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Pr (E) approaches zero as the length of encoded sequence approaches 
infinity. Because of the bandwidth requirement, the orthogonal signal 
technique is not efficient. 

Estimation. 
tion problem. 

1. Linear estimation is a trivial modification of the detec- 
The optimum estimator is a simple correlator or matched 

filter followed by a gain. 
2. The nonlinear estimation problem introduced several new ideas. The 

optimum receiver is sometimes difficult to realize exactly and an approxi- 
mation is necessary. Above a certain energy-to-noise level we found that 
we could make the estimation error appreciably smaller than in the linear 
estimation case which used the same amount of energy. Specifically, 

Var [6 - A] z No/2 

s,’ [WI2 dt. 
(138) 

As the noise level increased however, the receiver exhibited a threshold 
phenomenon and the error variance increased rapidly. Above the threshold 
we found that we had to consider the problem of a bandwidth constraint 
when we designed the system. 

We now want to extend our model to a more general case. The next 
step in the direction of generality is to consider known signals in the 
presence of nonwhite additive Gaussian noise. 

4.3 DETECTION AND ESTIMATION IN NONWHITE GAUSSIAN NOISE 

Several situations in which nonwhite Gaussian interference can occur 
are of interest: 

1. Between the actual noise source and the data-processing part of the 
receiver are elements (such as an antenna and RF filters) which shape the 
noise spectrum. 

2. In addition to the desired signal at the receiver, there may be an 
interfering signal that can be characterized as a Gaussian process. In 
radar/sonar it is frequently an interfering target. 

With this motivation we now formulate and solve the detection and 
estimation problem. As we have seen in the preceding section, a close 
coupling exists between detection and estimation. In fact, the development 
through construction of the likelihood ratio (or function) is identical. We 
derive the simple binary case in detail and then indicate how the results 
extend to other cases of interest. The first step is to specify the model. 
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When colored noise is present, we have to be more careful about our 
model. We assume that the transmitted signal on hypothesis 1 is 

Ost<T - 9 
elsewhere. 

Observe that s(t) is defined for all time. Before reception the signal is 
corrupted by additive Gaussian noise n(t). The received waveform r(t) 
is observed over the interval Ti < t < Tf. Thus 

r(t) = l&s(t) + n(t), 
= n(t), 

Ti < t < T,:H, 
Tf < t 2 T,:H,. wo) - 

Sometimes Ti will equal zero and Tf will equal T. In general, however, 
we shall let Ti (5 0) and T, (> T) remain arbitrary. Specifically, we shall 
frequently examine the problem in which Ti = -co and Tf = +a A 
logical question is; why should we observe the received waveform when 
the signal component is zero ? The reason is that the noise outside the 
interval is correlated with the noise inside the interval, and presumably 
the more knowledge available about the noise inside the interval the 
better we can combat it and improve our system performance. A trivial 
example can be used to illustrate this point. 

Example. Let 
d%(t) = 1, 05t51 

= 0, elsewhere. (141) 
Let 

n(t) = n, 05t52, (142) 

where n is a Gaussian random variable. We can decide which hypothesis is true in the 
following way : 

I f  

1 = 
s 

’ r(t) dt - 2 r(t) dt. (143) 
0 s 1 

1 = 0, say HO 
#O say HI. 

Clearly, we can make error-free decisions. Here we used the extended interval to 
estimate the noise inside the interval where the signal was nonzero. Unfortunately, 
the actual situation is not so simple, but the idea of using an extended observation 
interval carries over to more realistic problems. 

Initially, we shall find it useful to assume that the noise always contains 
an independent white component. Thus 

where n&) is the colored noise component. Then, 

K,(t, u) = 3 s(t - 24) + K,(t, u)* (145) 
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We assume the n,(t) has a finite mean-square value [E@rc2(t)) < oo for all 
Ti < t < Tf] so K,(t, U) is a square-integrable function over [Tip T,]. 

The white noise assumption is included for two reasons: 

1. The physical reason is that regardless of the region of the spectrum 
used there will be a nonzero noise level. Extension of this level to infinity 
is just a convenience. 

2. The mathematical reason will appear logically in our development. 
The white noise component enables us to guarantee that our operations 
will be meaningful. There are other ways to accomplish this objective but 
the white noise approach is the simplest. 

Three logical approaches to the solution of the nonwhite noise problem 
are the following: 

1. We choose the coordinates for the orthonormal expansion of r(t) so 
that the coefficients are statistically independent. This will make the con- 
struction of the likelihood ratio straightforward. From our discussion in 
Chapter 3 we know how to carry out this procedure. 

2. We operate on r(t) to obtain a sufficient statistic and then use it to 
perform the detection. 

3. We perform preliminary processing on r(t) to transform the problem 
into a white Gaussian noise problem and then use the white Gaussian 
noise solution obtained in the preceding section. It is intuitively clear that 
if the preliminary processing is reversible it can have no effect on the 
performance of the system. Because we use the idea of reversibility 
repeatedly, however, it is worthwhile to provide a simple proof. 

Reoevsibility. It is easy to demonstrate the desired result in a general setting. In 
Fig. 4.360 we show a system that operates on r(u) to give an output that is optimum 
according to some desired criterion. (The problem of interest may be detection or 
estimation.) In system 2, shown in Fig. 4.366, we first operate on Y(U) with a reversible 
operation k[t, u(u)] to obtain z(t). We then design a system that will perform an 
operation on z(t) to obtain an output that is optimum according to the same criterion 
as in system 1. We now claim that the performances of the two systems are identical. 
Clearly, system 2 cannot perform better than system 1 or this would contradict our 
statement that system 1 is the optimum operation on u(u). We now show that system 2 
cannot be worse than system 1. Suppose that system 2 were worse than system 1. 
If  this were true, we could design the system shown in Fig. 4.36c, which operates on 
z(t) with the inverse of k[t, r(u)] to give r(u) and then passes it through system 1. 
This over-all system will work as well as system 1 (they are identical from the input- 
output standpoint). Because the result in Fig. 4.36~ is obtained by operating on z(t), 
it cannot be better than system 2 or it will contradict the statement that the second 
operation in system 2 is optimum. Thus system 2 cannot be worse than system 1. 

Therefore any reversible operation can be included to facilitate the solution. We 
observe that linearity is not an issue, only the existence of an inverse. Reversibility 
is only sufficient, not necessary. (This is obvious from our discussion of sufficient 
statistics in Chapter 2.) 
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Fig. 4.36 Reversibility proof: (a) system 1; (b) system 2; (c) system 3. 

We now return to the problem of interest. The first two of these 
approaches involve much less work and also extend in an easy fashion to 
more general cases. The third approach however, using reversibility, seems 
to have more intuitive appeal, so we shall do it first. 

4.3.1 “ Whitening ” Approach 

First we shall derive the structures of the optimum detector and 
estimator. In this section we require a nonzero white noise level. 

Stvuctuves. As a preliminary operation, we shall pass r(t) through a 
linear time-varying filter whose impulse response is h,(t, U) (Fig. 4.37). 
The impulse response is assumed to be zero for either t or u outside the 
interval [Ti, TJ. For the moment, we shall not worry about realizability 

Fig. 4.37 “Whitening ” filter. 
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and sha 
we also 

.I1 all0 w  h,(t, U) to be nonzero for u > t. Later, in specific examples, 
look for realizable whitening filters. The output is 

h,(t, u)d&(u) du + 

n s*(t) + n*(t), Ti < t < T,, - (146) 

when HI is true and 

r*(t) = n*(t), T* < t < Tf, - (147) 

when Ho is true. We want to choose h,(t, U) so that 

LU, 4 = e*(t) n*(41 = 80 - u), Ti < t, u s Tf. (148) 

Observe that we have arbitrarily specified a unity spectral height for the 
noise level at the output of the whitening filter. This is merely a convenient 
normalization. 

The following logical question arises : 

What conditions on K,(t, U) will guarantee that a reversible whitening 
filter exists? Because the whitening filter is linear, we can show rever- 
sibility by finding a filter h/(t, U) such that 

s T’ h/l(t, z) h&z, u) dz = 8(t - u), Ti < t, U < Tfe - (149) 
Ti 

For the moment we shall assume that we can find a suitable set of 
conditions and proceed with the development. 

Because n*(t) is “white,” we may use (22) and (23) directly (IV0 = 2): 

In A[r,(t)] = lT’ r*(u) S*(U) du - 3 jT’ S:(U) du. (1~0) 
Tf T f 

We can also write this directly in terms of the original waveforms and 
ku(4 4: 

In A[r(t)] = IT’ du JTf hw(u, z) r(z) dz $:: h&u, v)~@s(v) dv 
T f T f 
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This expression can be formally simplified by defining a new function: 

For the moment we can regard it as a function that we accidentally 
stumbled on in an effort to simplify an equation. Later we shall see that it 
plays a fundamental role in many of our discussions. Rewriting (151), we 
have 

In A[@)] = 1” Y(Z) dz ITI Q&, v)&!? s(v) dv 
T f T, 

- ; 6’ s(z)d~/T; Qn<z, v) s(v) dv. (153) 

We can simplify (153) by writing 

We have used a strict inequality in (154). Looking at (153), we see that g(z) 
only appears inside an integral. Therefore, if g(z) does rtot contain singu- 
larities at the endpoints, we can assign g(z) any finite value at the endpoint 
and In &(I)] will be unchanged. Whenever there is a white noise com- 
ponent, we can show that g(z) is square-integrable (and therefore contains 
no singularities). For convenience we make g(z) continuous at the end- 
points. 

mf) = h-n m, 
2+TJ 

dTi) = lim g(z). I 
x-+T’ 

f  

We see that the construction of the likelihood function involves a correla- 
tion operation between the actual received waveform and a function g(z). 
Thus, from the standpoint of constructing the receiver, the function g(z) 
is the only one needed. Observe that the correlation of r(t) with g(t) is 
simply the reduction of the observation space to a single sufficient statistic. 

