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Several important observations should be made about this result. 

1. It shows that any unbiased estimate must have a variance greater 
than a certain number. 

2. If (187) is satisfied, the estimate 6,,(R) will satisfy the bound with an 
equality. We show this by combining (187) and (177). The left equality is 
the maximum likelihood equation. The right equality is (187): 

0 = a lnPr,a(RI4 = (6(R) - A) k(A) l 

aA 
(193) 

A = &l(R) , .  

A = a,l(R) 

In order for the right-hand side to equal zero either 

or 
WQ = ci,l(R) (194) 

k@,,) = 0. W) 

Because we want a solution that depends on the data, we eliminate (195) 
and require (194) to hold. 

Thus, cyan efficient estimate exists, it is h,,(R) and can be obtained as a 
unique solution to the likelihood equation. 

3. If an efficient estimate does not exist [i.e., a lnp,,&RIA)/U cannot 
be put into the form of (187)], we do not know how good Z,,(R) is. 
Further, we do not know how close the variance of any estimate will 
approach the bound. 

4. In order to use the bound, we must verify that the estimate of concern 
is unbiased. Similar bounds can be derived simply for biased estimates 
(Problem 2.4.17). 

We can illustrate the application of ML estimation and the Cramer-Rao 
inequality by considering Examples 2, 3, and 4. The observation model is 
identical. We now assume, however, that the parameters to be estimated 
are nonrandom variables. 

Example 2. From (138) we have 
Yi = A + a, i= I,2 ,..., N. (196) 

Taking the logarithm of (139) and differentiating, we have 

Thus 
f  

_ A . W) 

1 N 
&l(R) = N 2 Ri. (198) 

i=l 

To find the bias we take the expectation of both sides, 

E[(iml(R)] = $ 5 E(Ri) = ; 5 A = A, 
i=l f=l 

so that L&(R) is unbiased. 

(199) 



Nonrandom Parameter Estimation 69 

Because the expression in (197) has the form required by (187), we know that 
d,,(R) is an efficient estimate. To evaluate the variance we differentiate (197): 

Using (179) and the efficiency result, we have 

Var [B,,(R) - A] = $$ (201) 

Skipping Example 3 for the moment, we go to Example 4. 

Example 4. Differentiating the logarithm of (162), we have 

alnPr(n = NIA) -= 
aA 

&(Nln A - A - In N!) 

The ML estimate is 

N 1 =-- 
A 

= ; (N - A). (202) 

t&(N) = N. (203) 

It is clearly unbiased and efficient. To obtain the variance we differentiate (202): 

a21nPr(n = NIA) = N em. 
3A2 A2 WV 

Thus 
A2 A2 Var [d&N) - A] = E(N) = -J- = A. (20% 

In both Examples 2 and 4 we see that the ML estimates could have been 
obtained from the MAP estimates [let Q -+ oo in (144) and recall that 
6,,(R) = d,,,(R) and let X -+ 0 in (169)]. 

We now return to Example 3. 

Example 3. From the first term in the exponent in (160), we have 

a lwdRl4 1 N =- -. 
aA un2*=1 i Cr 

R _ s(A)] %A) 
3A (206) 

In general, the right-hand side cannot be written in the form required by (187), and 
therefore an unbiased efficient estimate does not exist. 

The likelihood equation is 

If  the range of s(A) includes (l/N) CE 1 Rt, a solution exists : 

1 N 
s[drn@)] = N 2 Rt. 

f-l 

I f  (208) can be satisfied, then 

(207) 

(208) 

(20% 
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[Observe that (209) tacitly assumes that s-l(*) exists. I f  it does not, then even in the 
absence of noise we shall be unable to determine A unambiguously. I f  we were designing 
a system, we would always choose an s(e) that allows us to find A unambiguously in 
the absence of noise.] I f  the range of s(a) does not include (l/N) Cp= 1 Rf, the maximum 
is at an end point of the range. 

We see that the maximum likelihood estimate commutes over nonlinear operations. 
(This is not true for MS or MAP estimation.) I f  it is unbiased, we evaluate the bound 
on the variance by differentiating (206): 

a2 brkdRIA) = 1 i 
aA 2 

[R 
f an f=l (210) 

Observing that 
EEQ - s(A)] = E(nr) = 0, 

we obtain the following bound for any unbiased estimate, 
(211) 

2 

Var [6(R) - A] 2 lV[a,P:),aA]2* (212) 

We see that the bound is exactly the same as that in Example 2 except for a factor 
[as(A)/aA12. The intuitive reason for this factor and also some feeling for the con- 
ditions under which the bound will be useful may be obtained by inspecting the 
typical function shown in Fig. 2.22. Define 

Then 
Y = s(A). (213 

Yi = Y+ nf. (214) 

The variance in estimating Y is just u,,~/N. However, if ye, the error in estimating Y, 
is small enough so that the slope is constant, then 

A -L 
’ - &(A) 

I 

(215) 

aA A = c?(R) 

Actual value of A 

as(A) 
aA 

I  

+ l * *  

A=AA 

Fig. 2.22 Behavior of error variance in the presence of small errors. 
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and 
Var (~2 

Var (a’) ’ [as(A)/3A12 = N[~s(~;,Uja. (216) 

We observe that if y, is large there will no longer be a simple linear relation between 
ye and a,. This tells us when we can expect the Cramer-Rao bound to give an accurate 
answer in the case in which the parameter enters the problem in a nonlinear manner. 
Specifically, whenever the estimation error is small, relative to A a2s(A)/8A2, we 
should expect the actual variance to be close to the variance bound given by the 
Cramer-Rao inequality. 

The properties of the ML estimate which are valid when the error is 
small are generally referred to as asymptotic. One procedure for developing 
them formally is to study the behavior of the estimate as the number of 
independent observations N approaches infinity. Under reasonably general 
conditions the following may be proved (e.g., Cramer [9], pp. 500-504). 

1. The solution of the likelihood equation (177) converges in probability 
to the correct value of A as N -+ 00. A~zy estimate with this property is 
called consistent. Thus the ML estimate is consistent. 

2. The ML estimate is asymptotically efficient; that is, 

. 
lim 

N-+a 

Var [l&(R) - A] 
a21np,,.(R(A) -l = ‘* 

i3A2 

3. The ML estimate is asymptotically Gaussian, N(A, oaf). 

These properties all deal with the behavior of ML estimates for large N. 
They provide some motivation for using the ML estimate even when an 
efficient estimate does not exist. 

At this point a logical question is: “ Do better estimation procedures 
than the maximum likelihood procedure exist ?” Certainly if an efficient 
estimate does not exist, there may be unbiased estimates with lower 
variances. The difficulty is that there is no general rule for finding them. 
In a particular situation we can try to improve on the ML estimate. In 
almost all cases, however, the resulting estimation rule is more complex, 
and therefore we emphasize the maximum likelihood technique in all of 
our work with real variables. 

A second logical question is : “Do better lower bounds than the Cramtr- 
Rao inequality exist ?” One straightforward but computationally tedious 
procedure is the Bhattacharyya bound. The Cramer-Rao bound uses 
a2ppIa(RIA)/aA2. Whenever an efficient estimate does not exist, a larger 
bound which involves the higher partial derivatives can be obtained. 
Simple derivations are given in [ 131 and [ 141 and in Problems 2.4.23-24. 
For the cases of interest to us the computation is too involved to make the 
bound of much practical value. A second bound is the Barankin bound 
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(e.g. [ 151). Its two major advantages are that it does not require the 
probability density to be differentiable and it gives the greatest lower 
bound. Its disadvantages are that it requires a maximization over a 
function to obtain the bound and the procedure for finding this maximum 
is usually not straightforward. Some simple examples are given in the 
problems (2.4. K-19). In most of our discussions, we emphasize the 
Cramer-Rao bound. 

We now digress briefly to develop a similar bound on the mean-square 
error when the parameter is random. 

Lower Bound on the Minimum Mean-Square Error in Estimating a Random 
Parameter. In this section we prove the following theorem. 

Theorem. Let a be 
mean-square error 

a rand om varia ble and r, the observation vector. 
of any esti mate 6(R) satisfies t he inequality 

The 

-’ (217) . 
Observe that the probabili ty density is 
tion is over both a and r. The followi 

a joint density 
ng conditions 

and that the 
are assumed 

expecta- 
to exist: 

1 apr,,(R9 4 l 

.  

3A 
is absolutely integrable with respect to R and A. 

2 a2Pr,a(R9 4 l 

.  

3A2 
is absolutely integrable with respect to R and A. 

