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bounds on the error probabilities or approximate expressions for these
probabilities. In this section we derive some simple bounds and approxima-
tions which are useful in many problems of practical importance. The basic
results, due to Chernoff [28], were extended initially by Shannon [23].
They have been further extended by Fano [24], Shannon, Gallager, and
Berlekamp [25], and Gallager [26] and applied to a problem of interest to
us by Jacobs [27]. Our approach is based on the last two references.
Because the latter part of the development is heuristic in nature, the inter-
ested reader should consult the references given for more careful deriva-
tions. From the standpoint of use in later sections, we shall not use the
results until Chapter II-3 (the results are also needed for some of the prob-
lems in Chapter 4).

The problem of interest is the general binary hypothesis test outlined in
Section 2.2. From our results in that section we know that it will reduce to
a likelihood ratio test. We begin our discussion at this point.

The likelihood ratio test is

IR) 2 In A(R) = In [Prml(RiHl)] s

e R 27 (440)

The variable /(R) is a random variable whose probability density
depends on which hypothesis is true. In Fig. 2.36 we show a typical

Pqu(LIHl) and PuHo(LlHo)-
If the two densities are known, then P, and P, are given by

Py = f " pun,(L|Hy) dL, (441)

P = J‘w PuHo(L|Ho) dL. (442)

Y

The difficulty is that it is often hard to find p,4,(L|H,), and even if it
can be found it is cumbersome. Typical of this complexity is Case 1A

Pyj,(LIHo) ;

pllHl(LlHl)

Fig. 2.36 Typical densities.
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on p. 108, in which there are N Gaussian variables with equal variances
making up the signal. To analyze a given system, the errors may be
evaluated numerically. On the other hand, if we set out to synthesize a
system, it is inefficient (if not impossible) to try successive systems and
evaluate each numerically. Therefore we should like to find some simpler
approximate expressions for the error probabilities.

In this section we derive some simple expressions that we shall use in the
sequel. We first focus our attention on cases in which /(R) is a sum of
independent random variables. This suggests that its characteristic function
may be useful, for it will be the product of the individual characteristic
functions of the R;. Similarly, the moment-generating function will be the
product of individual moment-generating functions. Therefore an approxi-
mate expression based on one of these functions should be relatively easy
to evaluate. The first part of our discussion develops bounds on the error
probabilities in terms of the moment-generating function of /(R).

In the second part we consider the case in which /(R) is the sum of a
large number of independent random variables. By the use of the central
limit theorem we improve on the results obtained in the first part of the
discussion.

We begin by deriving a simple upper bound on P in terms of the
moment-generating function. The moment-generating function of /(R) on
hypothesis H, is

0

etpy (LI Hy) dL, (443)

buiy(s) & E(e|Ho) = f

where s is a real variable. (The range of s corresponds to those values for
which the integral exists.) We shall see shortly that it is more useful to
write

buno(s) £ exp [u(s)), (444)
so that

u(s) = In f " ey, (LI Ho) dL. (445)

We may also express u(s) in terms of p,, (R|H,) and py »,(R| H,). Because
1 is just a function of r, we can write (443) as

b111,(s) = f e ®p.u, (R|Ho) dR. (446)
Then

4(s) = In fw ¢ ®p, . (R|Ho) dR. (447)

-
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Using (440),
© rH, RIH,)\¢
or
W) =10 [ oo RIEDMpan,RIHOP R, | (449)

The function u(s) plays a central role in the succeeding discussion. It is
now convenient to rewrite the error expressions in terms of a new random
variable whose mean is in the vicinity of the threshold. The reason for this
step is that we shall use the central limit theorem in the second part of our
derivation. It is most effective near the mean of the random variable of
interest. Consider the simple probability density shown in Fig. 2.37a. To
get the new family of densities shown in Figs. 2.37b6-d we multiply p.(X) by
e** for various values of s (and normalize to obtain a unit area). We see that
for s > 0 the mean is shifted to the right. For the moment we leave s as a
parameter. We see that increasing s “tilts” the density more.
Denoting this new variable as x,, we have

sX X H sX X H
me Pun,(X|Ho) ¢ Pm;(i((s) | Ho) (450)
f eSLPuHO(LlHo) dL

px(X) &

Observe that we define x, in terms of its density function, for that is
what we are interested in. Equation 450 is a general definition. For the
density shown in Fig. 2.37, the limits would be (— 4, A).

We now find the mean and variance of x,:

. f " Xepy (X Ho) dX
E(x) = f Xpo(X)dX = 122 . @s1)
- f &tpu o (LI Ho) dL

Comparing (451) and (445), we see that

E(e) = B9 5 ), (452)
Similarly, we find
Var (x;) = j(s). (453)

[Observe that (453) implies that u(s) is convex.]
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We now rewrite Py in terms of this tilted variable x;:

Py =f Puny(L|Ho) dL = f e -%Xp (X)) dX
Y k4
— e f e=5%p, (X) dX. (454)
Y
We can now find a simple upper bound on Pg. For values of s > 0,
e X < e, for X > y. (455)
px(X)
Pz, (X)=px(X)
24 when s=0
L X
-A Yy A
(a) Threshold
Pxo(x)

coe®® s0>0
X
-A | y A
)
le(X)
cref1X $1>50>0
‘ X
-A | ¥y A
(c)
sz(X)
s9>81>50>0
coe®2X
! X
-A vy A
(d)

Fig. 2.37 Tilted probability densities.
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Thus
Pp < e f pu(X)dX, s> 0. (456)
Y

Clearly the integral is less than one. Thus
Pp < -9, s = 0. 457

To get the best bound we minimize the right-hand side of (457) with

respect to s. Differentiating the exponent and setting the result equal to
zero, we obtain

fi(s) = y. (458)
Because ji(s) is nonnegative, a solution will exist if
#(0) < v < (o). (459)
Because
M0) = E(I|Ho), (460)

the left inequality implies that the threshold must be to the right of the
mean of / on H,. Assuming that (459) is valid, we have the desired result:

P < exp [u(s) — sp(s)], s >0, (461)
where s satisfies (458). (We have assumed u(s) exists for the desired s.)
Equation 461 is commonly referred to as the Chernoff bound [28].
Observe that s is chosen so that the mean of the tilted variable x; is at the
threshold.
The next step is find a bound on Py, the probability of a miss:

Y
Pu= [ pum(Xit)ax, (462)

which we want to express in terms of the tilted variable x;.
Using an argument identical to that in (88) through (94), we see that

Pqu(XlHl) = eXPz|Ho(X|Ho)~ (463)
Substituting (463) into the right side of (450), we have

Pum, (X |Hy) = e@+0=9%p, (X). (464)
Substituting into (462),

v

Py = e““)f e1=9%p (X)dX. (465)
Fors <1

e1=9X < -9 for X < y. (466)
Thus

14
PM < eu(s)+(1 -8y f sz(X) dX

< e +a-sy s<1. (467)
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Once again the bound is minimized for

y = us) (468)
if a solution exists for s < 1. Observing that
(1) = E(I|Hy), (469)

we see that this requires the threshold to be to the left of the mean of /
on H,.

Combining (461) and (467), we have

P

A

exp [u(s) — sis)]
0<s<l1 (470)

Py

IA

exp [u(s) + (1 — 5)i(s)]

and
y = ()

is the threshold that lies berween the means of / on the two hypotheses.
Confining s to [0, 1] is not too restrictive because if the threshold is not
between the means the error probability will be large on one hypothesis
(greater than one half if the median coincides with the mean). If we are
modeling some physical system this would usually correspond to un-
acceptable performance and necessitate a system change.

As pointed out in [25], the exponents have a simple graphical inter-
pretation. A typical u(s) is shown in Fig. 2.38. We draw a tangent at the
point at which p(s) = y. This tangent intersects vertical lines at s = 0 and
s = 1. The value of the intercept at s = 0 is the exponent in the Py bound.
The value of the intercept at s = 1 is the exponent in the P, bound.

o

o
—
—

&) L u(s1)+(1=s1)ii (s1)
(exponent in P,, bound)

_————

(exponent in Pr bound)

|
|
|
w(s1) =s1i (s1) |
|
|
|
|
|

Fig. 2.38 Exponents in bounds.
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For the special case in which the hypotheses are equally likely and the
error costs are equal we know that y = 0. Therefore to minimize the bound
we choose that value of s where p(s) = 0.

The probability of error Pr (¢) is

Pr(e) = 1Py + 1Py 471)

Substituting (456) and (467) into (471) and denoting the value s for
which p(s) = 0 as s,,, we have

@ 0
Pr(e) < dettom f Px(X) dX + }e*Cm f P (X)dX, (472)
0 ~

or

Pr(e) < Jesom, (473)

Up to this point we have considered arbitrary binary hypothesis tests.
The bounds in (470) and (473) are always valid if u(s) exists. In many cases
of interest /(R) consists of a sum of a large number of independent random
variables, and we can obtain a simple approximate expression for Py and
Py, that provides a much closer estimate of their actual value than the
above bounds. The exponent in this expression is the same, but the multi-
plicative factor will often be appreciably smaller than unity.

We start the derivation with the expression for P given in (454).
Motivated by our result in the bound derivation (458), we choose s so that

() = .
Then (454) becomes

P, = &4 f " e+, (X) dX. (474)

U(s)

This can be written as

e*iO-Xlp (X)dX. (475)

u(s)

. ©
PF — eu(s)—su(s)J‘

The term outside is just the bound in (461). We now use a central limit
theorem argument to evaluate the integral. First define a standardized
variable:

A X — E(x) _ xg — pls)

YT Varx)® T Vi)
Substituting (476) into (475), we have

(476)

Py = e0-si® f " e~ VEOTp (V) dY. @17)

0
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In many cases the probability density governing r is such that y ap-
proaches a Gaussian random variable as N (the number of components of
r) approaches infinity.t A simple case in which this is true is the case in
which the r; are independent, identically distributed random variables with
finite means and variances. In such cases, y approaches a zero-mean
Gaussian random variable with unit variance and the integral in (477) can
be evaluated by substituting the limiting density.

fw e—sViwy ——\/1__ eI JY = 7012 erfe, (sV i(s)). (478)

o 27

Then
P~ {exp [,u(s) — spds) + % ii(s)]} erfcy [sVi(s)]. 479)

The approximation arises because y is only approximately Gaussian for

finite N. For values of sVji(s) > 3 we can approximate erfc,(-) by the
upper bound in (71). Using this approximation,

| .
Pp ~ mz‘_,uE exp [u(s) — su(s)], s> 0. (480)

It is easy to verify that the approximate expression in (480) can also be
obtained by letting

p(Y) = p,(0) ~ \/— (481)

Looking at Fig. 2.39, we see that this is valid when the exponential
function decreases to a small value while ¥ « 1.