Three canonical receiver structures for simple binary detection are 

t Throughout this section we must be careful about the endpoints of the interval. 
The difficulty is with factors of 2 which arise because of the delta function in the noise 
covariance. We avoid this by using an open interval and then show that endpoints 
are not important in this problem. We suggest that the reader ignore the comments 
regarding endpoints until he has read through Section 4.3.3. This strategy will make 
these sections more readable. 
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Fig. 4.38 Alternate structures for colored noise problem. 

shown in Fig. 4.38. We shall see that the first two are practical implementa- 
tions, whereas the third affords an interesting interpretation. The modifica- 
tion of Fig. 4.38b to obtain a matched filter realization is obvious. To 
implement the receivers we must solve (149), (152), or (154). Rather than 
finding closed-form solutions to these equations we shall content ourselves 
in this section with series solutions in terms of the eigenfunctions and 
eigenvalues of &(t, u). These series solutions have two purposes: 

1. They demonstrate that solutions exist. 
2. They are useful in certain optimization problems. 

After deriving these solutions, we shall look at the receiver performance 
and extensions to general binary detection, Mary detection, and estima- 
tion problems. We shall then return to the issue of closed-form solutions. 
The advantage of this approach is that it enables us to obtain an integrated 
picture of the colored noise problem and many of its important features 
without getting lost in the tedious details of solving integral equations. 
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Construction of Q,,(t, u) and g(t). The first step is to express Q,@, u> 
directly in terms of K,(t, u). We recall our definition of h&t, u). It is a 
time-varying linear filter chosen so that when the input is n(t) the output 
will be n*(t), a sample function from a white Gaussian process. Thus 

and E[n*(t)n*(u)] = K,.(t, u) = 8(t - u)* Ti I t < T, - . (WI 

Substituting (155) into (156), we have 

=/ 

8(t - u) = E 
ss 

h,(t, x) hw(u, z) n(x) n(z) dx dz. 
=i 

By bringing the expectation inside the integrals, we have 

W - u) = ss h,(t, x> h&4 2) KL(x, z> dx d& Ti < t, u < Tf. (158) 

In order to get (158) into a form such that we can introduce Qn(t, u), we 
multiply both sides by h,(t, U) and integrate with respect to t. This gives 

Mu, v) = $ 
Tf  

dz hu(u, 4 
s 

=f 
&(x9 z) dx 

Tf Tf s 
Tf h&t, v) h,(t, x) dt. (159) 
=t 

Looking at (152), we see that the last integral is just Q&, x). Therefore 

s Tf dz Mu, 2) s =f h,(u, v) = &(x, 2) Qnb x> dx (160) 
=i =i 

This implies that the inner integral must be an impulse over the open 
interval, 

6(z - v) = s =' K,(x, 2) Q&, x> dx, Ti < z, v < T,. (161) 
=i 

This is the desired result that relates Q,& x) directly to the original 
covariance function. Because K,(x, z) is the kernel of many of the integral 
equations of interest to us, Q,& X) is frequently called the inverse kernel. 

From (145) we know that K,(x, z) consists of an impulse and a well- 
behaved term. A logical approach is to try and express Qn(v, X) in a 
similar manner. We try a solution to (161) of the form 

Q&, x) = ; W - 4 - Mv, 41 Ti < v, x < T,. (162) 
0 



“ Whitening” Approach 295 

Substituting (145) and (162) into (161) and rearranging terms, we obtain 
an equation that ho@, X) must satisfy: 

3 ho(u, 2) + s T’ ho@, x) K,(x, 2) dx = w, a, Ti < z, u < T, (163) 
Ti 

This equation is familiar to us from the section on optimum linear filters 
in Chapter 3 [Section 3.4.5; particularly, (3-144)]. The significance of this 
similarity is seen by re-drawing the system in Fig. 4.38~ as shown in Fig. 
4.39. The function QJt, U) is divided into two parts. We see that the 
output of the filter in the bottom path is precisely the minimum mean- 
square error estimate of the colored noise component, assuming that HO 
is true. If we knew nc(t), it is clear that the optimum processing would 
consist of subtracting it from r(t) and passing the result into a matched 
filter or correlation receiver. The optimum receiver does exactly that, 
except that it does not know n,(t); therefore it makes a MMSE estimate 
A,(t) and uses it. This is an intuitively pleasing result of a type that we 
shall encounter frequently.? 

Assuming HO is true, - - - - - - - - - - - - - - - - - - - - -  r l 1 

Fig. 4.39 

L Qnk 4 I 
-------------------- -J 

Realization of detector using an optimum linear filter. 

t The reader may wonder why we care whether a result is intuitively pleasing, if we 
know it is optimum. There are two reasons for this interest: (a) It is a crude error- 
checking device. For the type of problems of interest to us, when we obtain a mathe- 
matical result that is unintuitive it is usually necessary to go back over the model 
formulation and the subsequent derivation and satisfy ourselves that either the model 
omits some necessary feature of the problem or that our intuition is wrong. (b) In 
many cases the solution for the optimum receiver may be mathematically intractable. 
Having an intuitive interpretation for the solutions to the various Gaussian problems 
equips us to obtain a good 
mathematical solut ion. 

receiver by using intuitive reasoning when we cannot get a 
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From our results in Chapter 3 (3.154) we can write a formal solution for 
h,(t, u) in terms of the eigenvalues of K&t, u>. Using (3.154), 

where Xic and +i(t) are the eigenvalues and eigenfunctions, respectively, 
of K,(t, u). We can write the entire inverse kernel as 

It is important to re-emphasize that our ability to write Qn(t, u) as an 
impulse function and a well-behaved function rests heavily on our assump- 
tion that there is a nonzero white noise level. This is the mathematical 
reason for the assumption. 

We can also write Qn(t, u) as a single series. We express the impulse in 
terms of a series by using (3.128) and then combine the series to obtain 

Q& u) = 5 (2 + Aic) -’ 54(t) 540 = 2 $ MO Mu>9 (166) 
i=l f=l c 

where 

h,T n NO 2 + h,C* (167) 

(T denotes total). The series in (166) does not converge. However, in most 
cases Qn(t, u) is inside an integral and the overall expression will converge. 

As a final result, we want to find an equation that will specify g(t) 
directly in terms of K,(t, z). We start with (154) : 

The technique that we use is based on the inverse relation between K,(t, z) 
and Qn(t, z), expressed by (161). To get rid of Q&, P) we simply multiply 
(168) by K,(t, z), integrate with respect to z, and use (161). The result is 

K,(t, 2) g(z) dz = ImY( Ti < t < Tf. (169a) 

Substituting (145) into (169a), we obtain an equation for the open interval 
(Ti, TJ. Our continuity assumption after (154) extends the range to the 
closed interval [Tip T,]. The result is 

s Tf K,(t, 2) g(z) dz = Am(t), Ti < t < Tf. (169b) 
Ti 

To implement the receiver, as shown in Fig. 4.383, we would solve (169b) 



directly. We shall develop techniques for obtaining closed-form solutions 
in 4.3.6. A series solution can be written easily by using (168) and (165) : 
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where 

The first term is familiar from the 
indicates the effect of nonwhite noise. 
integrable function over (7’*, T,) when 
We defer checking the endpoint beha 

s(l) Mt) lft. (171) 

white noise case. The second term 
Observe that g(t) is always a square- 
a white noise component is present. 
vior until 4.3.3. 

Summary 

In this section we have derived the solution for the optimum receiver 
for the simple binary detection problem of a known signal in nonwhite 
Gaussian noise. Three realizations were the following: 

1. Whitening realization (Fig. 4.38~~). 
2. Correlator realization (Fig. 4.38b). 
3. Estimator-subtractor realization (Fig. 4.39). 

Coupled with each of these realizations was an integral equation that 
must be solved to build the receiver: 1. (158). 2. (169). 3. (163). 

We demonstrated that series solutions could be obtained in terms of 
eigenvalues and eigenfunctions, but we postponed the problem of actually 
finding a closed-form solution. The concept of an “inverse kernel” was 
introduced and a simple application shown. The following questions 
remain : 

1. How well does the system perform ? 
2. How do we find closed-form solutions to the integral equations of 

interest? 
3. What are the analogous results for the estimation problem? 

Before answering these questions we digress briefly and rederive the 
results without using the idea of whitening. In view of these alternate 
derivations, we leave the proof that h,(t, U) is a reversible operator as an 
exercise for the reader (Problem 4.3.1). 

4.3.2 A Direct Derivation Using the Karhunen-Lo&e Expansion”f 

In this section we consider a more fundamental approach. It is not only 

‘f This approach to the problem is due to Grenander [30]. (See also: Kelly, Reed, 
and Root [31].) 
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more direct for this particular problem but extends easily to the general 
case. The derivation is analogous to the one on pp. 250-253. 

The reason that the solution to the white noise detection problem in 
Section 4.2 was so straightforward was that regardless of the orthonormal 
set we chose, the resulting observables rl, r2, . . . , rK were conditionally 
independent. 