3. The conditional expectation of the error, given A, is 

B(A) = 
s 

m [6(R) - Al Pr,.(RI4 cm* 
-CD 

We assume that 
lim B(A)pa(A) = 0, 

A-*a 

lim B(A)p,(A) = 0. 

(218) 

The proof is a simple modification of the one on p. 66. Multiply both 
sides of (218) by pa(A) and then differentiate with respect to A : 

d 
c0 a [Pa(A) B(A)1 = - 

I 
Pr,a(R 4 dR 

-00 + s co “-f;’ A) [S(R) - A] dR. (221) -Cl3 
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Now integrate with respect to A : 

pa(A) B(A) + * = 00 
* -1+ s s apr9f;’ A) [L?(R) - A] dA dR. (222) --co -aI -co 

The assumption in Condition 3 makes the left-hand side zero. The 
remaining steps are identical. The result is 

E {[B(R) - a12} > a lnpr,a(R A) 2 - l 
8A 11) (223) 

or, equivalently, 

E([a^(R) - a12} 2 a2 ln pr,a(RIA) aA ] - E[a--$@]}-’ (224) 

with equality if and only if 

a In bdR, A) = &j(R) - 
3A 

A] 9 (225) 

for all R and all A. (In the nonrandom variable case we used the Schwarz 
inequality on an integral over R so that the constant k(A) could be a 
function of A. Now the integration is over both R and A so that k cannot 
be a function of A.) Differentiating again gives an equivalent condition 

a2 In pr,U(R9 A) k 
-c-  

3A2 
. 

Observe that (226) may be written in terms of the a posteriori density, 

a2 In PaI.(AIR) 

i3A2 
=- k . (227) 

Integrating (227) twice and putting the result in the exponent, we have 

PaI.(AIR) = exp(-kA2 + CIA + C,) (228) 

for all R and A; but (228) is simply a statement that the a posteriori 
probability density of a must be Gaussian for all R in order for an efficient 
estimate to exist. (Note that C, and C2 are functions of R). 

Arguing as in (193)-(195), we see that if (226) is satisfied the MAP 
estimate will be efficient. Because the minimum MSE estimate cannot have 
a larger error, this tells us that b,,(R) = b,,,(R) whenever an efficient 
estimate exists. As a matter of technique, when an efficient estimate does 
exist, it is usually computationally easier to solve the MAP equation than 
it is to find the conditional mean. When an efficient estimate does not exist, 
we do not know how closely the mean-square error, using either b,,(R) 
or Cimap(R), approaches the lower bound. Asymptotic results similar to 
those for real variables may be derived. 
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2.4.3 Multiple Parameter Estimation 

In many problems of interest we shall want to estimate more than one 
parameter. A familiar example is the radar problem in which we shall 
estimate the range and velocity of a target. Most of the ideas and techniques 
can be extended to this case in a straightforward manner. The model is 
shown in Fig. 2.23. If there are K parameters, a,, a2, . . . , UK, we describe 
them by a parameter vector a in a K-dimensional space. The other elements 
of the model are the same as before. We shall consider both the case in 
which a is a random parameter vector and that in which a is a real (or 
nonrandom) parameter vector. Three issues are of interest. In each the 
result is the vector analog to a result in the scalar case. 

1. Estimation procedures. 
2. Measures of error. 
3. Bounds on performance. 

Fig. 2.23 

(K-dimensional 
estimate) 

Multiple parameter estimation model. 
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Estimation Pvoceduue. For random variables we could consider the 
general case of Bayes estimation in which we minimize the risk for some 
arbitrary scalar cost function C(a, a), but for our purposes it is adequate 
to consider only cost functions that depend on the error. We define the 
error vector as 

= 8(R) - a. (229 

For a mean-square error criterion, the cost function is simply 

= acT(R) a,(R). (230) 

This is just the sum of the squares of the errors. The risk is 

or 

It ms = 
s 

* PrWdR * K (4(R) - A*)2 P*llJAIR) dA* (232) 
--a0 s b --03 f=l 1 

As before, we can minimize the inner integral for each R. Because the 
terms in the sum are positive, we minimize them separately. This gives 

ii ms: (R) 1 * = ArPa,r(AIR) dii 
--oo 

or 

(233 

It is easy to show that mean-square estimation commutes over linear 
transformations. Thus, if 

b = Da, (235) 

where D is a L x K matrix, and we want to minimize 

(236) 

the result will be, 

bms(R) = D8ms(R) (237) 

[see Problem 2.4.20 for the proof of (237)]. 
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For MAP estimation we must find the value of A that maximizes 

Pa,r(AIR). If 0-l e maximum is interior and a In Pa,,(AIR)/aAi exists at the 
maximum then a necessary condition is obtained from the MAP equations. 
By analogy with (137) we take the logarithm of JQ,(A]R), differentiate 
with respect to each parameter Ai, i = 1,2, . . . , K, and set the result equal 
to zero. This gives a set of K simultaneous equations: 

a ln &-i,.(AIR) 
aAi A= imap = 

0, i = 1, 2, . . . , K. (238) 

We can write (238) in a more compact manner by defining a partial 
derivative matrix operator 

This operator can be applied only to 1 x m matrices; ror example, 

8Al 3Al ‘** 3Al 
. (240) 

Several useful properties of VA are developed in Problems 2.4.27-28. 
In our case (238) becomes a single vector equation, 

Similarly, for ML estimates we must find the value of A that maximizes 
pr,.(RJA). If th e maximum is interior and a In Prl.(RIA)laAi exists at the 
maximum then a necessary condition is obtained from the likelihood 
equations : 

VAClnp,l,(RIA)l(A=~ml(R) = 0. (242) 

In both cases we must verify that we have the absolute maximum. 

1s 

Measures of Error. For nonrandom 
the bias. Now the bias is a vector, 

variables the first measure of interest 

B(A) n E[a,(R)] = E[ii(R)] - A. (243) 



Multiple Parameter Estimation 77 

If each component of the bias vector is zero for every A, we say that the 
estimate is unbiased. 

In the single parameter case a rough measure of the spread of the error 
was given by the variance of the estimate. In the special case in which 
a,(R) was Gaussian this provided a complete description: 

1 
Pa,W = r ( 

A2 
exp 

tz 

7T Oat 
-- 1 . 

2oac 2 (244) 

For a vector variable the quantity analogous to the variance is the 
covariance matrix 

EKa c - &)(a,’ - BET)] 4 A,, (245) 
where 

i& i! E(a,) = B(A). (246) 

The best way to determine how the covariance matrix provides a 
measure of spread is to consider the special case in which the a,, are 
jointly Gaussian. For algebraic simplicity we let E(a,) = 0. The joint 
probability density for a set of K jointly Gaussian variables is 

pa,(A,) = (12~l~‘~IR~l%)-l exp (-+A,TR,-lA,) (247) 

(e.g., p. 151 in Davenport and Root [l]). 
The probability density for K = 2 is shown in Fig. 2.24a. In Figs. 

2.24&c we have shown the equal-probability contours of two typical 
densities.From (247) we observe that the equal-height contours are 
defined by the relation, 

AETA,-lA, = C2, (248) 

which is the equation for an ellipse when K = 2. The ellipses move out 
monotonically with increasing C. They also have the interesting property 
that the probability of being inside the ellipse is only a function of C2. 

Property. For K = 2, the probability that the error vector lies inside an 
ellipse whose equation is 

A,TR,-lA, = C2, (249) 
is 

P=l 

Proof. The area inside the ellipse defined by (249) is 

& = IA,I%rC2. (251) 

The differential area between ellipses corresponding to C and C + dC 
respectively is 

d& = [h,l”277CdC. W) 
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0 a 

(b) 0 C 

Fig. 2.24 Gaussian densities: [a] two-dimensional Gaussian density ; [b] equal-height 
contours, correlated variables; [c] equal-height contours, uncorrelated variables. 

The height of the probability density in this differential area is 

(27rlA,l”>-1 exp -7 . 
( 1 

(253) 

We can compute the probability of a point lying outside the ellipse by 
multiplying (252) by (253) and integrating from C to 00. 

1 -P= /ca Xexp(-T)dX=exp(-$)y (254) 

which is the desired result. 
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For this reason the ellipses described by (248) are referred to as con- 
centration ellipses because they provide a measure of the concentration of 
the density. 

A similar result holds for arbitrary K. Now, (248) describes an ellipsoid. 
Here the differential volumet in K-dimensional space is 

dv 
I*” 

‘/z 
#I2 

= 
I’(K/2 + 1) 

KCK-l dC . 

