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s(t) to maximize d 2. The solution follows directly from our earlier signal 
design results (p. 302). We can express d2 in terms of the channel eigen- 
values and eigenfunctions 

where 

d2 
2 00 

c A.Chs.2 
= i&i=1 ' " 

Si A 
s 

b 'dES(U)$i(U) du 
a 

(346) 

(347) 

and AiCh and &(u) correspond to the kernel Q,,(u, v). To maximize d2 we 
choose 

- 
Sl = dE 9 

and (348) 
si = 0, i# 1, 

because XICh is defined as the largest eigenvalue of the channel kernel 
Qch(u, ZJ). Some typical channels and their optimum signals are developed 
in the problems. 

When we try to communicate sequences of signals over channels with 
memory, another problem arises. Looking at the basic communications 
system in Fig. 4.1, we see that inside the basic interval 0 < t < T there is 
interference due to noise and the sequence of signals corresponding to 
previous data. This second interference is referred to as the intersymbol 
interference and it turns out to be the major disturbance in many systems 
of interest. We shall study effective methods of combatting intersymbol 
interference in Chapter 11.4. 

4.4 SIGNALS WITH UNWANTED PARAMETERS: THE COMPOSITE 
HYPOTHESIS PROBLEM 

Up to this point in Chapter 4 we have assumed that the signals of 
concern were completely known. The only uncertainty was caused by the 
additive noise. As we pointed out at the beginning of this chapter, in many 
physical problems of interest this assumption is not realistic. One example 
occurs in the radar problem. The transmitted signal is a high frequency 
pulse that acquires a random phase angle (and perhaps a random ampli- 
tude) when it is reflected from the target. Another example arises in the 
communications problem in which there is an uncertainty in the oscillator 
phase. Both problems are characterized by the presence of an unwanted 
parameter. 

Unwanted parameters appear in both detection and estimation problems. 
Because of the inherent similarities, it is adequate to confine our present 
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discussion to the detection problem. In particular, we shall discuss general 
binary detection. In this case the received signals under the two hypotheses 
are 

40 = s1(4 0) + n(t), Ti < t < Tf:Hl, 

r(t) = s()(t, 9) + n(t), Ti 1 t < T,:H,. (349) - 

The vector 8 denotes an unwanted vector parameter. The functions so(t, 9) 
and sl(t, 9) are conditionally deterministic (i.e., if the value of 0 were 
known, the values of so(t, 0) and sl(t, 0) would be known for all t in the 
observation interval). We see that this problem is just the waveform 
counterpart to the classical composite hypothesis testing problem discussed 
in Section 2.5. As we pointed out in that section, three types of situations 
can develop : 

1. 8 is a random variable with a known a priori density; 
2. 8 is a random variable with an unknown a priori density; 
3. 8 is a nonrandom variable. 

We shall confine our discussion here to the first situation. At the end of 
the section we comment briefly on the other two. The reason for this choice 
is that the two physical problems encountered most frequently in practice 
can be modeled by the first case. We discuss them in detail in Sections 4.4.1 
and 4.4.2, respectively. 

The technique for solving problems in the first category is straight- 
forward. We choose a finite set of observables and denote them by the 
K-dimensional vector r. We construct the likelihood ratio and then let 
K+ 00. 

A[r(t)] A lim PrI H1 CR1 Hd 

K-+a pr,H,tRiH,)’ 
W) 

The only new feature is finding pFI HI (RI HI) and pFI HO(RI Ho) in the 
presence of 8. If 8 were known, we should then have a familiar problem. 
Thus an obvious approach is to write 

and 

Pr,H1(RIHl) = 
s 

&I(), H1 (RI e, Hl> &I I H1 (el Hl) de9 (351) 

Ke 

pr, HotRI Ho) = 
s 

&,&Ho(Rle, H,)~OIHO(~I~O~ de* (352) 
“8 

Substituting (351) and (352) into (350) gives the likelihood ratio. The 
tractability of the procedure depends on the form of the functions to be 
integrated. In the next two sections we consider two physical problems in 
which the procedure leads to easily interpretable results. 
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4.4.1 Random Phase Angles 

In this section we look at several physical problems in which the un- 
certainty in the received signal is due to a random phase angle. The first 
problem of interest is a radar problem. The transmitted signal is a band- 
pass waveform which may be both amplitude- and phase-modulated. We 
can write the transmitted waveform as 

M) = 
d2E, f(t> cos [wet + 5w>l, Ort<T - 9 (353) 
0 

9 elsewhere. 

Two typical waveforms are shown in Fig. 4.50. The function f(t) corre- 
sponds to the envelope and is normalized so that the transmitted energy is 
Et. The function +(t) corresponds to a phase modulation. Both functions 
are low frequency in comparison to w,. 

For the present we assume that we simply want to decide whether a 
target is present at a particular range. If a target is present, the signal will 
be reflected. In the simplest case of a fixed point target, the received wave- 
form will be an attenuated version of the transmitted waveform with a 
random phase angle added to the carrier. In addition, there is an additive 
white noise component w(t) at the receiver whether the target is present or 

0 a 

/ 

at2 

t 

Fig. 4.50 Typical envelope and phase functions. 



336 4.4 Signals with Unwanted Parameters 

not. If we define HI as the hypothesis that the target is present and Ho as 
the hypothesis that the target is absent, the following detection problem 
results : 

HI : r(t) = 1/2E.f(t - T) cos (q(t - T) + +(t - 7) + 0) 

+ w(t), vStsT+T, 

= w(t), Ti < t < T, r + T < t < T,, 

n S,(t - 7, 0) + w(t), Ti < t < - T, . (354a) 

H,:r(t) = w(t); Ti < t < Tf. (354b) 

Because the noise is white, we need only observe over the interval 
7 < t < 7 + T. Under the assumption that we are interested only in a 
particular T, the model is the same if we let T = 0. Thus we need only 
consider the problem 

H,:r(t) = sr(t, 0) + w(t), 0 < t < T, (355a) 

H&t) = w(t), Ost<T -  l (355b) 

Here we have a simple binary detection problem in which the unknown 
parameter occurs only on one hypothesis. Before solving it we indicate 
how a similar problem can arise in the communications context. 

