) reduces to

R = Po J.z pl‘lHo(RlHO) dR -+ P1 J‘z pr|”1(RlH1) dR. (39)
1 [}

We see that (39) is just the total probability of making an error. There-

fore for this cost assignment the Bayes test is minimizing the total
probability of error. The test is

i)

=P, —In(l - Py). (40)
Py

Hy
InA(R) 2 In
Ho

When the two hypotheses are equally likely, the threshold is zero. This
assumption is normally true in digital communication systems. These
processors are commonly referred to as minimum probability of error
receivers.

A second special case of interest arises when the a priori probabilities
are unknown. To investigate this case we look at (8) again. We observe
that once the decision regions Z, and Z; are chosen, the values of the
integrals are determined. We denote these values in the following manner:
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Py = fz PrlHo(RIHO) dR,
1

Py = fz e, (R|H) dR, @1)
1

PM = fz prlHl(RlHl) dR =1- PD.
0

We see that these quantities are conditional probabilities. The subscripts
are mnemonic and chosen from the radar problem in which hypothesis H,
corresponds to the presence of a target and hypothesis H, corresponds to
its absence. Py is the probability of a false alarm (i.e., we say the target is
present when it is not); P, is the probability of detection (i.e., we say the
target is present when it is); P, is the probability of a miss (we say the
target is absent when it is present). Although we are interested in a much
larger class of problems than this notation implies, we shall use it for
convenience.

For any choice of decision regions the risk expression in (8) can be
written in the notation of (41):

R = PyCyo + P,Cyy + Py(Coy — C11)Py

— Po(Cro — Coo)(1 — Pp). (42)
Because

P 0= l - P 1s (43)
(42) becomes

:RJ(P1) = Coo(l - PF) + C1oPr
+ P,[(C11 — Coo) + (Coy — C11)Py — (Cro — Coo)Pr]l. (44)

Now, if all the costs and a priori probabilities are known, we can find a
Bayes test. In Fig. 2.7a we plot the Bayes risk, Rz(P,), as a function of P;.
Observe that as P, changes the decision regions for the Bayes test change
and therefore Pr and P, change.

Now consider the situation in which a certain P, (say P, = P}) is
assumed and the corresponding Bayes test designed. We now fix the
threshold and assume that P, is allowed to change. We denote the risk for
this fixed threshold test as R (P¥, P,). Because the threshold is fixed, Py
and Py, are fixed, and (44) is just a straight line. Because it is a Bayes test
for P, = P¥, it touches the Rz(P,) curve at that point. Looking at (14),
we see that the threshold changes continuously with P,. Therefore, when-
ever P, # P¥, the threshold in the Bayes test will be different. Because the
Bayes test minimizes the risk,

Re(Pt, P,) 2 Rg(Py). 45)
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Fig. 2.7 Risk curves: (a) fixed risk versus typical Bayes risk; () maximum value of
.'R,l at P. 1= 0.

If A is a continuous random variable with a probability distribution
function that is strictly monotonic, then changing 5 always changes the
risk. Rp(P,) is strictly concave downward and the inequality in (45) is
strict. This case, which is one of particular interest to us, is illustrated in
Fig. 2.7a. We see that R (P¥, P,) is tangent to Rz(P,) at P, = P¥. These
curves demonstrate the effect of incorrect knowledge of the a priori
probabilities.

An interesting problem is encountered if we assume that the a priori
probabilities are chosen to make our performance as bad as possible. In
other words, P, is chosen to maximize our risk Rz(P¥, P,). Three possible
examples are given in Figs. 2.7b, ¢, and d. In Fig. 2.7b the maximum of
R (P,y) occurs at P, = 0. To minimize the maximum risk we use a Bayes
test designed assuming P; = 0. In Fig. 2.7¢ the maximum of Rz(P,) occurs
at P, = 1. To minimize the maximum risk we use a Bayes test designed
assuming P, = 1. In Fig. 2.7d the maximum occurs inside the interval
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[0, 1], and we choose Ry to be the horizontal line. This implies that the
coefficient of P; in (44) must be zero:

(Cy1 = Coo) + (Cor — C11)Py — (Cro — Coo)Pr = 0. (46)

A Bayes test designed to minimize the maximum possible risk is called a
minimax test. Equation 46 is referred to as the minimax equation and is
useful whenever the maximum of Rz(P,) is interior to the interval.

A special cost assignment that is frequently logical is

Coo = C11 = (47)
(This guarantees the maximum is interior.)
Denoting,
Cor = Cu,
48
ClO = Cp. ( )

the risk is,
:R'F = CFPF + PI(CMPM - CFPF)
= PoCyPr + P,CyPy 49

and the minimax equation is
CMPM = CFPF. (50)

Before continuing our discussion of likelihood ratio tests we shall discuss
a second criterion and prove that it also leads to a likelihood ratio test.

Neyman-Pearson Tests. In many physical situations it is difficult to
assign realistic costs or a priori probabilities. A simple procedure to by-
pass this difficulty is to work with the conditional probabilities Py and Pp,.
In general, we should like to make P as small as possible and P, as large
as possible. For most problems of practical importance these are con-
flicting objectives. An obvious criterion is to constrain one of the prob-
abilities and maximize (or minimize) the other. A specific statement of this
criterion is the following:

Neyman-Pearson Criterion. Constrain P = o’ < « and design a test to
maximize Pp, (or minimize P,;) under this constraint.

The solution is obtained easily by using Lagrange multipliers. We con-
struct the function F,

F = Py + \[Pr — o), (51)
or

F= f Pein,(RIH) dR + A [ f Peiny(R| Ho) dR — ] (52)

Clearly, if P; = «, then minimizing F minimizes P,,.
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or
F= M=)+ [ [, ®RIH) = Yoo, RIEI AR, (53
0

Now observe that for any positive value of A an LRT will minimize F.
(A negative value of A gives an LRT with the inequalities reversed.)

This follows directly, because to minimize F we assign a point R to Z,
only when the term in the bracket is negative. This is equivalent to the test

Pr|H,(R|H1) . .
— <A assign point to Z, or say H,. 54
e (RIHY) gn p 0 y Ho (54

The quantity on the left is just the likelihood ratio. Thus F is minimized
by the likelihood ratio test

A(R) :z: A (55)

To satisfy the constraint we choose A so that P, = «'. If we denote the
density of A when Hj is true as p,,,,(A|H,), then we require

Pr = J; Parn,(A|Hp) dA = o' (56)

Solving (56) for A gives the threshold. The value of A given by (56) will be
non-negative because p,, (A|Hy)is zero for negative values of A. Observe
that decreasing A is equivalent to increasing Z,, the region where we say
H,. Thus P, increases as A decreases. Therefore we decrease A until we
obtain the largest possible o’ < o. In most cases of interest to us Py is a
continuous function of A and we have P = «. We shall assume this con-
tinuity in all subsequent discussions. Under this assumption the Neyman-
Pearson criterion leads to a likelihood ratio test. On p. 41 we shall see the
effect of the continuity assumption not being valid.

