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bounds on the error probabilities or approximate expressions for these 
probabilities. In this section we derive some simple bounds and approxima- 
tions which are useful in many problems of practical importance. The basic 
results, due to Chernoff [28], were extended initially by Shannon [23]. 
They have been further extended by Fano [24], Shannon, Gallager, and 
Berlekamp [25], and Gallager [26] and applied to a problem of interest to 
us by Jacobs [27]. Our approach is based on the last two references. 
Because the latter part of the development is heuristic in nature, the inter- 
ested reader should consult the references given for more careful deriva- 
tions. From the standpoint of use in later sections, we shall not use the 
results until Chapter II-3 (the results are also needed for some of the prob- 
lems in Chapter 4). 

The problem of interest is the general binary hypothesis test outlined in 
Section 2.2. From our results in that section we know that it will reduce to 
a likelihood ratio test. We begin our discussion at this point. 

The 

The 

I ikelihood ratio test is 

I(R) n In A(R) = 

variable I(R) is a random 

(440) 

variable whose probability density 
depends on which hypothesis is true. In Fig. 2.36 we show a typical 

Pl, H#‘iH1) and Pl, H#‘IH,)* 

If the two densities are known, then P, and PD are given by 

(441) 

(442) 

The difficulty is that it is often hard to find PI IHi(LI Hi), and even if it 
can be found it is cumbersome. Typical of this complexity is Case 1A 

Fig. 2.36 Typical densities. 
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on p. 108, in which there are N Gaussian variables with equal variances 
making up the signal. To analyze a given system, the errors may be 
evaluated numerically. On the other hand, if we set out to synthesize a 
system, it is inefficient (if not impossible) to try successive systems and 
evaluate each numerically. Therefore we should like to find some simpler 
approximate expressions for the error probabilities. 

In this section we derive some simple expressions that we shall use in the 
sequel. We first focus our attention on cases in which I(R) is a sum of 
independent random variables. This suggests that its characteristic function 
may be useful, for it will be the product of the individual characteristic 
functions of the &. Similarly, the moment-generating function will be the 
product of individual moment-generating functions. Therefore an approxi- 
mate expression based on one of these functions should be relatively easy 
to evaluate. The first part of our discussion develops bounds on the error 
probabilities in terms of the moment-generating function of I(R). 

In the second part we consider the case in which I(R) is the sum of a 
large number of independent random variables. By the use of the central 
limit theorem we improve on the results obtained in the first part of the 
discussion. 

We begin by deriving a simple upper bound on P, in terms of the 
moment-generating function. The moment-generating function of Z(R) on 
hypothesis Ho is 

where s is a real variable. (The range of s corresponds to those values for 
which the integral exists.) We shall see shortly that it is more useful to 
write 

hH()(S) a exp Me19 (444) 
so that 

p(s) = In 
s 

O” esLPl, H&q &I) ah (445) 
--oo 

We may also express P(S) in terms ofp,, H1 (RI HI) and prl HJRI Ho). Bmme 
I is just a function of r, we can write (443) as 

Then 

(446) 

(447) 
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Using (440), 

O" 
p(s) = In 

1 ( 
Pr,H,@IW s 

PrIH,(Rl~O) a (448) 
--a0 Pr,H,(RIH,) 1 

or 

[pr,,,(RIH,)ls[~r,~,(R~Ho)ll-S dR* (449) 

The function p(s) plays a central role in the succeeding discussion. It is 
now convenient to rewrite the error expressions in terms of a new random 
variable whose mean is in the vicinity of the threshold. The reason for this 
step is that we shall use the central limit theorem in the second part of our 
derivation. It is most effective near the mean of the random variable of 
interest. Consider the simple probability density shown in Fig. 2.37~~. To 
get the new family of densities shown in Figs. 2.37b-d we multiplyp,(X) by 
esx for various values of s (and normalize to obtain a unit area). We see that 
for s > 0 the mean is shifted to the right. For the moment we leave s as a 
parameter. We see that increasing s “tilts” the density more. 

Denoting this new variable as x,, we have 

P&W n 
@Xpl I H() (X I H,) @Xpr I Ho (X I H,) = . 

s 

a0 &J(S) (450) 
esLPl 1 H(-j VI HoI a 

--a0 

Observe that we define X, in terms of its density function, for that is 
what we are interested in. Equation 450 is a general definition. For the 
density shown in Fig. 2.37, the limits would be (-A, A). 

We now find the mean and variance of x,: 

EM = s * XpJX) dX = s ao ~esXP,,,,(~I~o) a 
-“, 

s 

l (451) 
-CO esLP~,Ho(~I~o)~~ -00 

Comparing (451) and (445), we see that 

E(xs) = y ii /i(s). (452) 

Similarly, we find 

Var (x,) = i;(s). (453) 

[Observe that (453) implies that p(s) is convex.] 
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We now rewrite PF in terms of this tilted variable x,: 

PF= c0 
s m PI,H&IHO) &J = 

s 
eb@) - sxpx,( X) dX 

Y Y 

s 

00 
= eLl(S) e - sxpx,( X) dX. (454) 

Y 

We can now find a simple upper bound on PF. For values of s > 0, 

e - -sx < e-sy 9 for X 2 y. W) 

-A 
I 

Y A 
Threshold 

+X 

t 

P,,W) 

so>0 

,X 

Fig. 2.37 Tilted probability densities. 
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Thus 
p, < &“’ -SY 

s 
O” Px,W dX, s > 0. (456) Y 

Clearly the integral is less than one. Thus 

p, ,< err(s)-sr, s 2 0. (457) 

To get the best bound we minimize the right-hand side of (457) with 
respect to s. Differentiating the exponent and setting the result equal to 
zero, we obtain 

P(s) = Y- (458) 

Because p(s) is nonnegative, a solution will exist if 

the left inequality implies that the threshold must be to the right of the 
mean of I on Ho. Assuming that (459) is valid, we have the desired result: 

where s satisfies (458). (We have assumed p(s) exists for the desired s.) 
Equation 461 is commonly referred to as the Chernoff bound [28]. 

Observe that s is chosen so that the mean of the tilted variable x, is at the 
threshold. 

The next step is find a bound on PM, the probability of a miss: 

which we want to express in terms of the tilted variable x,. 
Using an argument identical to that in (88) through (94), 

(462) 

we see that 

Substituting (463) into the right side of (450), we have 

pzlH1(x~ffl) = e”(s)+(l~s’xpx,(x)~ 

Substituting into (462), 

’ PM = eD<S) 
s 

et1 -s)xpx,(X) dX. 
-CO 

For s ,< 1 
et1 -S)X < e<l --S)Y, - for X ,< y. 

Thus 

y PM < eP(S) + (1 -S)Y - 
s 

Px,(W dX -Cl3 

(46% 

(466) 

< @(S>+(l-SIY 
- 9 s 5 1. WV 
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Once again the bound is minimized for 

Y = m W8) 

if a solution exists for s 5 1. Observing that 

lw = VIHJ, (46~) 

we see that this requires the threshold to be to the left of the mean of I 
on H,. 

Combining (461) and (467), we have 

PF 5 exp [CL(s) - 4wI 
OIs<l - 

h-2 5 exp [I44 + (I - G4~)l 
and 

is the threshold that lies between the means of I on the two hypotheses. 
Confining s to [0, I] is not too restrictive because if the threshold is not 
between the means the error probability will be large on one hypothesis 
(greater than one half if the median coincides with the mean). If we are 
modeling some physical system this would usually correspond to un- 
acceptable performance and necessitate a system change. 

As pointed out in [25], the exponents have a simple graphical inter- 
pretation. A typical p(s) is shown in Fig. 2.38. We draw a tangent at the 
point at which h(s) = y. This tangent intersects vertical lines at s = 0 and 
s = 1. The value of the intercept at s = 0 is the exponent in the P, bound. 
The value of the intercept at s = 1 is the exponent in the PM bound. 

w 
bound) 

(exponent in PF bound) 
I 

/ 
I 

Fig. 2.38 Exponents in bounds. 
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For the special case in which the hypotheses are equally likely and the 
error costs are equal we know that y = 0. Therefore to minimize the bound 
we choose that value of s where p(s) = 0. 

The probability of error Pr (E) is 

Pr (E) = +PF + *PM. W) 

Substituting (456) and (467) into (471) and denoting the value s for 
which p(s) = 0 as s,, we have 

0 

Pr (6) 5 *eB(Q 
s 

ao p%,(X) dX + +e”@m) 
1 

Px,W dx, (472) 
0 --a0 

or 

I  pr (4 

5 $+rn) 
l I  ww 

Up to this point we have considered arbitrary binary hypothesis tests. 
The bounds in (470) and (473) are always valid if p(s) exists. In many cases 
of interest I(R) consists of a sum of a large number of independent random 
variables, and we can obtain a simple approximate expression for PF and 
PM that provides a much closer estimate of their actual value than the 
above bounds. The exponent in this expression is the same, but the multi- 
plicative factor will often be appreciably smaller than unity. 

We start the derivation with the expression for PF given in (454). 
Motivated by our result in the bound derivation (458), we choose s so that 

Then (454) becomes 

PF = errts) e-sxpx,(X) dX. 

This can be written as 

s a0 
PF = e CL(s) - siw e + SE(S) - Xl Px,(x) dX 

lh) 

The term outside is just the bound in (461). We now use a central limit 
theorem argument to evaluate the integral. First define a standardized 
variable : 

Substituting (476) into (475), we have 00 
PF = e la) - sciw s e-Sd%) Y  P,(Y) dx 

0 
(477) 
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In many cases the probability density governing r is such that y ap- 
proaches a Gaussian random variable as N (the number of components of 
r) approaches infinity/t A simple case in which this is true is the case in 
which the ri are independent, identically distributed random variables with 
finite means and variances. In such cases, y approaches a zero-mean 
Gaussian random variable with unit variance and the integral in (477) can 
be evaluated by substituting the limiting density. 

s 00 
pcGY l - ,-(y2/2) dy = es2ii(s)12 erf., (~4%)). 