In exactly the same manner we obtain

Py ~ {exp k9 + 1 - 9 i) + £ p(s)]}erfc* [(1 — HVEDL.

(482)
For (1 — s)V/ji(s) > 3, this reduces to

1 .
M = m———TZ"u(s) exp [u(s) + (I — s)u(s)], s < 1. (483)

Observe that the exponents in (480) and (483) are identical to those
obtained by using the Chernoff bound. The central limit theorem argument
has provided a multiplicative factor that will be significant in many of the
applications of interest to us.

t An excellent discussion is contained in Feller [33], pp. 517-520.
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-sVi(s)Y

Increasing s/ ii(s)

py(Y)

Fig. 2.39 Behavior of functions.

For the case in which Pr (¢) is the criterion and the hypotheses are
equally likely we have

Pr(9 = 4P + $Pu
= $exp [ulsn) + 22 itsn)] enfey IsaVAG))

+hexp [utsn) + 522 )] erea [0~ s VG, 484)

where s,, is defined in the statement preceding (472) [i.e., p(s,) = 0 = y].
When both s,V j(s,) > 3 and (1 — s,)Vj(s,) > 3, this reduces to

1 exp u(Sm)
2Q27i(5,)) 25m(1 = Sm)] P Hn)

Pr(e) ~ (485)

We now consider several examples to illustrate the application of these
ideas. The first is one in which the exact performance is known. We go
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through the bounds and approximations to illustrate the manipulations
involved.

Example 1. In this example we consider the simple Gaussian problem first introduced
on p. 27:

N — 2
i (RIH) =TT L exp [—(R‘ L] ] (486)
i=1V2no 20
and
Pring(R|Ho) = IN'I ! exp (—R—‘z)‘ (487)
1Ho ° i=iV2neo 20?

Then, using (449)

w(s) = In J'”

-

© N 1 (R, — m)%s + R2(1
. — _exp | —
f— ® |=I_]1: Vire P [ 202

Because all the integrals are identical,

- ”] dR. (488a)

_ ® 1 (R —m)’s + R¥(1 — )
us) = Nln f e [ . ] dR.  (488b)
Integrating we have
2 — 2
u(s) = Ns(s — 1)1 o S = Dd?, (489)

202 2

where d2? was defined in the statement after (64). The curve is shown in Fig. 2.40:

2s — 1)d?
p(s) = (_s_i_)_ (490)
Using the bounds in (470), we have
— 22
Pr < exp ( J‘2d )
L. 0sssL 491)
Pu < exp [_M]
2
0 T T T T T T 1
T =0.05— —
u(s)
ra
-0.101— _
—0.15 | | | | ] | | | |
0 01 02 03 04 05 06 07 08 09 1.0

§ —>

Fig. 2.40 p(s) for Gaussian variables with unequal means.
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Because /(R) is the sum of Gaussian random variables, the expressions in (479)
and (482) are exact. Evaluating ji(s), we obtain

ji(s) = d2. (492)
Substituting into (479) and (482), we have
Pr = erfcy [sVii(s)] = erfey (sd) (493)
and
Py = erfey [(1 — )ViG)] = erfeq [(1 — s)d]. (494)

These expressions are identical to (64) and (68) (let s = (In 7)/d? + %).

An even simpler case is one in which the total probability of error is the criterion.
Then we choose an s, such as @(sm) = 0. From Fig. 2.40, we see that s, = 4. Using
(484) and (485) we have

d 2 \% d?
Pr(9 = erfes (§) = (Z3) " ex0 (-5): (495)
where the approximation is very good for d > 6.

This example is a special case of the binary symmetric hypothesis
problem in which u(s) is symmetric about s = 4. When this is true and the
criterion is minimum Pr (€), then p(3) is the important quantity.

@

n3) = lnf . (Per s, RIH D)) [Pry 1o (R| Ho)]” dR. (496)

The negative of this quantity is frequently referred to as the Bhatta-
charyya distance (e.g., [29]). It is important to note that it is the significant
quantity only when s, = 1.

In our next example we look at a more interesting case.

Example 2. This example is Case 1A of the general Gaussian problem described on
p. 108:

prin(RIHD) = [T exp (— pay)-
rifh =1Vam 0 20,®

(497)
R|H,) = ﬁ 1 exp (— R‘z).
Prinl [} R SV 205
Substituting (497) into (499) gives,
® 1 sR2 (1 - s)R’]
= —_ —— — = 498
u(s) = Nlin f_ v el R e ool LIS (498)
or
_ N[ (0?)(a:?)} " ]
) = 2 In [5002 + (1 = §)o,2 (499)
A case that will be of interest in the sequel is
o, S om T (500)

002 = 0,2
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Substituting (500) into (499) gives

M) _ [ _ o) _ =)
= {(1 s In (1 + 0"2) In [1 +(1 -3 a,ﬁ] - (501)
This function is shown in Fig. 2.41.

. _ IX _ _0;3_2 ‘732/‘71‘2

w6 =3 [0 (1 + 23) + ) (502)

and
oy = N[_ee? T
;L(S) = 2 [l ¥ (1 — S)(0'32/‘7n2)] (503)

By substituting (501), (502), and (503) into (479) and (482) we can plot
an approximate receiver operating characteristic. This can be compared
with the exact ROC in Fig. 2.35a to estimate the accuracy of the approxi-
mation. In Fig. 2.42 we show the comparison for N = 4 and 8, and
as%[a,2 = 1. The lines connect the equal threshold points. We see that the
approximation is good. For larger N the exact and approximate ROC are
identical for all practical purposes.

0 | T T
032/0-"2 =1
-0.1
os2fon2 =2
-02
I ol |
#6)
N/2
-041 —
os2/a,2 =10
-05— -
- 06— ]
| | | |
=07 0.2 0.4 0.6 0.8 1.0
§ —>

Fig. 2.41 p(s) for Gaussian variables with unequal variances.
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o T l T | T T
/
/
091 // -
//
08— Approximate // 7]
//
07— N=4 / —
/
/
T 06— Equal threshold // n
P, lines /
05— // L: -1 —
/ In
04— // —
Exact //
03 // _
/
/
02— / —
/
//
0.1 / —
/
/
| | | | | | | | |
0 0.1 0.2 0.3 04 05 0.6 0.7 08 09 1.0
Pp —>

Fig. 2.42 Approximate receiver operating characteristics.

Example 3. In this example we consider first the simplified version of the symmetric
hypothesis situation described in Case 2A (p. 115) in which N = 2.

_ 1 R:?2 + R:?2 Rs® + R
p”H’(RlHl) - (2m)20,%0,2 €Xp (— 20,2 - 2002 ) (504)
and
_ 1 _R)Z + R22 _ R32 + R42
hi p”HO(RIHO) B (2")2‘712002 exp ( 20,? 20,2 )’ (505)
where
012 = 052 + anz
cn
u(s) = sln o2 + (1 — 5)In (0,2 + 052) — In (0,2 + 0,35)
+ (1 = s)lno,2 + sln (0,2 + 052) — In [0,%2 + o,3(1 — 5)]
2 2 —_ 2
=In (1 + i'-a) —n [(1 + ”—2)(1 + (—'——j-)—"—)] (507)
op oy, a,

The function u(s) is plotted in Fig. 2.43a. The minimum is at s = 4. This is the point
of interest at which minimum Pr (¢) is the criterion.
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0

u(s)

S S N TR T T N O B
0 01 02 03 04 05 06 07 08 09 10

8§ ———>

Fig. 2.43a p.(s) for the binary symmetric hypothesis problem.

Thus from (473), a bound on the error is,

U + o.%/0s?)

Pr(e) <3} (IM_——"’/—Z;,._"’)? (508)
The bound in (508) is plotted in Fig. 2.43b.
Example 3A. An interesting extension of Example 3 is the problem in which
- 012 “
0? 0
022
K, = a2” (509)
032
0 afuz
L %2
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| | I
0.5

0.1

T 0.01

Pr(e)

1073

| | | |
0.1 1 10 10 10° 10*

052

on?

107*

Fig. 2.43b Bound on the probability of error (Pr(e)).

The r/’s are independent variables and their variances are pairwise equal. This is a
special version of Case 2B on p. 115. We shall find later that it corresponds to a
physical problem of appreciable interest.

Because of the independence, u(s) is just the sum of the u(s) for each pair, but each
pair corresponds to the problem in Example 3. Therefore

uls) = Mzzln( ) Nf ln{(1+s )(1+(1—s) )} (510)

Then

. Nz 52 042

) = =Z [ + 5057 o + (I — s)as‘z] (511)
and

.. NI2 as‘4

s = {(Wn2 + 50,,2)? [o,,2 + (1 — s)oa(zlz}' (512)

For a minimum probability of error criterion it is obvious from (511) that s, = 1.
Using (485), we have

NI2 a5, Y N2 03‘2 Ni2 0;,2
mm{zmwww]“%?d”?%{§w+ﬁ”“m

or

a2
NI2 oy ]_1/2 Ni2 (1 + 0n2> ' 510

Pr (E) jad [‘rr (Zl —'(0"2 ¥ ‘}03,2)2 (13 (1 + as‘ﬁ)z
20,2
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For the special case in which the variances are equal
0,2 = 02 (515)

o 2 a+ aszlqnz)le
Pr) = VTN Golod T + ooy (516)
Alternately, we can use the approximation given by (484). For this case it reduces to
- 1 + 0.%/0,? ]"/2 N( 0,2[a,2 )2] [(N '/2( o2[a,? ]
Pr() =~ T oin07 ©*P [§ T o2/20,2) | erfce Z) 1+ 0,2/2.:,.2) :
(517)

In Fig. 2.44 we have plotted the approximate Pr (¢) using (517) and exact Pr (¢)
which was given by (434). We see that the approximation is excellent.