Summary. In this section we have developed two ideas of fundamental
importance in hypothesis testing. The first result is the demonstration that
for a Bayes or a Neyman-Pearson criterion the optimum test consists of
processing the observation R to find the likelihood ratio A(R) and then
comparing A(R) to a threshold in order to make a decision. Thus, regard-
less of the dimensionality of the observation space, the decision space is
one-dimensional.

The second idea is that of a sufficient statistic /(R). The idea of a sufficient
statistic originated when we constructed the likelihood ratio and saw that
it depended explicitly only on /(R). If we actually construct A(R) and then
recognize /(R), the notion of a sufficient statistic is perhaps of secondary
value. A more important case is when we can recognize /(R) directly. An
easy way to do this is to examine the geometric interpretation of a sufficient
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statistic. We considered the observations ry, r5, ..., ry as a point r in an
N-dimensional space, and one way to describe this point is to use these
coordinates. When we choose a sufficient statistic, we are simply describing
the point in a coordinate system that is more useful for the decision
problem. We denote the first coordinate in this system by /, the sufficient
statistic, and the remaining N — 1 coordinates which will not affect our
decision by the (N — 1)-dimensional vector y. Thus

Puyvia, (L, Y| Hy)
AR) = A(L,Y) = Zxtfie o1, 57
®) @Y Puyia,(L, Y|Ho) 7
Now the expression on the right can be written as
PilHl(LlHl)Pyu.H,(“La H,)
PHHO(LlHo)Pyu,HO(YILa Hy)

If /is a sufficient statistic, then A(R) must reduce to A(L). This implies
that the second terms in the numerator and denominator must be equal.
In other words,

ALY) = (58)

Pyu.Ho(Y|La Hy) = lel,Hl(YlLs H,) (59)

because the density of y cannot depend on which hypothesis is true. We
see that choosing a sufficient statistic simply amounts to picking a co-
ordinate system in which one coordinate contains all the information
necessary to making a decision. The other coordinates contain no informa-
tion and can be disregarded for the purpose of making a decision.

In Example 1 the new coordinate system could be obtained by a simple
rotation. For example, when N = 2,

1
L= Ti(Rl + R2)9
- L
V2

In Example 2 the new coordinate system corresponded to changing to
polar coordinates. For N = 2

(60)

Y (R, — Ry).

L =R? + R2,
L R
Y = tan~? ﬁ (61)

Notice that the vector y can be chosen in order to make the demonstra-
tion of the condition in (59) as simple as possible. The only requirement is
that the pair (/, y) must describe any point in the observation space. We
should also observe that the condition

p)’lHl(YlHl) = pYIHo(YIHO) (62)
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does not imply (59) unless / and y are independent under H; and H,.
Frequently we will choose y to obtain this independence and then use (62)
to verify that / is a sufficient statistic.

2.2.2 Performance: Receiver Operating Characteristic

To complete our discussion of the simple binary problem we must
evaluate the performance of the likelihood ratio test. For a Neyman-
Pearson test the values of P and P, completely specify the test perform-
ance. Looking at (42) we see that the Bayes risk R follows easily if P and
P, are known. Thus we can concentrate our efforts on calculating P and
P,

We begin by considering Example 1 in Section 2.2.1.

Example 1. From (25) we see that an equivalent test is

L) H1 ¢ VNm
. D AR .
I = — Z R 2 i In 7+ p (63)

P1|Ho (L|H0) P[|1.1l (L|Hy)

L
. ' ~VNm _Inn i
Threshold._wvm Inn+—;-= 2 13
(a)
Pp
L
()

Fig. 2.8 Error probabilities: (a) Pr calculation; (b) Pp calculation.
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We have multiplied (25) by o V' N m to normalize the next calculation. Under H,,
| is obtained by adding N independent zero-mean Gaussian variables with variance
¢? and then dividing by V'N o. Therefore [/ is NQ, 1).

Under H,, Iis N(V'N m/o, 1). The probability densities on the two hypotheses are
sketched in Fig. 2.8a. The threshold is also shown. Now, Py is simply the integral of
Puno(L|Ho) to the right of the threshold.

Thus

© 1
Pr= ) dx,
F J;::: mid+d/2 \/ 27 xp ( 2 * (64)

where d & VN m/o is the distance between the means of the two densities, The
integral in (64) is tabulated in many references (e.g., [3] or [4]).
We generally denote

erfy (X) & f : \/12_" exp (—%2) dx, (65)

where erf, is an abbreviation for the error functiont and

erfee (X) & f: \/Lz_n exp (—'523) dx (66)

is its complement. In this notation

In d
Pr = erfcy ( 1t 2) 67
Similarly, Pp is the integral of p,;,(L|H}) to the right of the threshold, as shown in
Fig. 2.8b:
© (x — d)ﬂ]
P S g CEY . p
p (n m)/d + d/2 \/27r exp ~
e 1 n d
= ——exp [ —%) dy & erfc (———)- 68
anmid-a2 V2g xp( 2) yEeie\Tg T2 (68)
In Fig. 2.9a we have plotted P, versus Py for various values of d with » as the varying
parameter. For » = 0,In n = —o0, and the processor always guesses H,. Thus Pr = 1

and Pp = 1. As 7 increases, Pr and P, decrease. When 5 = oo, the processor always
guesses Hy and Pr = P, = 0.

As we would expect from Fig. 2.8, the performance increases monotonically with d.
In Fig. 2.9 we have replotted the results to give Pp versus d with Py as a parameter
on the curves. For a particular d we can obtain any point on the curve by choosing 7
appropriately (0 < 7 < o).

The result in Fig. 2.9q is referred to as the receiver operating characteristic (ROC).

It completely describes the performance of the test as a function of the parameter of
interest.

A special case that will be important when we look at communication systems is
the case in which we want to minimize the total probability of error

Pr () & PoPy + P.Py. (69a)

1 The function that is usually tabulated is erf (X) = V2o fo exp (—y?) dy, which is
related to (65) in an obvious way.
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0.2
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0 0.2 04 0.6 0.8 1.0
Pr—>

(a)

Fig. 2.9 (a) Receiver operating characteristic: Gaussian variables with unequal means.

The threshold for this criterion was given in (40). For the special case in which
P, = P, the threshold 5 equals one and

Pr(e) = ¥(Pr + Pu). (69b)
Using (67) and (68) in (69), we have
Y S U X e = d).
Pr(e) = Lm = exp ( 2) dx = erfcy (+2) (70)

It is obvious from (70) that we could also obtain the Pr (¢) from the ROC. However,
if this is the only threshold setting of interest, it is generally easier to calculate the
Pr (¢) directly.

Before calculating the performance of the other two examples, it is
worthwhile to point out two simple bounds on erfc, (X). They will enable
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us to discuss its approximate behavior analytically For X > 0
1 1 X2 X2
-—\/—i—;—)}( Xz) exp (-—i—) < erfc, (X) < \/__ exp (_T) (€]

This can be derived by integrating by parts. (See Problem 2.2.15 or Feller
[30].) A second bound is

erfe, (X) < 4 exp (—-";—2) x>0, 1)

0.9999

0.999

0.99
0.98

0.9

08

T 0.7
B 05

0.3

0.1

(b)
Fig. 2.9 () detection probability versus d.
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which can also be derived easily (see Problem 2.2.16). The four curves are
plotted in Fig. 2.10. We note that erfc, (X) decreases exponentially.