In a simple on-off communication system we send a signal when the 
source output is “one” and nothing when the source output is “zero”. 
The transmitted signals on the two hypotheses are 

HI :q(t) = 2/2E, f(t) cos (w,t + j(t) + &), 0 < t < T, 
Ho : q(t) = 0, O<t-=T (356) 

-  l 

Frequently, we try to indicate to the receiver what 8, is. One method of 
doing this is to send an auxiliary signal that contains information about 
8,. If this signal were transmitted through a noise-free channel, the receiver 
would know 8, exactly and the problem would reduce to the known signal 
problem. More frequently the auxiliary signal is corrupted by noise and 
the receiver operates on the noise-corrupted auxiliary signal and tries to 
estimate 0,. We denote this estimate by &. A block diagram is shown in 
Fig. 4.51. We discuss the detailed operation of the lower box in Chapter 
II.2. Now, if the estimate $, equals 8,, the problem is familiar. If they are 
unequal, the uncertainty is contained in the difference 8 = 8, - &, which 
is a random variable. Therefore we may consider the problem: 

HI x-(t) = d2E, f(t) cos cw,t + +(t) + e) + w(t), 0 < t < T, (357) 

H,:r(t) = w(t), 0 < t < T, (358) 
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Data signals . + 

Transmitter > Detector 

. 
Auxiliary 

signal 
(pilot tone) T 62 

Fig. 4.51 A phase estimation system. 

where Et is the actual received signal energy and 0 is the phase measure- 
ment error. We see that the radar and communication problems lead to the 
same mathematical model. 

The procedure for finding the likelihood ratio was indicated at the 
beginning of Section 4.4. In this particular case the model is so familiar 
(see (23)) that we can write down the form for K + co immediately. The 
resulting likelihood ratio is 

1 s T 
r(t) s,(t, 0) dt - N Sr2(f, 0) dt 9 

0 0 I 
w9.l 

where we assume the range of 0 is [ - n, 771. The last integral corresponds 
to the received energy. In most cases of interest it will not be a function of 
the phase so we incorporate it in the threshold. To evaluate the other 
integral., we expand the cosine term in (357), 

cos lw,t + +(t) + e] = cos Iw,t + 4(t)] cos 8 - sin [t+t + #(t)] sin 8, (360) 

and define 

L, n 
s 

T d2 r(t) f(t) cos [w,t + 4(t)] dt, (3W 
0 

and 

L, n 
s 

T 2/z r(t) f(t) sin [u,t + #(t)] dt. (362) 
0 

Thus the integral of interest is 

A’[r(t)] = Jn p@) de exp [+ (L, cos 8 - L, sin 8)]. 
-n 0 

(363) 

To proceed we must specify Pe( 0). Instead of choosing a particular density, 
we specify a family of densities indexed by a single parameter. We want to 
choose a family that will enable us to model as many cases of interest as 
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Fig. 4.52 Family of probability densities for the phase angle. 

possible. A family that will turn out to be useful is given in (364) and shown 
in Fig. 4.52t: 

The function IO(&) is a modified Bessel function of the first kind which 
is included so that the density will integrate to unity. For the present Am 

t This density was first used for this application by Viterbi [44]. 
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can be regarded simply as a parameter that controls the spread of the 
density. When we study phase estimators in Chapter 11.2, we shall find 
that it has an important physical significance. 

Looking at Fig. 4.52, we see that for A, = 0 

This is the logical density for the radar problem. As A, increases, the 
density becomes more peaked. Finally, as A,+ 00, we approach the known 
signal case. Thus by varying A,,, we can move continuously from the 
known signal problem through the intermediate case, in which there is 
some information about the phase, to the other extreme, the uniform 
phase problem. 

Substituting (364) into (363), we have 

1 
A’[r(t)] = In 2 I (A ) exp 

22/E 
A, + *L, 

2dE 
cos 8 - *L, sin 6 de. 

-nmQ m I 

(366) 
This is a standard integral (e.g., [45]). Thus 

1 
~WOI = I,(ll,) JJ A, + TLC)” + (TLs)‘]“}e (367) 

Substituting (367) into (359), incorporating the threshold, and taking the 
logarithm, we obtain 

A +22/E,L,’ 
m --) + (c!p)"]"> 

Hl 

><lnT+F Er + In I,(Rm). (368) 
Ho 0 

The formation of the test statistic is straightforward (Fig. 4.53). The 
function 10( 9) is shown in Fig. 4.54. For large x 

&(x) ” -29 
42 

x>> 1, (369) 
77x 

whereas for small x 
x2 

&)(x) N 1 + 4) x<< 1, (370a) 

and 
X2 

In lo(x) z 4) x<< 1. (370b) 

Observe that because In I,(x) is monotone we can remove it by modifying 
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Fig. 4.53 Optimum receiver: random phase angle 

the threshold. Thus two tests equivalent to (368) are 

HI L, 
+ Ls Ho 

“5r 

and 

Square -77 root 

(Lc2 + L2) + 2A, y  L, $ y’. 
0 Ho 

I I I 1 1 
0 1.0 2.0 3.0 4.0 5.0 6.0 

cl- lnZ0 
1 

(371a) 

(371 b) 

Fig. 4.54 Plot of lo(x). 
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Fig. 4.55 Alternate realization of optimum receiver. 

Redrawing the receiver structure as shown in Fig. 4.55, we see that the 
optimum receiver consists of a linear component and a square-law 
component. 

Looking at (371a), we see that the region in the L,, L, plane corre- 
sponding to the decision Ho is the interior of a circle centered at 
(- N,A,/22/E, 0) with radius ys. We denote this region as MO. The 
probability density of L, and L, under Ho is a circularly symmetric 
Gaussian density centered at the origin. Therefore, if y is fixed and A, is 
allowed to increase, Q, will move to the left and the probability of being 
in it on Ho will decrease. Thus, to maintain a constant PF we increase y as 
h, is increased. Several decision regions are shown in Fig. 4.56. In the 
limit, as A, -+ m, the decision boundary approaches a straight line and 
we have the familiar known signal problem of Section 4.2. The probability 
density on H1 depends on 8. A typical case is shown in the figure. We 
evaluate PF and PD for some interesting special cases on p. 344 and in the 
problems. Before doing this it will be worthwhile to develop an alternate 
receiver realization for the case in which A, = 0. In many cases this 
alternate realization will be more convenient to implement. 