1/2 
(478) 

0 7T 
Then 

P, ” erfc, [stii;(s)]. (479) 

The approximation arises because y is only approximately Gaussian for 

finite N. For values of &(s) > 3 we can approximate erfc&) by the 
upper bound in (71). Using this approximation, 

P,- l d2T) exp MS) - stw9 s2 0. (480) 

It is easy to verify that the approximate expression in (480) can also be 
obtained by letting 

Looking at Fig. 2.39, we see that this is valid when the exponential 
function decreases to a small value while Y K 1. 

In exactly the same manner we obtain 

PM ” 
1 [ 
exp 

(s - 1)2 . . 
p(s) + (1 - s) p(s) + 2 p(s) erfc, [(l - s)z/&)]. 

(482) 
For (1 - s)db(s) > 3, this reduces to 

P, ” 
1 

2/27T( 1 - s)2i;(s) 
exp MS) + (1 - ~&(~)I, s < 1. (483) 

Observe that the exponents in (480) and (483) are identical to those 
obtained by using the Chernoff bound. The central limit theorem argument 
has provided a multiplicative factor that will be significant in many of the 
applications of interest to us. 

f- An excellent discussion is contained in Feller [33], pp. 517-520. 
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i 

P,(Y) 

Fig. 2.39 Behavior of functions. 

For the case in which Pr (E) is the criterion and the hypotheses are 
equally likely we have 

= 3 exp [p&J + ‘$ P&J] erfc, [Sm~ihJl 

+ MP l&l> + 
[ 

(1 
-2 sm)2 ii 

I 
erfc, [(l - S,)+(~J, (484) 

where S, is defined in the statement preceding (472) [i.e., fi&) = 0 = y]* 
When both s,= > 3 and (1 - s,,J~ > 3, this reduces to 

1 
Pr (4 = [2(27+(s,))%,(l - SnJl 

exP tt(Sm)* (485) 

We now consider several examples to illustrate the application of these 
ideas. The first is one in which the exact performance is known. We go 
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through the bounds and approximations to illustrate the manipulations 
involved. 

Example 1. In this example we consider the simple Gaussian problem first introduced 
on p. 27: 

1 (486) 
and 

(487) 

Then, using (449) 

p(s) = In /ya l l l s_mm fi & exp [ -(Rt - m)2S c0fi2(’ - “‘1 dR1. (48&z) 

Because all the integrals are identical, QD 
p(s) = N In s 1 

e exp CR - m)2s + R2(1 - s) - 
--Q) 42 2u2 1 dR . (4886) 

nu 

Integrating we have 

where d2 was defined 

m2 s(s - l)d2 
p(s) = Ns(s- 1)z2” 2 9 (489) 

in the statement after (64). The curve is shown in Fig. 2.40: 

/i(s) = 

(2 - l)d2 
s 2 l (490) 

Using the bounds in (470), we have 

OrsSl. (491) 
(1 - s)2d2 

2 1 

-0.15[ ’ ’ ’ ’ ’ ’ ’ ’ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 2.40 cl,(s) for Gaussian variables with unequal means. 
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Because Z(R) is the sum of Gaussian random variables, the expressions in (479) 
and (482) are exact. Evaluating i;(s), we obtain 

ii(s) = d2. (492) 

Substituting into (479) and (482), we have 

and 
PF = erfc, [sdi;(s)l = erfc, (sd) 

PM = erfc, [( 1 - s) dii(s)3 = erfc, [( 1 - s)d]. 

(493) 

(494) 

These expressions are identical to (64) and (68) (let s = (In T)/d2 + 3). 
An even simpler case is one in which the total probability of error is the criterion. 

Then we choose an s,,, such as &,) = 0. From Fig. 2.40, we see that s,,, = 3. Using 
(484) and (485) we have 

Pr (E) = erfc, (0 2rI (-$)% exp (-f)Y (495) 

where the approximation is very good for d > 6. 

This example is a special case of the binary symmetric hypothesis 
problem in which p(s) is symmetric about s = +. When this is true and the 
criterion is minimum Pr (E), then ~(3) is the important quantity. 

The negative of this quantity is frequently referred to as the Bhatta- 
charyya distance (e.g., [29]). It is important to note that it is the significant 
quantity only when S, = 3. 

In our next example we look at a more interesting case. 

Example 2. This example is Case 1A of the general Gaussian problem described on 
p. 108: 

1 
Pr,I-I,(RIH,) = f&- 

Ri2 exp --2 9 
r =1 ( 1 20, 

Substituting (497) into (499) gives, 

s 
m 

p(s) = N In 
1 sR2 (1 - s)R2 

- 
(42 qsu$ - “) 

--2-- 
-CO IT 201 2Q2 1 dR (498) 

or 

P(S) 
N 

= zln 
[ 

( uo2)9( 012)1 - s 
l sao2 + (1 - s)cQ 1 (49% 

A case that will be of interest in the sequel is 

012 = crn2 + us2, 
Q2 = c7n2. ww 
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Substituting (500) into (499) gives 

!j$$ = ((1 - s)ln (1 + -$) - In [l + (1 - s)$]}= 

This function is shown in Fig. 2.41. 

P(s) = g [ -ln (1 + -$) + 1 + (yj;);s2,an2] 
and 

iv 
[ 

as2/an2 1 
2 

p(s) = - 
’ 2 l+(l - s)(as21an2) 

ww 

(502) 

VW 

By substituting (501), (502), and (503) into (479) and (482) we can plot 
an approximate receiver operating characteristic. This can be compared 
with the exact ROC in Fig. 2.35a to estimate the accuracy of the approxi- 
mation. In Fig. 2.42 we show the comparison for N = 4 and 8, and 
fJs2/on2 = 1. The lines connect the equal threshold points. We see that the 
approximation is good. For larger N the exact and approximate ROC are 
identical for all m-actical purposes. 

I  

0 

-0.1 

- 0.2 

Is - 0.3 
P-L4 
N/2 

- 0.4 

- 0.5 

- 0.6 

- 0.; I I I I 
0.2 0.4 0.6 0.8 

S----f 

Fig. 2.41 p(s) for Gaussian variables with unequal variances. 
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Fig. 2.42 Approximate receiver operating characteristics. 

Example 3. In this exampIe we consider first the simplified version of the symmetric 
hypothesis situation described in Case 2A (p. 115) in which N = 2. 

and 

1 
PwdRWd = (2n)2a12a02 exp (-R’220+,aR’2 - R322T02R42) (504) 

1 
PrIHJww = (2n)2012a02 exp 

RI2 + R22 R32 + R42 

- - 
2q2 2q2 > 

, 
(505) 

Then 
As) = s In un2 + (1 - s) In (an2 + us2) - In (a,2 + c&) 

+ (1 - s) In on2 + s In (an2 + us2) - In [an2 + ~~~(1 - s)] 

= In (1 + $) - In [(l + %J(l + -)I* (507) 

The function p(s) is plotted in Fig. 2.43a. The minimum is at s = +. This is the point 
of interest at which minimum Pr (E) is the criterion. 
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I I I I I I I I I 
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

S- 

Fig. 2.43a p(s) for the binary symmetric hypothesis problem. 

Thus from (473), a bound on the error is, 

(1 + %2/%2) Pr (4 s + (1 + o,2/2a,2)2’ 

The bound in (508) is plotted in Fig. 2.436. 

Example 3A. An interesting extension of Example 3 is the problem in which 

K, = 

(508) 
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I” 0.1 1 10 lo2 lo3 
as2 
2- Qn 

lo4 

Fig. 2.436 Bound on the probability of error (Pr(s)). 

The rf’s are independent variables and their variances are pairwise equal. This is a 
special version of Case 2B on p. 115. We shall find later that it corresponds to a 
physical problem of appreciable interest. 

Because of the independence, p(s) is just the sum of the p(s) for each pair, but each 
pair corresponds to the problem in Example 3. Therefore 

Nl2 

P(S) = 2 ln (1 + 5) - y$Iln{(l + s!$)(I + (1 - s)$,>. (510) 
i=l 

Then 
% 

2 

&k(s) = - 
=si 

2 

an2 + sust2 - an2 + (1 - s)a,,2 I (511) 
and 

% 
4 

=s* 
4 

i;(s) = 
+ Sos*2)2 + [(ha2 + (1 

> 
l (ch2 -  s)oq212 

(512) 

For a minimum probability of error criterion it is obvious from (511) that sm = +. 
Using (485), we have 

Pr (E) ,N 

or 

]-‘exp[zIln(l +$) -2zln(l+&)] (513) 

Pr (6) N (514) 
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For the special case in which the variances are equal 
usi = us2 

and (514) reduces to 
(515) 

Pr (E) 21 J 2 (1 + u,2/u,2)N’2 
a (~,~/a,,~)( 1 + as2/2a,2)N - l* (516) 

Alternately, we can use the approximation given by (484). For this case it reduces to 

Pr (E) N 
[ 

1 + u,2/0,2 
(1 + uS2/2un2)2 3”” =P [p( 1 +?;;:;;on2)2] erfc* [ (yy 1 +“;;$on2)]* 

(517) 

In Fig. 2.44 we have plotted the approximate Pr (c) using (517) and exact Pr (c) 
which was given by (434). We see that the approximation is excellent. 

The principal results of this section were the bounds on PF and PM 
given in (470) and (473) and the approximate error expressions given in 

(47% WO), (482), (483), (484), and (485). These expressions will enable us 
to find performance results for a number of cases of physical interest. 

0.5 

I I I 1 1 I I 1 I I I 

I 0.001 o I I I I I I I 
\\ 

1 10 100 

s- 
n 

Fig. 2.44 Exact and approximate error expressions for the binary symmetric hypothesis 
case. 
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Results for some other cases are given in Yudkin [34] and Goblick [353 
and the problems. In Chapter II-3 we shall study the detection of Gaussian 
signals in Gaussian noise. Suitable extensions of the above bounds and 
approximations will be used to evaluate the performance of the optimum 
processors. 

2.8 SUMMARY 

In this chapter we have derived the essential detection and estimation 
theory results that provide the basis for our work in the remainder of the 
book. 

We began our discussion by considering the simple binary hypothesis 
testing problem. Using either a Bayes or a Neyman-Pearson criterion, we 
were led to a likelihood ratio test, whose performance was described by a 
receiver operating characteristic. Similarly, the M-hypothesis problem led 
to the construction of a set of likelihood ratios. This criterion-invariant 
reduction of the observation to a single number in the binary case or to 
iv-- 1 numbers in the M hypothesis case is the key to our ability to solve 
the detection problem when the observation is a waveform. 