The receiver operating characteristics for the other two examples are
also of interest.

1.0

0.5

03

0.1
erfc, (X)

001 var X

| |
0.001 1 5 3

X —

Fig. 2.10 Plot of erfc, (X) and related functions.
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Example 2. In this case the test is

20420,

IR) = Z R? :: (- N E) =y, @>e) (73

The performance calculation for arbitrary N is somewhat tedious, so we defer it
until Section 2.6. A particularly simple case appearing frequently in practice is
N = 2. Under H, the r, are independent zero-mean Gaussian variables with variances
equal to oo?:

Pg = Pr(l = y|H,) = Pr(ri? + ri® = y|Hy). 4
To evaluate the expression on the right, we change to polar coordinates:
r, = zcos 0, z= \/rl" + ry?
(5)
r, = zsin 0, § =tan-12
r
Then
2 o [" 2L Z°) az 7
> - — —————
Pr(z* > y|Ho) fo L; Treca OXP ( 2%,) dz. (76)
Integrating with respect to 6, we have
2
P = L_ s exp ( 02) dz. amn
We observe that /, the sufficient statistic, equals z2. Changing variables, we have
Y e ~L\a = 7).
Pr= [ o o0 (~5uc3) = exp (- 32) %
(Note that the probability density of the sufficient statistic is exponential.)
Similarly,
= 7).
Py, = exp ( 2012) (79)

To construct the ROC we can combine (78) and (79) to eliminate the threshold y.
This gives

Py

(Pr)7o?lo:?, (80)
In terms of logarithms

002
In Pp P In Pg. (81)

As expected, the performance improves monotonically as the ratio 0,2/00® increases.
We shall study this case and its generalizations in more detail in Section 2.6.

The two Poisson distributions are the third example.

Example 3. From (38), the likelihood ratio test is

Mlng + m —mo

5 Inm —In ™o =7 (my > mo). (82)

Because n takes on only integer values, it is more convenient to rewrite (82) as

Hy

n % Y1, n=01.2,..., (83)
Ho
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where y; takes on only integer values. Using (35),

YI-1 n
PD= ]—e™ ™ ("':1') ’ y1=0, 1,2,..., (84)
and from (36) "
-1 n
Pr=l-em s @) _01,2... (85)
aso I

The resulting ROC is plotted in Fig. 2.11a for some representative values of mo
and m,.

We see that it consists of a series of points and that Py goes from 1 to 1 — e~ ™o
when the threshold is changed from 0 to 1. Now suppose we wanted Pr to have an
intermediate value, say 1 — 4e~"™o. To achieve this performance we proceed in the
following manner. Denoting the LRT with y; = 0 as LRT No. 0 and the LRT with
y: = 1 as LRT No. 1, we have the following table:

LRT vr Pr Pp
0 0 1 1
1 1 1 —e ™o l1—e™
! S -
0 T T T g | g T A
o /
— 5 Ol / _1
o /7
6 /
08— w / —
7 S /
2 /
L / ]
o /
8 /
06l / -
! 3 4
/
P, L / -
/
/
04— o / ]
4 /
/
/
0.2’0_5 // omg=2,m=4 |
/ omp=4,m =10
./ i
/7
/
1 ] 1 1 ! | 1 | |
0 0.2 0.4 0.6 08 1.0
PF'——>

Fig. 2.11 (a) Receiver operating characteristic, Poisson problem.
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15

02 95 // ompg=2, m=4 _
/ omy=4,m =10
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/
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| | ! | | ] ] | ]
0 0.2 04 0.6 08 1.0
B—>

Fig. 2.11 (b) Receiver operating characteristic with randomized decision rule.

To get the desired value of Pr we use LRT No. 0 with probability £ and LRT No. 1
with probability 4. The test is

Ifn=0, say H, with probability %,
say H, with probability 4,
nx1 say H,.

This procedure, in which we mix two likelihood ratio tests in some probabilistic
manner, is called a randomized decision rule. The resulting Pp, is simply a weighted
combination of detection probabilities for the two tests.

Pp =0.51) + 0.51 — e ™) = (1 — 0.5e™™). (86)

We see that the ROC for randomized tests consists of straight lines which connect
the points in Fig. 2.11a, as shown in Fig. 2.115. The reason that we encounter a
randomized test is that the observed random variables are discrete. Therefore A(R)
is a discrete random variable and, using an ordinary likelihood ratio test, only certain
values of Py are possible.
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Looking at the expression for Py in (56) and denoting the threshold by 7,
we have

Pe(y) = f: Py (X|Ho) dX. 87)

If Px(n) is a continuous function of 5, we can achieve a desired value from
0 to 1 by a suitable choice of n and a randomized test will never be needed.
This is the only case of interest to us in the sequel (see Prob. 2.2.12).
With these examples as a background, we now derive a few general
properties of receiver operating characteristics. We confine our discussion
to continuous likelihood ratio tests.
Two properties of all ROC’s follow immediately from this example.

Property 1. All continuous likelihood ratio tests have ROC’s that are con-
cave downward. If they were not, a randomized test would be better. This
would contradict our proof that a LRT is optimum (see Prob. 2.2.12).

Property 2. All continuous likelihood ratio tests have ROC’s that are above
the P, = Py line. This is just a special case of Property 1 because the points
(Pr =0,P, =0)and (Pr = 1, P, = 1) are contained on all ROC'’s.

Property 3. The slope of a curve in a ROC at a particular point is equal to
the value of the threshold 7 required to achieve the P, and P; of that point.

Proof.
P, = f pav,(AJHY) dA,

Py = f iy (Al Ho) dA. (88)
n

Differentiating both expressions with respect to » and writing the results
as a quotient, we have

dPpldy _ —Parn, (0| Hy) _dPy

= = —. 89
dPoldy ~ —paim,n[Ho) Py (89)
We now show that |
PayH (n|H,)
TAIEG NI 90
PAIHO(’)|H0) K (%0)
Let
r RIHI)
Q@) & (RIAR) = =[R”—%—z]- 91
() 2 {R|AR) = 7} P RHY) 2 on
Then

Pon) & PrAR) > 9lH1) = [ puin (RIH) dR

- fm A®pein,RHo) dR,  (92)
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where the last equality follows from the definition of the likelihood ratio.
Using the definition of Q(7), we can rewrite the last integral

Po) = [ AROPRIH) dR = [ Xpau, (X|Ho) dX.  ©03)
n n
Differentiating (93) with respect to », we obtain

df%n(n) = “’7PA|H0(TI|H0)- %4)

Equating the expression for dPp(n)/dy in the numerator of (89) to the
right side of (94) gives the desired result.

We see that this result is consistent with Example 1. In Fig. 2.9a, the
curves for nonzero d have zero slope at P, = P, = 1 (y = 0) and infinite
slope at P, = P, = 0 (n = o).