Matched Filter-Envelope Detector Realization. When A, = 0, we must 
find 2/LC2 + Ls2. We can do so by using a bandpass filter followed by an 
envelope detector, as shown in Fig. 4.57. Because h(t) is the impulse 
response of a bandpass filter, it is convenient to write it as 
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Fig. 4.56 Decision regions, partially coherent case. 

where hL(t) and &(t) are low-pass functions. The output at time T is 

s 

T  

Y(T) = MT - 7) r(7) dc (373) 
0 

Using (3’72), we can write this equation as 

Y(T) = ST 47) MT - 7) cos [wc(T - 7) + &(T - r)] dr 
0 

s 

T  
= cos o,T r(r) hL(T - 7) cos [OJL)C~ - &(T - 7)] dr 

0 

s 

T  

+ sin w,T r(7) hL(T - 7) sin [W,T - &(T - 7)] dT. (374) 
0 

Observe at time 

r(t) 
c 

) h(T) - 
Y(t) > Envelope . 

detector -i 
. - 

Bandpass 
filter 

Fig. 4.57 Matched filter-envelope detector for uniform phase case. 
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This can be written as 

y(T) A y,(T) cos u,T + ys(T) sin o,T 

= 2/yC2(T) + y:(T) cos w,T - tan-l %;]a (375) 
C 

Observing that 

s 

T  

Y,(T) = Re r(7) hL(T - 7) exp [ +jw,~ - j&(T - T)] d7 (376a) 
0 

and 

Y,(T) = Im (7) k(T - 7) exp [ +jwc7 - j&(T - 7)] d7, (3763) 

we see that the output of the envelope detector is 

z/y,2(T) + y:(T) = 1s' r(7) hL(T - 7) exp [ -j## - 7) + jwc7] hi* 
0 

(37V 
From (361) and (362) we see that the desired test statistic is 

We see the two expressions will be identical if 

This bandpass matched filter provides a simpler realization for the uniform 
phase case. 

The receiver in the uniform phase case is frequently called an incoherent 
receiver, but the terminology tends to be misleading. We see that the 
matched filter utilizes all the internal phase structure of the signal. The 
only thing missing is an absolute phase reference. The receiver for the 
known signal case is called a coherent receiver because it requires an 
oscillator at the receiver that is coherent with the transmitter oscillator. 
The general case developed in this section may be termed the partially 
coherent case. 

To complete our discussion we consider the performance for some 
simple cases. There is no conceptual difficulty in evaluating the error 
probabilities but the resulting integrals often cannot be evaluated analyti- 
cally. Because various modifications of this particular problem are fre- 
quently encountered in both radar and communications, a great deal of 
effort has been expended in finding convenient closed-form expressions 
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and in numerical evaluations. We have chosen two typical examples to 
illustrate the techniques employed. 

First we consider the radar problem defined at the beginning of this 
section (3X-355). 

Example 1 (Uniform Phase). Because this model corresponds to a radar problem, the 
uniform phase assumption is most realistic. To construct the ROC we must compute 
PF and PD. (Recall that PF and PO are the probabilities that we will exceed the threshold 
y  when noise only and signal plus noise are present, respectively.) 

Looking at Fig. 4.55, we see that the test statistic is 

I = Lc2 + Ls2, (381) 

where L, and L, are Gaussian random variables. The decision region is shown in 
Fig. 4.56. We can easily verify that 

Ho: E(L,) = E(L,) = 0; Var (Lc) = Var (L,) = $ 

HI: E(L#) = 1/E, cos 8; E(L,jO) = d&in 9; Var (L,) = Var (Ls) = ?- (382) 

Then 

PF 4 Pr [I > rlHo] = js(z* F) -’ exp ( -Lv) dL, dL,. 

&I 

(383) 

Changing to polar coordinates and evaluating, we have 

P,=exp -$- l 

(  > 0 

(384) 

Similarly, the probability of detection for a particular 8 is 

Letting L, 
we obtain 

= R COS j$ L, = R sin p, and performing integration with respect to cs, 

PO(e) = PO = 
s 

T7 
2Rdj!7 

$ R exp (- y) lo(y) dR. (W 
0 

As we expected, PO does not depend on 0. We can normalize this expression by letting 
z = d2/No R. This gives 

PO= * 
s Jao 

zexp (-v) lo(zd)dz, ww 

where d2 4 2E,/No. 
This integral cannot be evaluated analytically. It was first tabulated by Marcum 

[46, 481 in terms of a function commonly called Marcum’s Q function: 

This function has been studied extensively and tabulated for various values of a, p 
(e.g., [48], [49], and [50]). Thus 

PO = Q(d, ($)“e WV 
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0.8 

Fig. 4.58 Receiver operating characteristic, random phase with uniform density. 

This can be written in terms of PF. Using (384), we have 

PD = Q(d, d-2*). WO) 

The ROC is shown in Fig. 4.58. The results can also be plotted in the form of PD 
versus d with PF as a parameter. This is done in Fig. 4.59. Comparing Figs. 4.14 and 
4.59, we see that a negligible increase of d is required to maintain the same PD for a 
fixed PF when we go from the known signal model to the uniform phase model for 
the parameter ranges shown in Fig. 4.59. 

The second example of interest is a binary communication system in 
which some phase information is available. 

Example 2. Partially Coherent Binary Communication. The criterion is minimum 
probability of error and the hypotheses are equally likely. We assume that the signals 
under the two hypotheses are 

HI v(t) = 42E, fl(t) cos (w,t + @) + w(t), OltlT, 

Ho: r(t) = 6$ fo(t) ~0s (w,t + 0) + w(t), O(tsT, 
(391) 
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where So(t) and fi(t) are normalized and 

s 
T fo(t) fi(O dt = P; -1sp51. 
0 

(392) 

The noise spectral height is No/2 and ~~(0) is given by (364). The likelihood ratio test 
is obtained by an obvious modification of the simple binary problem and the receiver 
structure is shown in Fig. 4.60. 