The development of the necessary estimation theory results followed a 
parallel path. Here, the fundamental quantity was a likelihood function. 
As we pointed out in Section 2.4, its construction is closely related to the 
construction of the likelihood ratio, a similarity that will enable us to 
solve many parallel problems by inspection. The composite hypothesis 
testing problem showed further how the two problems were related. 

Our discussion through Section 2.5 was deliberately kept at a general 
level and for that reason forms a broad background of results applicable 
to many areas in addition to those emphasized in the remainder of the 
book. In Section 2.6 we directed our attention to the general Gaussian 
problem, a restriction that enabled us to obtain more specific results than 
were available in the general case. The waveform analog to this general 
Gaussian problem plays the central role in most of the succeeding work. 

The results in the general Gaussian problem illustrated that although we 
can always find the optimum processor the exact performance may be 
difficult to calculate. This difficulty motivated our discussion of error 
bounds and approximations in Section 2.7. These approximations will lead 
us to useful results in several problem areas of practical importance. 

2.9 PROBLEMS 

The problems are divided into sections corresponding to the major 
sections in the chapter. For example, section P2.2 pertains to text material 
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in Section 2.2. In sections in which it is appropriate the problems are 
divided into topical groups. 

As pointed out in the Preface, solutions to individual problems are 
available on request. 

P2.2 Binary Hypothesis Tests 

SIMPLE BINARY TESTS 

Problem 2.2.2. Consider the following binary hypothesis testing problem: 

H1:r =s+n, 
HO:r = n, 

where s and n are independent random variables. 

p,(S) = aesaS s 2 0, 
0 s < 0, 

p,,(N) = bembN N 2 0, 
0 N < 0. 

1. Prove that the likelihood ratio test reduces to 

Ry y. 
Ho 

2. Find y  for the optimum Bayes test as a function of the costs and a priori 
probabilities. 

3. Now assume that we need a Neyman-Pearson test. Find y  as a function of PF, 
where 

PF 4 Pr(say HI IHo is true). 

Problem 2.2.2. The two hypotheses are 

HI :P,@ = ; exP (- IRI> 

Ho:p,(R) = -!- exp 
v5 

1. Find the likelihood ratio A(R). 
2. The test is 

A(R) 7 7. 
Ho 

Compute the decision regions for various values of 7. 

Problem 2.2.3. The random variable x is N(0, a). It is passed through one of two 
nonlinear transformations. 

H,:y = x2, 
H,:y = x3. 

Find the LRT. 

Problem 2.2.4. The random variable x is N(m, 0). It is passed through one of two 
nonlinear transformations. 

H,:y = ex, 
Ho:y = x2. 

Find the LRT. 
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Problem 2.2.5. Consider the following hypothesis-testing problem. There are K 
independent observations. 

HI : Yi is Gaussian, N(0, ul), i = 1, 2, . . . , K, 
HO: ri is Gaussian, N(0, Q), i = 1, 2, . . . , K, 

where u. c ul. 

1. Compute the likelihood ratio. 
2. Assume that the threshold is 7: 

m):; rl* 

2. Compute the threshold y  for the test 

HO 

1 !  Show that a sufficient statistic is Z(R) = Cf= 1 R 4 

i(R)H: y  
H<o 

in terms of 7j, uo, ol. 

3. Define 
PF = Pr (choose HI 

Ph.f = Pr (choose Ho 

Find an expression for PF and PM. 
4. Plot the ROC for K = 1, aI2 = 2, uo2 = 

Ho is true), 
HI is true). 

1. 
5. What is the threshold for the minimax criterion when CM = CF and Coo = Cl1 = O? 

Problem 2.2.6. The observation Y is defined in the following manner: 

r = bml + n:Hl, 
r n = -0, 

where b and n are independent zero-mean Gaussian variables with variances ub2 and 
un2, respectively 

1. Find the LRT and 
2. Draw the ROC. 

draw a block diagram of the optimum processor. 

3. Assume that the two h ypotheses are 
probability of error. What is the Pr(c)? 

equally likely. Use the criterion of mini 

Problem 2.2.7. One of two possible sources supplies the inputs to the simple communi- 
cation channel as shown in the figure. 

Both sources put out either 1 or 0. The numbers on the line are the channel 
transition pro babilities ; that is, 

Pr(a out 1 1 in) = 0.7. 

The source characteristics are 

Source 1: Pr(1) = 0.5, Pr(0) = 0.5 ; 
Source 2: Pr(1) = 0.6, Pr(0) = 0.4. 

Channel 
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To put the problem in familiar notation, define 

0 a false alarm-say source 2 when source 1 is present; 
w detection-say source 2 when source 2 is present. 

1. Compute the ROC of a test that maximizes PO subject to the constraint that 
PF = a. 

2. Describe the test procedure in detail for a = 0.25. 

Problem 2.2.8. The probability densities on the two hypotheses are 

. -OZ < XC W-Hi, i = 0, 1. 

where a0 = 0 and a1 = 1. 

1. Find the LRT. 
2. Plot the ROC. 

Problem 2.2.9. Consider a simple coin tossing problem: 

HI : heads are up, Pr [HII 4 PI, 
Ho: tails are up, Pr [Ho] ii PO < PI. 

N independent tosses of the coin are made. Show that the number of observed 
NH, is a sufficient statistic for makin g a decision between the two hypotheses. 

Problem 2.2.10. A sample 
over the interval T: 

fu nction of a simple Poisson counting process N(t) is observed 

heads, 

hypothesis HI : the mean rate is kl : Pr (HI) = +, 
hypothesis Ho : the mean rate is ko: Pr (Ho) = 9. 

1. Prove that the number of events in the interval T is a “sufficient statistic” to 
choose hypothesis Ho or HI. 

2. Assuming equal costs for the possible errors, derive the appropriate likelihood 
ratio test and the threshold. 

3. Find an expression for the probability of error. 

Problem 2.2.11. Let 

y -Xi9 = 
2 

t=o 

where the xi are statistically independent random variables with a Gaussian density 
N(0, 0). The number of variables in the sum is a random variable with a Poisson 
distribution : 

hk 
Pr(n = k) =Fewh, k = 0, l,.... 

. 

We want to decide between the two hypotheses, 
H1:n ,( 1, 
Ho:n > 1. 

Write an expression for the LRT. 

Problem 2.2.12. Randomized tests. Our basic model of the decision problem in the 
text (p. 24) did not permit randomized decision rules. We can incorporate them by 
assuming that at each point R in 2 we say H, with probability +(R) and say Ho with 
probability 1 - 4(R). The model in the text is equivalent to setting 4(R) = 1 for all 
R in ZI and +(R) = 0 for all R in Zo. 

1. We consider the Bayes criterion first. Write the risk for the above decision model. 
2. Prove that a LRT minimizes the risk and a randomized test is neuer necessary. 
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3. Prove that the risk is constant over the interior of any straight-line segment on 
an ROC. Because straight-line segments are generated by randomized tests, this is an 
alternate proof of the result in Part 2. 

4. Consider the Neyman-Pearson criterion. Prove that the optimum test always 
consists of either 

(i) an ordinary LRT with PF = 01 or 
(ii) a probabilistic mixture of two ordinary likelihood ratio tests constructed as 

follows: Test 1: A(R) “2’ v  gives PF = a +. Test 2: A(R) ? q gives PF = a-, where 
ia- 9 a+] is the smallest interval containing a. +(R) is 0 or 1 except for those R where 
+(R) = 7. (Find +(R) for this set.) 

MATHEMATICAL PROPERTIES 

Problem 2.2.13. The random variable A(R) is defined 
probability density on HI and HO. Prove the following: 

by (13) and has a different 

1. E(A”I HI) = E(A” + ’ 1 HO), 
2. E(AjH,) = 1, 
3. E(AIH,) - E(AIH,) = Var (AI&). 

Problem 2.2.24. Consider the random variable A. In (94) we showed that 

1. Verify this relation by direct calculation ofpAIH1( l ) and p* iHO( *) for the densities 
in Example 1 [p. 27, (19) and (20)]. 

2. On page 37 we saw that the performance of the test in Example 1 was completely 
characterized by d2. Show that 

d2 = In [l + Var (AlHo)]. 

Problem 2.2.15. The function erfc, (X) is defined in (66): 

1. Integrate by parts to establish the bound 

kx(l -+)exp(-$) <erfce(X)<*xexp(-$), X>O. 

2. Generalize part 1 to obtain the asymptotic series 

erfc, (X) = 

The remainder is less than the magnitude of the n + 1 term and is the same sign. 
Hint. Show that the remainder is 

Rn = (-1)““’ 1*3+2n - 1) 
x2n+2 1 8 9 

8 = Iom e+(l +$)-n-” dt < 1. 

3. Assume that X = 3. Calculate a simple bound on the percentage error when 
erfc,(3) is approximated by the first n terms in the asymptotic series. Evaluate this 
percentage error for n = 2, 3,4 and compare the res ults. Repeat for X = 5. 
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Problem 2.2.16. 

1. Prove 

x > 0. 

Hint. Show 

[erfc, (X)]” = Pr(x >, X, y  2 X) < Pr(x2 + y2 2 2X2), 

where x and y  are independent zero-mean Gaussian variables with unit variance. 
2. For what values of X is this bound better than (71)? 

HIGHER DIMENSIONAL DECISION REGIONS 

A simple binary test can always be reduced to a one-dimensional decision region. 
In many cases the results are easier to interpret in two or three dimensions. Some 
typical examples are illustrated in this section. 

Problem 2.2.17. 

HI:P x1 .xZ~~lW~, &I&) = &[exp (-g - $$) + exp (-3 - %)]9 
1 1 

-- < x1,x2 -c 00. 

Ho:p x1 ,X2~~O(& XZIHO) = & exp (-f$ - $$)y -00 < x1,x2 < 00. 
0 

1. Find the LRT. 
2. Write an exact expression for PD and PF. Upper and lower bound PD and PF 

by modifying the region of integration in the exact expression. 

Problem 2.2.28. The joint probability density of the random variables x1 (i = 
192, l ‘9 M) on HI and Ho is 

Xr2 

where 
Pxl&wl) = k$l Pk & exp [ -(xk2;2m)2] fi exp (-S)’ 

i#k 

M 
c pk = 1, 

k=l 

1 
Pxvf()(X IHO) = fi 7 

X2 exp -- 
f=l 7Tu ( 1 2a2 

-00 < xi < GQ. 