Property 4. Whenever the maximum value of the Bayes risk is interior to
the interval (0, 1) on the P, axis, the minimax operating point is the
intersection of the line

(Cu - Coo) + (Co1 - Cn)(l - PD) - (Clo - COO)PF =0 (95)

and the appropriate curve of the ROC (see 46). In Fig. 2.12 we show the
special case defined by (50),

CFPF = CMPM = CM(I - PD), (96)
1.0 T T T T f
a=2°
4\‘0
08 é A
,0
6/
Cm
=15
T 06 Cr
By
041
C
5 e =10
0.2
Cum
G = 05
N O | I O I
0 0.2 04 0.6 0.8 1.0
B —>

Fig. 2.12 Determination of minimax operating point.
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superimposed on the ROC of Example 1. We see that it starts at the point
Pp =0, P, = 1, and intersects the P, = 1 line at
= Cr
P, =1 c, ©97)
This completes our discussion of the binary hypothesis testing problem.
Several key ideas should be re-emphasized:

1. Using either a Bayes criterion or a Neyman-Pearson criterion, we
find that the optimum test is a likelihood ratio test. Thus, regardless of the
dimensionality of the observation space, the test consists of comparing a
scalar variable A(R) with a threshold. (We assume Pg(y) is continuous.)

2. In many cases construction of the LRT can be simplified if we can
identify a sufficient statistic. Geometrically, this statistic is just that
coordinate in a suitable coordinate system which describes the observation
space that contains all the information necessary to make a decision.

3. A complete description of the LRT performance was obtained
by plotting the conditional probabilities P, and Py as the threshold » was
varied. The resulting ROC could be used to calculate the Bayes risk for
any set of costs. In many cases only one value of the threshold is of interest
and a complete ROC is not necessary.

A number of interesting binary tests are developed in the problems.

2.3 M HYPOTHESES

The next case of interest is one in which we must choose one of M
hypotheses. In the simple binary hypothesis test there were two source
outputs, each of which corresponded to a single hypothesis. In the simple
M-ary test there are M source outputs, each of which corresponds to one
of M hypotheses. As before, we assume that we are forced to make a
decision. Thus there are M? alternatives that may occur each time the
experiment is conducted. The Bayes criterion assigns a cost to each of these
alternatives, assumes a set of a priori probabilities Py, Py, ..., Py _,, and
minimizes the risk. The generalization of the Neyman-Pearson criterion to
M hypotheses is also possible. Because it is not widely used in practice, we
shall discuss only the Bayes criterion in the text.

Bayes Criterion. To find a Bayes test we denote the cost of each course
of action as Cj;. The first subscript signifies that the ith hypothesis is
chosen. The second subscript signifies that the jth hypothesis is true. We
denote the region of the observation space in which we choose H; as Z,
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and the a priori probabilities are P,. The model is shown in Fig. 2.13. The
expression for the risk is
M-1M-1

R=3 3 PCy[ pawm®H)dR. 98)

i=0 §
To find the optimum Bayes test we simply vary the Z, to minimize R.
This is a straightforward extension of the technique used in the binary case.

For simplicity of notation, we shall only consider the case in which M = 3
in the text.

Noting that Z, = Z — Z, — Z,, because the regions are disjoint, we
obtain

R,:PoCooJ‘

Z-2, -2,

pl‘lHo(RIHO) dR + Poclo fz pHHO(RIHo)dR
1

+ PoCy fz Priu,(R|Hp) dR + PICuf
2

Z-2y-

+ P,Coyy fz Pria,(R|H,) dR + P,Cyy J; Pria,(R|H;) dR

prlfh(R|H1) dR
Z

+PCur [ pum(RIH) dR + PiCos [ PRIz R
Z-20-2; Zo
+ PoCis [ prin,RIH,) dR. 9

This reduces to
.'R. = PoCoo + P1C11 + P2C22

+ fz [Po(Co2 — C22)pr|H3(R|H2) + Py(Coy — C11)Pr|H,(R|H1)] dR
0
+ L [Po(Cro — Coo)Prin,(R|Ho) + Po(Ciz — Cag)prin,(R|Hp)]dR

+ fz [Po(Cao — COO)Pr]Ho(RlHO) + Py(Coy — C11)Pr|n1(R|H1)] dR.

(100)

As before, the first three terms represent the fixed cost and the integrals
represent the variable cost that depends on our choice of Z,, Z,, and Z,.
Clearly, we assign cach R to the region in which the value of the integrand

is the smallest. Labeling these integrands I(R), I;(R), and I;(R), we have
the following rule:

if I(R) < I(R) and I,(R), choose H,,
if ,(R) < Io(R) and I(R), choose H;, (101)
if I,(R) < I4(R) and I;(R), choose H,.
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Say Hy

Pein, RIH) z
Ho observation
Source il—)— : space
| s |
Hy-1 Say Ho
Say Hy-y
Fig. 2.13 M hypothesis problem.
We can write these terms in terms of likelihood ratios by defining
R|H
AI(R) é prIHl( | 1),
PnHO(RlH o)
(102)

ri 1, (R| H)
A R é V4 |H2( 2 :
(R) prlHo(RlHo)

Using (102) in (100) and (101), we have

HjorHg

Pl(C01 - Cll) AI(R) Hoozl‘Hg PO(C].O - COO) + P2(C12 - CDZ) A2(R) (103)
HgaorH;
Py(Coz — C32) A4(R) HO(%H Po(Czo — Coo) + P1(Cay — Co1) Ay(R), (104)

Hgor Hg
Py(Ciz — Ca3) Ay(R) o E‘H Py(C30 — Cio) + P1(Ca1 — C11) Ay(R).  (105)

We see that the decision rules correspond to three lines in the A, A,
plane. It is easy to verify that these lines intersect at a common point and
therefore uniquely define three decision regions, as shown in Fig. 2.14.
The decision space is two-dimensional for the three-hypothesis problem.
It is easy to verify that M hypotheses always lead to a decision space
which has, at most, (M — 1) dimensions.

Several special cases will be useful in our later work. The first is defined
by the assumptions

Coo = Cy; = C3 = 0,
Cy =1, i #].
These equations indicate that any error is of equal importance. Looking

at (98), we see that this corresponds to minimizing the total probability of
error.

(106)
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Fig. 2.14 Decision space.

Substituting into (103)-(105), we have
HjorHgy

PAR) 2 P

oorHg
HaorHj

PoAy(R) 2 P,

Hopor Hy

HgorHg
PAR) | 2 PA(R).
1 0

or

A2(3)1
H;

Py [P, H
Hy

> A1 (R)

Po [Py
(a)

In A2(R) A
Hp
In Py /P2

Hy
—>1n A; (R)

InPy/Py

Hy

(b)

Fig. 2.15 Decision spaces.

Bayes Criterion

49

(107)
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The decision regions in the (A;, A;) plane are shown in Fig. 2.15a. In this
particular case, the transition to the (In A,, In A,) plane is straight-
forward (Fig. 2.15b). The equations are

Hj or H.
nA,®R) 2z  InLe

=t |
Hopor Hy P1

HjorHs Po

> =2
In AR) 2 “Inp (108)
Hoor Hg Pl
InAyR) 2 InAyR)+ IntL
Hoor H; P2

The expressions in (107) and (108) are adequate, but they obscure an
important interpretation of the processor. The desired interpretation is
obtained by a little manipulation.