We now look at Pr (E) as a function of p, d2, and A,,,. Intuitively, we expect that as 
Am -+ a we would approach the known signal problem, and p = - 1 (the equal and 
opposite signals of (39)) would give the best result. On the other hand, as A, -+ 0, 

0.99 ~ 
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0.7 

PD 
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lo-* 

1o’3 

d= 

Fig. 4.59 Probability of detection vs d, uniform phase. 
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Fig. 4.60 Receiver: binary communication system. 

the phase becomes uniform. Now, any correlation (+ or -) would move the signal 
points closer together. Thus, we expect that p = 0 would give the best performance. 
As we go from the first extreme to the second, the best value of p should move from 
- 1 to 0. 

We shall do only the details for the easy case in which p = - 1; p = 0 is done in 
Problem 4.4.9. The error calculation for arbitrary p is done in [44]. 

When p = - 1, we observe that the output of the square-law section is identical 
on both hypotheses. Thus the receiver is linear. The effect of the phase error is to 
rotate the signal points in the decision space as shown in Fig. 4.61. 

Using the results of Section 4.2.1 (p. 257), 
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Fig. 4.61 ERect of phase errors in decision space. 

Pr (~10) = s - d2E,/N,, cos 8 1 

Y exp 
--Qo 42 Tr 

(394) 

Using (364), 

Pr (E) = 
s 

+nexp (A, cos 8) - Pr (~10) de. (395) --IL 27&(kn) 

This can be integrated numerically. The results for two particular values of d2 are 
shown in Figs. 4.62 and 4.63.t The results for other p were also evaluated in [44] 
and are given in these figures. We see that for A,,, greater than about 2 the negatively 
correlated signals become more efficient than orthogonal signals. For A, 2 10 the 
difference is significant. The physical significance of A, will become clearer when we 
study phase estimating systems in Chapter 11.2. 

In this section we have studied a particular case of an unwanted param- 
eter, a random phase angle. By using a family of densities we were able to 
demonstrate how to progress smoothly from the known signal case to the 
uniform phase case. The receiver consisted of a weighted sum of a linear 
operation and a quadratic operation. We observe that the specific receiver 
structure is 
the probabi 

due 
. 

11ty 
to the precise form of the density chosen. In many cases 

density for the phase angle would not correspond to any 
of these densities. Intuitively we expect that the receiver developed here 
should be “almost” optimum for arty single-peaked density with the same 
variance as the member of the family for which it was designed. 

We now turn to a case of equal (or perhaps greater) importance in 
which both the amplitude and phase of the received signal vary. 

t The values of d2 were chosen to give a Pr (E) = lo- 3 and lo- 5, respectively, at 
&la = GO. 
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Fig. 4.62 Pr (E), partially coherent binary system (lo- 3 asymptote) [44]. 

4.4.2 Random Amplitude and Phase 

As we discussed in Section 4.1, there are cases in which both the 
amplitude and phase of the received signal vary. In the communication 
context this situation is encountered in ionospheric links operating above 
the maximum usable frequency (e.g., [51]) and in some tropospheric links 
(e.g., [52]). In th e radar context it is encountered when the target’s aspect 
or effective radar cross section changes from pulse to pulse (e.g., Swerling 
[531) 

Experimental results for a number of physical problems indicate that 
when the input is a sine wave, z/z sin WJ, the output (in the absence of 
additive noise) is 

40 = u&sin [w,t + O,,(t)]. (396) 

An exaggerated sketch is shown in Fig. 4.64a. The envelope and phase 
vary continuously. The envelope u,&) has the Rayleigh probability 
density shown in Fig. 4.646 and that the phase angle O,,(t) has a uniform 
density. 
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Fig. 4.63 Pr (E), partially coherent binary system (lo- s asymptote) [44]. 

There are several ways to model this channel. The simplest technique is 
to replace the actual channel functions by piecewise constant functions 
(Fig. 4.65). This would be valid when the channel does not vary significantly 



Fig. 4.64 Narrow-band process at output of channel, and the probability of its 
envelope. 

0 a 

Fig. 4.65 Piecewise constant approximation : (n) actual envelope; (b) piecewise 
constant model. 

351 
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in a T second interval. Given this “slow-fading” model, two choices are 
available. We can process each signaling interval independently or exploit 
the channel continuity by measuring the channel and using the measure- 
ments in the receiver. We now explore the first alternative. 

For the simple binary detection problem in additive white Gaussian 
noise we may write the received signal under the two hypotheses as7 

H&t) = l.a f(t) cos [qt + #(t) + q + w(t), 
H,:r(t) = w(t), 

where u is a Rayleigh random variable and 0 is a uniform random variable, 
We can write the signal component equally well in terms of its quad- 

rature components : 

1/2: v f(t) cm [w,t + #(t) + e] = a,dZ f(t) cos [w,t + 4(t)] 
+ a242 f(t) sin [w,t + +(t)], 

0 < t < T’, (398) 

where al and a2 are independent zero-mean Gaussian random variables 
with variance a2 (where E[v2] = 2a2; see pp. 158-161 of Davenport and 
Root [2]). We also observe that the two terms are orthogonal. Thus the 
signal out of a Rayleigh fading channel can be viewed as the sum of two 
orthogonal signals, each multiplied by an independent Gaussian random 
variable. This seems to be an easier way to look at the problem. As a 
matter of fact, it is just as easy to solve the more general problem inwhich 
the received waveform on HI is, 

r(t) = 2 ai Si(t) + W(t), 0 5 t < T, 
i=l 

(399) 

where the ai are independent, zero-mean Gaussian variables N(0, a,,) and 

The likelihood ratio is 

t For simplicity we assume that the transmitted signal has unit 
received energy by changing the characteristics of v. 

energy and adjust the 
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Fig. 4.66 Receivers for Gaussian amplitude signals : (a) correlation-squarer receiver; 
(6) filter-squarer receiver. 

Defining 

Li = J dt) 4Ct> dt, 
0 

(402) 

using the orthogonality of the si(t), and completing the square in each of 
the M integrals, we find the test reduces to 

Two receivers corresponding to (403) and shown in Fig. 4.66 are commonly 
called a correlator-squarer receiver and a filter-squarer receiver, respec- 
tively. Equation 403 can be rewritten as 

M 

1 = 
= i=l Lisi- c (404) 

t Note that we could have also obtained (403) by observing that the Lf are jointly 
Gaussian on both hypotheses and are sufficient statistics. Thus the results of Section 
2.6 [specifically (2.326)] are directly applicable. Whenever the L1 have nonzero means 
or are correlated, the use of’2.326 is the simplest method (e.g., Problem 4.4.21). 