The value of the probability density on the ellipsoid is 

[(~~T)~/~IR~I%]-~ exp -$ . 
( ) (W 

Therefore 

1 
K 

- ’ = (2)K/2r(~/2 + 1) c* XK- ‘eax212 dX, s (257) 

which is the desired result. We refer to these ellipsoids as concentration 
ellipsoids. 

When the probability density of the error is not Gaussian, the concen- 
tration ellipsoid no longer specifies a unique probability. This is directly 
analogous to the one-dimensional case in which the variance of a non- 
Gaussian zero-mean random variable does not determine the probability 
density. We can still interpret the concentration ellipsoid as a rough 
measure of the spread of the errors. When the concentration ellipsoids of 
a given density lie wholly outside the concentration ellipsoids of a second 
density, we say that the second density is more concentrated than the first. 
With this motivation, we derive some properties and bounds pertaining to 
concentration ellipsoids. 

Bounds on Estimation Errors: Nonrandom Variables. In this section we 
derive two bounds. The first relates to the variance of an individual error; 
the second relates to the concentration ellipsoid. 

Property 1. Consider arty unbiased estimate of Ai. Then 

oEi2 4 Var [di(R) - Ai] > Jii, w9 

where Jii is the iith element in the K x K square matrix J- l. The elements 
in J are 

J n E a lnp,l,(RIA) a lnp,.,.(R(A) 

ij - 3Ai l 3Aj 1 
= -E a2 In PrdRIA) 

3Ai aAj I 

(259 

t e.g., Cram& [9], p. 120, or Sommerfeld [32]. 
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or 

J n E({V*[ln~rl.(RIA)I}{V*[ln~r~a(RIA)I}T) 

= -E P*(VAb PrlaCRIA)IIT)I- 
(260) 

The J matrix is commonly called Fisher’s information matrix. The equality 

in (258) holds if and only if 

hi(R) - Ai = 2 kij(A) a lv I ii (RIN 
(261) 

j=l i 

for all values of Ai and R. 
In other words, the estimation error can be expressed as the weighted 

sum of the partial derivatives of lnp,Ia(RIA) with respect to the various 
parameters. 

Proof. Because ii(R) is unbiased, 

s 
* [&i(R) - Ai]p,/a(RIA) dR = 0 
--a0 

s co 6i(R)prIa(RIA) dR = Ai. 
-al 

Differentiating both sides with respect to Aj, we have 

s 00 
--co a3 

= s 6 (R) a lnpr’a(RiA)p I i 3Aj ra (RIA) dR 
--oo 

We shall prove the result for i = 1. We define a K + 1 vector 

The covariance matrix is 

E[xxT] = 

- d,(R) - Al 

3 ln PrIa(RIA) -- 
iiAl 

I . . (265) 

(266) 
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[The ones and zeroes in the matrix follow from (264).] Because it is a 
covariance matrix, it is nonnegative definite, which implies that the deter- 
minant of the entire matrix is greater than or equal to zero. (This con- 
dition is only necessary, not sufficient, for the matrix to be nonnegative 
definite.) 

Evaluating the determinant using a cofactor expansion, we have 

%,“IJI - cofactor Jll > 0. (267) 

If we assume that J is nonsingular, then 

2 , cofactor Jll 
%I - IJI 

= J1l 9 cw 

which is the desired result. The modifications for the case when J is 
singular follow easily for any specific problem. 

In order for the determinant to equal zero, the term &R) - Al must 
be expressible as a linear combination of the other terms. This is the 
condition described by (261). The second line of (259) follows from the 
first line in a manner exactly analogous to the proof in (189)-(192). The 
proof for i # 1 is an obvious modification. 

Property 2. Consider any unbiased estimate of A. The concentration ellipse 

AETA,- IA, = C2 (269) 

lies either outside or on the bound ellipse defined by 

AcTJA, = C2. (270) 

Proof. We shall go through the details for K = 2. By analogy with the 
preceding proof, we construct the covariance matrix of the vector. 

Then 

E[xxT] = 

4(R) - Al 
42(R) - A2 

X = 

: !  

a ln PP,.(RIA) 

aAl l 

a ln PP,B(RIA) 

._ aA 

% 
2 

P0172~ : 1 0 
I 

p(31,*2c Q 
2 io 1 I I ----------------------- = I 

1 0 i 41 Jl2 
I 

0 1 - :J21 J22 I i 

(271) 

(272) 



82 2.4 Estimation Theory 

The second equality defines a partition of the 4 x 4 matrix into four 
2 x 2 matrices. Because it is a covariance matrix, it is nonnegative definite. 
Using a formula for the determinant of a partitioned matrix,? we have 

or, assuming that A, is nonsingular and applying the product rule for 
determinants, 

(A,( IJ - &-l( > 0. (2W 
This implies 

IJ - A,-ll r 0. (275) 

Now consider the two ellipses. The intercept on the A,, axis is 

A1c2 IA I = c2+ 
Azc=O a2 

for the actual concentration ellipse and 

Ale2 = + WV 
Azc =0 11 

for the bound ellipse. 
We want to show that the actual intercept is greater than or equal to the 

bound intercept. This requires 

This inequality follows because the determinant of the 3 x 3 matrix in 
the upper left corner of (272) is greater than or equal to zero. (Otherwise 
the entire matrix is not nonnegative definite, e.g. [ 161 or [ 181.) Similarly, 
the actual intercept on the A 2E axis is greater than or equal to the bound 
intercept. Therefore the actual ellipse is either always outside (or on) the 
bound ellipse or the two ellipses intersect. 

If they intersect, we see from (269) and (270) that there must be a 
solution, A,, to the equation 

or 
A,TA,-lA, = ACTJA, (279) 

ACT[J - A,-l]A, 4 ACTDA, = 0. (280) 

In scalar notation 

or, equivalently, 

(2)2o,, + 2&D,, + 022 = O. (282) 

t Bellman [16], p. 83. 
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Solving for Alc/ASZ, 
were greater than or 

we would obtain real roots only if the discriminant 
equal to zero. This requires 

IJ - A,-1( < 0. (283) 

The inequality is a contradiction of (275). One possibility is 1 J - A,- lI = 0, 
but this is true only when the ellipses coincide. In this case all the estimates 
are efficient. 

For arbitrary K we can show that J - A,-’ is nonnegative definite. 
The implications with respect to the concentration ellipsoids are the same 
as for K = 2. 

Frequently we want to estimate functions of the K basic parameters 
rather than the parameters themselves. We denote the desired estimates 
as 

d 1 = &i,(A)9 

d 2 = g,,(A), (284) 

or 
d M = gdM(A)* 

d = gd(A) 

The number of estimates M is not related to K in general. The functions 
may be nonlinear. The estimation error is 

If we assume that the estimates are unbiased and denote the error 
covariance matrix as A,, then by using methods identical to those above 
we can prove the following properties. 

Property 3. The matrix 

A, - {v&dT(A)l)TJ - ‘{vAkdT(A)l) 
is nonnegative definite. 

(286) 

This implies the following property (just multiply the second matrix 
out and recall that all diagonal elements of nonnegative definite matrix 
are nonnegative) : 

Property 4. 

(287) 

For the special case in which the desired functions are linear, the result 
in (287) can be written in a simpler form. 
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Property 5. Assume that 

where G, is an A4 x K matrix. If the estimates are unbiased, then 

is nonnegative definite. 
4 - G,J - lGdT 

Property 6. Efficiency commutes with linear transformations but does not 
commute with nonlinear transformations. In other words, if Q is efficient, 
then a  ̂will be efficient if and only if gd(A) is a linear transformation. 

Bounds on Estimation Errors: Random Parameters. Just as in the single 
parameter case, the bound for random parameters is derived by a straight- 
forward modification of the derivation for nonrandom parameters. The 
information matrix now consists of two parts: 

J, n JD + Jp. (28% 

The matrix J, is the information matrix defined in (260) and represents 
information obtained from the data. The matrix JP represents the a priori 
information. The elements are 

The correlation matrix of the errors is 

R, n E(a,a,T). (291) 

The diagonal elements represent the mean-square errors and the off- 
diagonal elements are the cross correlations. Three properties follow easily: 

Property No. 1. 
E[a,t2] 2 JTii. (292) 

In other words, the diagonal elements in the inverse of the total informa- 
tion matrix are lower bounds on the corresponding mean-square errors. 

Property No. 2. The matrix 
JT - R,-’ 

is nonnegative definite. This has the same physical interpretation as in the 
nonrandom parameter problem. 