The principal results of this section were the bounds on P and Py,
given in (470) and (473) and the approximate error expressions given in
(479), (480), (482), (483), (484), and (485). These expressions will enable us
to find performance results for a number of cases of physical interest.

and (514) reduces to

T T T T T T T T

0.5 —— Exact =
— — Approx

0.1

Pr(e)

0.01

0.001

100

Fig. 2.44 Exact and approximate error expressions for the binary symmetric hypothesis
case,
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Results for some other cases are given in Yudkin [34] and Goblick [35]
and the problems. In Chapter 11-3 we shall study the detection of Gaussian
signals in Gaussian noise. Suitable extensions of the above bounds and
approximations will be used to evaluate the performance of the optimum
processors.

2.8 SUMMARY

In this chapter we have derived the essential detection and estimation
theory results that provide the basis for our work in the remainder of the
book.

We began our discussion by considering the simple binary hypothesis
testing problem. Using either a Bayes or a Neyman-Pearson criterion, we
were led to a likelihood ratio test, whose performance was described by a
receiver operating characteristic. Similarly, the M-hypothesis problem led
to the construction of a set of likelihood ratios. This criterion-invariant
reduction of the observation to a single number in the binary case or to
M — 1 numbers in the M hypothesis case is the key to our ability to solve
the detection problem when the observation is a waveform.

The development of the necessary estimation theory results followed a
parallel path. Here, the fundamental quantity was a likelihood function.
As we pointed out in Section 2.4, its construction is closely related to the
construction of the likelihood ratio, a similarity that will enable us to
solve many parallel problems by inspection. The composite hypothesis
testing problem showed further how the two problems were related.

Our discussion through Section 2.5 was deliberately kept at a general
level and for that reason forms a broad background of results applicable
to many areas in addition to those emphasized in the remainder of the
book. In Section 2.6 we directed our attention to the general Gaussian
problem, a restriction that enabled us to obtain more specific results than
were available in the general case. The waveform analog to this general
Gaussian problem plays the central role in most of the succeeding work.

The results in the general Gaussian problem illustrated that although we
can always find the optimum processor the exact performance may be
difficult to calculate. This difficulty motivated our discussion of error
bounds and approximations in Section 2.7. These approximations will lead
us to useful results in several problem areas of practical importance.

2.9 PROBLEMS

The problems are divided into sections corresponding to the major
sections in the chapter. For example, section P2.2 pertains to text material
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in Section 2.2. In sections in which it is appropriate the problems are
divided into topical groups.

As pointed out in the Preface, solutions to individual problems are
available on request.

P2.2 Binary Hypothesis Tests

SIMPLE BINARY TESTS
Problem 2.2.1. Consider the following binary hypothesis testing problem:
Hy:r =5 + n,

Hy:r = n,
where s and n are independent random variables.
ps(S) = ae™*° S =0,
0 S <0,
Pn(N) = be~oV N=0,
0 N <.

1. Prove that the likelihood ratio test reduces to
Hjy
R 2 vy
Ho

2. Find y for the optimum Bayes test as a function of the costs and a priori
probabilities.
3. Now assume that we need a Neyman-Pearson test. Find y as a function of P,
where
P: & Pr(say H,|H, is true).

Problem 2.2.2. The two hypotheses are

Hy:p.(R) = 5 exp (~|R])

1 1
Hy: W(R) = ——=ex (——R2)
0:pr(R) VP2
1. Find the likelihood ratio A(R).
2. The test is
Hi
A(R) 2 1.
Ho
Compute the decision regions for various values of 7.

Problem 2.2.3. The random variable x is N(0, o). It is passed through one of two
nonlinear transformations.

H,:y = x?,
Hy:y = x8.
Find the LRT.

Problem 2.2.4. The random variable x is N(m, o). It is passed through one of two
nonlinear transformations.
H;:y = e*,
2

Hy:y = x2.
Find the LRT.
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Problem 2.2.5. Consider the following hypothesis-testing problem. There are K
independent observations.
H,:r; is Gaussian, N(0, o,), i =
Hy:r; is Gaussian, N(0, o), i

|
—_—

where oo < 0.

1. Compute the likelihood ratio.
2. Assume that the threshold is 7:

Hy
AR) 2 7.
Ho
Show that a sufficient statistic is /(R) = >X_; R2. Compute the threshold y for the test

Hjy
IR) 2y
Ho
in terms of 7, oo, 0;.
3. Define
Pr = Pr (choose H,| H, is true),
Py = Pr (choose H,| H, is true).
Find an expression for Pr and Py,.
4. Plot the ROC for K =1, 0,2 = 2, 002 = 1.
5. What is the threshold for the minimax criterion when Cy = Crand Cyo = Cy; = 0?

Problem 2.2.6. The observation r is defined in the following manner:

r=bm, + n:H,,
r=n :Ho,

where b and n are independent zero-mean Gaussian variables with variances 0,? and
7,2, respectively

1. Find the LRT and draw a block diagram of the optimum processor.

2. Draw the ROC.

3. Assume that the two hypotheses are equally likely. Use the criterion of minimum
probability of error. What is the Pr(e)?

Problem 2.2.7. One of two possible sources supplies the inputs to the simple communi-
cation channel as shown in the figure.
Both sources put out either 1 or 0. The numbers on the line are the channel
transition probabilities; that is,
Pr(a out | 1 in) = 0.7.
The source characteristics are

Source 1: Pr(1) = 0.5, Pr(0) = 0.5;
Source 2: Pr(1) = 0.6, Pr(0) = 0.4.

1 0.7

Source r—l—ﬂ- 03
0 04

0.6

Channel
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To put the problem in familiar notation, define
(a) false alarm—say source 2 when source 1 is present;
(b) detection—say source 2 when source 2 is present.
1. Compute the ROC of a test that maximizes Pp subject to the constraint that
F = Q@
2. Describe the test procedure in detail for « = 0.25.
Problem 2.2.8. The probability densities on the two hypotheses are
1
[l + (X — a)?]
where a, = 0 and a, = 1.
1. Find the LRT.
2. Plot the ROC.
Problem 2.2.9. Consider a simple coin tossing problem:
H,: heads are up, Pr [H,] 2 P,,
H,: tails are up, Pr [Ho] 2 Py < Py
N independent tosses of the coin are made. Show that the number of observed heads,
Ny, is a sufficient statistic for making a decision between the two hypotheses.

Pan(X|H)) = -0 < X < 0:H,, i=0,1.

Problem2.2.10. A sample function of a simple Poisson counting process N(¢) is observed
over the interval T:

hypothesis H,: the mean rate is k,:Pr (H,) = 3,
hypothesis H,: the mean rate is ko:Pr (Hy) = 4.

1. Prove that the number of events in the interval T is a ““sufficient statistic” to
choose hypothesis H, or H;.

2. Assuming equal costs for the possible errors, derive the appropriate likelihood
ratio test and the threshold.

3. Find an expression for the probability of error.

Problem 2.2.11. Let
y = Z Xi,
i=0

where the x; are statistically independent random variables with a Gaussian density
N(0, 0). The number of variables in the sum is a random variable with a Poisson

distribution: .

Pr(n=k)=£—,e"‘, k=0,1,....

We want to decide between the two hypotheses,
Hy:n<1,
Hy:n > 1.
Write an expression for the LRT.

Problem 2.2.12. Randomized tests. Our basic model of the decision problem in the
text (p. 24) did not permit randomized decision rules. We can incorporate them by
assuming that at each point R in Z we say H, with probability ¢(R) and say H, with
probability 1 — ¢(R). The model in the text is equivalent to setting ¢(R) = 1 for all
R in Z, and é(R) = O for all R in Z,.
1. We consider the Bayes criterion first. Write the risk for the above decision model.
2. Prove that a LRT minimizes the risk and a randomized test is never necessary.



Binary Hypothesis Tests 137

3. Prove that the risk is constant over the interior of any straight-line segment on
an ROC. Because straight-line segments are generated by randomized tests, this is an
alternate proof of the result in Part 2.

4. Consider the Neyman-Pearson criterion. Prove that the optimum test always
consists of either

(i) an ordinary LRT with Pr = « or

(ii) a probabilistic mlxturc of two ordinary hkellhood ratlo tests constructed as
follows: Test 1: A(R) > 7 gives Pr = a*. Test 2: A(R) > n gives Pr = a~, where
[e~, «*]is the smallest interval containing «. ¢(R) is O or 1 except for those R where
¢(R) = 7. (Find ¢é(R) for this set.)

MATHEMATICAL PROPERTIES

Problem 2.2.13. The random variable A(R) is defined by (13) and has a different
probability density on H; and H,. Prove the following:

1. E(A"|H,) = E(A"*'|H,),
2. E(A|Hy) = 1,
3. E(A|H:) — E(A|Ho) = Var (A|Hy).

Problem 2.2.14. Consider the random variable A. In (94) we showed that
Paia (X |Hy) = Xpaiug(X|Ho).

1. Verify this relation by direct calculation of pax,(+) and pa yx,(+) for the densities
in Example 1 [p. 27, (19) and (20)].

2. On page 37 we saw that the performance of the test in Example 1 was completely
characterized by d?. Show that

d? = In[1 + Var (A|Ho).