Substituting (102) into (103-105) and multiplying both sides by
Priu,(R|Ho), we have

Hj orHg

P1Pr|H,(R|H1)HOSH2 POPrIHo(RlHO):
HzorH;

PzPrmz(Rle) 2 PoPrIHO(R|Ho), (109)
HporH;

Hgor Hg
Pyprin,(R|Hy)  Z  Pypen, (R|Hy).
HjorHp

Looking at (109), we see that an equivalent test is to compute the a
posteriori probabilities Pr [H,|R], Pr [H,|R], and Pr [H,|R] and choose
the largest. (Simply divide both sides of each equation by p(R) and
examine the resulting test.) For this reason the processor for the minimum
probability of error criterion is frequently referred to as a maximum a
posteriori probability computer. The generalization to M hypotheses is
straightforward.

The next two topics deal with degenerate tests. Both results will be useful
in later applications. A case of interest is a degenerate one in which we
combine H, and H,. Then

C12 = C21 = O, (110)
and, for simplicity, we can let

Coy = Cio = Cyo = Coz (111)
and

Coo = Cyy = Gy = 0. (112)
Then (103) and (104) both reduce to

HjorHg
P A(R) + P;A4R) E P, (113)

and (105) becomes an identity.
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Ay (R)

Py
Py Hjor Hy

Hy

A (R)
Bo
Py

Fig. 2.16 Decision spaces.

The decision regions are shown in Fig. 2.16. Because we have eliminated
all of the cost effect of a decision between H, and H,, we have reduced it
to a binary problem.

We next consider the dummy hypothesis technique. A simple example
illustrates the idea. The actual problem has two hypotheses, H, and H,,
but occasionally we can simplify the calculations by introducing a dummy
hypothesis H, which occurs with zero probability. We let

PO = 0, P1 + P2 = 1,
and (114)
C12 = Coz, C21 = Co1-

Substituting these values into (103-105), we find that (103) and (104)
imply that we always choose H; or H; and the test reduces to

Ha
Py(Cyy — C32) Ay(R) 2 PiCar = Cuy) A, (R). (115)

Looking at (12) and recalling the definition of A;(R) and A,(R), we see
that this result is exactly what we would expect. [Just divide both sides of

(12) by peiu,(R|Hp).] On the surface this technique seems absurd, but it
will turn out to be useful when the ratio

Prin,(R|H3)

prlHl(RlH 1)
is difficult to work with and the ratios A;(R) and A,(R) can be made

simple by a proper choice of p,y,(R|H,).
In this section we have developed the basic results needed for the M-
hypothesis problem. We have not considered any specific examples
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because the details involved in constructing the likelihood ratios are the
same as those in the binary case. Typical examples are given in the
problems. Several important points should be emphasized.

1. The minimum dimension of the decision space is no more than
M — 1. The boundaries of the decision regions are hyperplanes in the
(A, ..., Ay_1) plane.

2. The optimum test is straightforward to find. We shall find however,
when we consider specific examples that the error probabilities are
frequently difficult to compute.

3. A particular test of importance is the minimum total probability of
error test. Here we compute the a posteriori probability of each hypothesis
Pr (H;|R) and choose the largest.

These points will be appreciated more fully as we proceed through
various applications.

These two sections complete our discussion of simple hypothesis tests.
A case of importance that we have not yet discussed is the one in which
several source outputs are combined to give a single hypothesis. To study
this detection problem, we shall need some ideas from estimation theory.
Therefore we defer the composite hypothesis testing problem until Section
2.5 and study the estimation problem next.

2.4 ESTIMATION THEORY

In the last two sections we have considered a problem in which one of
several hypotheses occurred. As the result of a particular hypothesis, a
vector random variable r was observed. Based on our observation, we
shall try to choose the true hypothesis.

In this section we discuss the problem of parameter estimation. Before
formulating the general problem, let us consider a simple example.

Example 1. We want to measure a voltage a at a single time instant. From physical
considerations, we know that the voltage is between — ¥ and + V volts. The measure-
ment is corrupted by noise which may be modeled as an independent additive zero-
mean Gaussian random variable n. The observed variable is r. Thus

r=a+ n (116)
The probability density governing the observation process is p,.(R|A). In this case
1 R — A)?
Pris(RIA) = pu(R = A) = —— exp (- =), 1)
2m oy On

The problem is to observe r and estimate a.

This example illustrates the basic features of the estimation problem.
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A model of the general estimation problem is shown in Fig. 2.17. The
model has the following four components:

Parameter Space. The output of the source is a parameter (or variable).
We view this output as a point in a parameter space. For the single-
parameter case, which we shall study first, this will correspond to segments
of the line —o0 < 4 < co. In the example considered above the segment is
(=W V).

Probabilistic Mapping from Parameter Space to Observation Space. This
is the probability law that governs the effect of a on the observation.

Observation Space. In the classical problem this is a finite-dimensional
space. We denote a point in it by the vector R.

Estimation Rule. After observing R, we shall want to estimate the value
of a. We denote this estimate as d(R). This mapping of the observation
space into an estimate is called the estimation rule. The purpose of this
section is to investigate various estimation rules and their implementations.

The second and third components are familiar from the detection prob-
lem. The new features are the parameter space and the estimation rule.
When we try to describe the parameter space, we find that two cases arise.
In the first, the parameter is a random variable whose behavior is governed
by a probability density. In the second, the parameter is an unknown
quantity but not a random variable. These two cases are analogous to the

A

Estimation
rule

Probabilistic
mapping to
observation space

|
I
I
I
1
|
} aR)

Observation
space

Parameter
space

Fig. 2.17 Estimation model.
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source models we encountered in the hypothesis-testing problem. To corre-
spond with each of these models of the parameter space, we shall develop
suitable estimation rules. We start with the random parameter case.

2.4.1 Random Parameters: Bayes Estimation

In the Bayes detection problem we saw that the two quantities we had
to specify were the set of costs C;; and the a priori probabilities P,. The
cost matrix assigned a cost to each possible course of action. Because there
were M hypotheses and M possible decisions, there were M2 costs. In
the estimation problem a and d(R) are continuous variables. Thus we must
assign a cost to all pairs [a, d(R)] over the range of interest. This is a
function of two variables which we denote as C(q, d). In many cases of
interest it is realistic to assume that the cost depends only on the error of
the estimate. We define this error as

a(R) 2 4(R) — a. (118)

The cost function C(a.) is a function of a single variable. Some typical
cost functions are shown in Fig. 2.18. In Fig. 2.18a the cost function is
simply the square of the error:

C(a.) = al. (119)

This cost is commonly referred to as the squared error cost function. We
see that it accentuates the effects of large errors. In Fig. 2.18b the cost
function is the absolute value of the error:

Clas) = |ae- (120)

In Fig. 2.18¢c we assign zero cost to all errors less than +A/2. In other
words, an error less than A/2 in magnitude is as good as no error. If
a. > A/2, we assign a uniform value:

C(as) =0, ,ael =<

s

B vl

(121)
= 1, |a5| > —i

In a given problem we choose a cost function to accomplish two
objectives. First, we should like the cost function to measure user satis-
faction adequately. Frequently it is difficult to assign an analytic measure
to what basically may be a subjective quality.