Property No. 3. If JT = R, -l, all of the estimates are efficient. A necessary 
and sufficient condition for this to be true is that paI.(AIR) be Gaussian 
for all R. This will be true if J, is constant. [Modify (261), (228)]. 
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A special case of interest occurs when the a priori density is a 
Gaussian density. Then 

J P = ly, 

Theory 85 

Kth-order 

(293) 

where A, is the covariance matrix of the random parameters. 
An even simpler case arises when the variables are independent Gaussian 

variables. Then 

J Pij ’ 2 hj9 =- 
% 

(294) 

Under these conditions only the diagonal 
a priori information. 

Results similar to Properties 3 to 6 for 
derived for the random parameter case. 

terms of J, are affected by the 

nonrandom parameters can be 

2.4.4 Summary of Estimation Theory 

In this section we developed the estimation theory results that we shall 
need for the problems of interest. We began our discussion with Bayes 
estimation of random parameters. The basic quantities needed in the 
model were the a priori density p,(A), the probabilistic mapping to the 
observation space p,la(RlA), and a cost function C(A,). These quantities 
enabled us to find the risk. The estimate which minimized the risk was 
called a Bayes estimate and the resulting risk, the Bayes risk. Two types 
of Bayes estimate, the MMSE estimate (which was the mean of the a 
posteriori density) and the MAP estimate (the mode of the a posteriori 
density), were emphasized. In Properties 1 and 2 (pp. 60-61) we saw that 
the conditional mean was the Bayes estimate for a large class of cost 
functions when certain conditions on the cost function and a posteriori 
density were satisfied. 

Turning to nonrandom parameter estimation, we introduced the idea 
of bias and variance as two separate error measures. The Cramer-Rao 
inequality provided a bound on the variance of any unbiased estimate. 
Whenever an efficient estimate existed, the maximum likelihood estimation 
procedure gave this estimate. This property of the ML estimate, coupled 
with its asymptotic properties, is the basis for our emphasis on ML 
estimates. 

The extension to multiple parameter estimation involved no new con- 
cepts. Most of the properties were just multidimensional extensions of the 
corresponding scalar result. 

It is important to emphasize the close relationship between detection and 
estimation theory. Both theories are based on a likelihood function or 
likelihood ratio, which, in turn, is derived from the probabilistic transition 
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mechanism. As we proceed to more difficult problems, we shall find that 
a large part of the work is the manipulation of this transition mechanism. 
In many cases the mechanism will not depend on whether the problem is 
one of detection or estimation. Thus the difficult part of the problem will 
be applicable to either problem. This close relationship will become even 
more obvious as we proceed. We now return to the detection theory 
problem and consider a more general model. 

2.5 COMPOSITE HYPOTHESES 

In Sections 2.2 and 2.3 we confined our discussion to the decision 
problem in which the hypotheses were simple. We now extend our discus- 
sion to the case in which the hypotheses are composite. The term composite 
is most easily explained by a simple example. 

Example 1. Under hypothesis 0 the observed variable r is Gaussian with zero mean 
and variance a2. Under hypothesis 1 the observed variable r is Gaussian with mean m 
and variance 02. The value of m can be anywhere in the interval [MO, MJ. Thus 

(295) 

We refer to HI as a composite hypothesis because the parameter value M, which 
characterizes the hypothesis, ranges over a set of values. A model of this decision 
problem is shown in Fig. 2.25~. The output of the source is a parameter value M, 

which we view as a point in a parameter space X. We then define the hypotheses as 
subspaces of X. In this case HO corresponds to the point M = 0 and H1 corresponds 
to the interval [MO, Ml.] We assume that the probability density governing the 
mapping from the parameter space to the observation space, p&RIM), is known 
for all values of M in X. 

The final component is a decision rule that divides the observation space into two 
parts which correspond to the two possible decisions. It is important to observe that 
we are interested solely in making a decision and that the actual value of M is not of 
interest to us. For this reason the parameter M is frequently referred to as an 
“ unwanted” parameter. 

The extension of these ideas to the general composite hypothesis-testing 
problem is straightforward. The model is shown in Fig. 2.2%. The output 
of the source is a set of parameters. We view it as a point in a parameter 
space x and denote it by the vector 8. The hypotheses are subspaces of x. 
(In Fig. 2.25b we have indicated nonoverlapping spaces for convenience.) 
The probability density governing the mapping from the parameter space 
to the observation space is denoted by pJR18) and is assumed to be 
known for all values of 8 in x. Once again, the final component is a 
decision rule. 
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Parameter space x Observation space 

Parameter space x 

Decision 

Fig. 2.25 u. Composite hypothesis testing 
b. Corn posi te hypothesis testing problem. 

problem for single-parameter example. 

To complete the formulation, we must characterize the parameter 8. 
Just as in the parameter estimation case the parameter 8 may be a non- 
random or random variable. If 8 is a random variable with a known 
probability density, the procedure is straightforward. Denoting the prob- 
ability density of 8 on the two hypotheses as pOlH,(81HO) and PerH1(BIH,), 
the likelihood ratio is 

pr,Hl(RI Hl) s 

pr,@~~,Hl)~,,H1(el Hl) Lie 

A(R) n 
’ pr,H,(RIH,) = 

s 

p.le(RIB,H,)P~,H~(elHO~ tie 

(296) 

K 

The reason for this simplicity is that the known probability density on 8 
enables us to reduce the problem to a simple hypothesis-testing problem by 
integrating over 8. We can illustrate this procedure for the model in 
Example 1. 
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Example I (continued.) We assume that the probability density governing m on HI is 

1 
p,,~~(MlHd = - 

d2 
=P GO<M<CQ, (297) 

7r urn 

Then (296) becomes 

A(R) = 
s Q) 1 

VexP -- 
-CO d2 7ra 

Integrating and taking the logarithm of both sides, we obtain 

This result is equivalent to Example 
makes the two problems iden tical. 

H1 202(02 + am2) 
R2 > 

$0 urn 
2 In 7 + k In (1 + $)I- 

2 on p. 29 because the density used in (297) 

HI 
2 rl* (298) HO 

(299) 

As we expected, the test uses only the magnitude of R because the mean 
m has a symmetric probability density. 

For the general case given in (296) the actual calculation may be more 
involved, but the desired procedure is well defined. 

When 8 is a random variable with an unknown density, the best test 
procedure is not clearly specified. One possible approach is a minimax 
test over the unknown density. An alternate approach is to try several 
densities based on any partial knowledge of 8 that is available. In many 
cases the test structure will be insensitive to the detailed behavior of the 
probability density. 

The second case of interest is the case in which 8 is a nonrandom 
variable. Here, just as in the problem of estimating nonrandom variables, 
we shall try a procedure and investigate the results. A first observation is 
that, because 8 has no probability density over which to average, a Bayes 
test is not meaningful. Thus we can devote our time to Neyman-Pearson 
tests. 

We begin our discussion by examining what we call a perfect measure- 
ment bound on the test performance. We illustrate this idea for the problem 
in Example 1. 

Example 2. In this case 8 = M. 
From (295) 

(R - M)2 
2a2 ’ 

(MO 5 M zs M,), 

and (300) 

Ho:PrIm(RIM) = & =P 
na 

(-g2). 

where M is an unknown nonrandom parameter. 
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It is clear that whatever test we design can never be better than a hypothetical test 
in which the receiver first measures A4 perfectly (or, alternately, it is told M) and then 
designs the optimum likelihood ratio test. Thus we can bound the ROC of any test 
by the ROC of this fictitious perfect measurement test. For this example we could use 
the ROC’s in Fig. 2.9a by letting d2 = M2/02. Because we are interested in the 
behavior versus A4, the format in Fig. 2.96 is more useful. This is shown in Fig. 2.26. 
Such a curve is called a power function. It is simply a plot of PD for all values of A4 
(more generally 0) for various values of PF. Because HO = HI for IM = 0, PD = PF. 
The curves in Fig. 2.26 represent a bound on how well any test could do. We now 
want to see how close the actual test performance comes to this bound. 

The best performance we could achieve would be obtained if an actual test’s curves 
equaled the bound for all A4 E x. We call such tests uniformly most powerful (UMP). 
In other words, for a given PF a UMP test has a PD greater than or equal to any 
other test for all A4 E x. The conditions for a UMP test to exist can be seen in Fig. 2.27. 

0.99 

0.98 

I I I I I I 

-4 -2 +2 

M/a - 

Fig. 2.26 Power function for perfect measurement test. 

d-4 
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0.99 

0.98 

+2 +4 

Fig. 2.27 Power functions for various likelihood ratio tests. 