From our work in Chapter 3 we know that we can achieve the same 
simplicity if we choose an orthogonal set in a particular manner. Specifi- 
cally, we want the orthogonal functions to be the eigenfunctions of the 
integral equation (3-46) 

(172) 

Observe that the Xi’ are the eigenvalues of the colored noise process only. 
(If K,(t, U) is not positive-definite, we augment the set to make it complete.) 
Then we expand r(t) in this coordinate system : 

r(t) = 1.i.m. 3 ri +f(t) = 
K-+* f=l 

1.i.m. 5 Sf +i(t) + 1.i.m. 2 n* +i(t), 
K-+* i=l K-+* i=l 

F < t < T,, (173) 
where 

Si = 1 Tf dES(t) #i(t) dty 
l-1 

From (3.42) we know 
s Tf 

ni = n(t) $4(t) lo* (176) 
Ti 

where 
E(rt,) = 0, E(ninj) = AiT8,j, (177) 

Just as on p. 252 (20) we consider the first K coordinates. The likelihood 
ratio is 

A kK(t)] = 

1 (R . - d2 
-2 ’ hiT I 

(179 
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Canceling common terms, letting K--+ co, and taking the logarithm, we 
obtain 

ln A[r(t)] = 2 $ - jj 2 $. 
f=l i f=l i 

Using (174) and (179, we have 

(180) 

In A[r(t )] = 
s s 

” dt O” 
Ti 

” du r(t) 2 
Ti f=l 

E Tf dt Tf -- 
2 s s 

(181) 
T f Tf 

du s(t) 2 ‘i(t;~i(u)s(u). 
i=l i 

From (166) we recognize the sum as QJt, u). Thus 

In AIr( = j-T? dt ITT du r(t) Qn(t, u)d?s(u) 

E 

s s 

Tf dt Tf -a 
2 du W Q&, u> ~(4~ WH 

T f Ti 

This expression is identical to (153). 
Observe that if we had not gone through the whitening approach we 

would have simply defined Q& u) to fit our needs when we arrived at this 
point in the derivation. When we consider more general detection problems 
later in the text (specifically Chapter 11.3), the direct derivation can easily 
be extended. 

4.3.3 A Direct Derivation with a Sufficient Statistic: 

For convenience we rewrite the detection problem of interest (140): 

r(t) = z/Es(t) + n(t), Ti < t < T,:H, 

= n(t), Ti : t < T,:H,. - (183) 

In this section we will not require that the noise contain a white component. 
From our work in Chapter 2 and Section 4.2 we know that if we can 

write 

t To proceed rigorously from (18 1) to (182) we require 1: 1 (sf2/hfT2) < co (Grenander 
1301; Kelly, Reed, and Root [31]). This is always true when white noise is present. 
Later, when we look at the effect of removing the white noise assumption, we shall 
see that the divergence of this series leads to an unstable test. 
$ This particular approach to the colored noise problem seems to have been developed 
independently by several people (Kailath [32]; Yudkin [39]). Although the two 
derivations are essentially the same, we follow the second. 
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where rl is a random variable obtained by operating on r(t) and demon- 
strate that: 

(a) rl and r(t) are statistically i ndependent on both hypotheses 9 

(b) the statistics of v(t) do not depend on which hypothesis is true, 

then rl is a sufficient statistic. We can then base our decision solely on rl 
and disregard u(t). [Note that conditions (a) and (b) are sufficient, but not 
necessary, for rl to be a sufficient statistic (see pp. 3%36).] 

To do this we hypothesize that rl can be obtained by the operation 

s 

Tf 

r1 = 44 gb-4 dzd (185) 

Ti 

and try to find a g(u> that will lead to the desired properties. Using (185), 
we can rewrite (184) as 

49 = (Sl + n1) s(t) + y(t) :H, 

= %w + 3w :H,. WW 
where 

n 
Sl - 

s 
Tf 16 s(u) g(u) du (187) 
Ti 

n s 
Tf 

n1 - 44 g(u) dzd- 
Ti 

(188) 

Because a sufficient statistic can be multiplied by any nonzero constant 
and remain a sufficient statistic we can introduce a constraint, 

s Tf 

s(u)g(u) du = 1. (189a) 
Ti 

Using (189a) in (187), we have 

s1= . ALi7 (189b) 

Clearly, n1 is a zero-mean random variable and 

n(t) = n1w + Y(O9 Ti < t < - Tf l 
(190) 

This puts the problem in a convenient form and it remains only to find 
a condition on g(u) such that 

or, equivalently, 
ml WI = 09 Ti < t < T,, uw 

or 
an1 b(t) - 4 s(Ol> = 0, Ti < t I T,, (192) 

an1 l WI = mQ2l s(t), Ti < t ,< Tfe (193) 
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Using (188) 

Equations 189a and 194 will both be satisfied if 

s Tf K,(t, 24) g(u) du = d?i; s(t), Ti < t < - Tf . (195) 
T f 

[Substitute (195) into the right side of (194) and use (189a).] Our sufficient 
statistic r1 is obtained by correlating T(U) with g(u). After obtaining r1 we 
use it to construct a likelihood ratio test in order to decide which hypothesis 
is true. 

We observe that (195) is over the closed interval [G, TJ, whereas (169a) 
was over the open interval (Ti, T,). The reason for this difference is that 
in the absence of white noise g(u> may contain singularities at the end- 
points. These singularities change the likelihood ratio so we can no longer 
arbitrarily choose the endpoint values. An advantage of our last derivation 
is that the correct endpoint conditions are included. We should also 
observe that if there is a white noise component (195) and (169a) will give 
different values for g(Ti) and g(T,). However, because both sets of values 
are finite they lead to the same likelihood ratio. 

In the last two sections we have developed two alternate derivations of 
the optimum receiver. Other derivations are available (a mathematically 
inclined reader might read Parzen [40], Hajek [41], Galtieri [43], or 
Kadota [45]). We now return to the questions posed on p. 297. 

4.3.4 Detection Performance 

The next question is: “How does the presence of colored noise affect 
performance ?” In the course of answering it a number of interesting issues 
appear. We consider the simple binary detection case first. 

Performance: Simple Binary Detection Problem. Looking at the receiver 
structure in Fig. 4.38a, we see that the performance is identical to that of 
a receiver in which the input signal is s*(t) and the noise is white with a 
spectral height of 2. Using (10) and (1 I), we have 

d2 = 
s 

T’ [s,(t)12 dt. (196) 
Tf 
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Thus the performance index d2 is simply equal to the energy in the 
whitened signal. We can also express d2 in terms of the original signal. 

d2 = h,(t, u)d s(u) du h,(t, z)d s(z) dz 
I  

l 

W) 

We use the definition of Q&, z) to perform the integration with respect 
to t. This gives 

Tf  

d2 = E 
ss 

du dz s(u) Qn(u, z) s(z) 

Tf 

1 d2 = dEj-;dus(u)g(u). 

(198) 

It is clear that the performance is no longer independent of the signal 
shape. The next logical step is to find the best possible signal shape. There 
are three cases of interest: 

1. T* = o,T, = T: the signal interval and observation interval coincide. 
2. T. < 0, T, > T: the observation interval extends beyond the signal 

interval in one or both directions but is still finite. 
3. Ti = -00, T, = 00: the observation interval is doubly infinite. 

We consider only the first case. 

Optimum Signal Design: Coincident Intervals. The problem is to con- 
strain the signal energy E and determine how the detailed shape of s(t) 
affects performance. The answer follows directly. Write 

Then 
00 

d2 2 
Sf2 = 

f= 1 NoI2 + v’ 
(200) 

where 

Observe that 

Sf = v%(t) +i(t) dt. (201) 

00 
c s2 i = E, 

f=l 
(202) 

because the functions are normalized. 
Looking at (200), we see that d2 is just a weighted sum of the si2. 

Because (202) constrains the sum of the sf2, we want to distribute the 
energy so that those sf with large weighting are large. If there exists a 
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smallest eigenvalue, say Ajc = A&,,, then d2 will be maximized by letting 
sj = 2/Z and all other si = 0. There are two cases of interest: 

1. If K,(t, U) is positive-definite, the number of eigenvalues is infinite. 
There is no smallest eigenvalue. We let sj = ~~ and all other st = 0. 
Then, assuming the eigenvalues are ordered according to decreasing size, 

da,? 
0 

as we increase j. For many of the colored 
practice (e.g., the one-pole spectrum shown 

noises that we encounter in 
in Fig. 3.9), the frequency of 

the eigenfunction increases as the eigenvalues decrease. In other words, we 
increase the frequency of the signal until the colored noise becomes 
negligible. In these cases we obtain a more realistic signal design problem 
by including a bandwidth constraint. 

2. If K,(t, U) is only nonnegative definite, there will be zero eigenvalues. 
If s(t) is the eigenfunction corresponding to any one of these eigenvalues, 
then 

d2 
2E 

= No’ 

We see that the performance of the best signal is limited by the white 
noise. 

Singularity. It is easy to see the effect of removing the white noise by 
setting No equal to zero in (200). When the colored noise is positive- 
definite (Case l), all eigenvalues are nonzero. We can achieve perfect 
detection (d2 = co) if and only if the sum 

d2 
O” St2 = c (203) 

f=l h,C 

diverges. 
It can be accomplished by choosing s(t) so that si2 is proportional to Aic. 

We recall that 
Q) 

c j&c = 
s 

Tf  
K,(t, t) dt < AL 

i=l Tt 

The right side is finite by our assumption below (145). Thus the energy in 
the signal (E = CEl si 2, will be finite. If there were a white noise com- 
ponent, we could not achieve this proportionality for all i with a finite 
energy signal. In (Case 2) there are zero eigenvalues. Thus we achieve 
d2 = oo by choosing s(t) = +i(t) for any i that has a zero eigenvalue. 