Our goal is to find an estimate that minimizes the expected value of the
cost. Thus our second objective in choosing a cost function is to assign one
that results in a tractable problem. In practice, cost functions are usually
some compromise between these two objectives. Fortunately, in many
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) C(A)
Al
Ae
(a)
L C(A) C(Ae)
1
jAael
— | <A
Ae Ae

(b) (c)

Fig. 2.18 Typical cost functions: (a) mean-square error; () absolute error; (c) uniform
cost function.

problems of interest the same estimate will be optimum for a large class of
cost functions.

Corresponding to the a priori probabilities in the detection problem, we
have an a priori probability density p,(4) in the random parameter estima-
tion problem. In all of our discussions we assume that p,(4) is known. If
pa(4) is not known, a procedure analogous to the minimax test may be
used.

Once we have specified the cost function and the a priori probability, we
may write an expression for the risk:

R A E{(Cla, dR)]} = f A f " ClA, dR)]per(4,R)dR. (122)

The expectation is over the random variable g and the observed variables
r. For costs that are functions of one variable only (122) becomes

®= J _m LA f : C[4 — 4(R)]pa, (4, R)dR. (123)
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The Bayes estimate is the estimate that minimizes the risk. It is straight-
forward to find the Bayes estimates for the cost functions in Fig. 2.18.
For the cost function in Fig. 2.18a, the risk corresponds to mean-square
error. We denote the risk for the mean-square error criterion as K.
Substituting (119) into (123), we have

Roms = f dA f dR[A — G(R)]pa.(4, R). (124)
The joint density can be rewritten as

pa,r(A’ R) = Pr(R)palr(AIR)' (125)
Using (125) in (124), we have

Rms = [ dRP®) [* dALA - a®FpaAR).  (126)

Now the inner integral and p,(R) are non-negative. Therefore we can
minimize R, by minimizing the inner integral. We denote this estimate
dms(R). To find it we differentiate the inner integral with respect to 4(R)
and set the result equal to zero:

%f ) _ dA[4 — GR)Fpa (A]R)
- _2f_ Apa1s(A[R) dA + 24(R) f_ Pa(A[R) dd. (127)

Setting the result equal to zero and observing that the second integral
equals 1, we have

ans® = [ a4 Ap.aIR. (128)

This is a unique minimum, for the second derivative equals two. The term
on the right side of (128) is familiar as the mean of the a posteriori density
(or the conditional mean).

Looking at (126), we see that if d(R) is the conditional mean the inner
integral is just the a posteriori variance (or the conditional variance).
Therefore the minimum value of K, is just the average of the conditional
variance over all observations R.

To find the Bayes estimate for the absolute value criterion in Fig. 2.185
we write

Raws = [ dRp® [ ddll4 - d®pa 4R, (129)
To minimize the inner integral we write

IR) = f )

" AR — A1 pnlAIR) + [ dALA — dR) purl AR,
(130)
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Differentiating with respect to d(R) and setting the result equal to zero,

we have
dabs(R) ©
f dA por(A[R) = f

) Gaps(

dA pa1«(4|R). (131)
)

This is just the definition of the median of the a posteriori density.
The third criterion is the uniform cost function in Fig. 2.18¢. The risk
expression follows easily:

R = | dRp®[1 - |

Gunt(R)—A/2

dunt(R) +A/2

PaARYdd].  (13)

To minimize this equation we maximize the inner integral. Of particular
interest to us is the case in which A is an arbitrarily small but nonzero
number. A typical a posteriori density is shown in Fig. 2.19. We see that
for small A the best choice for d@(R) is the value of 4 at which the a
posteriori density has its maximum. We denote the estimate for this
special case as dn.p(R), the maximum a posteriori estimate. In the sequel
we use dp, (R) without further reference to the uniform cost function.

To find dpap We must have the location of the maximum of p,,(4|R).
Because the logarithm is a monotone function, we can find the location of
the maximum of In p,,(4|R) equally well. As we saw in the detection
problem, this is frequently more convenient.

If the maximum is interior to the allowable range of 4 and In p,,(4|R)
has a continuous first derivative then a necessary, but not sufficient,
condition for a maximum can be obtained by differentiating In p,(4|R)
with respect to 4 and setting the result equal to zero:

0ln p,:(4|R)
il =0. 133
A |imam (133)

Pox (AIR)

Maximum

|
|
|
|
— 11

——
A

Fig. 2.19 An a posteriori density.
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We refer to (133) as the MAP equation. In each case we must check to see
if the solution is the absolute maximum.

We may rewrite the expression for p,;(4|R) to separate the role of the
observed vector R and the a priori knowledge:

Pan(A|R) = PRl ADpeld)

7:(®) (139)

Taking logarithms,

lnpalr(AlR) = lnpl-la(RlA) + lnpa(A) —1In pr(R)- (135)

For MAP estimation we are interested only in finding the value of 4

where the left-hand side is maximum. Because the last term on the right-
hand side is not a function of A, we can consider just the function

I(A) 2 In p,(R]4) + In p,(A). (136)
The first term gives the probabilistic dependence of R on A and the

second describes a priori knowledge.
The MAP equation can be written as

ol(4) _ 9Inp.o(R]4) 4 2Inpa(4)
04 |4=amy 04 A=G(R) 04 |a=am

=0. (137

Our discussion in the remainder of the book emphasizes minimum mean-
square error and maximum a posteriori estimates.

To study the implications of these two estimation procedures we
consider several examples.
Example 2. Let

rn=a-+ n, i=12,...,N. (138)

We assume that a is Gaussian, N(0, o,), and that the », are each independent

Gaussian variables N(0, o,). Then

N - 2
pn.,(R|A)=1_—Iv_1 exp(_(R‘ A))’

P
27 o, 20,

. (139)
i = e (25

T 5,2
0, 20,

To find dns(R) we need to know p,;r(4|R). One approach is to find p(R) and
substitute it into (134), but this procedure is algebraically tedious. It is easier to
observe that p, r(4|R) is a probability density with respect to a for any R. Thus p.(R)
just contributes to the constant needed to make

r Parr(A|R) dA = 1. (140)

(In other words, pr(R) is simply a normalization constant.) Thus

N 1 1 N
[l—= = SRo— AP,
pa|r(A|R)=[("”/12,"(;’;) Vir o, expd | +% . (141)

On
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Rearranging the exponent, completing the square, and absorbing terms depending
only on R into the constant, we have

1 0,2
pordIR) = kR exp { ~3 [4 = e (5 S R) b e
where
l N -1 az "2
W (atig) wmite 149

is the a posteriori variance.