354 4.4 Signals with Unwanted Parameters 

This structure, shown in Fig. 4.67, can be interpreted as an estimator- 
correlator receiver (i.e., we are correlating r(t) with our estimate of the 
received signal.) The identification of the term in braces as & follows from 
our estimation discussion in Section 4.2. It is both a minimum mean-square 
error estimate and a maximum a posteriori probability estimate. In Fig. 
4.67a we show a practical implementation. The realization in Fig. 4.67b 
shows that we could actually obtain the estimate of the signal component 
as a waveform in the optimum receiver. This interpretation is quite 
important in later applications. 

4) 

b 
l 

l 

x 

9 

sM(t) 

. 
--I I 

Delay T r i . cts x :Tdt. * 

t 

SlW 

l 

l 

I 
I’ 

M MSE estimate 
of signal 

component 

sM@) SM(t - T) 

(b) 

Fig. 4.67 Estimator-correlator receiver. 



Rayleigh Channels 355 

We now apply these results to the original problem in (397). If we relate 
L1 to L, and L2 to L,, we see that the receiver is 

Lc2 + Ls2 $ y 
Ho 

(W 

(where L, and L, were defined in the random phase example). This can be 
realized, as shown in the preceding section, by a bandpass matched filter 
followed by an envelope detector. The two alternate receiver realizations 
are shown in Figs. 4.68a and b. 

The next step is to evaluate the performance. We observe that L, and L, 
are Gaussian random variables with identical distributions. Thus the 
Rayleigh channel corresponds exactly to Example 2 on p. 41 of Chapter 2. 
In Equation (2.80), we showed that 

where ao2 is the 
Looking at Fig, 

pD = (&y-02~Q12, (2.80) 

variance of L, on Ho and ,I2 is the variance of I,, on HI. 
4.58a, we see that 

and 

where Er n 20~ Et is the average received signal energy 

~ Bandpass . 
matched filter 

A 1 

(4 

. 
) Square law 

envelope det. 
A 

Sample at 

(W 

Fig. 4.68 Optimum receivers, Rayleigh channel: (a) squarer realization; (b) matched 
Alter-envelope detector realization. 
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because v2 is the received signal energy. Substituting (406) and (407) into 
(2X0), we obtain 

pF = (PO)’ + jv% WV 
The ROC is plotted in Fig. 4.69. 

The solution to the analogous binary communication problem for 
arbitrary signals follows in a similar fashion (e.g., Masonson [55] and 

1.0 

0.9 
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0.7 

0.6 

t 0.5 
5 

0.4 

I I I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

PF - 

Fig. 4.69 (a) Receiver operating characteristic, Rayleigh channel. 

Turin [56]). We discuss a typical system briefly. Recall thatthe phaseangle 
8 has a uniform density. From our results in the preceding section (Figs. 
4.62 and 4.63) we would expect that orthogonal signals would be optimum. 
We discuss briefly a simple FSK system using orthogonal signals. The 
received signals under the two hypotheses are 

H,:r(t) = d2 vf(t) cos [WI? + 4(t) + 81 + w(t), Ost,<T, 
H*: r(t) = dZ v f(t) cos [qg + 4(t) + 01 + w(t), OrtrT. (409 
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The frequencies are separated enough to guarantee orthogonality. Assum- 
ing equal a priori probabilities and a minimum probability of error 
criterion, 7 = 1. The likelihood ratio test follows directly (see Problem 
4.4.24). 

L,12 + Ls12 $ L,02 + L,02. (410) 
Ho 

0.99 I I I 

1 3 5 10 

2% > 
NO 

30 50 

Fig. 4.69 (6) probability of detection vs. 2Er/No. 

The receiver structure is shown in Fig. 4.70. The probability of error 
can be evaluated analytically : 

I+(c) = i [l + k$J-‘- (411) 

(See Problem 4.4.24.) In Fig. 4.71 we have plotted the Pr (E) as a function 
of EJN,. For purposes of comparison we have also shown the Pr (E) for 
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t 
Bandpass Square law ‘ LC12 + LS12 

l > matched . * envelope ) 
Sample . 

filter detector at T . 

? 
Bandpass Square law 

) matched 1 =- envelope r * 
Sample 

filter detector 
at T 

l 

’ Lco2 + Lso2 

Fig. 4.70 Optimum receiver: binary communication system with orthogonal signals. 

the known signal case and the uniform random phase case. We see that 
for both nonfading cases the probability of error decreases exponentially 
for large &NO, whereas the fading case decreases only linearly. This is 
intuitively logical. Regardless of how large the average received energy 
becomes, during a deep signal fade the probability of error is equal or 
nearly equal to 3. Even though this does not occur often, its occurrence 
keeps the probability of error from improving exponentially. In Chapter 
II.3 we shall find that by using diversity (for example, sending the signal 
over several independent Rayleigh channels in parallel) we can achieve an 
exponential decrease. 

As we have already pointed out, an alternate approach is to measure 
the channel characteristics and use this measurement in the receiver 
structure. We can easily obtain an estimate of the possible improvement 
available by assuming that the channel measurement is perfect. If the 
measurement is perfect, we can use a coherent receiver. The resulting Pr (E) 
is easy to evaluate. First we write the error probability conditioned on the 
channel variable v being equal to V. We then average over the Rayleigh 
density in Fig. 4.643. Using coherent or known signal reception and 
orthogonal signals the probability of error for a given value Y is given by 
(36) and (40), 

* Pr (cl V) = 
s VJm 

-& e-gal2 d3y, (V2 0) 
7T 

and 
V - v2 /2cT2 

pv(v)de ' v > 0, 

0 9 v < 0. 

(412) 

(413) 
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Thus 

Changing to polar coordinates and integrating, we obtain 

Pr(c) = )[l - (1 ~$+yYJ]* 
t 0 

The result is shown in Fig. 4.72. 
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Fig. 4.71 Probability of error, binary orthogonal signals, Rayleigh channel. 
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Comparing (415) and (411) (or looking at Fig. 4.72), we see that perfect 
measurement gives about a 3-db improvement for high &./NO values and 
orthogonal signals. In addition, if we measured the channel, we could use 
equal-and-opposite signals to obtain another 3 db. 