These two cases are referred to as singular detection. For arbitrarily 
small time intervals and arbitrarily small energy levels we achieve perfect 
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detection. We know that this kind of performance cannot be obtained in 
an actual physical situation. Because the purpose of our mathematical 
model is to predict performance of an actual system, it is important that 
we make it realistic enough to eliminate singular detection. We have 
eliminated the possibility of singular detection by insisting on a nonzero 
white noise component. This accounts for the thermal noise in the receiver. 
Often it will appear to be insignificant. If, however, we design the signal 
to eliminate the effect of all other noises, it becomes the quantity that 
limits the performance and keeps our mathematical model from predicting 
results that would not occur in practice. 

From (196) we know that d2 is the energy in the whitened signal. 
Therefore, if the whitened signal has finite energy, the test is not singular. 
When the observation interval is infinite and the noise process is stationary 
with a rational spectrum, it is easy to check the finiteness of the energy of 
s*(t). We first find the transfer function of the whitening filter. Recall that 

s 00 n*(t> = h,(u) n(t - 24) du. -0 
We require that n*(t> be white with unity spectral height. This implies that 

co 
ss du dz h,(u) h,(z) K,(t - 24 + 2 - v) = 8(t - v), 
--co 

-00 < t, v < 00. (205) 

Transforming, we obtain 

IKLbJ)12s,(4 = 1 (206a) 

or 

Now assume that S,&) has a rational spectrum 

&(w> = 
c,02q + cq-~02q-2 + l l l + co 

dpOaP + dp-1c02*-2 + 9 9. + do’ 

(206b) 

(207a) 

We define the difference between the order of denominator and numerator 
(as a function of 02) as r. 

rAp-q (207b) 

If n(t) has finite power then Y 2 1. However, if the noise consists of 
white noise plus colored noise with finite power, then Y = 0. Using (207a) 
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in (206b), we see that we can write H&U) as a ratio of two polynomials 
in jm. 

H,(jlKJ) = a,(jo)P + ap _ 1( j@ -  l + -  .  l + a0 

b,Cjo)Q + b, -  ~(jq -1 + l l l + b,’ 

(208a) 

In Chapter 6 we develop an algorithm for finding the coefficients. For the 
moment their actual values are unimportant. Dividing the numerator by 
the denominator, we obtain 

where fr, . . . , f. are constants and R&J) is the remainder polynomial of 
order less than 4. Recall that (~uJ)’ in the frequency domain corresponds to 
taking the rth derivative in the time domain. Therefore, in order for the 
test to be nonsingular, the rth derivative must have finite energy. In other 
words, if 

the test is nonsingular; for example, if 

S,(w) = -$$-$ (210a) 

then 
p-q=r=I (210b) 

and s’(t) must have finite energy. If we had modeled the signal as an ideal 
rectangular pulse, then our model would indicate perfect detectability. 
We know that this perfect detectability will not occur in practice, so we 
must modify our model to accurately predict system performance. In this 
case we can eliminate the singular result by giving the pulse a finite rise 
time or by adding a white component to the noise. Clearly, whenever there 
is finite-power colored noise plus an independent white noise component, 
the integral in (209) is just the energy in the signal and singularity is never 
an issue. 

Our discussion has assumed an infinite observation interval. Clearly, if 
the test is nonsingular on the infinite interval, it is nonsingular on the finite 
interval because the performance is related monotonically to the length of 
the observation interval. The converse is not true. Singularity on the 
infinite interval does not imply singularity on the finite interval. In this 
case we must check (203) or look at the finite-time whitening operation. 

Throughout most of our work we retain the white noise assumption so 
singular tests never arise. Whenever the assumption is removed, it is 
necessary to check the model to ensure that it does not correspond to a 
singular test. 
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Gene& Binary Receivers. Our discussion up to this point has considered 
only the simple binary detection problem. The extension to general binary 
receivers is straightforward. Let 

r(t) = 4% s1(t) + n(t), Tt < t < T,: HI, - 
r(t) = z/g so(t) + n(t), Ti 5 t < T,: Ho, 

(211) 

where so(t) and sl(t) are normalized over the interval (0, T) and are zero 
elsewhere. Proceeding in exactly the same manner as in the simple binary 
case, we obtain the following results. One receiver configuration is shown 
in Fig. 4.40a. The function g*(t) satisfies 

sA(t) n dE, s&) - z/E0 So(t) 

The performance is characterized by d2: 

T f  

d2 = 
ss 

I Q& u) d4 dt da (213) 
Tt 

The functions K,(t, U) and Qn(t, U) were defined in (145) and (Ml), 
respectively. As an alternative, we can use the whitening realization shown 
in Fig. 4.40b. Here h,(t, U) satisfies (158) and 

%*W n s Tf 
hu(t, u) x!h) d% Ti < t < - Tf . (214) 

Ti 

?I- Tf  

T  dt 

Threshold Hl or Ho 
i l device 

, 

r(t) 
1 

* h& u) r* (0 Yf Tf 
Ti dt 

+ Threshold ,HI or Ho 
device 

+ b 

Fig. 4.40 (a) Receiver configurations: general binary problem, colored noise; 
(b) alternate receiver realization. 
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The performance is characterized by the energy in the whitened difference 
signal : 

d2 
s 

Tf 
= sAe2(t) dt. (215) 

Ti 

The M-ary detection case is also a straightforward extension (see 
Problem 4.3.5). From our discussion of white noise we would expect that 
the estimation case would also follow easily. We discuss it briefly in the 
next section. 

4.3.5 Estimation 

The model for the received waveform in the parameter estimation 
problem is 

r(t) = s(t, A) + n(t), Ti s t < T,. (216) 

The basic operation on 
likelihood function, for 
If, however, we look at 
will be: 

the received waveform consists of constructing the 
which it is straightforward to derive an expression. 
(98-M), and (146-153), it is clear that the answer 

tS Tf 
- dz s(z, A) 

Ti s 

T f  
Qn(z, 4 s(v, 4 do. (217) 

Ti 

This result is analogous to (153) in the detection problem. If we define 

s(v, A) = s Tf 

K&-J, z) g(z, 4 dz9 Ti c V < Tfy 
Ti 

(217) reduces to 

In AJr(t), A] = 
s 

Tf r(z) g(z, 4 dz 
Ti 

- 3 s” Sk 4 g(z, 4 dz 
Ti 

The discussions in Sections 4.2.2 and 4.2.3 carry over to the colored noise 
case in an obvious manner. We summarize some of the important results 
for the linear and nonlinear estimation problems. 
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Linear Estimation. The received waveform is 

r(t) = AdEs(t) + n(t), T, 5 t < T,, (221) 

where s(t) is normalized [0, T] and zero elsewhere. Substituting into (218), 
we see that 

go9 4 = A g(t), (222) 

where g(t) is the function obtained in the simple binary detection case by 
solving (169). 

Thus the linear estimation problem is essentially equivalent to simple 
binary detection. The estimator structure is shown in Fig. 4.41, and the 
estimator is completely specified by finding g(t). If A is a nonrandom 
variable, the normalized error variance is 

CT& = (A2d2)-l, (223) 

where d2 is given by (198). If A is a value of a random variable a with a 
Gaussian a priori density, N(0, Q), the minimum mean-square error is 

2 (Jacn = (1 + aa2d2)- l. (224) 

(These results correspond to (96) and (97) in the white noise case) All 
discussion regarding singular tests and optimum signals carries over 
directly. 

Nonlinear Estimation. In nonlinear estimation, in the presence of colored 
noise, we encounter all the difficulties that occur in the white noise case. 
In addition, we must find either QJt, u) or g(t, A). Because all of the 
results are obvious modifications of those in 4.2.3, we simply summarize 
the results : 

1. A necessary, but not sufficient, condition on & : 

0 
Tf 

s s 
dt 

Tf  
= dl4 [r(t) - s(t, A)] Qn(t, u) wi ’ (225) 

T f Ti A=ciml 

dt - 
(depending on 
choice of gain) 

Linear estimation, colored noise. 
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2. A necessary, but not sufficient, condition on amap (assuming that a 
has a Gaussian a priori density): 

A 

s 

T f  
amap = =a 

2 
dt [r(t) - s(t, 41 

s 

T f  w, A) dzd en<4 u) T l (226) 
Tf Tf A = &lap 

3. A lower bound on the variance of any unbiased estimate of the non- 
random variable A: 

-1 

Var (a^ - A) > 
Tf h(t A) 

ss 
+- Q& 4 !?&$ & du 

I 

9 (227a) 
Tf 

or, equivalently, 

h(t, A) a&t, A) dt -’ Var (6 - A) > 
--22-T l 

I  

(227b) 

4. A lower bound on the mean-square error in the estimate of a zero- 
mean Gaussian random variable a: 

E K ci - a)2] > [$ + Ea(~~dt~~du~~Q.cl,u)~)]-‘o 

(228) 

5. A lower bound on the variance of any unbiased estimate of a non- 
random variable for the special case of an infinite observation interval and 
a stationary noise process: 

Var (6 - A) > 

where 

S(jw, A) 4 !a s(t, A)e-jmt dt. 
-00 

As we discussed in 4.2.3, results of this type are always valid, but we must 
always look at the over-all likelihood function to investigate their useful- 
ness. In other words, we must not ignore the threshold problem. 

The only remaining issue in the matter of colored noise is a closed form 
solution for Qn(t, u) or g(t). We consider this problem in the next section. 