We see that p, r(A4|R) is just a Gaussian density. The estimate dms(R) is just the
conditional mean

am®) = s (5 2 R)- (184)

Because the a posteriori variance is not a function of R, the mean-square risk
equals the a posteriori variance (see (126)).
Two observations are useful:

1. The R, enter into the a posteriori density only through their sum. Thus

N
IR) = 3 R (145)
i=1

is a sufficient statistic. This idea of a sufficient statistic is identical to that in the
detection problem.

2. The estimation rule uses the information available in an intuitively logical
manner. If 0,2 « 0,%/N, the a priori knowledge is much better than the observed data
and the estimate is very close to the a priori mean. (In this case, the a priori mean is
zero.) On the other hand, if ¢,2 » 0,2/N, the a priori knowledge is of little value and

the estimate uses primarily the received data. In the limit dpn, is just the arithmetic
average of the R,.

lim  dm(R) = &
2 L, N,

Nog2

M=

R (146)

The MAP estimate for this case follows easily. Looking at (142), we see that because

the density is Gaussian the maximum value of p,r(4|R) occurs at the conditional
mean. Thus

dmap(R) = dns(R). (147)

Because the conditional median of a Gaussian density occurs at the conditional
mean, we also have

dans(R) = dns(R). (148)

Thus we see that for this particular example all three cost functions in
Fig. 2.18 lead to the same estimate. This invariance to the choice of a cost
function is obviously a useful feature because of the subjective judgments
that are frequently involved in choosing C(a.). Some conditions under
which this invariance holds are developed in the next two properties.}

1 These properties are due to Sherman [20]. Our derivation is similar to that given
by Viterbi [36].



60 2.4 Estimation Theory

Property 1. We assume that the cost function C(a,) is a symmetric, convex-
upward function and that the a posteriori density p,(4|R) is symmetric
about its conditional mean; that is,

C(a) = C(—a.) (symmetry), (149)

Clbx; + (1 — b)x) < bC(xy) + (1 — b) C(xy) (convexity) (150)
for any b inside the range (0, 1) and for all x, and x,. Equation 150 simply
says that all chords lie above or on the cost function.

This condition is shown in Fig. 2.20a. If the inequality is strict whenever
X; # Xxg, we say the cost function is strictly convex (upward). Defining

z8 a— Gne = a— Ea|R] (151
the symmetry of the a posteriori density implies
P:i(Z|R) = p,;(—~Z|R). (152)

The estimate 4 that minimizes any cost function in this class is identical
to dps (Which is the conditional mean).

C(ae)
A(
(a)
Clae)
Ae
()

Fig. 2.20 Symmetric convex cost functions: (a) convex; (b) strictly convex.
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Proof. As before we can minimize the conditional risk [see (126)].
Define

Ra(@R) & E[C@ — a)|R] = E,[C(a — d)|R], (153)
where the second equality follows from (149). We now write four equivalent
expressions for Rz(d|R):

Rel@lR) = [ C@ = by ~ Z)puiZ|R) dZ (154)
[Use (151) in (153)]

= [* €~ o + 2pntzIR i2 (155)
) °‘E(152) implies this equality]

~ [ Cllws ~ 2~ Dz R a2 (156)
) ?(149) implies this equality]

- [ Cltw - 4+ 2pz® 2z (157

[(152) implies this equality].

We now use the convexity condition (150) with the terms in (155) and
(157):

Rp(d|R)

YE{C[Z + (dms — d)] + C[Z — (dms — D]}R)
E{C[HZ + (dms — 4) + HZ — (dms — 9)]R}
E[C(Z)|R]. (158)

Equality will be achieved in (158) if d,,; = d. This completes the proof.
If C(a,) is strictly convex, we will have the additional result that the
minimizing estimate 4 is unique and equals d,,.

\%

To include cost functions like the uniform cost functions which are not
convex we need a second property.

Property 2. We assume that the cost function is a symmetric, nondecreasing
function and that the a posteriori density p,.(4|R) is a symmetric (about
the conditional mean), unimodal function that satisfies the condition

lim C(x)pax(x|R) = 0.

The estimate 4 that minimizes any cost function in this class is identical to
dns. The proof of this property is similar to the above proof [36].
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The significance of these two properties should not be underemphasized.
Throughout the book we consider only minimum mean-square and maxi-
mum a posteriori probability estimators. Properties 1 and 2 ensure that
whenever the a posteriori densities satisfy the assumptions given above the
estimates that we obtain will be optimum for a large class of cost functions.
Clearly, if the a posteriori density is Gaussian, it will satisfy the above
assumptions.

We now consider two examples of a different type.

Example 3. The variable a appears in the signal in a nonlinear manner. We denote
this dependence by s(A4). Each observation r; consists of s(4) plus a Gaussian random
variable n;, N(0, o). The n, are statistically independent of each other and a. Thus

re = s(4) + n,. (159)
Therefore
N
| 2 Re=str -,
Peie(AIR) = kR) exp [ —5¢ = —5—— + =57 | (160)

2 on o

This expression cannot be further simplified without specifying s(4) explicitly.
The MAP equation is obtained by substituting (160) into (137)

9s(A)

94 |4=imap®)

o 2 N
Gmap(R) = ;:—2 _2 [R, — 5(A4)] (161)

To solve this explicitly we must specify s(A4). We shall find that an analytic solution
is generally not possible when s(A4) is a nonlinear function of A4.

Another type of problem that frequently arises is the estimation of a
parameter in a probability density.

Example 4. The number of events in an experiment obey a Poisson law with mean
value a. Thus

Pr(nevents]a:A)=:—'exp(—A), n=0,1,.... (162)

We want to observe the number of events and estimate the parameter a of the Poisson
law. We shall assume that a is a random variable with an exponential density

Aexp (—AA), A >0,

pold) = 0, elsewhere. (163)
The a posteriori density of a is
pun4lN) = B =Pl (164
Substituting (162) and (163) into (164), we have
Pain(A|N) = k(N)[A" exp (— A1 + X)), A4=0, (165)
where
KNy = LENTT (166)

N!
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in order for the density to integrate to 1. (As already pointed out, the constant is
unimportant for MAP estimation but is needed if we find the MS estimate by
integrating over the conditional density.)

The mean-square estimate is the conditional mean:

N+1 @
lmns(N) = Q—%f A1 exp [— AL + X)] dA
. ]
_ @+ pv - (1
TaF )2 N+1)= (/\ T 1)(N+ 1). (167)
To find dmap We take the logarithm of (165)
In poin(A|N) = NIn 4 — A(1 + X) + In k(N). (168)

By differentiating with respect to A, setting the result equal to zero, and solving, we

obtain

N
Amap(N) = T (169)

Observe that dmap is not equal to dps.

Other examples are developed in the problems. The principal results
of this section are the following:

1. The minimum mean-square error estimate (MMSE) is always
the mean of the a posteriori density (the conditional mean).

2. The maximum a posteriori estimate (MAP) is the value of 4
at which the a posteriori density has its maximum.

3. For a large class of cost functions the optimum estimate is the
conditional mean whenever the a posteriori density is a unimodal
function which is symmetric about the conditional mean.

These results are the basis of most of our estimation work. As we study
more complicated problems, the only difficulty we shall encounter is the
actual evaluation of the conditional mean or maximum. In many cases o f
interest the MAP and MMSE estimates will turn out to be equal.