1. Find the LRT. 
2. Draw the decision regions for various values of v  in the X1, X2-plane for the 

special case in which M = 2 and p1 = p2 = +. 
3. Find an upper and lower bound to PF and PD by modifying the regions of 

integration. 

Problem 2.2.19. The probability density of rl on the two hypotheses is 

1 
Pr,,Hk(R1:IHd = r 

7T ok 

CR * 
-mkj2 1 ‘= 1,2 ,..., N, 9 

2ak2 ;=0,1. 

The observations are independent. 

1. Find the LRT. Express the test in terms of the following quantities: 

Is = 5 R,2. 
i=l 
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2. Draw the decision regions in the I,&plane for the case in which 

2m0 = ml > 0, 

Problem 2.2.20 (continuation). 

1. Consider the special case 
m. = 0, 

a() = Ul. 

Draw the decision regions and compute the ROC. 

2. Consider the special case 
m0 = ml = 0, 
q2 = q2 + un2, 
00 = on. 

Draw the decision regions. 

Problem 2.2.21. A shell is fired at one of two targets: under HI the point of aim has 
coordinates x1, yl, zl; under Ho it has coordinates x0, yo, zo. The distance of the 
actual landing point from the point of aim is a zero-mean Gaussian variable, N(0, a), 

in each coordinate. The variables are independent. We wish to observe the point of 
impact and guess which hypothesis is true. 

1. Formulate this as a hypothesis-testing problem and compute the likelihood 
ratio. What is the simplest sufficient statistic? Is the ROC in Fig. 2.9~ applicable? 
If so, what value of d2 do we use? 

2. Now include the effect of time. Under Hk the desired explosion time is tk 
(k = 1,2). The distribution of the actual explosion time is 

--oo<r<oo, 

k = 1,2. 

Find the LRT and compute the ROC. 

P2.3 M-Hypothesis Tests 

Problem 2.3.1. 

1. Verify that the M-hypothesis Bayes test always leads to a decision space whose 
dimension is less than or equal to M - 1. 

2. Assume that the coordinates of the decision space are 

AkcR) a 

pr,Hk(RI Hk) p,,Ho(R,Ho)~ k = 1,2,*vM- 1. 

Verify that the decision boundaries are hyperplanes. 

Problem 2.3.2. The formulation of the M-hypothesis problem in the text leads to an 
efficient decision space but loses some of the symmetry. 

1. Starting with (98) prove that an equivalent form of the Bayes test is the 
following : 

Compute 
M-l 

pt 4 2 C*,Pr(H,lR), i=O,l,..., M-l, 
J=O 

and choose the smallest. 
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2. Consider the special cost assignment 

Crt=O, i=O,1,2 ,..., M- 1, 
G, = c, i#j,i,j=O,1,2 ,..., M- 1. 

Show that an equivalent test is the following: 
Compute 

Pr(H*IR), i=O,1,2 ,..., M- 1, 

and choose the largest. 

Problem 2.3.3. The observed random variable is Gaussian on each of five hypotheses. 

1 
PWIJRIH~) = - exp (R - mk12 -oo < R < 00; - 

d2 2u2 
9 

nu k = 1, 2, . . ., 5, 

where 
ml = -2m, 
m2 = -m, 
m3 = 0, 
m4 = m, 
m = 2m. 

The hypotheses are equally likely and the criterion is minimum Pr (6). 

1. Draw the decision regions on the R-axis. 
2. Compute the error probability. 

Problem 2.34. The observed random variable r has a Gaussian density on the three 
hypotheses, 

1 
pr,~~(RlHk) = - 

d2 n =k 

CR - mk)2 - 00 < R < CO 
2uk2 I 

9 
k = 1,2,3, 

where the parameter values on the three hypotheses are, 

HI:ml = 0, 01 = ua, 

H2:m2 = m, U2 = Ua, 
H3:m3=0, u3=ua, (‘Jj3 > ua)* 

Cm > 01, 

The three hypotheses are equally likely and the criterion is minimum Pr (E). 

1. Find the optimum Bayes test. 
2. Draw the decision regions on the R-axis for the special case, 

uf12 = 2ua29 

Qa = m. 

3. Compute the Pr (E) for this special case. 

Problem 2.3.5. The probability density of r on the three hypotheses is 

where 
Ull 

2 = u2p = t7n2, 
Q2 = us2 + un2, U222 = 

2 
an 9 

U132 = On29 U232 = Us2 + Un2. 
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The cost matrix is 

where 0 5 a < 1 and Pr (Hz) = Pr (H3) & p. Define II = RI2 and I2 = R22. 

1. Find the optimum test and indicate the decision regions in the II, 12-plane. 
2. Write an expression for the error probabilities. (Do not evaluate the in 
3. Verify that for a = 0 this problem reduces to 2.2.17. 

Problem 2.3.6. On Hk the observation is a value of a Poisson random variable 

km" Pr(r = n) = Teokm, m = I,2 ,..., M, 
. 

where km = mk. The hypotheses are equally likely and the criterion is minimum Pr (E). 

1. Find the optimum test. 
2. Find a simple expression for the boundaries of the decision regions and indicate 

how you would compute the Pr (E). 

Problem 2.3.7. Assume that the received vector on each of the three hypotheses is 

HO: r = m. + n, 
HI: r = ml + n, 

The mi are known vectors, and the components of n are statistically independent, 
zero-mean Gaussian random variables with variance u2. 

1. Using the results in the text, express the Bayes test in terms of two sufficient 
statistics. 

12 = i: dtri. 
f=l 

Find explicit expressions for cf and di. Is the solution unique? 
2. Sketch the decision regions in the II, 12-plane for the particular cost assignment, 

c 00 = Cl1 = c22 = 0, 
c 12 = C2l = co1 = Cl0 = 3c,, = +czo > 0. 

P2.4 Estimation 

Problem 2.4.1. Let 
BAYES ESTIMATION 

r = ab + n, 

where a, b, and 
ua2, ub2, and on2. 

independent zero-mean Gaussian variables with variances 

1. What is ci,,,? 
2. Is this equivalent to simultaneously finding hmaP, b,,,? 
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3. Now consider the case in which 

r = a + f  bi + II, 
i=l 

where the b1 are independent zero-mean Gaussian variables with variances CQ,,~. 

(a) What is dmaP? 
(b) Is this equivalent to simultaneously finding Bmap, 6l,map? 
(c) Explain intuitively why the answers to part 2 and part 3b are different. 

Problem 2.4.2. The observed random variable is x. We want to estimate the parameter 
A. The probability density of x as a function of h is, 

P,IA(XI~ = heeAX, 
= 0, 

x 2 0, A > 0, 
x < 0. 

The a priori density of h depends on two parameters: n+, le. 

1. 
2. 

does 
3. 

10 9 A < 0. 
Find E(h) and Var (h) before any observations are made. 
Assume that one observation is made. Findp&Al X). What interesting property 
this density possess? Find I,, and E[(l,,- 1\)2]. 
Now assume that n independent observations are made. Denote these n ob- 

servations by the vector x. Verify that 

(1 1 1 n’ 
ph,x(h[X) L! i Un’) e-hl’An’-l 9 A 2 0, 

0, A < 0, 

where 
I’ = 2 + I*, 
n’ = n + n,, 

Find A,, and E[(imS - ;\)“I. 
4. Does ims, = i,,? 

Comment. Reproducing Densities. The reason that the preceding problem was 
simple was that the a priori and a posteriori densities had the same functional form. 
(Only the parameters changed.) In general, 

Po,rbw = 
Pt,a(RI4PaGo 

Pm ’ 

and we say that p,(A) is a reproducing density or a conjugate prior density [with respect 
to the transition density p, I=( RI A)] if the a posteriori density is of the same form as 
p,(A). Because the choice of the a priori density is frequently somewhat arbitrary, it is 
convenient to choose a reproducing density in many cases. The next two problems 
illustrate other reproducing densities of interest. 
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Problem 2.4.3. Let 
r =a+n, 

where n is N(0, u,,). Then 

p,l,(J+O = -!- exp 
(R - A)a 

-- . 
d2 ~ on 2Un2 1 

1. Verify that a conjugate priori density for a is N 

where 
P4IGw = Mm, ~1, 

ml = 
moko2 + R 
(1 + ko2) 

by showing that 

2. Extend this result to N independent observations by verifying that 

where 
p,,r(AIR) = N(mN, uN), 

mN = moko2 + Nl 
N + ko2 ’ 

and 

Observe that the a priori parameter ko2 can be interpreted 
observat ions (fractional observations are allowed). 

as an equivalent number of 

Problem 2.4.4. Consider the observation process 

A% 
Pr,.(RIA) = - (279% 

where m is known and A is the parameter of interest (it is the reciprocal of thevariance). 
We assume that N independent observations are available. 

1. Verify that 
k, 

p&AIL k2) = c(A r’) exp (-3Ak1kd, A 2 0, 
kl, kz > 0, 

(c is a normalizing factor) is a conjugate prior density by showing that 

~arr(AlW = ~tz(AIk;, &I, 
where 

k;: = $ (klka + NW), 
1 

k; = kr + N, 

1 N 
w = N ,;l (RI - d2. 

Note that kl, k2 are simply the parameters in the a priori density which are chosen 
based on our a priori knowledge. 

2. Find hmS. 
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Problem 2.4.5. We make K observations: RI, . . . , RK, where 

The random variable a has 
Gaussian variables N(0, 6J. 

rf = a + nt. 

a Gaussian density N(0, (TV). The nt are independent 

1. Find the MMSE estimate aAm9. 
2. Find the MAP estimate d,,,. 
3. Compute the mean-square error. 
4. Consider an alternate procedure using the same rt. 

(a) Estimate a after each observation using a MMSE criterion. 

This gives a sequence of estimates &(R,), dz(R1, Rz) . . . cij(R1,-. . l Rj) l . + 
&WI, . . .p RK). Denote the corresponding variances as u12, a22, . . . , 0~~. 