4.3.6 Solution Techniques for Integral Equations 

As we have seen above, to specify the receiver structure completely we 
must solve the integral equation for g(t) or Qn(t, u). 
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In this section we consider three cases of interest: 
1. Infinite observation interval ; stationary noise process. 
2. Finite observation interval; separable kernel. 
3. Finite observation interval; stationary noise process. 

Znfinite Obsevuation Znteroal; St&~navy Noise. In this particular case 
Ti = -00, Tf = 00, and the covariance function of the noise is a function 
only of the difference in the arguments. Then (161) becomes 

O” 6(z - u) = s Qn<x - z)Kn(21 -X)d& --oo<u,z<oo, (230) --a0 
where we assume that we can find a Q&q z) of this form. By denoting 
the Fourier transform of K,(T) by S&J) and the Fourier transform of 
QnW by &(4 anc~ t ransforming both sides of (230) with respect to 
7 z- = U, we obtain 

(231) 

We see that &(w) is just the inverse of the noise spectrum. Further, in the 
stationary case (152) can be written as 

s 

a0 

Q( nZ-U)= h (u W - z) h,(u - v) du. 
-CO (232) 

By denoting the Fourier transform of hw(7) by H,(jw), we find that (232) 
implies 

& = ~~(0) = 1 H,(jw)l 2e (233) 

Finally, for the detection and linear estimation cases (154) is useful. 
Transforming, we have 

G,(jm) = d&(o) S(jw) = S(j&E 7 s ( 
nCc) 

) 

where the subscript 00 indicates that we are dealing with an infinite interval. 
To illustrate the various results, we consider some particular examples. 

Example I. We assume that the colored noise component has a rational spectrum. 
A typical case is 

and 

S&J) = F + --g$* (236) 
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Then 

sQ@) = N 
co2 + k2 

+’ [w2 + k2(1 + A)]’ 

where A = 4an2/kNo. Writing 

SQh) = 
(jw + k)(-jw + k) 

(N,-,/2)(jw + kdl)(-jw + kdl)’ 

(237) 

(238) 

we want to choose an HJjw) so that (233) will be satisfied. To obtain a realizable 
whitening filter we assign the term (jw + k(1 + A)%) to HJjw) and its conjugate to 
Hz(jw). The term (jw + k) in the numerator can be assigned to Hw(jw) or H$(jo). 
Thus there are two equally good choicest for the whitening filter: 

and 

’ 
-jo + k 2 % 

jca + k(1 + A)" = To (H 
-,+k(dl++l) 

jw + kdl+h 1 . (240) 

Thus the optimum receiver (detector) can be realized in the whitening forms shown 
in Fig. 4.42. A sketch of the waveforms for the case in which s(t) is a rectangular pulse 
is also shown. Three observations follow: 

1. The whitening filter has an infinite memory. Thus it uses the entire past of r(t) 
to generate the input to the correlator. 

2. The signal input to the multiplier will start at t = 0, but even after time t = T 
the input will continue. 

3. The actual integration limits are (0, a+, because one multiplier input is zero 
before t = 0. 

It is easy to verify that these observations are true whenever the noise consists of 
white noise plus an independent colored noise with a rational spectrum. It is also 
true, but less easy to verify directly, when the colored noise has a nonrational 
spectrum. Thus we conclude that under the above conditions an increase in observa- 
tion interval will always improve the performance. It is worthwhile to observe that if 
we use Hwl(jw) as the whitening filter the output of the filter in the bottom path will 
be A,,(t), the minimum mean-square error realizable point estimate of nC(t). We shall 
verify that this result is always true when we study realizable estimators in Chapter 6. 

Observe that we can just as easily (conceptually, at least) operate with SQ(W) 
directly. In this particular case it is not practical, but it does lead to an interesting 
interpretation of the optimum receiver. Notice that SQ(W) corresponds to an un- 
realizable filter. We see that we could pass r(t) through this filter and then cross- 
correlate it with s(t), as shown in Figure 4.43a. Observe that the integration is just 
over [0, T] because s(t) is zero elsewhere; r+*(t), 0 2 t 5 T, however, is affected by 
et h -- < t < 00. We see that the receiver structure in Fig. 4.43b is the estimator- 
subtractor configuration shown in Fig. 4.39. Therefore the signal at the output of the 
bottom path must be ii,,(t), the minimum mean-square error unrealizable estimate of 

t There are actually an infinite number, for we can cascade H,,(jw) with any filter 
whose transfer function has unity magnitude. Observe that we choose a realizable 
filter so that we can build it. Nothing in our mathematical model requires realizability. 
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0 a 

*I 
1 r*2 0) 

7 *j- dt’k + 

*I 
-a0 

Gain I 
I 
I s*z 0) 
I 

Fig. 4.42 “Optimum receiver”: “whitening” realizations : (a) configuration 1; 
(b) configuration 2, 

n&t). This can be verified directly by substituting (235) and (236) into (3.239). We 
shall see that exactly the same result occurs in the general colored noise detection 
problem. Comparing Figs. 4.42 and 4.43, we see that they both contain estimates of 
colored noise but use them differently. 

As a second example we investigate what happens when we remoue the 
white noise component. 
Example 2. 

&(w) = -&* (240 
Then 

S&J) = $gg 
Qn 

(242) 

If we use a whitening realization, then one choice for the whitening filter is 

(243) 
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Fig. 4.43 Optimum receiver: estimator-subtractor interpretation. 

Thus the whitening filter is a differentiator and gain in parallel (Fig. 4.44a). 
Alternately, using (234), we see that G,(jw) is, 

GwU4 = 
di? S(jw) 1/i? 

s ( ) 
nw 

= 2k (02 + k") S(jw). 
on 

(244) 

Remembering that jw in the frequency domain corresponds to differentiation in the 
time domain, we obtain 

- 

gdr> = 
1/E 

-2 [-s”(t) + k2 s(t)], 2k 
an 

. , r(t) =- s T  
dt . , 

0 

-a 
-qw [s’(t) + ks(t)] 

(a) 

e - [-s”(t) + k2s(t)J 
2ka,2 

(b) 

(245) 

Fig. 4.44 Optimum receiver: no white noise component. 
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as shown in Fig. 4.44b. Observe that s(t) must be differentiable everywhere in the 
interval -- < t < 00 ; but we assume that s(t) = 0, t < 0, and t > T. Therefore 
s(O) and s(T) must also be zero. This restriction is intuitively logical. Recall the loose 
argument we made previously: if there were a step in the signal and it was differen- 
tiated formally, the result would be an impulse plus a white noise and lead to perfect 
detection. This is obviously not the actual physical case. By giving the pulse a finite 
rise time or including some white noise we avoid this condition. 

We see that the receiver does not use any of the received waveform outside the 
interval 0 I t I T, even though it is available. Thus we should expect the solution 
for T1 = 0 and Tf = T to be identical. We shall see shortly that it is. 

Clearly, this result will hold whenever the noise spectrum has onZy poles, because 
the whitening filter is a weighted sum of derivative operators. When the total noise 
spectrum has zeros, a longer observation time will help the detectability. Observe that 
when independent white noise is present the total noise spectrum will always have 
zeros. 

Before leaving the section, it is worthwhile to summarize some of the 
important results. 

1. For rational colored noise spectra and nonzero independent white 
noise, the infinite interval performance is better than any finite observation 
interval. Thus, the infinite interval performance which is characterized by 
da2 provides a simple bound on the finite interval performance. For the 
particular one-pole spectrum in Example 1 a realizable, stable whitening 
filter can be found. This filter is rtot unique. In Chapter 6 we shall again 
encounter whitening filters for rational spectra. At that time we demons- 
trate how to find whitening filters for arbitrary rational spectra. 

2. For rational colored noise spectra with no zeros and no white noise 
the interval in which the signal is nonzero is the only region of importance. 
In this case the whitening filter is realizable but not stable (it contains 
differentiators). 

We now consider stationary noise processes and a finite observation 
interval. 

Finite Observation Interval; Rational Spectra?. In this section we consider 
some of the properties of integral equations over a finite interval. Most of 
the properties have been proved in standard texts on integral equations 
(e.g., [33] and [34]). They have also been discussed in a clear manner in 
the detection theory context by Helstrom [ 141. We now state some simple 
properties that are useful and work some typical examples. 

The first equation of interest is (195), 2/Es(t) = T; g(u) &(t, 24) du; s Ti < t < Tf, - (246) 

t The integral equations in Section 3.4 are special cases of the equations studied in 
this section. Conversely, if the equation specifying the eigenfunctions and eigenvalues 
has already been solved, then the solutions to the equations in the section follow 
easily. 
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where s(t> and K,(t, U) are known. We want to solve for g(t). Two special 
cases should be considered separately. 

Case 1. The kernel K,(t, U) does rtot contain singularities. Physically, this 
means that there is yto white rzoise present. Here (246) is a Fredholm 
equation of the jirst kind, and we can show (see [33]) that if the range 
(& Tf) is finite a continuous square-integrable solution will not exist in 
general. We shall find that we can always obtain a solution if we allow 
singularity functions (impulses and their derivatives) in g(u> at the end 
points of the observation interval. 

In Section 4.3.7 we show that whenever g(t) is rtot square-integrable 
the test is unstable with respect to small perturbations in the model 
assumptions. 

We have purposely excluded Case No. 1 from most of our discussion on 
physical grounds. In this section we shall do a simple exercise to show the 
result of letting the white noise level go to zero. We shall find that in the 
absence of white noise we must put additional restrictions on s(t) to get 
physically meaningful results. 