We first construct the perfect measurement bound. We next consider other possible 
tests and their performances. Test A is an ordinary likelihood ratio test designed under 
the assumption that 1M = 1. The first observation is that the power of this test equals 
the ,bound at iM = 1, which follows from the manner in which we constructed the 
bound. For other values of IM the power of test A may or may not equal the bound. 
Similarly, test B is a likelihood ratio test designed under the assumption that IM = 2, 
and test C is a likelihood ratio test designed under the assumption that 1M = - 1. 
In each case their power equals the bound at their design points. (The power functions 
in Fig. 2.27 are drawn to emphasize this and are not quantitatively correct away from 
the design point. The quantitatively correct curves are shown in Fig. 2.29.) They may 
also equal the bound at other points. The conditions for a UMP test are now obvious. 
We must be able to design a complete likelihood ratio test (including the threshold) 
for every A4 E x without knowing 1M. 

The analogous result for the general case follows easily. 
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It is clear that in general the bound can be reached for any particular 8 
simply by designing an ordinary LRT for that particular 0. Now a UMP 
test must be as good as any other test for every 8. This gives us a necessary 
and sufficient condition for its existence. 

Property. A UMP test exists if and only if the likelihood ratio test for every 
0 E x can be completely defined (including threshold) without knowledge 
of 0. 

The “if” part of the property is obvious. The “only if” follows directly 
from our discussion in the preceding paragraph. If there exists some 9 E: x 
for which we cannot find the LRT without knowing 8, we should have to 
use some other test, because we do not know 9. This test will necessarily 
be inferior for that particular 0 to a LRT test designed for that particular 8 
and therefore is not uniformly most powerful. 

Returning to 
likelihood ratio 

and 

our example and using the results 
test is 

Ry y+, 
Ho 

PF= * 
s 

1 
- exp 

Y+ 1/g* 

in Fig. 2.8, we know that the 

if A4 > 0. 

(301) 

(302) 

(The superscript + emphasizes the test assumes A4 > 0. The value of y+ 
negative.) This is shown in Fig. 2.28a. 

Similarly, for the case in which M < 0 the likelihood ratio test is 

Ryy-, 
HI 

where 

PF = s 
1 ‘- e exp 

42 
M < Oa 

--Q) 7ra 

may be 

(303) 

(304) 

This is shown in Fig. 2.286. We see that the threshold is just the negative of the 
threshold for M > 0. This reversal is done to get the largest portion of prIHI(RIH1) 
inside the HI region (and therefore maximize PO). 

Thus, with respect to Example 1, we draw the following conclusions: 

1. I f  M can take on only nonnegative values (i.e., MO 2 0), a UMP test exists 
[use (301)]. 

2. I f  M can take on only nonpositive values (i.e., Ml ,( 0), a UMP test exists [use 
(303)l l 

3. I f  M can take on both negative and positive values (i.e., MO < 0 and Ml > 0), 
then a UMP test does not exist. In Fig. 2.29 we show the power function for a likeli- 
hood ratio test designed under the assumption that M was positive. For negative 
values of M, PO is less than PF because the threshold is on the wrong side. 

Whenever a UMP test exists, we use it, and the test works as well as if 
we knew 8. A more difficult problem is presented when a UMP test does 
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M 7’ 0 

Fig. 2.28 Effect of sign of M: [a] threshold for positive M; [b] threshold for negative M. 

not exist. The next step is to discuss other possible tests for the cases in 
which a UMP test does not exist. We confine our discussion to one 
possible test procedure. Others are contained in various statistics texts 
(e.g., Lehmann [ 171) but seem to be less appropriate for the physical 
problems of interest in the sequel. 

The perfect measurement bound suggests that a logical procedure is to 
estimate 8 assuming H1 is true, then estimate 8 assuming Ho is true, and 
use these estimates in a likelihood ratio test as if they were correct. If the 
maximum likelihood estimates discussed on p. 65 are used, the result is 
called a generalized likelihood ratio test. Specifically, 

ITlaX Pr,e,(RI h> H1 
A,(R) = ” 5 Y:, maxpr,e,@)%) Ho (305) 

00 

where 8, ranges over all 8 in H1 and 8, ranges over all 8 in Ho. In other 
words, we make a ML estimate of &, assuming that H1 is true. We then 
evaluate p,,81(R181) for 8, = & and use this value in the numerator. A 
similar procedure gives the denominator. 

A simple example of a generalized LRT is obtained by using a slightly 
modified version of Example 1. 
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Fig. 2.29 Performance of LRT assuming positive M. 

Example 2. The basic probabilities are the same as in Example 1. Once again, 8 = M. 
Instead of one, we have N independent observations, which we denote by the vector 
R. The probability densities are, 

(Ri - M)2 
2u2 

9 

(306) 
P~~,H~(RIM,HO) = fi -+ 

f=l 7ru 

In this example HI is a composite hypothesis and HO, a simple hypothesis. From (198) 

fi, = $ 2 RI. (307) 
f=l 
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Then 
N 

I-I 
1 

eexp - J 
[Ri - (l/N) 1% 1 &I2 

A,(R) =‘=l d2 ““N 

I-I 

; 2cT2 > Hl 

>< Ye 
- exp (- Ri2/2u2) Ho 

:=1 1/2 7ra 

(308) 

Canceling common terms and taking the logarithm, we have 

(309) 

The left side of (309) is always greater than or equal to zero. Thus, y  can always be 
chosen greater than or equal to one. Therefore, an equivalent test is 

(j&~1Rt)'~~12 (310) 

where y1 2 0. Equivalently, 

(311) 

The power function of this test follows easily. The variable z has a variance equal 

Fig. 2.30 Errors in generalized likelihood ratio test: [a] PF calculation; [6] PD 

calculation. 
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to 02. On HO its mean is zero and on HI its mean is i&z The densities are sketched 
in Fig. 2.30. 

pF = 
s 

-yl 
--Qo $=$XP (-&) dz + 1: -&exp (-&) dZ 

= 2 erfc, f  
0 

and 

h(M) = -” 1 exp 
s 

(2 - M2/??)2 - 
--Q) d2 7ru 

202 
I 

dZ 

0.99 

0.98 

- Perfect measurement 

-- Generalized LRT 

2 4 6 8 

(312) 

Fig. 2.31 Power function: generalized likelihood ratio tests. 



96 2.6 The General Gaussian Problem 

The resulting power function is plotted in Fig. 2.3 1. The perfect measure- 
ment bound is shown for comparison purposes. As we would expect from 
our discussion of ML estimates, the difference approaches zero as 
2/z iv/a --, 00. 

Just as there are cases in which the ML estimates give poor results, there 
are others in which the generalized likelihood ratio test may give bad 
results. In these cases we must look for other test procedures. Fortunately, 
in most of the physical problems of interest to us either a UMP test will 
exist or a generalized likelihood ratio test will give satisfactory results. 

2.6 THE GENERAL GAUSSIAN PROBLEM 

All of our discussion up to this point has dealt with arbitrary probability 
densities. In the binary detection case ~rlH,(Rl H1) and p,~HO(RIE?‘~) were 
not constrained to have any particular form. Similarly, in the estimation 

problem Pr,.(RlA) was not constrained. In the classical case, constraints 
are not particularly necessary. When we begin our discussion of the wave- 
form problem, we shall find that most of our discussions concentrate on 
problems in which the conditional density of r is Gaussian. We discuss 
this class of problem in detail in this section. The material in this section 
and the problems associated with it lay the groundwork for many of the 
results in the sequel. We begin by defining a Gaussian random vector and 
the general Gaussian problem. 

Definition. A set of random variables rl, y2, . . . , rN are 
Gaussian if all their linear combinations are Gaussian 

defined 
random 

as jointly 
variables. 

Definition. A vector r is a Gaussian random vector when its components 

r1, r2,. l ‘9 
TN are jointly Gaussian random variables. 

In other words, if 
N 

z = 2 g r. * GTr it- (314) 
f=l 

is a Gaussian random variable for all finite GT, then r is a Gaussian vector. 
If we define 

E(r) =m (315) 
and 

Cov (r) = E[(r - m)(rT - mT)] & A, (316) 

then (3 14) implies that the characteristic function of r is 

A&(J’v) * E[eivTr] = exp ( +jvTm - *vTh) - 



Likelihood Ratio Test 97 

and assuming A is nonsingular the probability density of r is 

p,(R) = [(27~)~~~IR(1/2]-~ exp [-+(RT - mT)Awl(R - m)]. (318) 

The proof is straightforward (e.g., Problem 2.6.20). 

Definition. A hypothesis testing problem is called a general Gaussian 
problem if prIHi(RIHi) is a Gaussian density on all hypotheses. An 
estimation problem is called a general Gaussian problem if p,,.(RIA) has 
a Gaussian density for all A. 