(b) Express 8, as a function of 6,-l, uy- 1, and Ri. 
(c) Show that 

1 ‘+i -=- -. 
aj2 c7a2 on2 

Problem 2.4.6. [36]. In this problem we outline the proof of Property 
assumptions a re the following: 

2 on p. 61. The 

(a) The cost function is a symmetric, nondecreasing function. Thus 

C(X) = C(- X) 

which implies 
C(Xl) 2 C(X2) for X1 2 X2 2 0, W.1) 

am dX 2 0 for X > 0. (P.2) 

(b) The a posteriori probability density is symmetric about its conditional mean 
and is nonincreasing. 

0 C lim C(X)p,&XIR) = 0. (P.3) 
X-m 

We use the same notation as in Property 1 on p. 61. Verify the following steps: 

1. The conditional risk using the estimate 6 is 

X@(R) = Ia C(Z)p,,r(Z + d - &sjR) U. W.4) 
-CO 

2. The difference in conditional risks is 

AX. = X(dlR) - X(8,,1R) = 
s 

* C(Z)[p,,r(Z + 6 - &,,IR)p,,r(Z - 6 + &s]R) 
0 

-2Pz,r(ZIWl a* (P*S) 

3. For & > 8,, the integral of the terms in the bracket with respect to Z from 0 to 
Z. is 

s 

I 8-a 
m3[pz,r(Zo + YIR) - ptlr(Zo - YINI dY !i g(Zo) W.6) 

0 

4. Integrate (P.5) by parts to obtain 

AX = C(Z)g(Z) ao - 
I s 

Q) ‘9 g(Z) dZ, 6 > Bms. 
0 0 

(P.7) 

5. Show that the assumptions imply that the first term is zero and the second term 
is nonnegative. 

6. Repeat Steps 3 to 5 with appropriate modifications for B < Bms. 
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7. Observe that these steps prove that 
assumptions. Und .er what conditions wi 

Problem 2.4.7. We make n statistical1 .y independent observat 
mean m and variance a2. Define the sample variance as 

A ams minimizes the Bayes 
11 the Bayes estimate be 

NONRANDOM PARAMETER ESTIMATION 

risk under 
unique? 

ions: rl, r2, . . . , Ye, with 

the above 

V 

Is it an unbiased estimator of the actual variance? 

Problem 2.4.8. We want to estimate a in a binomial distribution by using n observa- 
tions. 

n 
Pr (v events[a) = 

0 
ar(l - a)n-r, r = 0, 1, 2,. . ., n. 

r 

1. Find the ML estimate of a and compute its variance. 
2. Is it efficient? 

Problem 2.4.9. 
1. Does an efficient estimate of the standard deviation u of a zero-mean Gaussian 

density exist? 
2. Does an efficient estimate of the variance a2 of a zero-mean Gaussian density 

exist ? 

Problem 2.4.20 (continuation). The results of Problem 2.4.9 suggest the general 
question. Consider the problem of estimating some function of the parameter A, say, 
f&f). The observed quantity is R and prla(RIA) is known. Assume that A is a nonran- 
dom variable. 

1. What are the conditions for an efficient estimate &) to exist? 
2. What is the lower bound on the variance of the error of any unbiased estimate 

Offi( 
3. Assume that an efficient estimate of fi(A) exists. When can an efficient estimate 

of some other function f2(A) exist? 

Problem 2.4.11. The probability density of r, given A1 and A2 is: 

Pr lq,a2 (RIA~, A,) = (2nA2)% exp -(R 2AAlJ2]; 
[ 2 

that is, Al is the mean and A2 is the variance. 

1. Find the joint ML estimates of Al and A2 by using n independent observations. 
2. Are they biased? 
3. Are they coupled ? 
4. Find the error covariance matrix. 

Problem 2.4.12. We want to transmit two parameters, Al and A2. In a simple attempt 
to achieve a secure communication system we construct two signals to be transmitted 
over separate channels. 

Sl = ~nA1 + xl2A2, 

s2 = x2lAl + ~22A2, 

where xrj, i, j = 1, 2, are known. The received variables are 

rl = sl + nl, 
r2 = s2 + n2. 
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The additive noises are independent, identically distributed, zero-mean 
random variables, N(0, a,). The parameters A1 and AS are nonrandom. 

Gaussian 

1. Are the ML estimates & and & unbiased? 
2. Compute the variance of the ML estimates & and &. 
3. Are the ML estimates efficient? In other words, do they satisfy the Cramer-Rao 

bound with equality? 

Problem 2.4.13. Let 
N 

Y = 2 X*9 
f=l 

where the X[ are independent, zero-mean Gaussian random variables with 
ux2. We observe y. In parts 1 through 4 treat N as a continuous variable. 

variance 

1. Find the maximum likelihood estimate of N. 
2. Is iiml unbiased? 
3. What is the variance of &? 
4. Is fiml efficient? 
5. Discuss qualitatively how you would modify part 1 to take into account that N 

is discrete. 

Problem 2.4.14. We observe a value of the discrete random variable X. 
A’ 

Pr(x = iIA) = TewA, i = 0, 1,2 ,..., 
. 

where A is nonrandom. 

1. What is the lower bound on the variance of any unbiased estimate, 
2. Assuming n independent observations, find an a(x) that is efficient. 

d(x) ? 

Problem 2.4.25. Consider the Cauchy distribution 

px,,(XI A) = (4 + (X - A)211- ‘. 

Assume that we make n independent observations in order to estimate A. 

1. Use the Cramer-Rao inequality to show that the variance of any unbiased 
estimate of A has a variance greater than 2/n. 

2. Is the sample mean a consistent estimate? 
3. We can show that the sample median is asymptotically normal, N(A, +&). 

(See pp. 367-369 of Cramer [9].) What is the asymptotic efficiency of the sample 
median as an estimator? 

Problem 2.4.16. Assume that 

Prl,r2~P(& R2Ip) = 2 
n 

(1 J p2)s exp {- (R12 -2fi':",ij+ R22'}e 

We want to estimate the correlation coefficient p by using n independent observa- 
tions of (&, R2). 

1. Find the equation for the ML estimate 
2. Find a lower bound on the variance of unbiased estimate of p. 

MATHEMATICAL PROPERTIES 

Problem 2.4.17. Consider the biased estimate 6(R) of the nonrandom parameter A. 

E@(R)) = A + B(A). 
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Show that 

Var [d(R)] 1 
(1 + dB(A)/dA)= 

E 

This is the Cramer-Rao inequality for biased estimates. Note that it is a bound on the 
mean-square error. 
Problem 2.4.18. Let prIa(RIA) be the probability density of r, given A. Let h be an 
arbitrary random variable that is independent of r defined so that A + h ranges over 
all possible values of A. Assume that p,,,(H) and p,,,(H) are two arbitrary probability 
densities for h. Assuming that 6(R) is unbiased, we have 

s [d(R) - (A + H)lpr,.(RIA + H) dR = 0. 

Multiplying by ph,(H) and integrating over H, we have 

s dHp,,,(H) 
s [6(R) - (A + H)l~r,a(RlA + H) dR = 0. 

1. Show that 

Var [d(R) - A] >, [El(h) - EzW2 

S( 

(j-pr,a(RlA + H)[Phl(H) - ph,cH)I dHj2 

Prlamo 
dR 

any PhlcH) Ph@ )O . that because 
may write 

for 
we 

this is true for all ph,(H) and ph,(H), 

Var [d(R) - A] >, sup (right-hand side of above equation). 
phl,ph2 

Comment. Observe that this bound does not require any regulari 
Barankin [15] has shown that this is the greatest lower bound. 
Problem 2.4.19 (continuation). We now derive two special cases. 

,ty conditions. 

1. First, let ph,(H) = 6(H). What is the resulting bound? 
2. Second, let ph,(H) = S(H - Ho), where Ho # 0. Show that 

Var [d(R) - A] 2 (inn{& [I”:‘~~!A~)dR - I]})-‘0 

The infimum being over all Ho # 0 such that prl,(RI A) = 0 implies 

pr,.(RlA + Ho) = 0. 
3. Show that the bound given in part 2 is always as good as the Cramer-Rao 

inequality when the latter applies. 

Problem 2.4.20. Let 
a = Lb, 

where L is a nonsingular matrix and a and b are vector random variables. Prove that 

ii map = L&map and 1,, = L&,. 

Problem 2.4.21. An alternate way to derive the Cramer-Rao inequality is developed in 
this problem. First, construct the vector z. 

r 6(R) - A ’ 

1 . 
1. Verify that for unbiased estimates E(z) = 0. 
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2. Assuming that E(z) = 0, the covariance matrix is 

AZ = E(zzT). 
Using the fact that A, is nonnegative definite, derive the Cramer-Rao inequality. 
I f  the equality holds, what does this imply about ]A,1 ? 

Problem 2.4.22. Repeat Problem 2.4.21 for the case in which a is a random variable. 
Define 

6(R) - a 
---------. 

Z = a;nl)r,o(R, A) [ 1 aA 
and proceed as before. 
Problem 2.4.23. Bhattacharyya Bound. Whenever an efficient estimate does not exist, 
we can improve on the Cramer-Rao inequality. In this problem we develop a con- 
ceptually simple but algebraically tedious bound for unbiased estimates of nonrandom 
variables. 

1. Define an (N + 1).dimensional vector, 

c B(R) A - - 
------------------ 

1 ~~r,a(RlA) 
prl.0 &f 
------------------ 

Verify that 

Z ! !  1 ~2PrIctmf~ 
Prla(RIA) aA2 
----------------- 

. . . 
------------------ 

1 ~NPrI.(w) 
-PF,~(RIA) aAN _ 

A, n E(zzT) I 
=, 2’ ’ 1: ’ I 0 . ----w,-------- 
1 

= ; 

-m-m I 
I 3 

0; 
. 1 

What are the elements in j? Is A, nonnegative definite? Assume that j is positive 
definite. When is A, not positive definite? 

2. Verify that the results in part 1 imply 

ac2 > yll. 

This is the Bhattacharyya bound. Under what conditions does the equality hold? 
3. Verify that for N = 1 the Bhattacharyya bound reduces to Cramer-Rao 

inequality. 
4. Does the Bhattacharyya bound always improve as N increases? 