Problem 2.2.15. The function erfc, (X) is defined in (66):
1. Integrate by parts to establish the bound

1 ( ) ( Xz) 1 ( Xz)
— |1 - ex =) < erfcy (X) < —— ex -=1, X>0.
\/211 X Xz p 2 ‘l( ) \/ p 2
2. Generalize part 1 to obtain the asymptotic series

o145 p LD )
m=1

erfcy (X) = Yo

1
Vir X

The remainder is less than the magnitude of the n + 1 term and is the same sign.
Hint. Show that the remainder is

= [ e,

. o\ =nm
o= e(1 ) 1.
foe(+X dt <

3. Assume that X = 3. Calculate a simple bound on the percentage error when
erfc4(3) is approximated by the first n terms in the asymptotic series. Evaluate this
percentage error for n = 2, 3, 4 and compare the results. Repeat for X = 5.

where
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Problem 2.2.16.
1. Prove
X2
erfcy (X) < = exp (—7)’ X>0.
Hint. Show

[erfce (X)]2 = Pr(x = X,y = X) < Pr(x? + y? > 2X?),

where x and y are independent zero-mean Gaussian variables with unit variance.
2. For what values of X is this bound better than (71)?

HIGHER DIMENSIONAL DECISION REGIONS

A simple binary test can always be reduced to a one-dimensional decision region.
In many cases the results are easier to interpret in two or three dimensions. Some
typical examples are illustrated in this section.

Problem 2.2.17.
. 1 X2 X;? X2 X2 ]
Hy:py, xq11,( X1, Xo|H)) = m[ﬁxp( 20,2 5;;;) + CXD( 205 2012) ’
—© < X;,X2 < ©.
1
Ho Dx; x2|"0(X1, leHo) exp (— -0 < Xl,Xz < o,

1. Find the LRT.
2. Write an exact expression for P, and Pr. Upper and lower bound P, and Ps
by modifying the region of integration in the exact expression.

X xy
202 2092)

Problem 2.2.18. The joint probability density of the random variables x, (i =
1,2,.., M) on H, and H, is

Pxiu,(X|Hy) = ’é; Dic (2”012)“,2 exp [ (X — m)z] fl[ exp ( X2 )

i1#k
where

Pxiuy(X|Ho) = l_I

1. Find the LRT.

2. Draw the decision regions for various values of 7 in the X;, X;-plane for the
special case in which M = 2 and p; = p, = }.

3. Find an upper and lower bound to Pr and P, by modifying the regions of
integration.

2
exp( %) —© < X; < o,

Problem 2.2.19. The probability density of r, on the two hypotheses is
R - m 2 ’ 2) ey N’
exp [ ( 4 ! ) ] 1

Ok

Py (Ri|Hy) =

11 O
The observations are independent.

1. Find the LRT. Express the test in terms of the following quantities:

la

Mz FMz

Rh

s RA.

u
P
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2. Draw the decision regions in the /,,/s-plane for the case in which

2m° =m > 0,

201 = 0p.
Problem 2.2.20 (continuation).
1. Consider the special case
mo = 0’
gy = 03.

Draw the decision regions and compute the ROC.

2. Consider the special case

mo=m =0,
0.? = 0% + 0%,
0y = Oy,

Draw the decision regions.

Problem 2.2.21. A shell is fired at one of two targets: under H; the point of aim has
coordinates x,, yi, z1; under H, it has coordinates xo, yo, zo. The distance of the
actual landing point from the point of aim is a zero-mean Gaussian variable, N(0, o),
in each coordinate. The variables are independent. We wish to observe the point of
impact and guess which hypothesis is true.

1. Formulate this as a hypothesis-testing problem and compute the likelihood
ratio. What is the simplest sufficient statistic? Is the ROC in Fig. 2.9a applicable ?
If so, what value of d2 do we use?

2. Now include the effect of time. Under H, the desired explosion time is #x
(k = 1, 2). The distribution of the actual explosion time is

— 1)? _
Pain(7) = —m—exp (-(T 2 ) ® <1<,

V2n o 202 k=12
Find the LRT and compute the ROC.

P2.3 M-Hypothesis Tests
Problem 2.3.1.

1. Verify that the M-hypothesis Bayes test always leads to a decision space whose
dimension is less than or equal to M — 1.

2. Assume that the coordinates of the decision space are

Prmk(R|H:¢)’
Priag(R|Ho)

Verify that the decision boundaries are hyperplanes.

AR) 2 k=1,2...,M—1.

Problem 2.3.2. The formulation of the M-hypothesis problem in the text leads to an
efficient decision space but loses some of the symmetry.

1. Starting with (98) prove that an equivalent form of the Bayes test is the
following:
Compute

M-1
B & 20 CyPr(H;R), i=0,1,....,.M—1,
i=

and choose the smallest.
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2. Consider the special cost assignment

Cy =0, i=012...,.M~—-1,
Cy = C, i#j,4,j=012...,.M—1.

Show that an equivalent test is the following:
Compute

Pr (Hi|R), i=012....M~-1,

and choose the largest.

Problem 2.3.3. The observed random variable is Gaussian on each of five hypotheses.

— 2 - .
pan(RIH) = ooxp (-5 ). R E S

where

m; = ~2m,

m; = —m,

ms = 0,

my = m,

ms = 2m

The hypotheses are equally likely and the criterion is minimum Pr ().
1. Draw the decision regions on the R-axis.
2. Compute the error probability.

Problem 2.3.4. The observed random variable r has a Gaussian density on the three
hypotheses,

(R—m,c)2 —o < R<o
(R|Hy) = ex [ e |’
Prim(RIH Tm o P k=1,23,
where the parameter values on the three hypotheses are,
Hy:m, = 0, 0] = Og,
Hgl'ﬂz = m, o3 = 0Og, (m > 0),
Hyimg = 0, o3 = oy, (05 > a2).

The three hypotheses are equally likely and the criterion is minimum Pr (e).

1. Find the optimum Bayes test.
2. Draw the decision regions on the R-axis for the special case,

0p? = 20,2,
0 = m.

3. Compute the Pr (¢) for this special case.
Problem 2.3.5. The probability density of r on the three hypotheses is

2 —
Pry a1 (Ry, Ro|Hy) = (2m01502x) ™1 €Xp [—— (;1-,‘— + U—R;:—z-)] k : ]<’ £1§’R2 <%
where
0112 = 0212 = Unzy
‘7122 = ‘732 + 0"2, ‘7222 = anzy

2 - 2 2 - 2 2
013" = 0%, 023° = o + 0,°
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The cost matrix is

011
1 0 «f,
1 « 0

where 0 < « < 1 and Pr (H;) = Pr (H3) & p. Define ; = R,2 and I; = R,2.

1. Find the optimum test and indicate the decision regions in the /;, l;-plane.
2. Write an expression for the error probabilities. (Do not evaluate the integrals.)
3. Verify that for « = 0 this problem reduces to 2.2.17.
Problem 2.3.6. On H, the observation is a value of a Poisson random variable
k n
Pr(r=n)=—n"',—e”°m, m=12,..., M,

where k., = mk. The hypotheses are equally likely and the criterion is minimum Pr (e).

1. Find the optimum test.
2. Find a simple expression for the boundaries of the decision regions and indicate
how you would compute the Pr (e).
Problem 2.3.7. Assume that the received vector on each of the three hypotheses is
Hy:r =mg + n,
Hi:r=m; + n,
Hz:r =my + n,

where
r1 myy n
rd |rl, m 2 |mg.|, n2 |nf.
ra mg, ns

The m, are known vectors, and the components of n are statistically independent,
zero-mean Gaussian random variables with variance ¢

1. Using the results in the text, express the Bayes test in terms of two sufficient
statistics.

L =

i

Mm

Ciry,
1

"

Mo

dgﬂ.

I, =

1
-

Find explicit expressions for ¢; and d;. Is the solution unique?
2. Sketch the decision regions in the /;, /;-plane for the particular cost assignment,

Coo = C1; = Ca2 =0,
C12 = Ca1 = Col = Cyo = %COZ = %CZO > 0.

P2.4 Estimation

BAYES ESTIMATION
Problem 2.4.1. Let

r=ab + n,

where a, b, and independent zero-mean Gaussian variables with variances
7.2, 0,2, and o,2.

1. What is dmap?
2. Is this equivalent to simultaneously finding dmap, brnap?
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3. Now consider the case in which
k
r=a+ 2 b +n,
i=1

where the b, are independent zero-mean Gaussian variables with variances o, 2.

(a) What is dmap?
(b) Is this equivalent to simultaneously finding dmap, 5l,map?
(c) Explain intuitively why the answers to part 2 and part 3b are different.

Problem 2.4.2. The observed random variable is x. We want to estimate the parameter
A. The probability density of x as a function of A is,

Pa(X|D) = A2, X=0,1>0,
=0, X<o.

The a priori density of A depends on two parameters: n,, /,.
Iy

Prinets(Alng, 1y) & < T'(na)

0, A<O.

e-M./\n.—l’ A > 0’

1. Find E() and Var (}) before any observations are made.

2. Assume that one observation is made. Find p,|.(A] X). What interesting property
does this density possess? Find A, and E[(:\m,— A)32).

3. Now assume that n independent observations are made. Denote these n ob-
servations by the vector x. Verify that

(N
—_— A 1’ 2> 0’
Pux(AlX) 4 {r(n ) €
0, A<0O,
where
U'=1+1,,
n =n+ n,,
and
n
I= Z X(.

Find A, and E[(Ams — 2)?].
4. Does Amap = Ams?

Comment. Reproducing Densities. The reason that the preceding problem was
simple was that the a priori and a posteriori densities had the same functional form.
(Only the parameters changed.) In general,

prla(RlA)pa(A)’
p(R)

and we say that p,(A) is a reproducing density or a conjugate prior density [with respect
to the transition density p,.(R|A4)] if the a posteriori density is of the same form as
Da(A). Because the choice of the a priori density is frequently somewhat arbitrary, it is
convenient to choose a reproducing density in many cases. The next two problems
illustrate other reproducing densities of interest.

Pai(A|R) =
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Problem 2.4.3. Let
r=a+n,
where n is N(0, o,). Then

Pria(R|A) =

exp

o 21r on [ - A)z]

1. Verify that a conjugate priori density for a is N (mo, %) by showing that
0.
palv(AlR) = N(mh 01)9

where
mOko + R
(1 + ko)
and
2
2 I
=T ke

2. Extend this result to N independent observations by verifying that
Pair(4|R) = N(my, ov),

where
My = "1(:,’(()2 + NI
NTUN + kot
on? = "—"g,
N N + ko?
and
2 h 3R

f=1
Observe that the a priori parameter ko2 can be interpreted as an equivalent number of
observations (fractional observations are allowed).