Rician Channel In many physical channels there is a fixed (or 
“ specular “) component in addition to the Rayleigh component. A typical 
example is an ionospheric radio link operated below the maximum usable 
frequency (e.g., [57], [58], or [59]). Such channels are called Rician 
channels. We now illustrate the behavior of this type of channel for a 

1.0 
I I I I I I 11 1 II 11 ’ 

0.5 

lo-l-- 

RaYWJ Channel - 

t \A 

1o-4 

II I I I I I I I I I l J 
1 2 3 4 5 6 7 8 9 10 11 12 

&lNo - 

Fig. 4.72 Probability of error, Rayleigh channel with perfect measurement. 
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binary communication system, using orthogonal signals. The received 
signals on the two hypotheses are 

H1:r(t) = lb af1(t) cos [w,t + #1(t) + q 
+ 2/2 2, f1(t) cos [a&t + q&(t) + 01 + w(t), 

0 < t < T, 
H&t) = 16 a f*(t) cos [o,t + (j*(t) + q (416) 

+ 42 ufo(t) cos [qt + $*(t) + 01 + w(t), 

0 5 t s T, 

where a and S are the amplitude and phase of the specular component. 
The transmitted signals are orthonormal. In the simplest case a and S are 
assumed to be known (see Problem 4.5.26 for unknown 6). Under this 
assumption, with no loss in generality, we can let S = 0. We may now 
write the signal component on Hi as 

QlWZ A(t) cm [wet + 5w)l> + a,(~mt) sin [w,t + 54( t)l>, 
(i = 0, 1). (417) 

Once again, al and a2 are independent Gaussian random variables: 

E(a1) = a, E(a2) = 0, 
var (al) = Var (a2) = 02. (418) 

The expected value of the received energy in the signal component on 
either hypothesis is 

I?(&) = 202 + a2 n a2(2 + y”). (419) 

where y2 is twice the ratio of the energy in the specular component to the 
average energy in the random component. 

If we denote the total received amplitude and phase angle as 

vf = da12 + a22, 8’ = tan-l S 
a1 

wo) 

The density of the normalized envelope (v,l = yI&;(X) and the density 
of the phase angle p&B’) are shown in Fig. 4.73 ([60] and [56]). As we 
would expect, the phase angle probability density becomes quite peaked 
as y increases. 

The receiver structure is obtained by a straightforward modification of 
(398) to (405). The likelihood ratio test is 
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Fig. 4.73 (b) probability density for phase angle, Rician channel. 

The receiver structure is shown in Fig. 4.74. The calculation of the 
error probability is tedious (e.g., [56]), but the result is 
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Fig. 4.74 Optimum receiver for binary communication over a Rician channel. 

where /3 * 2a2/N0 is the expected value of the received signal energy in - 
the random component divided by No. The probability of error is plotted 
for typical values of y in Fig. 4.75. Observe that y = 0 is the Rayleigh 
channel and y = a is the completely known signal. We see that even 
when the power in the specular component is twice that of the random 
component the performance lies close to the Rayleigh channel perform- 
ance. Once again, because the Rician channel is a channel of practical 
importance, considerable effort has been devoted to studying its error 
behavior under various conditions (e.g., [56]). 

Summary As we would expect, the formulation for the Mary signaling 
problem is straightforward. Probability of error calculations are once 
again involved (e.g., [61] or [15]). In Chapter II.3 we shall see that both 
the Rayleigh and Rician channels are special cases of the general Gaussian 
problem. 

In this section we have studied in detail two important cases in which 
unwanted random parameters are contained in the signal components. 
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Because the probability density was known, the optimum test procedure 
followed. directly from our general likelihood ratio formulation. The 
particular examples of densities we considered gave integrals that could be 
evaluated analytically and consequently led to explicit receiver structures. 
Even when we could not evaluate the integrals, the method of setting up 
the likelihood ratio was clear. 

When the probability density of 8 is unknown, the best procedure is 
not obvious. There are two logical possibilities: 

1. We can hypothesize a density and use it as if it were correct. We can 
investigate the dependence of the performance on the assumed density by 
using sensitivity analysis techniques analogous to those we have demon- 
strated for other problems. 

2. We can use a minimax procedure. This is conceptually straight- 
forward. For example, in a binary communication problem we find the 
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Fig. 4.75 Probability of error for binary orthogonal signals, Rician channel. 
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Pr (E) as a function of p@) and then choose the p@) that maximizes 
Pr (E) and design for this case. The two objections to this procedure are its 
difficulty and the conservative result. 

The final possibility is for 0 to be a nonrandom variable. To deal with 
this problem we simply extend the composite hypothesis testing techniques 
that we developed in Section 2.5 to include waveform observations. The 
techniques are straightforward. Fortunately, in many cases of practical 
importance either a UMP test will exist or a generalized likelihood ratio 
test will give satisfactory results. Some interesting examples are discussed 
in the problems. Helstrom [ 141 discusses the application of generalized 
likelihood ratio tests to the radar problem of detecting signals of”unknown 
arrival time. 

4.5 MULTIPLE CHANNELS 

In Chapter 3 we introduced the idea of a vector random process. We 
now want to solve the detection and estimation problems for the case in 
which the received waveform is a sample function from a vector random 
process. 

In the simple binary detection problem, the received waveforms are 

H,:r(t) = SW + n(t), Ti s t < T,, 
Ho x(t) = n(t), Ti < t < T,. VW t 

In the estimation case, the received waveform is 

r(t> = S(t, A) + n(t), Ti < t s T,. (424) 

Two issues are involved in the vector case: 

1. The first is a compact formulation of the problem. By using the 
vector Karhunen-Loeve expansion with scalar coefficients introduced in 
Chapter 3 we show that the construction of the likelihood ratio is a trivial 
extension of the scalar case. (This problem has been discussed in great 
detail by Wolf [63] and Thomas and Wong [64].) 