We discuss the binary hypothesis testing version of the general Gaussian .I 
problem in detail in the text. The M-hypothesis and the estimation 
problems are developed in the problems. The basic model for the binary 
detection problem is straightforward. We assume that the observation 
space is N-dimensional. Points in the space are denoted bv the N-dimen- 
sional vector (or column matrix) r: 

r = 

- 
r1 

r2 
. . . 

.rN. 

. (319) 

Under the first hypothesis HI we assume that r is a Gaussian random 
vector, which is completely specified by its mean vector and covariance 
matrix. We denote these qu 

m=lH,l = 

The covariance matrix is 

ntities as 

- ml I HI) 

E(r2IH1) 

-E(rNIHl) 1 n ml1 

m12 
. . . 

?N- 

A ml. (320) 

K1 4 E[(r - m,)(rT - mlT)IHl] 

/ 

K K K 
l ** 1 11 1 12 1 13 K - 1 1N 

K 1 21 K l . 1 22 
= 

. . . . . . . . . 

K 1 Nl K 1 NN. 

We define the inverse of K1 as Ql 

Ql * Krl - 

QA = KIQl = I, 

. (321) 

(322) 
(323) 
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where I is the identity matrix (ones on the diagonal and zeroes elsewhere). 
Using (320), (321), (322), and (318), we may write the probability density 
of r on HI, 

pr,Hl(~~~l) = [(~T)~/~IK,I s1-l exp [ -+(RT - d’)QdR - ml)]. (324) 

Going through a similar set of definitions for Ho, we obtain the prob- 
ability density 

prlHo(RI Ho) = [(27~)~‘~lK~l”] - l exp [ - +(RT - moT)Qo(R - mdl. (32% 
Using the definition in (13), the likelihood ratio test follows easily: 

A(R) h 
prlH1(RIH1) IKolS exp [-+(RT - mC’)Q@ - m,)l H1 
~,,H,(R~Ho) = lKIIG exp [-+(RT - moT)Qo(R - mo)lB ‘* 

(326) 
Taking logarithms, we obtain 

HR T  - moT) Q,(R - m,) - +(RT - m?‘) QdR - ml) 

2 lnr) + +In IK,I - +ln IKol 4 Y** (327) 
Ho 

We see that the test consists of finding the difference 
forms. The result in (327) is basic to many of our 
this reason we treat various cases of the general 
some detail. We begin with the simplest. 

2.6.1 Equal Covariance Matrices 

The first special case of interest is the one in 
matrices on the two hypotheses are equal, 

K, = K. n K, 

but the means are different. 
Denote the inverse as Q: 

Q = K-? 

between two quadratic 
later discussions. For 
Gaussian problem in 

which the covariance 

(328) 

(329 
Substituting into (327), multiplying the matrices, canceling common 

terms, and using the symmetry of Q, we have 

Hl 
hT - moT)QR $ In 7 + +(m,*Qm, - moTQmo) ii yi. (330) 

Ho 

We can simplify this expression by defining a vector corresponding to the 
difference in the mean value vectors on the two hypotheses: 

Am A m, - m,. (331) 
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Then (327) becomes 
I 

I(R) * Am*QR >< y; - 
HQ 

or, equivalently, 

The quantity on the left is a scalar Gaussian random variable, for it was 
obtained by a linear transformation of jointly Gaussian random variables. 
Therefore, as we discussed in Example 1 on pp. 36-38, we can completely 
characterize the performance of the test by the quantity d2. In that 
example, we defined d as the distance between the means on the two 
hypothesis when the variance was normalized to equal one. An identical 
definition is, 

Substituting (320) into the definition of I, we have 

E(w,) = AmrQml 
and 

EU I Ho) = dmTQmO. 

Using (332), (333), and (336) we have 

var [I I &I = E{[AmTQ(R - m,)][(RT - mOT)Q Am]}. 

Using (321) to evaluate the expectation and then (323), we have 

var [I I HOI = Am’Q Am. 

Substituting (335), (336), and (338) into (334), we obtain 

(1. 

(334) 

(i35) 

(336) 

(337) 

(338) 

(339) 

Thus the performance for the equal covariance Gaussian case is com- 
pletely determined by the quadratic form in (339). We now interpret it for 
some cases of interest. 

Case 1. Independent Components with Equal Variance. Each rr has the same 
variance o2 and is statistically independent. Thus 

and 
K = 0~1 W) 

Q = $1. (341) 



100 2.6 The General Gaussian Problem 

Substituting (341) into (339), we obtain 

or 

d2 
1 1 1 

= AmTSIAm =sAmThm = o2 lAmI (342) 

II 

(343) 

We see that d corresponds to the distance between the two mean-value 
vectors divided by the standard deviation of Ri. This is shown in i’ig. 2.32. 
In (332) we see that 

I 
1 =- o2 AmTR. (344) 

Thus the sufficient statistic is just the dot (or scalar) product of the observed 
vector R and the mean difference vector Am. 

Case 2. Independent Components with Unequal Variances. Here the ri are 
statistically independent but have unequal variances. Thus 

and 

K= 

Q = 

al2 0‘ 
a22 . . . 

.O DN2. 

- 1 
2 
*1 

0 

1 
2 
(72 

I  

0 

1 
2 
ON 

(345) 

(346) 

Substituting into (339) and performing the multiplication, we have 

d2 $‘A > mi 2 
= -. 

(347) 
f=l *i 

2 

Now the various difference components contribute to d2 with weighting 
that is inversely proportional to the variance along that coordinate. We 
can also interpret the result as distance in a new coordinate system. 
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Let 

1 Am1- 
Ol 

1 Am, 
Am = 02 

i- 

. . . 

1 
Am, 

ON . 
and 

1 
R; = - Ri. 

*i 

101 

(348) 

(349) 

This transformation changes the scale on each axis so that the variances 
are all equal to one. We see that d corresponds exactly to the difference 
vector in this “scaled ” coordinate system. 

The sufficient statistic is 

In the scaled coordinate system it is the dot product of the two vectors 
I 

I(R 1 = Am’TR’. (351) 

Case 3. This is the general case. A satisfactory answer for I and d is already 
available in (332) and (339): 

I(R) = Am*QR (352) 
and 

d2 = Am*Q Am. (353) 

Fig. 2.32 Mean-value vectors. 
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Valuable insight into the important features of the problem can be 
gained by looking at it in a different manner. 

The key to the simplicity in Cases 1 and 2 is the diagonal covariance 
matrix. This suggests that we try to represent R in a new coordinate 
system in which the components are statistically independent random 
variables. In Fig. 2.33a we show the observation in the original coordinate 
system. In Fig. 2.333 we show a new set of coordinate axes, which we 
denote by the orthogonal unit vectors &, &, . . . , +N: 

We denote the observation in the new coordinate system by r’. We want to 
choose the orientation of the new system so that the components r; and r; 
are uncorrelated (and therefore statistically independent, for they are 
Gaussian) for all i # j. In other words, 

where 

and 

EK r; - mxr; - Ml = u&j, (355) 

rn; 4 E(r;) (356) 

Var [r;] Li hi. (357) 

Now the components of r’ can be expressed simply in terms 
product of the original vector r and the various unit vectors 

of the dot 

Using (358) in (355), we obtain 

E[+*‘(r - m)(rT - mT)+j] = A&. (359) 

Fig. 2.33 Coordinate systems : [a] original coordinate 
system. 

system; [b] new coordinate 
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The expectation of the random part is just K [see (321)]. Therefore (359) 
becomes 

h,8*j = hTK+j* (360) 
This will be satisfied if and only if 

w  i j= w  
. 

P for J = 1,2 ,..., N. (361) 
To check the “if” part of this result, substitute (361) into (360): 

v4j = +rThj+j = )(J8fj9 (362) 
where the right equality follows from (354). The “only if” part follows 
using a simple proof by contradiction. Now (361) can be written with thej 
subscript suppressed : 

pziq (363) 

We see that the question of finding the proper coordinate system reduces 
to the question of whether we can find N solutions to (363) that satisfy 
(354). 

It is instructive to write (363) out in detail. Each + is a vector with N 
components : 

4 1- 

4 2 

+ = 4 3 
. . . 

+ N- 

Substituting (364) into (363), we have 

. 

Kllh + K12+2 +-•+ KIN+N = A+l 

K2,#l + K2242 +*-+ K2Nd,v = A+2 
. . (365) 

KNl+l + KN242 +*-+ &IV+, = A#, 

We see that (365) corresponds to a set of N homogeneous simultaneous 
equati0n.s. A nontrivial solution will exist if and only if the determinant 
of the coefficient matrix is zero. In other words, if and only if 

IK - hII = 

&1 - A i Km i K13 
I I 

----- ----.----------‘----- . 