Problem 2.4.4. Consider the observation process

p'|ﬂ(R|A) (2 )1/ €xXp [ 2 (R - m)z]

where m is known and 4 is the parameter of interest (it is the reciprocal of the variance).
We assume that N independent observations are available.
1. Verify that k
PalAlks, k) = (4 7 *)exp (—dkiks), A 20,
ki, k2 > 0,
(c is a normalizing factor) is a conjugate prior density by showing that

Pair(A|R) = pa(Alk3, k2)
where

Ky = g (ks + Nw),
1
ki = kl + N,
w=g Z (R, — m)2.
l‘l

Note that k;, k; are simply the parameters in the a priori density which are chosen
based on our a priori knowledge.
2. Find 4ps.
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Problem 2.4.5. We make K observations: Ry, ..., Rx, where
rn=a-+ n.

The random variable @ has a Gaussian density N(0, o,). The n; are independent
Gaussian variables N(0, a,).

1. Find the MMSE estimate dms.

2. Find the MAP estimate dmap.

3. Compute the mean-square error.

4. Consider an alternate procedure using the same r,.

(a) Estimate a after each observation using a MMSE criterion.

This gives a sequence of estimates d;(R,), d2(Ri, Ra)...d(Ry,... Ry ...
dx(R;, . . ., Rk). Denote the corresponding variances as ¢,?%, 02, .. ., ox®.

(b) Express 4, as a function of d;_1, ¢f_;, and R;.
(c) Show that
1 J
— == + 5

oy a2 0,2

Problem 2.4.6. [36]. In this problem we outline the proof of Property 2 on p. 61. The
assumptions are the following:

(a) The cost function is a symmetric, nondecreasing function. Thus

C(X) = C(—X)

C(X;) = C(Xz) for X, = X, =0, (P.1)
which implies J

C(X)

X >0 for X=0. (P.2)

(b) The a posteriori probability density is symmetric about its conditional mean
and is nonincreasing. )
© lim C(X)pir(X|R) = 0. (P.3)

We use the same notation as in Property 1 on p. 61. Verify the following steps:

1. The conditional risk using the estimate 4 is
@©
R@R) = [~ C@pueZ + 6 = dmalR dZ. (P.4)
2. The difference in conditional risks is

A"R' = ‘R(ﬁ]R) - :K(ﬁmis) = .[0 C(Z)[ler(z +d4d- ‘imis)pz]l‘(Z -4+ dmis)
—2p.(Z|IR)1dZ.  (P.5)

3. For 4 > dns the integral of the terms in the bracket with respect to Z from 0 to
Zo is

[ peza + YIR) — put@o — YIROAY £ 520 (P.6)
4. Integrate (P.5) by parts to obtain
© dC(Z)

AR = C(2)2(Z) | -T2

5. Show that the assumptions imply that the first term is zero and the second term
is nonnegative.
6. Repeat Steps 3 to 5 with appropriate modifications for 4 < dms.

8(Z2)dz, 4 > dms. (P.7)
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7. Observe that these steps prove that dn,s minimizes the Bayes risk under the above
assumptions. Under what conditions will the Bayes estimate be unique ?

NONRANDOM PARAMETER ESTIMATION

Problem 2.4.7. We make n statistically independent observations: ry, rs, .. ., rn, With
mean m and variance o2, Define the sample variance as
l n ( n R‘)z
v==S (R - >
n sz l=zl n
Is it an unbiased estimator of the actual variance ?

Problem 2.4.8. We want to estimate a in a binomial distribution by using n observa-
tions.

n
Pr (r events|a) = ( )a'(l —a)yr, r=0,1,2,...,n
r

1. Find the ML estimate of a and compute its variance.
2. Is it efficient ?

Problem 2.4.9.

1. Does an efficient estimate of the standard deviation ¢ of a zero-mean Gaussian
density exist ?

2. Does an efficient estimate of the variance o2 of a zero-mean Gaussian density
exist ?

Problem 2.4.10 (continuation). The results of Problem 2.4.9 suggest the general
question. Consider the problem of estimating some function of the parameter A, say,
f1(A). The observed quantity is R and p, o(R|A4) is known. Assume that A4 is a nonran-
dom variable.

1. What are the conditions for an efficient estimate f;(4) to exist?

2. What is the lower bound on the variance of the error of any unbiased estimate
of f1(4)?

3. Assume that an efficient estimate of f,(A4) exists. When can an efficient estimate
of some other function f;(A4) exist?

Problem 2.4.11. The probability density of r, given 4, and A, is:

R — 4,)°
prlal,uz(RlAh AZ) = (2"142)_% exp [—(—Zz‘ri];

that is, 4, is the mean and A, is the variance.

1. Find the joint ML estimates of 4, and A, by using n independent observations.
2. Are they biased?

3. Are they coupled?

4. Find the error covariance matrix.

Problem 2.4.12. We want to transmit two parameters, 4, and A4.. In a simple attempt
to achieve a secure communication system we construct two signals to be transmitted
over separate channels.

s1 = X141 + x1242,

Sz = X2141 + X322,

where xy, i, j = 1, 2, are known. The received variables are

ry =8+ ny,
rg = Sg + ns.
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The additive noises are independent, identically distributed, zero-mean Gaussian
random variables, N(0, o,). The parameters 4; and A4, are nonrandom.

1. Are the ML estimates d, and 4, unbiased ?

2. Compute the variance of the ML estimates 4, and d,.

3. Are the ML estimates efficient ? In other words, do they satisfy the Cramér-Rao
bound with equality ?

Problem 2.4.13. Let .
y = Z Xiy
i=1
where the x; are independent, zero-mean Gaussian random variables with variance
0.%. We observe y. In parts 1 through 4 treat N as a continuous variable.

1. Find the maximum likelihood estimate of N.

2. Is Ay unbiased ?

3. What is the variance of 7ip ?

4. Is Ay efficient ?

5. Discuss qualitatively how you would modify part 1 to take into account that N
is discrete.

Problem 2.4.14. We observe a value of the discrete random variable x.
i
Pr(x=ilA)=%e"‘, i=012,...,
where A is nonrandom.

1. What is the lower bound on the variance of any unbiased estimate, d(x)?
2. Assuming n independent observations, find an d(x) that is efficient.

Problem 2.4.15. Consider the Cauchy distribution
Px1a(X|A) = {=[l + (X — A}~

Assume that we make n independent observations in order to estimate A4.

1. Use the Cramér-Rao inequality to show that the variance of any unbiased
estimate of 4 has a variance greater than 2/n.

2. Is the sample mean a consistent estimate ? _

3. We can show that the sample median is asymptotically normal, N(4, =/V4n).
(See pp. 367-369 of Cramér [9].) What is the asymptotic efficiency of the sample
median as an estimator ?

Problem 2.4.16. Assume that

_ 1 _ (Rl2 el 2PR1R2 + R22)}
Pu.rzlp(Rh RZIP) = 27(1 — pz)l/2 exP{ 2(1 — pz) '

We want to estimate the correlation coefficient p by using n independent observa-
tions of (R;, Rz).

1. Find the equation for the ML estimate p.
2. Find a lower bound on the variance of any unbiased estimate of p.
MATHEMATICAL PROPERTIES
Problem 2.4.17. Consider the biased estimate 4(R) of the nonrandom parameter A.
E@G(R)) = A + B(A).
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Show that .
Var [4(R)] = 1+ dB(A)/dA)

{[3 In pm(RIA)] }

This is the Cramér-Rao inequality for biased estimates. Note that it is a bound on the
mean-square error.

Problem 2.4.18. Let pr;.(R|A) be the probability density of r, given A. Let A be an
arbitrary random variable that is independent of r defined so that 4 + 4 ranges over
all possible values of 4. Assume that p,,(H) and p,,(H) are two arbitrary probability
densities for h. Assuming that 4(R) is unbiased, we have

[1a® — (4 + mlpeuRIA + HYaR = 0.
Multiplying by p,,(H) and integrating over H, we have

f dH pa(H) f [4R) — (A + H)Iprio(R|A + H)dR = 0.
1. Show that .
Var [4(R) — A] > [Ex(h) — Ex(h)) i
f (( [ PriaRIA + H)(pa,(H) = prg(H) dH) )
1 RTA) aR

for any px,(H) and pn,(H). Observe that because this is true for all p,, (H) and p,,(H),
we may write

Var [d(R) — A] = sup (right-hand side of above equation).

Phl'th
Comment. Observe that this bound does not require any regularity conditions.
Barankin [15] has shown that this is the greatest lower bound.
Problem 2.4.19 (continuation). We now derive two special cases.

1. First, let pn,(H) = 3(H). What is the resulting bound?
2. Second, let p,,(H) = 8(H — H,), where H, # 0. Show that

Pi1(R|4 + Hy) _ ]})'1
Var [4(R) — 4] > (mf{ [f Pl‘ln(R|A) dR — 1
The infimum being over all H, # 0 such that py.(R|4) = 0 implies
pna(RlA + Ho) = 0

3. Show that the bound given in part 2 is always as good as the Cramér-Rao
inequality when the latter applies.

Problem 2.4.20. Let
a = Lb,
where L is a nonsingular matrix and a and b are vector random variables. Prove that
ﬁmlp = LBm-.p and ﬂnu = Ll;m,.
Problem 2.4.21. An alternate way to derive the Cramér-Rao inequality is developed in
this problem. First, construct the vector z.
4(R) —

22 ) o 1n pria(RIA) |-
0A4
1. Verify that for unbiased estimates E(z) = 0.
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2. Assuming that E(z) = 0, the covariance matrix is
A, = E(zz27).

Using the fact that A, is nonnegative definite, derive the Cramér-Rao inequality.