2. The second is to study the performance of the resulting receiver 
structures to see whether problems appear that did not occur in the scalar 
case. We discuss only a few simple examples in this section. In Chapter II.5 
we return to the multidimensional problem and investigate some of the 
interesting phenomena. 

t In the scalar case we wrote the signal energy separately and worked with normalized 
waveforms. In the vector case this complicates the notation needlessly, and we use 
unnormalized waveforms. 
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4.5.1 Formulation 
We assume that s(t) is a known vector signal. The additive noise n(t) is 

a sample function from an M-dimensional Gaussian random process. We 
assume that it contains a white noise component: 

where 

E[w(t)w’(u>] = F 18(t - 24). 

a more general case is, 

(426a) 

E[w(t) wT(u)] = N 8(t - u). (426b) 

The matrix N contains only numbers. We assume that it is positiue- 
de$nite. Physically this means that all components of r(t) or any linear 
transformation of r(t) will contain a white noise component. The general 
case is done in Problem 4.5.2. We consider the case described by (426a) in 
the text. The covariance function matrix of the colored noise is 

We assume that each element in K,(t, u) is square-integrable and that the 
white and colored components are independent. Using (425-427), we have 

K,(t, u) = 2 I 8(t - u> + K,(t, u). (428) 

To construct the likelihood ratio we proceed as in the scalar case. 
Under hypothesis H1 

s Tf 
= s’(t) *i(t) dt + 

s 

T f  
n’(t) +dt) dt 

Ti Tf 

= Si + yli. (429) 

Notice that all of the coefficients are scalars. Thus (180) is directly 
applicable : 

(430) 

Substituting (429) into (430), we have 

ln WOI = /)k(t) 2 ‘i(‘)ziT(U) s(u) dt du 

Tf 

Tf ss 
-3 s’(t) 

2 
O” 440 W(4 s(u) dt du 

h 
. (431) 

Ti 
f=l 



368 4.5 Multiple Channels 

Defining 

Qn(t, U) = 2 ‘i(t)~iTo, Ti < t, u < Tfy 
i= 1 2 

(432) 
we have 

Tf  

In R[r(t)] = 
ss 

r’(t) Qn(t, u) s(u) dt du 
Tf 

T f  

-3 

ss 
s’(t) Qn(t, u) s(u) dt du. (433) 

Ti 

Using the vector form of Mercer’s theorem (2.253) and (432), we observe 
that 

K&, u) Qnb, 2) du = 8(t - z)I, Ti < t, z < Tf. (434) 

By analogy with the scalar case we write 

Qn(t, u> = f Wt - 4 - h&, 4 
0 

and show that h,(t, u) can be represented by a convergent series. The 
details are in Problems 4.5.1. As in the scalar case, we simplify (433) by 
defining, 

QnO, 4 s(u) du, Ti < t < Tfe (436) 

, 

?f 

T  
dt - 

Threshold H1 Or Ho* 
0 device 

4 

(b) 

Fig. 4.76 Vector receivers : (a) matrix correlator ; (b) matrix matched filter. 
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The optimum receiver is just a vector correlator or vector matched 
filter, as shown in Fig. 4.76. The double lines indicate vector operations 
and the symbol 0 denotes the dot product of the two input vectors. 
We can show that the performance index is 

Tf 

d2 = 
ss 

s’(t) Qn(t, u) s(u) dt du 

Tf 
Tf  

= s’(t) g(t) dt. 
s 
T1 

4.5.2 Application 

Consider a simple example. 

Example. 

where the St(t) are orthonormal. 
Assume that the channel noises 

s(t) = 

i 

Gy SlW 
1/E S2(0 1 

: I’ . 
ai SMW J 

E[w(t)w=(u)] = 

Then 

OstsT, 

are independent and white : 

‘NO 
2 0 

NO 
2 

0 
. 

No 
2. 

g(t) = 

2G5 
- SlW 

No 
. . . 

22/E, 
- SM(f 

No 

(437) 

(438) 

8(t - u). (439) 

(440) 

The resulting receiver is the vector correlator shown in Fig. 4.77 and the perform- 
ance index is 

M 2E, 
d2= N’ c (441) 

1=1 0 

This receiver is commonly called a maximal ratio combiner [65] because the inputs 
are weighted to maximize the output signal-to-noise ratio. The appropriate combiners 
for colored noise are developed in the problems. 
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Fig. 4.77 Maximal ratio combiner. 

Most of the techniques of the scalar case carry over directly to the vector 
case at the expense of algebraic complexity. Some of them are illustrated 
in the problems and a more detailed discussion is contained in Chapter 11.5. 
The modifications for linear and nonlinear estimation are straightforward 
(see Problems 4.5.4 and 4.5.5). The modifications for unwanted parameters 
can also be extended to the vector case. The formulation for A4 channels of 
the random phase, Rayleigh, and Rician types is carried out in the 
problems. 

4.6 MULTIPLE PARAMETER ESTIMATION 

In this section we consider the problem of estimating a finite set of 
parameters, a,, a2, . . . , a,. We denote the parameters by the vector a. 
We will consider only the additive white noise channel. The results are 
obtained by combining the classical multiple parameter estimation result 
of Chapter 2 with those of Section 4.2. 

Our motivation for studying this problem is twofold: 

1. One obvious reason is that multiple parameter problems are present 
in many physical situations of interest. A common example in radar is 
finding the range and velocity of a target by estimating the delay and 
Doppler shift of the returned pulse. 

2. The second reason is less obvious. In Chapter 5 we shall consider the 
estimation of a continuous waveform, and we shall see that by expanding 
the waveform in a series we can estimate the coefficients of the series and 
use them to construct a waveform estimate. Thus the multiple parameter 
problem serves as a method of transition from single parameter estimation 
to waveform estimation. 
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4.6.1 Additive White Gaussian Noise Channel 

Joint MAP Estimates. We assume that the signal depends on the param- 
eter values Al, &, . . ., AM. Then, for the additive channel, we may write 
the received signal as 

r(t) = s(t, A) + w(t), Ti < t < T,, - (442) 

(443) 

We want to form the a posteriori density in terms of a suitable set of 
observables which we denote by the K-dimensional vector r. We then find 
the estimate Q that maximizes the a posteriori density and let K-+ oo to 
get the desired result. 

The parameters a,, a2, . . . , aM can be coupled either in the signal 
structure or because of an a priori statistical dependence. We can categorize 
this statistical dependence in the following way: 

1. The al, a2, . . . , aM are jointly Gaussian. 
2. The a,, a2, . . . , aM are statistically independent and Gaussian. 
3. The a,, a2, . . . , aM are statistically independent but not Gaussian. 
4. The al, a2, . . . , && are not statistically independent and are not 

jointly Gaussian. 