K21 i K22 - h i K23 
I I . -------------------------- 

K31 [K32 i**. 
I I . ------------------- 

. . . . . . 

I  

I  .  .  .  
I  

2 -  

I  

--------- , 
i KNN - A 

= . 0 (366) 



104 2.6 The General Gaussian Problem 

We see that this is an Nth-order polynomial in A. The N roots, denoted by 

Al, A29 l .  ‘9 
A,, are called the eigenvalues of the covariance matrix K. It can 

be shown that the following properties are true (e.g., [ 161 or [ 1 S]) : 

1. Because K is symmetric, the eigenvalues are real. 
2. Because K is a covariance matrix, the eigenvalues are nonnegative. 

(Otherwise we would have random variables with negative variances.) 

For each hi we can find a solution +i to (363). Because there is an 
arbitrary constant associated with each solution to (363), we may choose 
the +i to have unit length 

+iT+i = 1. (367) 

These solutions are called the normalized eigenvectors of K. Two other 
properties may also be shown for symmetric matrices. 

3. If the roots hi are distinct, the corresponding eigenvectors are 
orthogonal. 

4. If a particular root Xj is of multiplicity M, the M associated eigen- 
vectors are linearly independent. They can be chosen to be orthonormal. 

We have now described a coordinate system in which the observations 
are statistically independent. The mean difference vector can be expressed 
as 

Am; = +lT Am 
Am', = +2T Am 

. . w9 . 
Am; = eNT Am 

or in r notation 

+ T- 
1 

-s-w. 

+ 
T  

Am' = -_"_. 
. . . 

+ 
T  

N - 

AmnWAm. (369 

The resulting sufficient statistic in the new coordinate system is 

and d2 is 

(370) 

(371) 
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The derivation leading to (371) has been somewhat involved, but the 
result is of fundamental importance, for it demonstrates that there always 
exists a coordinate system in which the random variables are uncorrelated 
and that the new system is related to the old system by a linear transforma- 
tion. To illustrate the technique we consider a simple example. 

Example. For simplicity we let N = 2 and m. = 0. Let 

K= 
1 P [ 1 P 1 

and ml1 
ml = [ 1 . 

ml2 

(372) 

(373) 

To find the eigenvalues we solve 
1-A p 

= 0 
p l-h 

or 
(1 - A) 2 - p2 = 0. 

Solving, 
Al = 1 + P, 
A2 = 1 - p. 

(374) 

(375) 

(376) 

To find +l we substitute Al into (365), 

Solving, we obtain 

Normalizing gives 

Similarly, 
I . 

The old and new axes are shown in Fig. 2.34. The transformation is 

1 
+L 

I I 1 
- I -- 

42 I 
I 43 . 

(379) 

ww 

(381) 
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f 
Observation 

Fig. 2.34 Rotation of axes. 

R’, = R1 - R2, 
a (382) 

The sufficient statistic is obtained by using (382) in (370), 

I(R,) = 1 l+ p(R1 + &)(2m11 + ml2) + 1 1 (RI - Rdt.711 - md 
(383) 

-P 
and d2 is 

d2 = (ml1 + m12j2 +( 
ml1 - m1212 (4 d2 M2)2 P. 

2(1 + P) W - P) =(1+p)+(1 -p) (384) 

To illustrate a typical application in which the transformation is important we 
consider a simple optimization problem. The length of the mean vector is constrained, 

I I 
2 ml = 1. (385) 

We want to choose m 11 and ml2 to maximize d2. Because our transformation is a 
rotation, it preserves lengths 

I I ml 
/2= 1. (386) 

Looking at (384), we obtain the solution by inspection: 

If  p > 0, choose rnil = 0 and rni2 = 1. 

If  p < 0, choose rnil = 1 and rni2 = 0. 

If P = 0, all vectors satisfying (385) give the same d2. 
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We see that this corresponds to choosing the mean-value vector to be equal to the 
eigenvector with the smallest eigenvalue. This result can be easily extended to N 
dimensions. 

The result in this example is characteristic of a wide class of optimization 
problems in which the solution corresponds to an eigenvector (or the 
waveform analog to it). 

In this section, we have demonstrated that when the covariance matrices 
on the two hypotheses are equal the sufficient statistic Z(R) is a Gaussian 
random variable obtained by a linear transformation of R. The perform- 
ance for any threshold setting is determined by using the value of d2 given 
by (339) on the ROC in Fig. 2.9. Because the performance improves 
monotonically with increasing d2, we can use any freedom in the param- 
eters to maximize d2 without considering the ROC explicitly. 

2.6.2 Equal Mean Vectors 

In the second special case of interest 
hypotheses are equal. In other words, 

the mean-value vectors on the two 

ml = m, 4 m. (387) 

Substituting (387) into (327), we have 
Hl 

+(R T  IK I - mT)(Qo - Q,)(R - m) >< In r) + -$ In 1 = y’. 
IK I 

(388) Ho 0 

Because the mean-value vectors contain no information that will tell 
us which hypothesis is true, the likelihood test subtracts them from the 
received vector. Therefore, without loss of generality, we may assume 
that m = 0. 

We denote the difference of the inverse matrices as AQ: 

AQ 4 Qo - Qle (389) 

The likelihood ratio test may be written as 

Hl 
I(R) * RT AQR 5 2~” n y’. - 

Ho 
(390) 

Note that f(R) is the dot product of two Gaussian vectors, RT and AQR. 
Thus, Z(R) is not a Gaussian random variable. 

We now consider the behavior of this test for some interesting special 
cases. 

Case 1. Diagonal Covariance Matrix on Ho : Equal Variances. Here the 
Ri on Ho are statistically independent variables with equal variances: 

K. = ~~~1. (39~) 
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We shall see later that (391) corresponds to the physical situation in 
which there is “noise” only on Ho. The following notation is convenient: 

rr = nf, Ho* VW 

On HI the rf contain the same variable as on Ho, plus additional signal 
components that may be correlated: 

rr = sf + nf, Hl, 

K1 = KS + on21, 
(393) 

where the matrix K, represents the covariance matrix of the signal com- 
ponents. Then 

Q 0 l I =- 
On 

2 (394) 

and 

Ql=$(I+-$K,)-l. 

It is convenient to write (395) as 

Q 1 = 
1 [I - HI, 
On 

(396) 
which implies 

H = (On21 + KS)- ‘KS = K,(an21 + I(,)- ’ = an2 Qo - Q1 = an2 AQ. (397) 

The H matrix has an important interpretation which we shall develop 
later. We take the first expression in (397) as its definition. Substituting 
(397) into (389) and the result into (390), we have 

1 HI 
I(R) = 2 RTHR $ y’. 

*n Ho 
(398) I 

Several subcases are important. 

Case 1A. Uncorrelated, Identically Distributed Signal Components. In this 
case the signal components sf are independent variables with identical 
variances : 

K, = 0~~1. (399 
Then 

H = (an21 + os21)- ‘o~~I, (400) 
or 

H = 
*n 

2 “;’ 
*s 

2 I W) 
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and 
1 2 

I(R) 
=S =- 

On 2 On2 + OS2 
RTR = 1 OS2 3 R 2. 

On On 2+oS2i=1 * 
(402) 

The constant can be incorporated in the threshold to give 

I(R) L! 2 Rf2 7 y”. 
i= 1 Ho 

(403) 

We now calculate the performance of the test. On both hypotheses Z(R) 
is the sum of the squares of N Gaussian variables. The difference in the 
hypotheses is in the variance of the Gaussian variables. For simplicity, we 
shall assume that IV is an even integer. 