If the equality holds, what does this imply about |A;|?
Problem 2.4.22. Repeat Problem 2.4.21 for the case in which a is a random variable.
Define

dR) — a
d1ln pr.4(R, 4)

0A

and proceed as before.
Problem 2.4.23. Bhattacharyya Bound. Whenever an efficient estimate does not exist,
we can improve on the Cramér-Rao inequality. In this problem we develop a con-
ceptually simple but algebraically tedious bound for unbiased estimates of nonrandom
variables.

1. Define an (N + 1)-dimensional vector,

B dR) — A 7]
1 prio(R] 4)
Prio(R|A4) 04

LA 1 #praRlA) |
- Pr|a(R|A) aAz

1 #praRlA)
Lpria(R[4) 04"

Verify that

A, & E@zz") =

What are the elements in J? Is A, nonnegative definite ? Assume that J is positive
definite. When is A, not positive definite ?
2. Verify that the results in part 1 imply

g2 > .7”.
This is the Bhattacharyya bound. Under what conditions does the equality hold?

3. Verify that for N = 1 the Bhattacharyya bound reduces to Cramér-Rao
inequality.
4. Does the Bhattacharyya bound always improve as N increases?

Comment. In part 2 the condition for equality is

X 1 &pra(R|A)
4R) — 4 _‘Zf‘“)pm(ku) oA’

This condition could be termed Nth-order efficiency but does not seem to occur in
many problems of interest.
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5. Frequently it is easier to work with
& In pria(R| 4).
0A'

Rewrite the elements J, in terms of expectations of combinations of these quantities
for N = 1 and 2.
Problem 2.4.24 (continuation). Let N = 2 in the preceding problem.

1. Verify that
2 > '..—1- + '.#-—:—

Jll 111(111-122 - 1122)

The second term represents the improvement in the bound.

2. Consider the case in which r consists of M independent observations with
identical densities and finite conditional means and variances. Denote the elements of

J due to M gbservations as .Z,(M). Show that J,;(M) = Mju(l). Derive similar
relations for J,5,(M) and Jo2(M). Show that

T 2
ey T (L)
M) - 2M2J344(1) M
Problem 2.4.25. [11] Generalize the result in Problem 2.4.23 to the case in which we
are estimating a function of A4, say f(A4). Assume that the estimate is unbiased. Define
i 4(R) — f(4) T

K 1 6pr|a(R|A)
! pria(R[A) o4

2= 4 1 FomaRIA) |
Pria(R|A) 042

O¢

koL PPeis(RIA)
| Nprla(RIA) oAV

Let

) N 1 a‘pr,a(RM)
y = [aR) = f(] = 2 ki ppry = o

1. Find an expression for ¢, = E[y?]. Minimize ¢, by choosing the k; appropriately.
2. Using these values of k;, find a bound on Var[d(R) — f(A4)].
3. Verify that the result in Problem 2.4.23 is obtained by letting f(4) = A4 in (2).

Problem 2.4.26.

1. Generalize the result in Problem 2.4.23 to establish a bound on the mean-square
error in estimating a random variable.
2. Verify that the matrix of concern is
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What are the elements in Jr?
3. Find A; for the special case in which a is N(0, o,).

MULTIPLE PARAMETERS
Problem 2.4.27. In (239) we defined the partial derivative matrix V.
2
3x1
0

Vx oxz

>

Oxn
Verify the following properties.
1. The matrix A is n x 1 and the matrix B is n x 1. Show that
Vx(ATB) = (VxAT)B + (VxBT)A.
2. If the n x 1 matrix B is not a function of x, show that

Vx(B7x) = B.
3. Let C be an n x m constant matrix,
Vx(x*C) = C.

4, Vx(x™) =L
Problem 2.4.28. A problem that occurs frequently is the differentiation of a quadratic
form.
Q = A7(x) AA(x),
where A(x) isa m x 1 matrix whose elements are a function of x and A is a symmetric
nonnegative definite m x m matrix. Recall that this implies that we can write
A = A%A%,
1. Prove
VxQ = 2(VxAT(x)) AA(x)
2. For the special case

A(x) = Bx,
prove
VxQ = 2BTABx.
3. For the special case
0 = xTAx,
prove VxQ = 2Ax.

Problem 2.4.29. Go through the details of the proof on p. 83 for arbitrary K.
Problem 2.4.30. As discussed in (284), we frequently estimate,

d 2 ga(A).
Assume the estimates are unbiased. Derive (286).

Problem 2.4.31. The cost function is a scalar-valued function of the vector a., C(a.).
Assume that it is symmetric and convex,
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1. C@a) = C(—a.),
2. C(bx; + (1 — b)x2) < bC(x1) + (1 — b) C(x2), 0<bx<l.

Assume that the a posteriori density is symmetric about its conditional mean. Prove
that the conditional mean of a minimizes the Bayes risk.

Problem 2.4.32. Assume that we want to estimate K nonrandom parameters A4;, 4z, .. .,
Ag,denoted by A. The probability density pr;a(R|A) is known. Consider the biased
estimates 4(R) in which

B(a) 2 f[ﬁi(R) — Ailpria(R|A) dR.

1. Derive a bound on the mean-square error in estimating A;.
2. The error correlation matrix is

R. £ E[@AR) — A)@"(R) — A7)]

Find a matrix Jp such that, J; — R.~! is nonnegative definite.

MISCELLANEOUS

Problem 2.4.33. Another method of estimating nonrandom parameters is called the
method of moments (Pearson [37]). If there are k parameters to estimate, the first k
sample moments are equated to the actual moments (which are functions of the
parameters of interest). Solving these k& equations gives the desired estimates. To
illustrate this procedure consider the following example. Let

PanXIN = i X2te7E, X2 0,

=0, X<,
where A is a positive parameter. We have n independent observations of x.

1. Find a lower bound on the variance of any unbiased estimate.
2. Denote the method of moments estimate as A,m. Show

A

fom =1 S X,
A A n‘=1
and compute E(A,n) and Var (Apm).

Comment. In [9] the efficiency of Anm 1S computed. It is less than 1 and tends to
Zero as n — .

Problem 2.4.34. Assume that we have n independent observations from a Gaussian
density N(m, o). Verify that the method of moments estimates of m and ¢ are identical
to the maximume-likelihood estimates.

P2.5 Composite Hypotheses

Problem 2.5.1. Consider the following composite hypothesis testing problem,

Hy:p(R) = 1 exp (——R2 )9
0:Pr \/2—" 0 2(102
where o, is known,

1 R?
H,:p(R) = Voo exp (—W)

T Oy

where o; > 0,. Assume that we require Pr = 1072,
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1. Construct an upper bound on the power function by assuming a perfect measure-
ment scheme coupled with a likelihood ratio test.

2. Does a uniformly most powerful test exist ?

3. If the answer to part 2 is negative, construct the power function of a generalized
likelihood ratio test.

Problem 2.5.2. Consider the following composite hypothesis testing problem. Two
statistically independent observations are received. Denote the observations as R, and
R.. Their probability densities on the two hypotheses are

I

. -1 _R2 ;
Ho:p, (R) = = exp( 2002)’ i=1,2,

T Og
where g, is known,

1 R? .
H1:Pr.(R() = ——2_—‘— exp (—2712)’ i=1,2,

T 0y
where o; > oo. Assume that we require a Pr = a.

1. Construct an upper bound on the power function by assuming a perfect measure-
ment scheme coupled with a likelihood ratio test.

2. Does a uniformly most powerful test exist ?

3. If the answer to part 2 is negative, construct the power function of a generalized
likelihood ratio test.

Problem 2.5.3. The observation consists of a set of values of the random variables,
Fis a2y o« ooy 'y

ri=s;+n‘, i=l,2,...,M, Hl,
ro=n, i 1,2,..., M, Hy.

The s; and n; are independent, identically distributed random variables with
densities N(0, o;) and N(0, o,), respectively, where o, is known and o, is unknown.

1. Does a UMP test exist?
2. If the answer to part 1 is negative, find a generalized LRT.

I

Problem 2.5.4. The observation consists of a set of values of the random variables
ri, r2, . . ., ru, Which we denote by the vector r. Under H, the r; are statistically
independent, with densities

1 RF)
PiR) = o exP( 0

in which the A, are known. Under H; the r, are statistically independent, with densities

2

S _&_)
PlR) = o P ( 241

in which A > A° for all i. Repeat Problem 2.5.3.

Problem 2.5.5. Consider the following hypothesis testing problem. Two statistically
independent observations are received. Denote the observations R; and R.. The
probability densities on the two hypotheses are

1 R? .
Ho:p’l(R‘) = \/ﬂaexp (_ﬁ ’ i=1,2,

1 R, — 2 .
Hy:po(R) = vZ—ae*p[‘( S =1,

where m can be any nonzero number. Assume that we require Pr = a.
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1. Construct an upper bound on the power function by assuming a perfect measure-
ment scheme coupled with a likelihood ratio test.

2. Does a uniformly most powerful test exist ?

3. If the answer to part 2 is negative, construct the power function of a generalized
likelihood ratio test.

Problem 2.5.6. Consider the following hypothesis-testing problem.

m n

Hi: 0
Ho' 0 )

Under H, anonrandom variable 8§ (— o0 < 8 < o) is transmitted. It is multiplied by
the random variable m. A noise n is added to the result to give r. Under H, nothing is
transmitted, and the output is just n. Thus

Hy:r = m0 + n,
Hy:r = n.

The random variables m and n are independent.

1 ( N2)

n N)=——¢ -

P( ) 2” o Xp 207;2

Pu(M) =%8M — 1) + 3 8(M + 1).

1. Does a uniformly most powerful test exist ? If it does, describe the test and give

an expression for its power function? If it does not, indicate why.
2. Do one of the following:
(a) If a UMP test exists for this example, derive a necessary and sufficient
condition on p.(M) for a UMP test to exist. (The rest of the model is

unchanged.)
(b) If a UMP test does not exist, derive a generalized likelihood ratio test and an

expression for its power function.

Problem 2.5.7 (CFAR receivers.) We have N independent observations of the variable
x. The probability density on H) is

1 —(Xi — 2 i=12,...N,
PinH;c(X[Hk) = \/Z_naexp{ ( ‘202mk)} o< X< Hyi: k =0,1,
my = 0.