Comment. In part 2 the condition for equality is 
N 

B(R) - A = 2 ci(A) 1 +r,auq4 
i=l pr,.(Rl4 ui l 

This condition could be termed Nth-order efficiency but does not seem to occur in 
many problems of interest. 
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5. Frequently it is easier to work with 

ai ln Pri auq 4 
aA’ l 

Rewrite the elements & in terms of expectations of combinations of these quantities 
for N = 1 and 2. 
Problem 2.4.24 (continuation). Let N = 2 in the preceding problem. 

1. Verify that 
1 S,,2 

a, 22 7+ 
J 11 UL~22 - j122i 

The second term represents the improvement in the bound. 
2. Consider the case in which r consists of iM independent observations with 

identical densities and finite conditional means and variances. Denote the elements of 
j due to 1M observations as x,(M). Show that j&M) = MjIl(l). Derive similar 
relations for .&,(M) and .f22(M). Show that 

Problem 2.4.25. [l l] Generalize the result in Problem 2.4.23 to the case in which we 
are estimating a function of A, say f(A). Assume that the estimate is unbiased. Define 

Z = 

Let 

. 
mv -f(A) - -------------------- 

kI ----!-- ~PFlawo 
~r,a(RlA) 7 

_-------------------- 

k2 ---!-a- ~2Prlawo 
or, aPI 4 aA2 

--------------------- 
. . . 

--------------------. 

k,A aNPr, Cal 4 
_ pr,a(Rl 4 aAN - 

1. Find an expression for &, = E[y2]. Minimize 4, by choosing the ki appropriately. 
2. Using these values of ki, find a bound on Var[d(R) - f(A)]. 
3. Verify that the result in Problem 2.4.23 is obtained by letting f(A) = A in (2). 

Problem 2.4.26. 

1. Generalize the result in Problem 2.4.23 to establish a bound on the mean-square 
error in estimating a random variable. 

2. Verify that the matrix of concern is 

A, = 

‘E(ac2) I 1 i 0 - 
I I “““,“‘----- 

1 [ 
I m--w-- 

0 ; 
&- 
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What are the elements in &? 
3. Find AZ for the special case in which a is N(0, a,). 

MULTIPLE PARAMETERS 

Problem 2.4.27. In (239) we defined the partial derivative matrix VX. 

Verify the following properties. 

1. The matrix A is n x 1 and the matrix B is n x 1. Show that 

V,(A=B) = (V,A=)B + (V,B=)A. 

2. If  the n x 1 matrix B is not a function of x, show that 

Vx(BTx) = B. 

3. Let C be an n x m constant matrix, 

VX(XTC) = c. 
4. VX(XT) = I. 

Problem 2.4.26. A problem that occurs frequently is the differentiation of a quadratic 
form. 

Q = A=(x) J’WO, 

where A(x) is a m x 1 matrix whose elements are a function of x and A is a symmetric 
nonnegative definite m x m matrix. Recall that this implies that we can write 

1. Prove 

A = @iA%* 

VXQ = 2&A=(x)) AA(x) 

2. For the special case 

prove 

3. For the special case 

prove 

A(x) = Bx, 

VxQ = 2B=ABx. 

Q = xTAx, 
V,Q = 2Ax. 

Problem 2.4.29. Go through the details of the proof on p. 83 for arbitrary K. 

Problem 2.4.30. As discussed in (284), we frequently estimate, 

Assume the estimates are unbiased. Derive (286). 

Problem 2.4.31. The cost function is a scalar-valued function of the vector a<, C(a,). 
Assume that it is symmetric and convex, 



Composite Hypotheses 151 

1. C(a,) = C( -a,), 
2. C(bx, + (1 - b)x2) I bC(xl) + (1 - b) C(x,), Orbrl. 

Assume that the a posteriori density is symmetric about its conditional mean. Prove 
that the conditional mean of a minimizes the Bayes risk. 

Problem 2.4.32. Assume that we want to estimate K nonrandom parameters A1, AZ, . . . , 
AK,denoted by A. The probability density prIa(RIA) is known. Consider the biased 
estimates 1(R) in which 

B(a) n 
s 

b%(R) - AJpr,a(RIN dR. 

1. Derive a bound on the mean-square error in estimating Ai. 
2. The error correlation matrix is 

R, Li E[@(R) - A)(QT(R) - AT)] 

Find a matrix Jg such that, Js - R,- l is nonnegative definite. 

MISCELLANEOUS 

Problem 2.4.33. Another method of estimating nonrandom parameters is called the 
method of moments (Pearson 1371). I f  there are k parameters to estimate, the first k 
sample moments are equated to the actual moments (which are functions of the 
parameters of interest). Solving these k equations gives the desired estimates. To 
illustrate this procedure consider the following example. Let 

PxdW) = &) Xh-le-X 
9 x 2 0, 

= 0, x < 0, 

where h is a positive parameter. We have n independent observations of X. 

1. Find a lower bound on the variance of any unbiased estimate. 
2. Denote the method of moments estimate as A,,,,. Show 

and compute E(h,,,,,,) and Var (&,,,,,). 
Comment. In [9] the efficiency of A,, is computed. It is less than 1 and tends to 

zero asn--+oo. 

Problem 2.4.34. Assume that we have n independent observations from a Gaussian 
density N(m, a). Verify that the method of moments estimates of m and a are identical 
to the maximum-likelihood estimates. 

P2.5 Composite Hypotheses 

Problem 2.5.1. Consider the following composite hypothesis testing problem, 

1 
HO:pr(R) = - 

d2 77 *o 
where CQ, is known. 

Hl:p,(R) = ---& 
42 = =1 

where o1 > oo. Assume that we require PF = 10m2. 
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1. Construct an upper bound on the power function by assuming a perfect measure- 
ment scheme coupled with a likelihood ratio test. 

2. Does a uniformly most powerful test exist? 
3. If  the answer to part 2 is negative, construct the power function of a generalized 

likelihood ratio test. 

Problem 2.5.2. Consider the following composite hypothesis testing problem. TWO 
statistically independent observations are received. Denote the observations as R1 and 
Rz. Their probability densities on the two hypotheses are 

1 
Ho :p,(&) = - 

42 7r *o 
where a0 is known, 

i = 1,2, 

1 
i = 1,2, 

where a1 > ao. Assume that we require a PF = a. 

1. Construct an upper bound on the power function by assuming a perfect measure- 
ment scheme coupled with a likelihood ratio test. 

2. Does a uniformly most powerful test exist? 
3. If  the answer to part 2 is negative, construct the power function of a generalized 

likelihood ratio test. 

Problem 2.5.3. The observation consists of a set of values of the random variables, 
rl, r2, l 8 .p YM- 

ri = si + nr, i= 1,2,. ’ ‘9 M, H-1, 
ri = ni, i= 1,2 ,..., M, Ho. 

The si and ni are independent, identically distributed random variables with 
densities w4 4 and N(0, an), respectively, where an is known and a, is unknown. 

1. Does a UMP test exi st ? 
2. I f  the answer to part 1 is ve, find a generalized LRT. 

Problem 2.5.4. The observation consists of a set of values of the random variables 
rl, r2, . . . , f-M9 which we denote by the vector r. Under Ho the ri are statistically 
independent, with densities - 

in which the /tie are known. Under HI the rr are statistically independent, with densities 

1 
PdRi) = 2/2ph,l exP 

Ri2 
( > 

-- 2Ai1 

in which htl > &O for all i. Repeat Problem 2.5.3. 

Problem 2.5.5. Consider the following hypothesis testing problem. TWO statistically 
independent observations are received. Denote the observations R1 and R2. The 
probability densities on the two hypotheses are 

Ho:pl,(Rr) = -& 
42 ma 

i= 1,2, 

1 
Hl :p,,(Ri) = v exp CR i- ml2 -- 

42 I 
i= 1,2, 

na 2a2 

where m can be any nonzero number. Assume that we require PF = a. 
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1. Construct an upper bound on the power function by assuming a perfect measure- 
ment scheme coupled with a likelihood ratio test. 

2. Does a uniformly most powerful test exist? 
3. If  the answer to part 2 is negative, construct the power function of a generalized 

likelihood ratio test. 

Problem 2.5.6. Consider the following hypothesis-testing problem. 

Under HI a nonrandom variable 8 (- 00 < 8 < co) is transmitted. It is multiplied by 
the random variable m. A noise n is added to the result to give Y. Under HO nothing is 
transmitted, and the output is just n. Thus 

H1:r = me + n, 
Ho:r = n. 

The random variables m and n are independent. 

1 
P,(N) = 42 

N2 
-exp -2 9 

fl on ( ) 20, 

p,,,(M) = + 6(M - 1) + 3 6(M + 1). 

1. Does a uniformly most powerful test exist? If it does, describe the test and give 
an expression for its power function? If it does not, indicate why. 

2. Do one of the following: 

(a) If  a UMP test exists for this example, derive a necessary and sufficient 
condition on p,(M) for a UMP test to exist. (The rest of the model is 
unchanged.) 

(b) If  a UMP test does not exist, derive a generalized likelihood ratio test and an 
expression for its power function. 

Problem 2.5.7 (CFAR receivers.) We have N independent observations of the variable 
X. The probability density on Hk is 

1 
- PxiIHk(X(Hk) = eexp 

W md2 
d2 

-a < Xi < Co, 
i= l,2,...N, 

7Tu 
* To2 

> Hk: k = O,l, 
m. = 0. 

The variance u2 is unknown. Define 

11 = 2 xi 
i=l 

(a) Consider the test 
i=l 

HI 
112 >< aI2 

Ho 

Verify that the PF of this test does not depend on a2. (Hint. Use formula in 
Problem 2.4.6.) 
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(b) Find cz as a function of PF. 
(c) Is this a UMP test? 
(d) Consider the particular case in which N = 2 and ml = m. Find PD as a 

function of PF and m/a. Compare your result with Figure 2.9b and see how much 
the lack of knowledge about the variance a2 has decreased the system per- 
formance. 

Comment. Receivers of this type are called CFAR (constant false alarm rate) 
receivers in the radar/sonar literature. 

Problem 2.5.8 (continuation). An alternate approach to the preceding problem would 
be a generalized LRT. 

1. Find the generalized LRT and write an expression for its performance for the 
case in which N = 2 and ml = m. 

2. How would you decide which test to use? 

Problem 2.5.9. Under HO, x is a Poisson variable with a known intensity ko. 

ken Pr(x = 12) = Te%, n = 0,1,2, . . . . 
. 