Case 2. The noise contains a nonzero white-noise term. We may then write 

No K&, 24) = 2 qt - 24) + K,(t, u), (247) 

where K,(t, U) is a continuous square-integrable function. Then (169b) 
is the equation of interest, 

v%(t) = 2 g(t) + IT’ Kc@, u) g(u) dw Ti < t 5 Tf* (248) 
Ti 

This equation is called a Fredholm equation of the second kind. A con- 
tinuous, square-integrable solution for g(t) will always exist when K&t, u) 
is a continuous square-integrable function. 

We now discuss two types of kernels in which straightforward procedures 
for solving (246) and (248) are available. 

Type A (Rational Kernels). The noise rz,(t) is the steady-state response of a 
lumped, linear passive network excited with white Gaussian noise. Here 
the covariance function depends only on (t - U) and we may write 

K,(t, u) = K,(t - u) = Kc(+ (249) 

The transform is 
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and is a ratio of two polynomials in w  2. The numerator is of order 4 in o2 
and the denominator is of order p in w2. We assume that n&) has finite 
power so p - q 2 1. Kernels whose transforms satisfy (250) are called 
rational kernels. 

Integral equations with this type of kernel have been studied in detail 
in [35-371, [47, pp. 1082-l 1021 [54, pp. 309-3291, and [62]. We shall 
discuss a simple example that illustrates the techniques and problems 
involved. 

Type B (Separable Kernels). The covariance function of the noise can be 
written as 

K&9 u) = i: 4 MO 54(u), c < t, u < Tf, (251) 
f=l 

where K isfinite. This type of kernel is frequently present in radar problems 
when there are multiple targets. As we shall see in a later section, the 
solution to (246) is straightforward. We refer to this type of kernel as 
separabze. Observe that if we had allowed K = 00 all kernels would be 
considered separable, for we can always write 

Ti < t, u < T’, (252) 

where the hi and +i(t) are the eigenvalues and eigenfunctions. Clearly, this 
is not a practical solution technique because we have to solve another 
integral equation to find the +i(t)a 

We consider rational kernels in this section and separable kernels in the 
next. 

Fredholm Equations of the First Kind: Rational Kernels. The basic technique 
is to find a differential equation corresponding to the integral equation. 
Because of the form of the kernel, this will be a differential equation with 
constant coefficients whose solution can be readily obtained. In fact, the 
particular solution of the differential equation is precisely the g&t) that 
we derived in the last section (234). An integral equation with a rational 
kernel corresponds to a differential equation plus a set of boundary con- 
ditions. To incorporate the boundary conditions, we substitute the par- 
ticular solution plus a weighted sum of the homogeneous solutions back 
into the integral equation and try to adjust the weightings so that the 
equation will be satisfied. It is at this point that we may have difficulty. 
To illustrate the technique and the possible difficulties we may meet, we 



Fredholm Equations of the First Kind 317 

first step is to show how g&) enters the 

WJ~ = N(02) 
o(o2) 

and recall that 

s ao 8(t - 24) = dw emu -u) -. (254) --a0 27T 

Differentiation with respect to t gives 

consider a simple example. The 
picture. Assume that 

a0 
p 8(t - 24) = 

s 
jw &cm - 20 dw -9 

277 (255) -00 

where p L! dldt. More generally, 

O” N(--p2) 8(t - u) = 
s -GO N(4 efdt -U) g. (256) 

In an analogous fashion 

s 
a) D( -p”) K,(t - 24) = (257) 
--oo 

D(02) S&I) e’a(t-u) 20 

From (253) we see that the right sides of (256) and (257) are identical. 
Therefore the kernel satisfies the differential equation obtained by equating 
the left sides of (256) and (257): 

N( -p”) 8(t - u) = D( -p”) K,(t - u). 

Now the integral equation of interest is 

d&(t) = ST’ &(t - u) g(u) du, Ti < t < T,. 
Ti 

(258) 

(259) 

Operating on both sides of this equation with D( -p”), we obtain 

D( -p”)v%(t) = JTf D( -p”) K,(t - u> g(u) d& Ti < t < T,. (260) - 
Ti 

Using (258) on the right-hand side, we have 

D( -p”)v% s(t) = N( -p”) g(t), Ti < t < T,, (261) 

but from our previous results (234) we know that if the observation 
interval were infinite, 

D(o”)xG Sjjw) = N(02) G&m), (262) 
or 

D( -p”)dE s(t) = N( -p”) g&), -0 < t < 00. (263) 
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Thus g,(t) corresponds to the particular solution of (261). There are also 
homogeneous solutions to (26 1) : 

0 = N(-p2) ghi(t), i = 1, 2, . . . , 2q. (264) 
We now add the particular solution g,(t) to a weighted sum of the 2q 
homogeneous solutions ghl(t), substitute the result back into the integral 
equation, and adjust the weightings to satisfy the equation. At this point 
the discussion will be clearer if we consider a specific example. 

Example. We consider (246) and use limits [0, T] for algebraic simplicity. 

or 
Kn(t - u) = &(T) = on2e-k1z’, 

S,(w) = p&e 
Thus 

and 
N(w2) = 2ka,2 

D(w2) = w2 + k2. 
The differential equation (261) is 

G!T( -s”(t) + k2s(t)) = 2ka,2 g(t). 

The particular solution is 
I- 

co<r<m (269 

(266) 

(267) 

(268) 

(26% 

&At) = 31,, v  E [-s”(t) + k2s(t)] Cm 

and there is no homogeneous solution as 

q = 0. 

Substituting back into the integral equation, we obtain 

d&(t) = an2 
s 

Texp(-klt - ul)g(u)du, 
0 

For g(t) to be a solution, we require, 

s(t) = on2{e-kt 1: e+kU[ -sM(~k~n~2s(u)] 

Because there are no homogeneous solutions, there are 
Integrating by parts we obtain the equivalent requirement, 

(271) 

O<tlT, (272) 

-S”(U) + k2s(u) 
2k 2 ] dufy Ost<T. (273) 

Qn 

0 = e - kt{& [s’(O) - ks(O)]} 

no weightings to adjust. 

_ e+ k(t-T) & b’(T) + W’)l}~ OstsT. (274) 

Clearly, the two terms in brackets must vanish independently in order for g&t) to 
satisfy the integral equation. Ifthey do, then our solution is complete. Unfortunately, 
the signal behavior at the end points often will cause the terms in the brackets to be 
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nonzero. We must add something to goo(t) to cancel the ewkt and ek(+*) terms. We 
denote this additional term by gd(t) and choose it so that 

s 

T 

Qn 
2 exp (-kit - 4lgdu) du 

0 

= -$ [s’(O) - ks(O)] ewkt + & [s’(T) + ks(T)]e+k(t-T), 0 I t s T. (275) 

To generate an e -kt term gd(u) must contain an impulse cl 6(u). To generate an 
e + k(t -T) term gd(u) must contain an impulse c2 6(u - T). Thus 

&?d(U) = cl 6(u) + c2 6(u - T), (276) 
where 

Cl = k ~(0) - SW, 
k0n2 

(277) 
c2 = k s(T) + s’(T) 

kon2 
9 

to satisfy (274).t Thus the complete solution to the integral equation is 

i?(t) = &At) + &5(t), OstsT. 

From (153) and (154) we see that the output of the processor is 

(278) 

I T = s r(t) g(t) dt 
0 

= 2 r(0) + F r(T) + s,’ r(t){ 1/E [ k2 s(~~-$“(t)]} dt. (279) 

Thus the optimum processor consists of a filter and a sampler. 
Observe that g(t) will be square-integrable only when cl and c2 are zero. We discuss 

the significance of this point in Section 4.3.7. 

When the spectrum has more poles, higher order singularities must be 
added at the end points. When the spectrum has zeros, there will be 
homogeneous solutions, which we denote as g&). Then we can show that 
the general solution is of the form 

g(t) = &&) -k 2 ai g&) -k 

p-q-1 

2 [bk stk)(f) -k Ck atk)(t - n1, (280) i= 1 k=O 

where 2p is the order of D(w2) as a function of o and 2q is the order of 
N(w~) as a function of w  (e.g., [35]). The function atk)(t) is the kth derivative 
of s(t). A great deal of effort has been devoted to finding efficient methods 
of evaluating the coefficients in (280) (e.g., [63], [3]). 

As we have pointed out, whenever we assume that white noise is present, 
the resulting integral equation will be a Fredholm equation of the second 
kind. For rational spectra the solution techniques are similar but the 
character of the solution is appreciably different. 
t We assume 
interval. 

that the impulse is symmetric. Thus only one half its area is in the 
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Fredholm Equations of the Second Kind: Rational Kernels. The equation of 
interest is (248): 

d%(t) = $0 g(t) + J” K,(t, 24) g(u) du, Tf < t < T,. (281) 
Tf 

We assume that the noise is stationary with spectrum S,(O), 

w2 S,(w) = 4 + S,(w) n EL-l Db2) (282) 

[Observe that N(w2) and D(02) are of the same order. (This is because 
S,(W) has finite power.)] Proceeding in a manner identical to the preceding 
section, we obtain a differential equation that has a particular solution, 
gm(t), and homogeneous solutions, ght(t). Substituting 

2q 
g(t) = &&> + 2 Wh,(O9 

f=l 

into the integral equation, we find that by suitably choosing the ai we can 
always obtain a solution to the integral equation. (No g6(t) is necessary 
because we have enough weightings (or degrees of freedom) to satisfy the 
boundary conditions.) A simple example illustrates the technique. 