The variance o? is unknown. Define

(a) Consider the test
L% 2 oy
H

Verify that the Py of this test does not depend on ¢2. (Hint. Use formula in
Problem 2.4.6.)
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(b) Find « as a function of Py.

(c) Is this a UMP test?

(d) Consider the particular case in which N =2 and m; = m. Find Pp as a
function of Pr and m/o. Compare your result with Figure 2.9b and see how much
the lack of knowledge about the variance ¢ has decreased the system per-
formance.

Comment. Receivers of this type are called CFAR (constant false alarm rate)

receivers in the radar/sonar literature.

Problem 2.5.8 (continuation). An alternate approach to the preceding problem would
be a generalized LRT.

1. Find the generalized LRT and write an expression for its performance for the
case in which N = 2 and m, = m.

2. How would you decide which test to use?

Problem 2.5.9. Under H,, x is a Poisson variable with a known intensity ko.

I—‘L'e"‘O, n=0,1,2,....
n

Pr(x=n)=

Under H,, x is a Poisson variable with an unknown intensity k;, where k; > k.
1. Does a UMP test exist ?

2. If a UMP test does not exist, assume that M independent observations of x are
available and construct a generalized LRT.

Problem 2.5.10. How are the results to Problem 2.5.2 changed if we know that 0y < o,
and o, > o, where o, is known. Neither o, or ¢,, however, is known. If a UMP test
does not exist, what test procedure (other than a generalized LRT) would be logical ?

P2.6 General Gaussian Problem
DETECTION

Problem 2.6.1. The M-hypothesis, general Gaussian problem is

prim(RIHY) = [(2m)Y2|K,|%]-t exp [ 3(RT — mT) QR — m,)], i=12,..., M.
1. Use the results of Problem 2.3.2 to find the Bayes test for this problem.
2. For the particular case in which the cost of a correct decision is zero and the
cost of any wrong decision is equal show that the test reduces to the following:
Compute
IR) =InP, — }In|K| — $R” — m") QR — m,)
and choose the largest.

Problem 2.6.2 (continuation). Consider the special case in which all K; = 0,2I and
the hypotheses are equally likely. Use the costs in Part 2 of Problem 2.6.1.

1. What determines the dimension of the decision space? Draw some typical
decision spaces to illustrate the various alternatives.

2. Interpret the processor as a minimum-distance decision rule.

Problem 2.6.3. Consider the special case in whichm, = 0, i = 1,2,..., M, and the
hypotheses are equally likely. Use the costs in Part 2 of Problem 2.6.1.

1. Show that the test reduces to the following:

Compute

LR) = RTQR + In |K,|
and choose the smallest.
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2. Write an expression for the Pr (e) in terms of pjx,(L|H), where

h
™
In
Problem 2.6.4. Let
gs 2 x"Bx,

where x is a Gaussian vector N(0, ) and B is a symmetric matrix.

1. Verify that the characteristic function of g is
N
Mog(jv) & E(e™B) =] (1 = 2jvAp) %,
i=1

where Ag; are the eigenvalues of B.
2. What is p,s(Q) when the eigenvalues are equal?
3. What is the form of p,s(Q) when N is even and the eigenvalues are pair-wise
equal but otherwise distinct; that is,
Ag—1 = 1\24, i= ls 2, . ,]Zv’
Am # Ag’, all i # j.
Problem 2.6.5.

1. Modify the result of the preceding problem to include the case in which x is a
Gaussian vector N(0, Ax), where Ay is positive definite.
2. What is M, v (jv)? Does the result have any interesting features ?

Problem 2.6.6. Consider the M-ary hypothesis-testing problem. Each observation is a
three-dimensional vector.

Ho:r—mo+n,
Hi:r=m; +n,
Hy:r=mg; + n,
Hz:r =m3 + n,
m, = +4,0, B,
m1=0 +A B,
m2=—A,0,B,
m; =0, —A4,B.

The components of the noise vector are independent, identically distributed Gaussian
variables, N(0, o). We have K independent observations. Assume a minimum Pr(e)
criterion and equally-likely hypotheses. Sketch the decision region and compute the
Pr(e).

Problem 2.6.7. Consider the following detection problem. Under either hypothesis the
observation is a two-dimensional vector r.

Under H,:
ry X1 n,
SARHRARS
ra, Xa Ny

-+ -

Under H,:
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The signal vectors x and y are known. The length of the signal vector is constrained to
equal VE under both hypotheses; that is,

xlz + Xzz = E,
»n®+ y? =E.

The noises are correlated Gaussian variables.

N12 - 2PN1N2 + sz).
20%(1 — p?)
1. Find a sufficient statistic for a likelihood ratio test. Call this statistic /(R). We
have already shown that the quantity

_ [EU|H)) — E(l|Ho)P?
= Var (/|Ho)

characterizes the performance of the test in a monotone fashion.

2. Choose x and y to maximize d2. Does the answer depend on p?

3. Call the d? obtained by using the best x and y, dy2. Calculate d,2 for p = —1, 0,
and draw a rough sketch of dy? as p varies from —1 through 0 to 1.

4. Explain why the performance curve in part 3 is intuitively correct.

1
Pnyng(Ni, N2) = Zma? (1 = p7)% O¥P (—

d2

ESTIMATION
Problem 2.6.8. The observation is an N-dimensional vector
r=a-+n,
where a is N(0, Ka), n is N(0, Ky), and a and n are statistically independent.

1. Find &,,,,. Hint. Use the properties of Va developed in Problems 2.4.27 and
2.4.28.

2. Verify that a,,,,, is efficient.
3. Compute the error correlation matrix

Ac é E[(ﬁms - a)(ams - a)T]~

Comment. Frequently this type of observation vector is obtained by sampling a
random process r(f) as shown below,

r(t) r
3 ~ 1+ Y

151 ty ts 'N

We denote the N samples by the vector r. Using r, we estimate the samples of a(r)

which are denoted by a;. An error of interest is the sum of the squares of errors in
estimating the a;.

then
N

N
[T E[z (4, — a)z] = E( > aﬁ'*') = E(a.Ta;) = Tr (A)).
i=1 i=1
Preblem 2.6.9 (continuation). Consider the special case

K, = 0.’
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1. Verify that
Anms = (021 + Ko) 'K R.

2. Now recall the detection problem described in Case 1 on p. 107. Verify that
IR) = — R,

Draw a block diagram of the processor. Observe that this is identical to the * unequal
mean-equal covariance” case, except the mean m has been replaced by the mean-
square estimate of the mean, a;.

3. What is the mean-square estimation error &,?

Problem 2.6.10. Consider an alternate approach to Problem 2.6.8.
r=a-+n,
where a is N(0, Ka) and n is N(0, 0,I). Pass r through the matrix operation W,
which is defined in (369). The eigenvectors are those of K,.
rAwr=x+n

1. Verify that WWT = 1.
2. What are the statistics of x and n’?
3. Find X. Verify that
P A
A‘ + o, Rh
where A; are the eigenvalues of Ka.

4. Express 4 in terms of a linear transformation of &. Draw a block diagram of the
over-all estimator.

5. Prove

é 2 Ela"a] = o,? Z m

Problem 2.6.11 (Nonlinear Estimation). In the general Gaussian nonlinear estimation
problem

r =s(A) +n,

where s(A) is a nonlinear function of A. The noise n is Gaussian N(0, K,) and
independent of a.

1. Verify that
prisafRIs(A)) = [(2m)"V'?[Kn|*] ! exp [-HRT — sT(A))Qn (R — s(A)D)].

2. Assume that a is a Gaussian vector N(0, Ka). Find an expression for In pr a(R, A).
3. Using the properties of the derivative matrix Va derived in Problems 2.4.27
and 2.4.28, find the MAP equation.

Problem 2.6.12 (Optimum Discrete Linear Filter). Assume that we have a sequence of

scalar observations ry, rg, rs, ..., rx, where r; = a; + n; and
E(a) = E(n) = 0,
E(rr™) = Ay, (N x N),

E(a) = Ar,,, (N x D).

We want to estimate ax by using a realizable discrete linear filter. Thus

K
d}( = Z hpR; = hTR.
i=1
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Define the mean-square point estimation error as
& L& E{{dx(R) — ax]?.
1. Use Vi to find the discrete linear filter that minimizes .

2. Find &; for the optimum filter.

3. Consider the special case in which a and n are statistically independent. Find h
and ¢&p.

4. How is dx(R) for part 3 related to Ayap in Problem 2.6.8.
Note. No assumption about Gaussianness has been used.

SEQUENTIAL ESTIMATION

Problem 2.6.13. Frequently the observations are obtained in a time-sequence,

ri, fa, r3, .. ., ry. We want to estimate the k-dimensional parameter a in a sequential
manner.

The ith observation is
r4=Ca+W1, i=1,2,...,N,

where C is a known 1 x k matrix. The noises w; are independent, identically distri-
buted Gaussian variables N(0, o,). The a priori knowledge is that a is Gaussian,
N (mo, Aa)

1. Find pal'l(AlRl)'

2. Find the minimum mean-square estimate 4, and the error correlation matrix
A,. Put your answer in the form

Pair (AlRy) = cexp [—3(A — 4)7A;}(A — 4y)],
where

As_ll Aa_l + CTO,."ZC

and
4, = mo + ;1—2chr(k1 — Cmo).
n

3. Draw a block diagram of the optimum processor.

4. Now proceed to the second observation R,. What is the a priori density for this
observation? Write the equations for pajr,.,(Alry, r2), A7}, and 4, in the same
format as above.

5. Draw a block diagram of the sequential estimator and indicate exactly what
must be stored at the end of each estimate.

Problem 2.6.14. Problem 2.6.13 can be generalized by allowing each observation to be
an m-dimensional vector. The ith observation is
= Ca + Wi,

where Cis a known m x k matrix. The noise vectors w; are independent, identically
distributed Gaussian vectors, N(0, Ay), where Ay is positive-definite.
Repeat Problem 2.6.13 for this model. Verify that
4 =4_; + A,C"Aw 'R, — C4;_,)
and
AP = A5, + CTAwC.