Under HI, x is a Poisson variable with an unknown intensity kl, where kl > ko. 

1. Does a UMP test exist? 
2. If  a UMP test does not exist, assume that A4 independent observations of x are 

available and construct a generalized LRT. 

Problem 2.5.10. How are the results to Problem 2.5.2 changed if we know that a0 < O, 
and u1 > o, where a, is known. Neither cl0 or ol, however, is known. If  a UMP test 
does not exist, what test procedure (other than a generalized LRT) would be logical? 

P2.6 General Gaussian Problem 
DETECTION 

Problem 2.6.1. The M-hypothesis, general Gaussian problem is 

prIHf(RIHf) = [(2rr)N’21K11%]-1 exp [-+(RT - mrT) Q1(R - mt)], i = 1, 2,. . ., M. 
1. Use the results of Problem 2.3.2 to find the Bayes test for this problem. 
2. For the particular case in which the cost of a correct decision is zero and the 

cost of any wrong decision is equal show that the test reduces to the following: 
Compute 

Z*(R) = In Pi - 3 ln l&l - 3(RT - mT) QdR - mJ 

and choose the largest. 

Problem 2.6.2 (continuation). Consider the special case in which all K1 = u,,~I and 
the hypotheses are equally likely. Use the costs in Part 2 of Problem 2.6.1. 

1. What determines the dimension of the decision space? Draw some typical 
decision spaces to illustrate the various alternatives. 

2. Interpret the processor as a minimum-distance decision rule. 

Problem 2.6.3. Consider the special case in which mi = 0, i = 1, 2, . . ., M, and the 
hypotheses are equally likely. Use the costs in Part 2 of Problem 2.6.1. 

1. Show that the test reduces to the following: 
Compute 

Ir(R) = 
and choose the smallest. 

RTQ,R + In lK1l 
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2. Write an expression for the Pr (E) in terms of pfIH,(LIH,,), where 

Problem 2.6.4. Let 
qB ii x=Bx, 

where x is a Gaussian vector N(0, I$ and B is a symmetric matrix. 

1. Verify that the characteristic function of (IB is 

M,,(jv) 4 E(efvqB) = fi (1 - 2j&)-% 9 
i=l 

where ABr are the eigenvalues of B. 
2. What is pqB(e> when the eigenvalues are equal? 
3. What is the form of Pqn(Q) when N is even and the eigenvalues are pair-wise 

equal but otherwise distinct; that is, 

h 2f-1 = A 2h i = 1, 2,. 
N 

. ., -9 
2 

A2i # A2f9 all i # j. 

Problem 2.6.5. 
1. Modify the result of the preceding problem to include the case in which x is a 

Gaussian vector N(0, Ax), where A, is positive definite. 
. 

2. What 1s MqAx - 1 (jv) ? Does the result have any interesting features? 

Problem 2.6.6. Consider the M-ary hypothesis-testing problem. Each observation is a 
three-dimensional vector. 

HO: r = m. + n, 
HI: c = ml + n, 
Hz: r = m2 + n, 
H3: r = m3 + n, 
m, = +A, 0, B, 
ml = 0, +A, 4 
m, = -4 0, B, 
m, = 0, -A, B. 

The components of the noise vector are independent, identically distributed Gaussian 
variables, N(0, 0). We have K independent observations. Assume a minimum Pr(c) 
criterion and equally-likely hypotheses. Sketch the decision region and compute the 
Pr(e). 

Problem 2.6.7. Consider the following detection problem. Under either hypothesis the 
observation is a two-dimensional vector I. 

Under HI: 

rA [I:] = [::I + [::I =x+n. 

Under Ho: 
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The signal vectors x and y  are known. The length of the signal vector is constrained to 

equal dEunder both hypotheses; that is, 

Xl2 + x22 = E, 
Y12 + ys2 = E. 

The noises are correlated Gaussian variables. 

P~~~~(NI, W = 2n02(11- P2)‘/2 exp (- N12 - 2pNf_Nzp2T N22)m 2u2( 1 

1. Find a sufficient statistic for a likelihood ratio test. Call this statistic I(R). We 
have already shown that the quantity 

d2 = [E(lI HI) - EU IHo)l’ 
Var (1 IHO) 

characterizes the performance of the test in a monotone fashion. 
2. Choose x and y  to maximize d2. Does the answer depend on p? 
3. Call the d2 obtained by using the best x and y, do2. Calculate do2 for p = - 1, 0, 

and draw a rough sketch of do2 as p varies from - 1 through 0 to 1. 
4. Explain why the performance curve in part 3 is intuitively correct. 

ESTIMATION 

Problem 2.6.8. The observation is an N-dimensional vector 

f =a+n, 

where a is N(0, Ka), n is N(0, Kn), and a and n are statistically independent. 

1. Find A,,,. Hint. Use the properties of V, developed in Problems 2.4.27 and 
2.4.28. 

2. Verify that amap is efficient. 
3. Compute the error correlation matrix 

& ii E[(Ls - a)@,, - a)=]. 

Comment. Frequently this type of observation vector is obtained by sampling a 
random process r(t) as shown below, 

We denote the N samples by the vector r. Using r, we estimate the samples of a(t) 
which are denoted by ai. An error of interest is the sum of the squares of errors in 
estimating the ai. 

then 

- a)2] = E(*$’ acF) = E(acTa,) = Tr (&I. 

Problem 2.6.9 (continuation). Consider the special case 

K, = 0,,~1. 
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1. Verify that 
A ams = (on21 + Ka)- l&R. 

2. Now recall the detection problem described in Case 1 on p. 107. Verify that 

I(R) = -$ R=9,,. 

Draw a block diagram of the processor. Observe that this is identical to the “‘unequal 
mean-equal covariance” case, except the mean m has been replaced by the mean- 
square estimate of the mean, B,,. 

3. What is the mean-square estimation error &? 

~~~~~e~ 2.6._10. Consider an alternate approach to Problem 2.6.8. 

r =a+n, 

where a is N(O, Ka) and n is N(O, ~~~1). Pass r through the matrix operation W, 
which is defined in (369). The eigenvectors are those of K,. 

r’ rl. wr =x$-n’ 

1. Verify that WWT = I. 
2. What are the statistics of x and n’? 
3. Find 2. Verify that 

& 
Ai RF =- 

Ai + on2 f’ 
where & are the eigenvalues of Ka. 

4. Express d in terms of a linear transformation of fi. Draw a block diagram of the 
over-all estimator. 

5. Prove 

Pretzel 
problem 

2J5.11 

where s(A) is a non1 
independent of a, 

inear function of A. The 

In the general Gaussian nonlinear estimation 

r = s(A) + n, 

n is Gaussian N(O, Kn) and 

1. Verify that 

P~Is(A~(RIs(A)) = [(24N’2/Knj?Tf exp [ - 3(RT - sT(A))Qn (R - s(A))]. 

2. Assume that a is a Gaussian vector N(O, Ka). Find an expression for In p&R, A). 
3. Using the properties of the derivative matrix V, derived in Problems 2.4.27 

and 2.4.28, find the MAP equation. 

Problem 2.6.12 (Optimum Discrete Linear Filter). Assume that we 
scalar observations Q, rz, r3, l *  0) rK, where ri = ai + nr and 

have a sequence 

E(ai) = E(ni) = 0, 

E(rrT) = &, w x NJ, 
E(w) = hai, (N x 1). 

We want to estimate clK by using a realizable discrete linear filter. Thus 

& = 2 hi& = h’R. 
i=l 
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Define the mean-square point estimation error as 

1. Use Vh to find the discrete linear filter that minimizes &. 
2. Find & for the optimum filter. 
3. Consider the special case in which a and n are statistically inde~ndent. Find h 

and &. 
4. How is SK(R) for part 3 related to amap in Problem 2.6.8. 

Note, No assumption about Gaussianness has been used. 

SEQUENTIAL ESTIMATION 

Problem 2.6.13. Frequently the observations are obtained in a time-sequence, 
rl, r2, r3, . . e 9 rN. We want to estimate the k-dimensional parameter a in a sequential 
manner. 

The ith observation is 

f-i = Ca + wt, i= lJ,...,N, 

where C is a known 1 x k matrix. The noises M+ are independent, identically distri- 
buted Gaussian variables N(0, a,). The a priori knowledge is that a is Gaussian, 
Mm, Ad. 

1. Find P~I~~(AIRI). 
2. Find the minimum meanmsquare estimate 6% and the error correlation matrix 

A,,. Put your answer in the form 

where 
ps,tl(A1m = c exp [ --$(A - QTAtr;l(A - &)I, 

and 
A;; = A,- l + C%, -2C 

41 = mo + 
1 -2 A,,CT(R1 - Cm,). 

0, 

3. Draw a block diagram of the optimum processor. 
4. Now proceed to the second observation Rz. What is the a priori density for this 

observation ? Write the equations for P~~rl,rZ(Airl, r2), A& and $2 in the same 
format as above. 

5. Draw a block diagram of the sequential estimator and indicate exactly what 
must be stored at the end of each estimate. 

~ro~~e~ 2.6.24. Problem 2.6.13 can be generalized 
an m-dimensional vector. The ith observation is 

bY each observation to be 

ri = Ca + wt, 

where C is a known m x k matrix. The noise vectors wr are independent, identically 
distributed Gaussian vectors, N(O, A&, where A, is positive-definite. 

Repeat Problem 2.6.13 for this model. Verify that 

and 
& = fit _ 1 + A,,CTnw - l(Rr - Cl+ I) 

A,l = A,:, + CTA,-lC. 

Draw a block diagram of the optimum processor. 
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~r~~Ze~ 2.615. Discrete Kalman Filter. Now 
a changes according to the equation 

consider the case in the parameter 

ak+l = Q?ak + hk9 k= l,2,3 ,..., 

where al is N(mo, PO), Q[, is an n x n matrix (known), I” is an n x p matrix (knows), 
uk is N(0, Q), and uk is independent of uj forj # k. The observation process is 

rk = cak + wk, k = 1,2,3 ,..., 

where C 
and uj. 

is an m x n matrix, wk iS N(O, A,) and the wk are independent of each 

PART I. We first estimate al, using a mean-square error criterion. 

1. Write pal I~~(AI I&). 
2. Use the Val operator to obtain II. 
3. Verify that a1 is efficient. 
4. Use Val{[Val(lnpa,Irl (AIIR1))jT} to find the error covariance matrix PI, 

where 

Check. 

and 

Pi 4 E[(& - a,)(&, - a,>T], i = 1, 2, . . . . 

41 = m. + P,CTA/[R - Cm01 

PI’1 = PO-l + CTA/C. 

PART II, Now we estimate az. 

1. Verify that 

J.& ~r~,r,(A2lR,~ R2) = 
~F~182(R2IA2)~a21rl(A2IRl) 

pr2,rJRzPW l 

2. Verify that Pa21rl (AgIRl) is N(*&, MS), where 

M2 a @PIW + X’QIY 
3. Find Bz and Pz. 

Check. 

4. Write 

iI2 = *4, + P,C=A,,- ‘(R2 - C@&), 
P2-l = M2-l + CTAw-lC. 

P2 = M2 - B 
and verify that B must equal 

B = M2CT(CM2CT + Aw)-lCM2. 

5. Verify that the answer to part 3 can be written as 

a2 = @ii1 + M2CT(CM2CT + Aw)- ‘(R2 - C@&). 

of 
Compare the two forms with 
the matrix to be inverted ? 

respect to ease of computation. What is the dimension 

PART III 

1. Extend the results of Parts 1 and 11 to find an expression for & and Pk in terms 
of &- 1 and Mk. The resulting equations are called the Kalman filter equations for 
discrete systems [38], 

2. Draw a block diagram of the optimum processor. 

PART IV. Verify that the Kalman filter reduces to the result in Problem 2.6.13 when 
Qi = I and Q = 0. 
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SPECIAL APPLICATIONS 

A large number of problems in the areas of pattern recognition, learning systems, 
and system equalization are mathematically equivalent to the general Gaussian 
problem. We consider three simple problems (due to M. E. Austin) in this section. 
Other examples more complex in detail but not in concept are contained in the 
various references. 