To find pi I ,,(Ll&)) we observe that the characteristic function of each 
Ri2 is 

ejvRi2 I 
dT 

e-Ri2/2Un2 dR 
i 

7T On 

Because of the independence of the variables, A41 IHo can be written as 

a product. Therefore 

Ml 1 Ho(ju) = (1 - 2jvon2)-N’2e (405) 

Taking the inverse transform, we obtain pI I Ho(LI &) : 

plIHo(Ll&) = LN’2-1e-L’;2, 
2N’2crnNr 0 - 

L r 0, 

2 
= 0, L < 0, (406) 

which is familiar as the x2 (chi-square) density function with N degrees of 
freedom. It is tabulated in several references (e.g., [19] or [3]). For N = 2 
it is easy to check that it is the simple exponential on p. 41. Similarly, 

Pl,H1(LiHd = 

~Nl2 - fe - L/20 1’ 

L 2 0, 

where q2 & q2 + on2. 
The expressions for PD and PF are, 

and 

pD = 
1 

O” [2N12a,Nr(N/2)]-1LN/2-le-L/2612 dL (408) Y” 

& = 
s 

Q) [2N12~nNr(N/2)]-1LN/2-1e-L/20,2 dL. (409) 
Y” 
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Construction of the ROC requires an evaluation of the two integrals. 
We see that for N = 2 we have the same problem as Example 2 on p. 41 
and (408) and (409) reduce to 

P,=exp -6, 
( ) 1 

P,=exp -&, 
( 1 n 

(410) 

and 
pF = (p# + OS2 k2 1. (411) 

For the general case there are several methods of proceeding. First, let . 
M = N/2 - 1 and y”’ = y”/20n2. Then write 

s Y” 
P==l- 

XM 
o me-” dx ’ (412) 

The integral, called the incomplete Gamma function, has been tabulated 
by Pearson [21] : 

s 

uJM+l 

m4 w A 
xM 

-x dx, (413) 
0 zae 

and 

P, = 1 - 1r 
(414) 

These tables are most useful for P, 2 10B6 and M 5 50. 
In a second approach we integrate by parts M times. The result is 

PF = exp (-r’“) Jo V$. 
. (415) 

For small PF, y”’ is large and we can approximate the series by the last 
few terms, 

pF = +*** l 1 
Furthermore, we can approximate the bracket as (1 - M/y’)-? This 
gives 1” M 

(Y ) e - y”’ 
M!(l - M/y’“)’ 

A similar expression for PD follows in which y”I is replaced by yiu n 
y”/2a12. The approximate expression in (417) is useful for manual calcula- 
tion. In actual practice, we use (415) and calculate the ROC numerically. 
In Fig. 2.35a we have plotted the receiver operating characteristic for some 
representative values of N and os2/an2. 

Two particularly interesting curves are those for N = 8, oS2/gn2 = 1 and 
N = 29 os2/on2 = 4. In both cases the product Nas2/an2 = 8. We see that 
when the desired PF is greater than 0.3, P, is higher if the available “signal 
strength” is divided into more components. This suggests that for each PF 
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and product NoS2/o, 2 there should be an optimum N. In Chapter 4 we 
shall see that this problem corresponds to optimum diversity in com- 
munication systems and the optimum energy per pulse in radar. In Figs. 
2.3% and c we have sketched PM as a function of N for PF = 10e2 and 
lo-*, respectively, and various Nu~~/o,,~ products. We discuss the physical 
implications of these results in Chapter 4. 

Case 1B. Independent Signal Components: Unequal Variances. In this case 
the signal components s1 are independent variables with variances o,,~: 

t 
PD 

K, = (418) 

1.0 I I I 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

,J// Qs?=4 / I 

I ii // / N= 2,' I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.Y 1 

‘F - 

Fig. 2.35 a. Receiver operating characteristic: Gaussian variables with identical 
means and unequal variances on the two hypotheses. 
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Then 

H= 

and 

0.06 

I  

% 
2 

*n 2 + OS12 

OS2 
2 

*n 2 + (7s22 

0 

I(R) 
1 N 

c 
% 

2 HI 
=- 

On2 f=l On2 + a,i2 
Ri2 i y'. 

Ho 

Fig. 2.35 b. PM as a function of N [PF = 10w2]. 

6 8 10 12 16 20 40 
N----t 

64 
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The characteristic function of I(R) follows easily, but the calculation of 
PF and PD is difficult. In Section 2.7 we derive approximations to the 
performance that lead to simpler expressions. 

Case 1C. Arbitrary Signal Components. This is, of course, the general case. 
We revisit it merely to point out that it can always be reduced to Case 1B 
by an orthogonal transformation (see discussion on pp. 102-106). 

1.0 

0.8 

0.6 

0.06 

PM 0.04 

0.006 

4 6 8 10 12 16 20 30 40 64 
N- 

Fig. 2.35 c. PM as a function of IV [PF = lo- 4]. 



1 I4 2.6 The General Gaussian Problem 

Case 2. Symmetric Hypotheses, Uncorrelated Noise. Case 1 was unsym- 
metric because of the noise-only hypothesis. Here we have the following 
hypotheses : 

Hl:ri =Si+ni i= l,...,N 

ni i= N+ 1,...,2N, 
Ho:ri= ni i= l,...,N 

Si+ni i=N+ 1,...,2N, 

(421) 

where the ni are independent variables with variance on2 and the si have a 
covariance matrix K,. Then 

where we have partitioned the 2N x 2N matrices into N x N submatrices. 
Then 

AQ = 

. 
$1; 0 

?l I I I ----- --------------w _ I 
0 i (an21 + KS)-’ 

I I I 

Using (397), we have 

(o,ZI+KJ-‘; () - 
I I ---------------I ----- I 

AQ 

where, as previously defined in (397), H is 

H & (an21 + K,) -lK,. 

If we partition R into two N x 1 matrices, 

then 

HI 
I(R) l2 RITHR1 =- 

On 
- R2THR2 $ y’. 

l (424) 

(425) 

(426) 

(427) 

(428) 

The special cases analogous to IA and 1 B follow easily. 
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Case 2A. Uncorrelated, Identically Distributed Signal Components. Let 

then 
K s = OS21 ; (429) 

If the hypotheses are equally likely and the criterion is minimum Pr(+, 
the threshold 7 in the LRT is unity (see 69). From (388) and (390) we see 
that this will result in y” = 0. This case occurs frequently and leads to a 
simple error calculation. The test then becomes 

I,(R) ,n 5 Ri2 $ r Ri2 ii I,(R). 
i=l HOf=N+l 

(431) 

The probability of error given that H1 is true is the probability that 
I,(R) is greater than ll(R). Because the test is symmetric with respect to 
the two hypotheses, 

Thus 
Pr (4) = + Pr (cIHl) + + Pr +I&) = Pr (+&). (432a) 

Pr (c) = 
s 

ao dLPI, ,H1(LIIH1) 
s 

a Pi0 v&OIHl) dLo* (4326) 
0 =I 

Substituting (406) and (407) in (4326), recalling that N is even, and evalu- 
ating the inner integral, we have 

ao Pr (E) = 
s 

1 
2N’2a,Nr(N/2) 

Ly2 - 1 e - L,l2a,2 

0 

(L1/2crn2y 
k’ I 

dL,. (432~) 
k=O . 

Defining 
*n 

2 2 
a 

On = 
o12 + an2 

= 
Qs2+20n2’ 

(433) 

and integrating, (432~) reduces to 

(1 - 01)‘. W) 

This result is due to Pierce [22]. It is a closed-form expression but it is 
tedious to use. We delay plotting (434) until Section 2.7, in which we derive 
an approximate expression for comparison. 

Case 2B. Uncorrelated Signal Components: Unequal Variances. Now, 

K, = 
*s2 

2 

2 
*sN . 
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It follows easily that 

I(R) c 

N Osi2 R 2 2N a,“,-N 

1 an2 + Q2 
i - c 

f=N+lan2 
R2 

+ +N * I 
2 y’. (436) 

i= H 0 

As in Case lB, the performance is difficult to evaluate. The approxi- 
mations developed in Section 2.7 are also useful for this case. 

2.6.3 Summary 

We have discussed in detail the general Gaussian problem and have 
found that the sufficient statistic was the difference between two quadratic 
forms : 

l(R) = $(R* - moT)Qo(R - m,) - +(RT - m?‘)Ql(R - mJ* (437) 

A particu larly simple special 
atrices on the two hypotheses 

case was the 
were equal. 

one i 
Then 

n which the covariance 

I(R) = + AmTQR, (438) 

and the performance was completely characterized by the quantity d2: 

d2 = dmrQ Am. (439) 

When the covariance matrices are unequal, the implementation of the 
likelihood ratio test is still straightforward but the performance calcula- 
tions are difficult (remember that d2 is no longer applicable because l(R) is 
not Gaussian). In the simplest case of diagonal covariance matrices with 
equal elements, exact error expressions were developed. In the general 
case, exact expressions are possible but are too unwieldy to be useful. 
This inability to obtain tractable performance expressions is the motivation 
for discussion of performance bounds and approximations in the next 
section. 

Before leaving the general Gaussian problem, we should point out that 
similar results can be obtained for the M-hypothesis case and for the 
estimation problem. Some of these results are developed in the problems. 

2.7 PERFORMANCE BOUNDS AND APPROXIMATIONS 

Up to this point we have dealt primarily with problems in which we 
could derive the structure of the optimum receiver and obtain relatively 
simple expressions for the receiver operating characteristic or the error 
probability. 

In many cases of interest the optimum test can be derived but an exact 
performance calculation is impossible. For these cases we must resort to 