Draw a block diagram of the optimum processor.
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Problem 2.6.15. Discrete Kalman Filter. Now consider the case in which the parameter
a changes according to the equation

a4y = Pa, + Tu, k=123,...,

where a; is N(mo, P,), ® is an n x n matrix (known), I" is an n x p matrix (known),
u, is N(0, Q), and u, is independent of u, for j # k. The observation process is

rk=Ca;¢+wk, k=1,2,3,...,

where C is an m X n matrix, w, is N(0, Ayw) and the w, are independent of each other
and u,.

PART 1. We first estimate a;, using a mean-square error criterion.

1. Write pa,r,(A1|Ry).

2. Use the Va, operator to obtain ;.

3. Verify that &, is efficient.

4, Use Va,{[Va,(In pa,r,(A1|R1))]"} to find the error covariance matrix Py,
where

P, & E[@& — a)@& — a)7), i=12,....
ﬁl = my + PlcTAw—I[R -— Cmo]
P, =Py ! + CTAw'C.

PART II. Now we estimate a,.

1. Verify that

pazlrl,rz(Alex, R;) =

Check.

and

Pro1as(Rz]A2) pazll‘l(A2|R1).
Pryir; (R2[Ry)
2. Verify that pa,r,(Az|R;) is N(®P4,, M;), where

M, A ®P,&T + T'QIT,

3. Find &, and P,.

Check.
ﬁz = @ﬁ]_ + PQCTAW_I(Rz - C‘bﬁl),
Pz_l = 2_1 + CTAW_IC.
4. Write
Pz = Mz - B
and verify that B must equal
B = M;C7(CM.C” + Ay) CM..
5. Verify that the answer to part 3 can be written as
4, = P4, + MoC'(CM:C” + Aw) (R, — CP4,).

Compare the two forms with respect to ease of computation. What is the dimension
of the matrix to be inverted ?

PaArT III

1. Extend the results of Parts I and II to find an expression for 4, and P, in terms
of 4,_, and M,. The resulting equations are called the Kalman filter equations for
discrete systems [38].

2. Draw a block diagram of the optimum processor.

PART 1IV. Verify that the Kalman filter reduces to the result in Problem 2.6.13 when
®=IandQ=0.
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SPECIAL APPLICATIONS

A large number of problems in the areas of pattern recognition, learning systems,
and system equalization are mathematically equivalent to the general Gaussian
problem. We consider three simple problems (due to M. E. Austin) in this section.
Other examples more complex in detail but not in concept are contained in the
various references.

Problem 2.6.16. Pattern Recognition. A pattern recognition system is to be implemented
for the classification of noisy samples taken from a set of M patterns. Each pattern
may be represented by a set of parameters in which the mth pattern is characterized
by the vector s,.. In general, the s,, vectors are unknown. The samples to be classified
are of the form

X =S8, + N,

where the s, are assumed to be independent Gaussian random variables with mean
Sn and covariance AA,, and n is assumed to be zero-mean Gaussian with covariance Ap
independent from sample to sample, and independent of s,,.

1. In order to classify the patterns the recognition systems needs to know the
pattern characteristics. We provide it with a ““learning” sample:

Xm = Sm + N,

where the system knows that the mth pattern is present.

Show that if J learning samples, xV, x2, ..., x{, of the form x¢ = s, + n?
are available for each m = 1, ..., M, the pattern recognition system need store only
the quantities

J

I, = Z X
ji=1
for use in classifying additional noisy samples; that is, show that the I,, m = 1,.. .M’
form a set of sufficient statistics extracted from the MJ learning samples.

2. What is the MAP estimate of s,? What is the covariance of this estimate as a
function of J, the number of learning samples ?

3. For the special case of two patterns (M = 2) characterized by unknown scalars
51 and s;, which have a priori densities N(5;, o) and N(5., o), respectively, find the
optimum decision rule for equiprobable patterns and observe that this approaches the
decision rule of the ‘“known patterns” classifier asymptotically with increasing
number of learning samples J.

~i=

Problem 2.6.17. Intersymbol Interference. Data samples are to be transmitted over a
known dispersive channel with an impulse response h(t) in the presence of white
Gaussian noise. The received waveform

r(t) = ﬁ Ech(t — kT) + n(t)

may be passed through a filter matched to the channel impulse response to give a set
of numbers

a = f r(t) Wt — jT) dt

forj=0, +£1, +2,..., £ K, which forms a set of sufficient statistics in the MAP
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estimation of the ¢,. (This is proved in Chapter 4.) We denote the sampled channel
autocorrelation function as

b; = fh(t) h(t — jT) dt

and the noise at the matched filter output as

ny = f n(e) bt — JT) dt.
The problem then reduces to an estimation of the ¢, given a set of relations

K
a; = Z fkb,-k+n, fOrj,k=0, i’l, iZ,...iK.

k=-K
Using obvious notation, we may write these equations as
a=BE + n

1. Show that if n(z) has double-sided spectral height +N,, that the noise vector n
has a covariance matrix Ap = $N¢B.

2. If the £, are zero-mean Gaussian random variables with covariance matrix Ag
show that the MAP estimate of € is of the form § = Ga and therefore that &, = g7a.
Find g and note that the estimate of & can be obtained by passing the sufficient
statistics into a tapped delay line with tap gains equal to the elements of g. This cas-
cading of a matched filter followed by a sampler and a transversal filter is a well-
known equalization method employed to reduce intersymbol interference in digital
communication via dispersive media.

Problem 2.6.18. Determine the MAP estimate of £, in Problem 2.6.17; assuming
further that the ¢, are independent and that the ¢, are known (say through a *“ teacher”’
or infallible estimation process) for k < 0. Show then that the weighting of the
sufficient statistics is of the form

éo = E &5a; — 2 fi€
i>o i<o

and find g; and f;. This receiver may be interpreted as passing the sampled matched-
filter output through a transversal filter with tap gains g; and subtracting the output
from a second transversal filter whose input is the sequence of £, which estimates have
been made. Of course, in implementation such a receiver would be self-taught by
using its earlier estimates as correct in the above estimation equation.

Problem No. 2.6.19. Let
z=G"r

and assume that z is N(m,, ¢,) for all finite G.

1. What is M,(jv)? Express your result in terms of m, and o,.
2. Rewrite the result in (1) in terms of G, m, and A, [see (316)-(317) for definitions].
3. Observe that
M.(ju) & E[e"*] = E[e6"7]
and
My(jv) & E[eV'T]
and therefore
M. (u) = M;(jv) if Gu=v.

Use these observations to verify (317).
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Problem No. 2.6.20 (continuation).

(a) Assume that the A, defined in (316) is positive definite. Verify that the expres-
sion for pr(R) in (318) is correct. [Hint. Use the diagonalizing transformation W
defined in (368).]

(b) How must (318) be modified if Ay is singular ? What does this singularity imply
about the components of r?

P2.7 Performance Bounds and Approximations

Problem 2.7.1. Consider the binary test with N independent observations, r;, where
Pryiay = N(my, 0k)9 k= 0,1,

i=12,...,N.
Find u(s).
Problem 2.7.2 (continuation). Consider the special case of Problem 2.7.1 in which
mo = 0,
‘702 = 0112’
and

2 - 0:2 + 0"2'
1. Find u(s), a(s), and u(s).
2. Assuming equally likely hypotheses, find an upper bound on the minimum Pr(e).
3. With the assumption in part 2, find an approximate expression for the Pr(e)
that is valid for large N.

Problem 2.7.3. A special case of the binary Gaussian problem with N observations is

1 R7K; 'R
Prin (R Hy) = K, exp ("'——2‘—“)’
1. Find p(s).
2. Express it in terms of the eigenvalues of the appropriate matrices.

k=0,1.

Problem 2.7.4 (continuation). Consider the special case in which

Ko = 0,21
and

Find u(s), a(s), i(s).
Problem 2.7.5 (alternate continuation of 2.7.3). Consider the special case in which K,
and K, are partitioned into the 4 N x N matrices given by (422) and (423).

1. Find p(s).

2. Assume that the hypotheses are equally likely and that the criterion is minimum
Pr(e). Find a bound on the Pr(e).

3. Find an approximate expression for the Pr(e).

K1 = Kg + Ko.

Problem 2.7.6. The general binary Gaussian problem for N observations is

1 RT — mNK,: 'R — m
R e B SRR

Find u(s).
Problem 2.7.7. Consider Example 3A on p. 130. A bound on the Pr(e) is

2 2 N2

1. Constrain No,2/0,2 = x. Find the value of N that minimizes the bound.
2. Evaluate the approximate expression in (516) for this value of N.
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Problem 2.7.8. We derived the Chernoff bound in (461) by using tilted densities. This
approach prepared us for the central limit theorem argument in the second part of our
discussion. If we are interested only in (461), a much simpler derivation is possible.

1. Consider a function of the random variable x which we denote as f(x). Assume
fx) =0, all x,
f(x) = f(Xo) >0, allx = Xo.

Prove EL]
X,
Prix = Xo] < m'
2. Now let
fx)=¢e* 520,
and

Xo =Y.
Use the result in (1) to derive (457). What restrictions on y are needed to obtain (461)?
Problem 2.7.9. The reason for using tilted densities and Chernoff bounds is that a

straightforward application of the central limit theorem gives misleading results when

the region of interest is on the tail of the density. A trivial example taken from [4-18]
illustrates this point.

Consider a set of statistically independent random variables x; which assumes
values 0 and 1 with equal probability. We are interested in the probability

N
Pr [)’N LS x> 1] A Pr [Ay].
N i=1
(a) Define a standardized variable
P YN — IN.

Oyn

Us?\ a central limit theorem argument to estimate Pr [4y]. Denote this estimate
as Pr [Ay].

(b) Calculate Pr [4y] exactly.
(c) Verify that the fractional error is,

Pr [4y]

0.19N
Pridy] * ¢

Observe that the fractional error grows exponentially with N.

(d) Estimate Pr [4y] using the Chernoff bound of Problem 2.7.8. Denote this esti-
Pr. [Ax]

mate as Pr. [Ax]. Compute Pr [Ax]
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