Our first observation is that Case 1 can be transformed into Case 2. 
The following property was proved in Chapter 2 (2.237). 

Property. If b is a nonsingular linear transformation on a (i.e., b = La), 
then 

b map = L&nap, 
and (444) 

Q map = L- ‘lb,,p. 

We know that there is a nonsingular linear transformation that transforms 
any set of dependent Gaussian variables into a set of independent Gaussian 
variables (Chapter 2, pp. 101-105). Thus, if the ai are dependent, we can 
estimate the bi instead. Therefore the assumption 

hdA) n &zlazwq,,@l, l l l Y AM) = fi h,b%) (445) 
f=l 

effectively includes Cases 1, 2, and 3. Case 4 is much more involved in 
detail (but not in concept) and is of no importance in the sequel. We do 
not consider it here. 
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Assuming that the noise is white and that (445) holds, it follows in the 
same manner as the scalar case that the MAP estimates are solutions to the 
following set of 1M simultaneous equations: 

0 k@) - dt, A)] dt + 
a ln Pa,(Ai) 

&& >I A=gmap’ 

( i= 1,2 ,...) M). (446) 

If the ai are Gaussian with zero-mean and variances o,~~, the equations 
reduce to a simple form: 

2%* 2 ei = - 
s 

Tf as(t, A) 

NO T f  
- [r(t) - s(t, A)] dt 

aAi 
3 (i= 1,2 ,..., M). 

A=&,,, 

(447) 

This set of simultaneous equations imposes a set of necessary conditions 
on the MAP estimates. (We assume that the maximum is interior to the 
allowed region of A and that the indicated derivatives exist at the 
maximum.) 

The second result of interest is the bound matrix. From Section 2.4.3 
we know that the first step is to find the information matrix. From 
Equation 2.289 

JT = JD + JP, (448) 

J Di, = -E(fg-!# (449) 

and for a Gaussian a priori density 

Jp = R/l, (450) 

where A, is the covariance matrix. The term in (449) is analogous to (104) 
in Section 4.2. Thus it follows easily that (449) reduces to, 

J 
2 

*ij = NEa 
h(t, A) as@, A) dt 

0 aA,xij- l 1 (451) 

We recall that this is a bound with respect to the correlation matrix R, 
in the sense that 

JT - R,-l (452) 

is nonnegative definite. If the a posteriori density is Gaussian, R,+ = JT. 
A similar result is obtained for unbiased estimates of nonrandom 

variables by letting J, = 0. The conditions for the existence of an efficient 
estimate carry over directly. Equality will hold for the ith parameter if and 
only if 

di[r(t)] - Ai = 5 k,(A) ITf [r(t) - s(t, A)] w dt. (453) 
j = 1 Ti i 

To illustrate the application of this result we consider a simple example. 
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Example. Suppose we simultaneously amplitude- and frequency-modulate a sinusoid 
with two independent Gaussian parameters a, N(0, ga), and b, N(0, ob). Then 

r(t) = s(t, A, B) + w(t) = B sin (w,t + /3At) + w(t); 

The likelihood function is 

Then 

and 

In R[r(t)lA, B] = $ s_‘E2 [2r(t) - (F)‘4 B sin (w,t + /3At)] 

B sin (w,t + /3At) dt. 

B /It cos (o,t + PAt) 

sin (w,t + /3At). 

Because the variables are independent, JP is diagonal. 
The elements of J, are 

J 11 =- ; &,b 
T’2 2E 1 

0 s -T/2 T 
- B2j2t2 cos2 (w,t + j3At) dt + z 

z Ob2 12 No 
T252 + l 

a,2' 

J j+- &,b 
s 

T’2 2E 1 2E 1 
22 = 

0 -T/2 
7 sin2 (met + /3At) + 2 z N + 2’ 

0 

and 

J 12 = $ &,b 
%(t, A, B) %(t, A, B) dt 

0 aA * aB I 

(455) 

(456) 

(457) 

(458) 

(459 

2 
NE 

T’2 2E =- 0 T B/Q sin (qt + /IAt) cos (w,t + BAt) dt 1 z 0. (460) 
0 -T/2 

Thus the J matrix is diagonal. This means that 

E[(a - a)2] 2 

and 

Thus we observe that the bounds on the estimates of a and b are uncorrelated. We 
can show that for large E/No the actual variances approach these bounds. 

We can interpret this result in the following way. If, each time the experiment was 
conducted, the receiver were given the value of b, the performance in estimating a 
would not be improved over the case in which the receiver was required to estimate b 
(assuming large E/No). 

We observe that there are two ways in which J12 can be zero. If  

before the expectation is taken, i t means that for any value of A or B the partial 
derivatives are orthogonal. This is required for ML estimates to be uncoupled. 

s 
T’2 aS(t, A, B) as@, A, B) dt = o 

- T/2 aA aB (463) 
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Even if the left side of (463) were not zero, however, the value 
expectation might be zero, which gives uncoupled MAP estimates. 

after taking the 

Several interesting examples of multiple parameter estimation are 
included in the problems. 

4.6.2 Extensions 

The results can be modified in a straightforward manner to include 
other cases of interest. 

1. Nonrandom variables, ML estimation. 
2. Additive colored noise. 
3. Random phase channels. 
4. Rayleigh and Rician channels. 
5. Multiple received signals. 

Some of these cases are considered in the problems. One that will be 
used in the sequel is the additive colored noise case, discussed in Problem 
4.6.7. The results are obtained by an obvious modification of (447) which 
is suggested by (226). 

4.7 SUMMARY AND OMISSIONS 

4.7.1 Summary 

In this chapter we have covered a wide range of problems. The central 
theme that related them was an additive Gaussian noise component. Using 
this theme as a starting point, we examined different types of problems and 
studied their solutions and the implications of these solutions. It turned 
out that the formal solution was the easiest part of the problem and that 
investigating the implications consumed most of our efforts. It is worth- 
while to summarize some of the more general results. 

The simplest detection problem was binary detection in the presence of 
white Gaussian noise. The optimum receiver could be realized as a 
matched filter or a correlation receiver. The performance depended only 
on the normalized distance between the two signal points in the decision 