Example. Let 

K,(t, u) = uc2 exp (- kit - ~1); 

the corresponding spectrum is 

S,(o) = --g$* 

Then 
(No/2)[02 + k2(1 + 4ac2/kNo)l 

w2 + k2 

The integral equation is (using the interval (0, T) for simplicity) 

d&(t) = $f g(t) + uc2 fTevk~t-uI g(u) h, O%t(T. 
0 

The corresponding differential equation follows easily from (286), 

1/E< -s”(t) + k2 s(t)) = $’ [-g”(t) + y2 g(t)], 

where y2 !! k2(1 + 4aC2/kNo). The particular solution is just ga(t). This can be 
obtained by solving the differential equation directly or by transform methods. 

OD gw(t) = s dw 
e+jaGGw(j~) Gy OSt<T, (289) -w 
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The homogeneous solutions are 

Then 

a&) = eyt, 
gh2(t) = emYt. (290 

g(t) = g&t) + ale+yt + a2emyt, OstsT. (292) 

Substitution of (292) into (287) will lead to two simultaneous equations that al and 
a2 must satisfy. Solving for a1 and a2 explicitly gives the complete solution. Several 
typical cases are contained in the problems. 

The particular property of interest is that a solution can always be found 
without having to add singularity functions. Thus the white noise assump- 
tion guarantees a square-integrable solution. (The convergence of the series 
in (164) and (170) implies that the solution is square-integrable.) 

The final integral equation of interest is the one that specifies h,(t, u), 
(163). Rewriting it for the interval [0, T], we have 

2 T 
h,(t, z) + N 

s 
0 < t,Z< T -  l 

0 0 

(293) 

We observe that this is identical to (281) in the preceding problem, 
except that there is an extra variable in each expression. Thus we can think 
of t as a fixed parameter and z as a variable or vice versa. In either case 
we have a Fredholm equation of the second kind. 

For rational kernels the procedure is identical. We illustrate this with a 
simple example. 

Example. KC@, z) = oS2 exp (-klu - zl), (294) 
2 = 

Mt, 4 + N 
s 

hdt, u)as2 exp (-klu 21) du 
2 

- = oS2 exp (-kit - zI), 
0 0 N 0 

0 5 t, z 5 T. (295) 

Using the operator k2 - p2 and the results of (258) and (286), we have 

or 

(k 2 
2us2 

- p”) h,(t, 2) + F.2k h,(t, 2) = 5 2k 8(t - z), (296) 
0 0 

(1 + A)h,(t, z) - 6 h,(t, z) = A s(t - z), (297) 

where 
*+ 

0 

Let f12 = k2(1 + A). The particular solution is 

(298) 

ho&, 2) = 
2as2 

N(J4-T-K 
exp (- kdl It - zI), 0 I t, z 5 T. (299) 



322 4.3 Detection and Estimation in Nonwhite Gaussian Noise 

Now add homogeneous solutions al(t)e+PZ and az(t)e -+ to the particular solution in 
(299) and substitute the result into (295). We find that we require 

al(t) = 
2kaS2(/3 - k)[(/? + k)e+*t + (/3 - k)e+]eBBT 

No/3[(/? + k)2epT - (/I - k)2e-DT] (300) 

and 

a2W = 
2kuS2(/? - k)[(j3 + k)e + 13(T - t, + (/3 - k)emBCT - t)] 

’ No/3[(/3 + k)2eBT - (/? - k)2e-BT] (300 

The entire solution is 

MZ, 0 = 
2kos2[(fl + k)e + Bz + (/I - k)e- Dz][(/? + k)e + nT - ‘) + (18 - k)e- 4(T - t’l 

No/?[(/l + k)2e + BT - (/3 - k)2e- PT] 
9 

0 ,( z 5 t s T. (302) 

The solution is symmetric in z and t. This is clearly not a very appealing function to 
mechanize. An important special case that we will encounter later is the one in which 
the colored noise component is small. Then /3 N k and 

h&z, t) 21 F exp - /3l t - zl, 0 s z, t s T. (303) 
0 

The important property to observe about (293) is that the extra variable 
complicates the algebra but the basic technique is still applicable. 

This completes our discussion of integral equations with rational kernels 
and finite time intervals. 

Several observations may be made: 

1. The procedure is straightforward bu.t tedious. 
2. When there is no white noise, certain restrictions must be placed on 

s(t) to guarantee that g(t) will be square-integrable. 
3. When white noise is present, increasing the observation interval 

always improves the performance. 
4. The solution for h,(t, U) for arbitrary colored noise levels appears to 

be too complex to implement. We can use the d2 derived from it (198) as 
a basis of comparison for simpler mechanizations. [In Section 6.7 we 
discuss an easier implementation of h,(t, u).] 

Finite Observation Time: Separable Kernels. As a final category, we 
consider integral equations with separable kernels. By contrast with the 
tedium of the preceding section, the solution for separable kernels follows 
almost by inspection. In this case 

where hi and +i(t> are the eigenvalues and eigenfunctions of K,(t, u). 
Observe that (304) says that the noise has only K nonzero eigenvalues. 
Thus, unless we include a white noise component, we may have a singular 
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problem. We include the white noise component and then observe that 
the solution for h,(t, u) is just a truncated version of the infinite series in 
(164). Thus 

The solution to (154) follows easily. Using (305) in (162) and the result 
in (154), we obtain 

z < t < T,. (306) 

Recalling the definition of si in (201) and recalling that g(l> is continuous 
at the end-points, we have 

do = 0 9 elsewhere. 

This receiver structure is shown in Fig. 4.45. Fortunately, in addition to 
having a simple solution, the separable kernel problem occurs frequently 
in practice. 

A typical case is shown in Fig. 4.46. Here we are trying to detect a 
target in the presence of an interfering target and white noise (Siebert [38]). 

. 

Fig. 4.45 Optimum receiver: separable noise process. 
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Fig. 4.46 Detection in presence of interfering target. 

Let 
r(t) = z/Es(t) + a, q(t) + w(t) Ti < t < T,:H, - 

If we assume that a, and sz(t) are known, the problem is trivial. The 
simplest nontrivial model is to assume that sz(t) is a known normalized 
waveform but a, is a zero-mean Gaussian random variable, N(0, al>. 
Then 

K,(t, 4 
No = 0z2sz(t) s&f) + 2 qt - u), Ti < ty u < Tfe - (309) 

This is a special case of the problem we have just solved. The receiver is 
shown in Fig. 4.47. The function g(t) is obtained from (307). It can be 
redrawn, as shown in Fig. 4.47b, to illustrate the estimator-subtractor 
interpretation (this is obviously not an efficient realization). The perform- 
ance index is obtained from (198), 

d2 

Pz 4 
s 

Tf 

s(t) sz(t) dt. 
Ti 

Rewriting (310), we have 

d2 1 + 2q2/No(l - pz2) 
1 + 20,“/& I 

(3 10) 

(311) 

(312a) 

as pz + 0, d2 + 2E/N,. This result is intuitively logical. If the interfering 
signal is orthogonal to s(t), then, regardless of its strength, it should not 
degrade the performance. On the other hand, as pz -+ 1, 

(312b) 
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Now the signals on the two hypotheses are equal and the difference in 
their amplitudes is the only basis for making a decision. 

We have introduced this example for two reasons: 

1. It demonstrates an important case of nonwhite noise in which the 
inverse kernel is particularly simple to calculate. 

2. It shows all of the concepts (but not the detail) that is necessary to 
solve the problem of detection (or estimation) in the presence of clutter 
(radar) or reverberation (sonar). In Chapter 11-4, after we have developed 
a detailed model for the reverberation problem, we shall see how these 
results can be extended to handle the actual problem. 

Summary of Integral Equations. In this section we have developed 
techniques for solving the types of integral equation encountered in the 
detection and estimation problems in the presence of nonwhite noise. The 
character of the solution was determined by the presence or absence of a 
white noise component. The simplicity of the solution in the infinite- 
interval, stationary process case should be emphasized. Because the per- 
formance in this case always bounds the finite interval, stationary process 
case, it is a useful preliminary calculation. 

As a final topic for the colored noise problem, we consider the sensitivity 
of the result to perturbations in the initial assumptions. 

R(t) 
0 a 

% Delay T - 
l 

r ----------------------- 
1 s(tLT) 

I 
. 

1 “dt r b Gain 
Best estimate of 

I 
. interfering signal 

, (delayed by T seconds) 
I 
I I 
i SI 0) 
I- 

SI 0 - T’J 
--------------------- 

-Estimator 
w 

Fig. 4.47 Optimum receiver : interfering targets. 
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4.3.7 Sensitivity 

Up to this point in our discussion we have assumed that all the quantities 
needed to design the optimum receiver were known exactly. We want to 
investigate the effects of imperfect knowledge of these quantities. In order 
to obtain some explicit results we shall discuss the sensitivity issue in the 
context of the simple binary decision problem developed in Section 4.3.1. 
Specifically, the model assumed is 

r(t) = d&(t) + n(t), Tr < t < Tf:Hl, 

r(t) = 40, Ti < t < T,:H,, (313) - 

where s(t), the signal, and K,(t, u), the noise covariance function, are 
assumed known. Just as in the white noise case, there are two methods of 
sensitivity analysis : the parameter variation approach and the functional 
variation approach. In the white noise case we varied the signal. Now the 
variations can include both the signal and the noise. 