~~~~Ze~ 26.16. ~~?~er~ Recognition. A pattern recognition system is to be implemented 
for the classification of noisy samples taken from a set of MT patterns. Each pattern 
may be represented by a set of parameters in which the mth pattern is characterized 
by the vector sm. In general, the sm vectors are unknown. The samples to be classified 
are of the form 

X = sm + n, 

where the sm are assumed to be independent Gaussian random variables with mean 
Grn and covariance A, and n is assumed to be zero-mean Gaussian with covariance Am 
independent from sample to sample, and independent of s,,,. 

1. In order to classify the patterns the recognition systems 
pattern characteristics. We provide it with a “learning” sample 

where the system knows 
Show that if J learni 

are available for each m 
the quantities 

xm = sm + n, 

that the mth 
ng samples, 
= 1 M 9 l l *9 

pattern is present. 

needs to know the 

x(l) x(2’ 
m9 rn9*.*:, x’,J), of the form 

the pattern recognition system 

1 J =- 
J c X,(j) 

f=l 

x(j) = sm + n(j) 

neld store only 

for use in classifying additional noisy samples; that is, show that the lm, m = 1,. . .fM’ 
form a set of sufficient statistics extracted from the AU learning samples. 

2. What is the MAP estimate of Sm? What is the covariance of this estimate as a 
function of J, the number of learning samples? 

3. For the special case of two patterns (M = 2) characterized by unknown scalars 
s1 and s2, which have a priori densities N(&, a) and NfZ,, a), respectively, find the 
optimum decision rule for equiprobable patterns and observe that this approaches the 
decision rule of the “known patterns” classifier asymptotically with increasing 
number of learning samples J. 

Problem 2.6.17. Intersymbol Interference. Data samples are to be transmitted over a 
known dispersive channel with an impulse response h(t) in the presence of white 
Gaussian noise. The received waveform 

r(t) = 2 &h(t - kT) + n(t) 
k= -K 

may be passed through a filter matched to the channel impulse response to give a set 
of numbers 

aj = 
s 

r(t) h(t - jT) dt 

for j = o,rt1,+2 ,..., +K, which forms a set of sufficient statistics in the MAP 



estimation of the &. (This is proved in Chapter 4.) We denote the sampled channel 
autocorrelation function as 

b* = 
s 

h(t) h(t - jT) dt 

and the noise at the matched filter output as 

nj = 
s 

n(t) hit - jT) dt. 

The problem then reduces to an estimation of the &, given a set of relations 

aj = 5 [k&-k + nj for j, k = 0, +l, $-2,...+K. 
k=-K 

Using obvious notation, we may write these equations as 

a = Bg + Il. 

1. Show that if n(t) has double-sided spectral height +I++$, that the noise vector n 
has a covariance matrix A, = *I&B. 

2. If  the & are zero-mean Gaussian random variables with covariance matrix Ati; 
show that the MAP estimate of 4 is of the form g = Ga and therefore that to = gTa. 
Find g and note that the estimate of to can be obtained by passing the sufficient 
statistics into a tapped delay line with tap gains equal to the elements of g. This cas- 
cading of a matched filter followed by a sampler and a transversal filter is a well- 
known equalization method employed to reduce intersymbol interference in digital 
communication via dispersive media, 

Problem 2.6.118. Determine the MAP estimate of &, in Problem 2.6.17; assuming 
further that the & are independent and that the & are known (say through a Cc teacher” 
or infallible estimation process) for k < 0. Show then that the weighting of the 
sufficient statistics is of the form 

and find gj and .fi. This receiver may be interpreted as passing the sampled matched- 
filter output through a transversal filter with tap gains gj and subtracting the output 
from a second transversal filter whose input is the sequence of hk which estimates have 
been made. Of course, in implementation such a receiver would be self-taught by 
using its earlier estimates as correct in the above estimation equation. 

Problem No. 2.6.19. ILet 
2 = GTr 

and assume that z is N(mZ, a,) for all finite G. 

1. What is ~~~ju)? Express your result in terms of m, and 0,. 
2, Rewrite the result in (1) in terms of G, m, and& [see (316~(317) for definitions]. 
3. Observe that 

and 
M,(ju) 4 E [eiuz] = E [ej”GTr] 

and therefore 
Mu a E [ejvTr] 

M~~jK) = Mu if Gu = v, 

Use these observations to verify (317). 



(a) Assume that the A, defined in (316) is positive definite. Verify that the expres- 
sion for pr(R) in (3 18) is correct. [Hht, Use the diagonalizing transformation W 
defined in (368)-l 

(b) How must (318) be modified if & is singular? What does this singularity imply 
about the components of r ? 

~rub~ern 2.7.3, Consider the binary test with N independent observations, rr, where 

Find p(s). 

Prt I H& = ~(m~, Qlc), k = 0, 1, 
i = 1,2,. * *, AL 

Problem 2.7.2 (c~~ti~~utiun). Consider the special case of Problem 2.7.1 in which 

and 

m(j = 0, 
uo2 = un2, 

q2 = us2 + UR2* 
1. Find p(s), e(s), and i;(s), 
2. Assuming equally likely hypotheses, find an upper bound on the minimum Pr(& 
3. With the assumption in part 2, find an approximate expression for the Pr(e) 

that is valid for large IV. 

~r~b~ern 2.7.3, A special case of the binary Gaussian problem with N observations is 

1 
PFi&(Rt Hd = (2~)~~2lK~l~~ exP 

RTKk - lR 
- - 2 ’ k = 0, 1. 

I. Find &s). 
2. Express it in terms of the eigenvalues of the appropriate matrices. 

P~ob~ern 2.74 (c~~ti~~ati~~). Consider the special case in which 

K. = an21 

K1 = K, -t- Ko. 

Problem 2.7.5 (alternate conthuation of 2.7.3). Consider the special case in which K1 
and K. are partitioned into the 4 N x IV matrices given by (422) and (423). 

1. Find p(s). 
2. Assume that the hypotheses are equally likely and that the criterion is minimum 
(6). Find a bound on the Pr(+). 
3. Find an approximate expression for the Pr(r), 

~robZem 2.75. The general binary Gaussian problem for N observations is 

1 T 
Pr!Hk(RI Hk) = (2~)~i~lK~l~ exp 

(R - m~T)K~-l(R - mk) 
2 I 

, k = 0,l. 

Find p(s). 

~r~b~ern 2.7.7. Consider Example 3A on p. 130. A bound on the Pr(c) is 

[ 
(1 + u~2/u~z) *ta 

pr(f) s + (1 + 0,2/24y 1 
1. Constrain ~~~2/~~2 = x. Find the value of N that minimizes the bound‘ 
2. Evaluate the approximate expression in ($16) for this value of N. 



Performance Bounds and Approximations 163 

Problem 2.7.8. We derived the Chernoff bound in (461) by using tilted densities. This 
approach prepared us for the central limit theorem argument in the second part of our 
discussion. If  we are i nterested only in (461), a much simpler derivation is possible. 

1. Consider a function of the random variable x which we denote as f(x). Assume 

f(x) 2 0, all x, 

Prove 
f(x) 2 fGGd ' 0, all x 2 X0. 

2. Now let 

and 

E[fWl Pr [x 2 X0] 5 -0 
f(Xo) 

f( ) X = esx 9 s 2 0, 

x0 = y. 

Use the result in (1) to derive (457). What restrictions on y  are needed to obtain (461)? 

Problem 2.7.9. The reason for using tilted densities and Chernoff bounds is that a 
straightforwa rd application of the central limit theorem gives misleading results when 
the region of interest is on the tail of the density. A trivial example taken from [4-181 
illustrates this point. 

Consider a set of statistically independent random variables x1 which assumes 
values 0 and 1 with equal probability. We are interested in the probability 

Pr C 1 N 
YN = N 2 XI 2 1 A Pr [AN]. 

f=l I 

0 a Define a standardized variable 

z A YN - h 

uyN 

Use a central limit theorem argument to estimate Pr [AN]. Denote this estimate 
as Pr [AN]. 

(b) 

(cl 

(4 

Calculate Pr [AN] exactly. 

Verify that the fractional error is, 

*r [ANI 0~ eO.19N 

Pr [ANI 

Observe that the fractional error grows exponentially with N. 

Estimate Pr [AN] using the Chernoff bound of Problem 2.7.8. Denote this esti- 
Pr, [ANI mate as Pr, [AN]. Compute -. 
Pr [ANI 
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