We now turn to the second class of estimation problems described in the
introduction.

2.4.2 Real (Nonrandom) Parameter Estimationf

In many cases it is unrealistic to treat the unknown parameter as a
random variable. The problem formulation on pp. 52-53 is still appro-
priate. Now, however, the parameter is assumed to be nonrandom, and
we want to design an estimation procedure that is good in some sense.

1 The beginnings of classical estimation theory can be attributed to Fisher [S, 6, 7, 8].
Many discussions of the basic ideas are now available (e.g., Cramer [9]), Wilks [10],
or Kendall and Stuart [11]).
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A logical first approach is to try to modify the Bayes procedure in the
last section to eliminate the average over p,(4). As an example, consider a
mean-square error criterion,

R(A) O f : [GR) — A pr1o(R|A) dR, (170)

where the expectation is only over R, for it is the only random variable in
the model. Minimizing R(A4), we obtain

dns(R) = A. (171)

The answer is correct, but not of any value, for 4 is the unknown

quantity that we are trying to find. Thus we see that this direct approach

is not fruitful. A more useful method in the nonrandom parameter case

is to examine other possible measures of quality of estimation procedures

and then to see whether we can find estimates that are good in terms of
these measures.

The first measure of quality to be considered is the expectation of the

estimate
+

E[4R)] & f 4(R) py1o(R| 4) dR. (172)

The possible values of the expectation can be grouped into three classes

1. If E[4(R)] = A, for all values of 4, we say that the estimate is un-
biased. This statement means that the average value of the estimates equals
the quantity we are trying to estimate.

2. If E[G(R)] = A + B, where B is not a function of A4, we say that the
estimate has a known bias. We can always obtain an unbiased estimate by
subtracting B from d(R).

3. If E[4(R)] = A + B(A), we say that the estimate has an unknown bias.
Because the bias depends on the unknown parameter, we cannot simply
subtract it out.

Clearly, even an unbiased estimate may give a bad result on a particular
trial. A simple example is shown in Fig. 2.21. The probability density of
the estimate is centered around A, but the variance of this density is large
enough that big errors are probable.

A second measure of quality is the variance of estimation error:

Var [G(R) — A] = E{[dR) — A]?} — B*(A). (173)

This provides a measure of the spread of the error. In general, we shall
try to find unbiased estimates with small variances. There is no straight-
forward minimization procedure that will lead us to the minimum variance

unbiased estimate. Therefore we are forced to try an estimation procedure
to see how well it works.
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Pamy| 4 (AR)IA)

A A(R)

Fig. 2.21 Probability density for an estimate.

Maximum Likelihood Estimation. There are several ways to motivate

the estimation procedure that we shall use. Consider the simple estimation
problem outlined in Example 1. Recall that

r=A4+n, (174)
PRI = (VEIr o) texp [~ sy (R — AF) (179)

We choose as our estimate the value of 4 that most likely caused a given
value of R to occur. In this simple additive case we see that this is the same
as choosing the most probable value of the noise (N = 0) and subtracting
it from R. We denote the value obtained by using this procedure as a
maximum likelihood estimate.

dm(R) = R. (176)

In the general case we denote the function p, (R|A4), viewed as a
function of A, as the likelihood function. Frequently we work with the
logarithm, In p,,(R|4), and denote it as the log likelihood function. The
maximum likelihood estimate d,,(R) is that value of A4 at which the likeli-
hood function is a maximum. If the maximum is interior to the range of A4,
and In p,,(R|4) has a continuous first derivative, then a necessary con-

dition on 4,,(R) is obtained by differentiating In p,,,(R|4) with respect to
A and setting the result equal to zero:

0 ln pro(R|A4)
6A A=Gmi(R)

This equation is called the likelihood equation. Comparing (137) and (177),
we see that the ML estimate corresponds mathematically to the limiting
case of a MAP estimate in which the a priori knowledge approaches zero.

In order to see how effective the ML procedure is we can compute the
bias and the variance. Frequently this is difficult to do. Rather than
approach the problem directly, we shall first derive a lower bound on the
variance on any unbiased estimate. Then we shall see how the variance of
dmi(R) compares with this lower bound.

=0. (177)
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Cramér-Rao Inequality: Nonrandom Parameters. We now want to con-
sider the variance of any estimate d(R) of the real variable 4. We shall
prove the following statement.

Theorem. (a) If 4(R) is any unbiased estimate of A, then

Var [4R) — 4] > (E{ [a—m’%m]z})'l (178)
or, equivalently,
(b)
Var [4(R) — 4] > {—E[Qﬁm%‘;ﬂ"@]}_i (179)

where the following conditions are assumed to be satisfied:

©)
9pr1o(R[4) %pr1o(R[4)
o4 2 ang o7 |
exist and are absolutely integrable.
The inequalities were first stated by Fisher [6] and proved by Dugué [31].
They were also derived by Cramér [9] and Rao [12] and are usually

referred to as the Cramér-Rao bound. Any estimate that satisfies the
bound with an equality is called an efficient estimate.

The proof is a simple application of the Schwarz inequality. Because
4(R) is unbiased,

EG®) - 412 [~ pu RIAWGR) - A]dR =0, (180)
Differentiating both sides with respect to 4, we have
72| pe®ida® - a1ar
~ |7 2 e RIAL® — AL dR =0, (8D

where condition (c) allows us to bring the differentiation inside the integral.
Then

" pru®ipyar + [

pri(R|4) (. _
Frie =2 [4R) — A]dR = 0. (182)

The first integral is just + 1. Now observe that

Pe1a(Rl4)  91n pyi.(R|A
Peid®l) _ Z0PusRID ), (v)4), (183
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Substituting (183) into (182), we have

J._ww (’w%:i(—mprla(RlA)[d(R) — A]dR = 1. (184)

Rewriting, we have

J- jo - [mp+—;1(km ‘/Prla(R|A)] [\/pm(RIA) [4(R) — A]]dR =1, (185)

and, using the Schwarz inequality, we have

{7 [ pourig) ar}

{[” 1a® - 47 puRI R} > 1, (130
where we recall from the derivation of the Schwarz inequality that equality

holds if and only if

o1n p,(R|A4)
— g = [4R) — A1 k(4), (187)

for all R and 4. We see that the two terms of the left side of (186) are the
expectations in statement (a) of (178). Thus,

E{[4R) — AP} > {E [‘31'—”’5'—1‘;(1‘“;)]2}“1. (188)

To prove statement (b) we observe

f " pe(R|A)dR = 1. (189)

Differentiating with respect to 4, we have

fw aprlg(RLA)dR f“’ ah1p5—|:1(ll|,ﬂ Pri(R|4) dR = 0. (190)

- 00

Differentiating again with respect to 4 and applying (183), we obtain

) 821 raRA
I TInrnd®lD ) @14y dR
® 2
* f_w (malji(_RM‘)) Prid(R[4)dR =0 (191)
or , ( | )
02 1In pya(R| A) (210 peis(RLA) ]
E[T [ o4 (192)

which together with (188) gives condition (b).