Typical parameter variation examples are formulated below : 

1. Let the assumed signal be 

s(t) = ‘T 

i 

2 %! 
0 sin uct, 

0 9 

Ost<T - 9 

elsewhere, 
(314) 

and the actual signal be 

Ost<T - 9 

elsewhere. 
(319 

Find Ad/d as a function of AU. 
2. Let the assumed noise covariance be 

and the actual covariance be 

Find Ad/d as a function of ANo. 
3. In the interfering target example of the last section (308) let the 

assumed interference signal be 

q(t) = s(t - 7>* (318) 
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In other words, it is a delayed version of the desired signal. Let the actual 
interference signal be 

%2(t) = s(t - 7 - A7). 

Find Ad/d as a function of AT. 

(319 

These examples illustrate typical parameter variation problems. Clearly, 
the appropriate variations depend on the physical problem of interest. 
In almost all of them the succeeding calculations are straightforward. 
Some typical cases are included in the problems. 

The functional variation approach is more interesting. As before, we do 
a “ worst-case” analysis. Two examples are the following: 

1. Let the actual signal be 

where 
s&t) = Am(t) + G s,(t), Tt < t < Tf, - (320) 

s 
Tf  

SC”(t) dt = 1. (321) 
Ti 

To find the worst case we choose se(t) to make Ad as negative as possible. 
2. Let the actual noise be 

n,(t) = n(t) + n,(t) (322a) 

whose covariance function is 

We assume that nc(t) has finite energy in the interval 

This implies that 

E 
s 

Tf  
n,“(t) dt < An. (323a) 

T f 

T f  

ss 
KnE2(t, u) dt du < A,. 

Tf 
(3233) 

To find 
possible. 

the worst case we choose K&9 u) to make Ad as negative as 

Various other perturbations and constraints are also possible. We now 
consider a simple version of the first problem. The second problem is 
developed in detail in [42]. 

We assume that the noise process 1s stationary with a spectrum WJ) 
bservation interval is i .nfi nite. The o ptimum receiver, using and that the o 

a whitening realization (see Fig. 4.38a), is shown in Fig. 4.48a. The 



328 4.3 Detection and Estimation in Nonwhite Gaussian Noise 

J 
Nominal output 

r(t) 
~Hw(.M~ 

r* W = SS 0) + n* 0) 
* j-dt 

1 

-00 
. 

r2 
A 

Decision line 

Var [Z(Ho]= d2 

d2 

r Decision line 

Fig. 4.48 Sensitivity analysis : (a) filter with nominal input ; (6) nominal decision space; 
(c) actual design space. 
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corresponding 
formance is 

decision space is shown in Fig. 4.486. The nominal per- 

d = 

ES 
00 

I 
% 

d = s:(t) dt l 

-CQ 

I s;(t) dt 

(325) 

We let the actual signal be 

s*(t) = as(t) + Am&(t), --oo < t < 00, (326) 

where s(t) and Se(t) have unit energy. The output of the whitening filter 
will be 

r*a(t> n s*(t) + s*&) + n*(t), -cm < t < 00, (327) 

and the decision space will be as shown in Fig. 4.48~. The only quantity 
that changes is E&I H,). The variance is still the same because the noise 
covariance is unchanged. Thus 

Ad 
1 00 =- 
d s 

S*dt) s*(t) dL --oo 
(328) 

To examine the sensitivity we want to make Ad as negative as possible. 
If we can make Ad = -d, then the actual operating characteristic will be 
the PD = PF line which is equivalent to a random test. If Ad < -d, the 
actual test will be worse than a random test (see Fig. 2.9~). It is important 
to note that the constraint is on the energy in se(t), not s&t). Using 
Parseval’s theorem, we can write (328) as 

Ad (32% 

This equation can be written in terms of the original quantities by observing 
that 

~*,(jw> = ~E,K.u(jw) w4 W) 
and 

S*(jw> = a&(&J) S(jw). (339 
Thus 

Ad dEE, O” dw =- 
d s --aI z f&ciw)lH,ciw)12 s*u4 

dEE, * =- 
d s s 0’ ) s*@J> &fJ 

--a0 ‘“s,o2;;’ 
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The constraint in (321) can be written as 

(333) 

To perform a worst-case analysis we minimize Ad subject to the constraint 
in (333) by using Lagrange multipliers. Let 

Minimizing with respect to S,(&), we obtain 

(the subscript o denotes optimum). To evaluate X 
constraint equation (333) and obtain 

rf the integral exists, then 
/- .- - 

we substitute into the 

Substituting into (335) and then (332), we have 

(337) 

(Observe that we could also obtain (338) by using the Schwarz inequality 
in (332).) Using the frequency domain equivalent of (325), we have 

In the white noise case the term in the brace reduces to one and we 
obtain the same result as in (82). When the noise is not white, several 
observations are important: 

1. If there is a white noise component, both integrals exist and the term 
in the braces is greater than or equal to one. (Use the Schwarz inequality 
on the denominator.) Thus in the colored noise case a small signal 
perturbation may cause a large change in performance. 

2. If there is I~O white noise component and the nominal test is rtot 
singular, the integral in the denominator exists. Without further restrictions 
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on S(&) and S,&) the integral in the numerator may not exist. If it does 
not exist, the above derivation is not valid. In this case we can find an 
&(&) so that Ad will be less than any desired Ad,. Choose 

W4 = 
k ‘(.iw) 
s,(w)’ 0 in Q 

0 9 w  not in R, 

where Q is a region such that 

g 
= Adx (341) 

and k is chosen to satisfy the energy constraint on s&). We see that in 
the absence of white noise a signal perturbation exists that will make the 
test performance arbitrarily bad. Such tests are referred to as unstable (or 
infinitely sensitive) tests. We see that stability is a stronger requirement 
than nonsingularity and that the white noise assumption guarantees a 
nonsingular, stable test. Clearly, even though a test is stable, it may be 
extremely sensitive. 

3. Similar results can be obtained for a finite interval and nonstationary 
processes in terms of the eigenvalues. Specifically, we can show (e.g., 
[42]) that the condition 

is necessary and sufficient for stability. This is identical to the condition 
for g(t) to be square-integrable. 

In this section we have illustrated some of the ideas involved in a 
sensitivity analysis of an optimum detection procedure. Although we have 
eliminated unstable tests by the white noise assumption, it is still possible 
to encounter sensitive tests. In any practical problem it is essential to 
check the test sensitivity against possible parameter and function variations. 
We can find cases in which the test is too sensitive to be of any practical 
value. In these cases we try to design a test that is nominally suboptimum 
but less sensitive. Techniques for finding this test depend on the problem 
of interest. 

Before leaving the colored noise problem we consider briefly a closely 
related problem. 

4.3.8 Known Linear Channels 

There is an almost complete duality between the colored additive noise 
problem and the problem of transmitting through a known linear channel 
with memory. The latter is shown in Fig. 4.49a. 



332 4.3 Detection and Estimation in Nonwhite Gaussian Noise 

The received waveform on HI in the simple binary problem is 

r(t) = s Tf hch(t, u)lms(u)du + w(t), Ti < t 5 T,. (342) 
Ti 

This is identical in form to (146). Thus hch(t, u) plays an analogous role 
to the whitening filter. The optimum receiver is shown in Fig. 4.49b. The 
performance index is 

d2 
2 

s 

Tf  

=N, Ti 
s:(t) dt 

where the limits (a, b) depend on the channel’s impulse response and the 
input signal duration. We assume that T* < a < b < T,. We can write 
this in a familiar quadratic form: 

b 

d2 
2E 

=N, dzi ~ZI s(u) Qdu, 4 s(u) 

by defining 
a 

The only difference is that now Q&u, v) has the properties of a covariance 
function rather than an inverse kernel. A problem of interest is to choose 

Yr tfdt ’ 
i 

\ 

Fig. 4.49 Known dispersive channel. 
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s(t) to maximize d 2. The solution follows directly from our earlier signal 
design results (p. 302). We can express d2 in terms of the channel eigen- 
values and eigenfunctions 

where 

d2 
2 00 

c A.Chs.2 
= i&i=1 ' " 

Si A 
s 

b 'dES(U)$i(U) du 
a 

(346) 

(347) 

and AiCh and &(u) correspond to the kernel Q,,(u, v). To maximize d2 we 
choose 

- 
Sl = dE 9 

and (348) 
si = 0, i# 1, 

because XICh is defined as the largest eigenvalue of the channel kernel 
Qch(u, ZJ). Some typical channels and their optimum signals are developed 
in the problems. 

When we try to communicate sequences of signals over channels with 
memory, another problem arises. Looking at the basic communications 
system in Fig. 4.1, we see that inside the basic interval 0 < t < T there is 
interference due to noise and the sequence of signals corresponding to 
previous data. This second interference is referred to as the intersymbol 
interference and it turns out to be the major disturbance in many systems 
of interest. We shall study effective methods of combatting intersymbol 
interference in Chapter 11.4. 

4.4 SIGNALS WITH UNWANTED PARAMETERS: THE COMPOSITE 
HYPOTHESIS PROBLEM 

Up to this point in Chapter 4 we have assumed that the signals of 
concern were completely known. The only uncertainty was caused by the 
additive noise. As we pointed out at the beginning of this chapter, in many 
physical problems of interest this assumption is not realistic. One example 
occurs in the radar problem. The transmitted signal is a high frequency 
pulse that acquires a random phase angle (and perhaps a random ampli- 
tude) when it is reflected from the target. Another example arises in the 
communications problem in which there is an uncertainty in the oscillator 
phase. Both problems are characterized by the presence of an unwanted 
parameter. 

Unwanted parameters appear in both detection and estimation problems. 
Because of the inherent similarities, it is adequate to confine our present 


