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Even if the left side of (463) were not zero, however, the value 
expectation might be zero, which gives uncoupled MAP estimates. 

after taking the 

Several interesting examples of multiple parameter estimation are 
included in the problems. 

4.6.2 Extensions 

The results can be modified in a straightforward manner to include 
other cases of interest. 

1. Nonrandom variables, ML estimation. 
2. Additive colored noise. 
3. Random phase channels. 
4. Rayleigh and Rician channels. 
5. Multiple received signals. 

Some of these cases are considered in the problems. One that will be 
used in the sequel is the additive colored noise case, discussed in Problem 
4.6.7. The results are obtained by an obvious modification of (447) which 
is suggested by (226). 

4.7 SUMMARY AND OMISSIONS 

4.7.1 Summary 

In this chapter we have covered a wide range of problems. The central 
theme that related them was an additive Gaussian noise component. Using 
this theme as a starting point, we examined different types of problems and 
studied their solutions and the implications of these solutions. It turned 
out that the formal solution was the easiest part of the problem and that 
investigating the implications consumed most of our efforts. It is worth- 
while to summarize some of the more general results. 

The simplest detection problem was binary detection in the presence of 
white Gaussian noise. The optimum receiver could be realized as a 
matched filter or a correlation receiver. The performance depended only 
on the normalized distance between the two signal points in the decision 
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space. This distance was characterized by the signal energies, their correla- 
tion coefficient, and the spectral height of the additive noise. For equal 
energy signals, a correlation coefficient of - 1 was optimum. Tn all cases 
the signal shape was unimportant. The performance was insensitive to the 
detailed assumptions of the model. 

The solution for the M signal problem followed easily. The receiver 
structure consisted of at most M - 1 matched filters or correlators. 
Except for a few special cases, performance calculations for arbitrary cost 
assignments and a priori probabilities were unwieldy. Therefore we devoted 
our attention to minimum probability of error decisions. For arbitrary 
signal sets the calculation of the probability of error was still tedious. For 
orthogonal and nonorthogonal equally-correlated signals simple expres- 
sions could be found and evaluated numerically. Simple bounds on the 
error probability were derived that were useful for certain ranges of 
parameter values. The question of the optimum signal set was discussed 
briefly in the text and in more detail in the problems. We found that for 
large M, orthogonal signals were essentially optimum. 

The simple detection problem was then generalized by allowing a non- 
white additive Gaussian noise component. This generalization also in- 
cluded known linear channels. The formal extension by means of the 
whitening approach or a suitable set of observable coordinates was easy. 
As we examined the result, some issues developed that we had not en- 
countered before. By including a nonzero white noise component we 
guaranteed that the matched filter would have a square-integrable impulse 
response and that perfect (or singular) detection would be impossible. The 
resulting test was stable, but its sensitivity depended on the white noise 
level. In the presence of a white noise component the performance could 
always be improved by extending the observation interval. Tn radar this 
was easy because of the relatively long time between successive pulses. 
Next we studied the effect of removing the white noise component. We saw 
that unless we put additional “smoothness” restrictions on the signal shape 
our mathematical model could lead us to singular and/or unstable tests. 

The next degree of generalization was to allow for uncertainties in the 
signal even in the absence of noise. For the case in which these uncertainties 
could be parameterized by random variables with known densities, the 
desired procedure was clear. We considered in detail the random phase 
case and the random amplitude and phase case. In the random phase 
problem, we introduced the idea of a simple estimation system that 
measured the phase angle and used the measurement in the detector. This 
gave us a method of transition from the known signal case to situations, 
such as the radar problem, in which the phase is uniformly distributed. 
For binary signals we found that the optimum signal set depended on the 
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quality of the phase measurement. As we expected, the optimum correla- 
tion coefficient ranged from p = - 1 for perfect measurement to p = 0 
for the uniform density. 

The random amplitude and phase case enabled us to model a number of 
communication links that exhibited Rayleigh and Rician fading. Here we 
examined no-measurement receivers and perfect measurement receivers. 
We found that perfect measurement offered a 6-db improvement. However, 
even with perfect measurement, the channel fading caused the error prob- 
ability to decrease linearly with E&V0 instead of exponentially as in a 
nonfading channel. 

We next considered the problem of multiple channel systems. The 
vector Karhunen-Loeve expansion enabled us to derive the likelihood 
ratio test easily. Except for a simple example, we postponed our discussion 
of vector systems to later chapters. 

The basic ideas in the estimation problem were similar, and the entire 
formulation up through the likelihood function was identical. For linear 
estimation, the resulting receiver structures were identical to those obtained 
in the simple binary problem. The mean-square estimation error in white 
noise depended only on E/N,. 

The nonlinear estimation problem gave rise to a number of issues. The 
first difficulty was that a sufficient statistic did not exist, which meant that 
the mapping from the observation space to the estimation space depended 
on the parameter we were trying to estimate. In some cases this could be 
accommodated easily. In others approximate techniques were necessary. 
The resulting function in the estimation space had a number of local 
maxima and we had to choose the absolute maximum. Given that we were 
near the correct maximum, the mean-square error could be computed 
easily. The error could be reduced significantly over the linear estimation 
error by choosing a suitable signaling scheme. If we tried to reduce the 
error too far, however, a new phenomenon developed, which we termed 
threshold. In the cascade approximation to the optimum estimator the 
physical mechanism for the occurrence of a threshold was clear. The first 
stage chose the wrong interval in which to make its local estimate. In the 
continuous realization (such as range estimation) the occurrence was clear 
but a quantitative description was more difficult. Because the actual 
threshold level will depend on the signal structure, the quantitative results 
for the particular example discussed are less important than the realization 
that whenever we obtain an error decrease without an increase in signal 
energy or a decrease in noise level a threshold effect will occur at some 
signal-to-noise level. 

The final problem of interest was multiple-parameter estimation. This 
served both to complete our discussion and as a starting point for the 
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problem of waveform estimation. Here the useful results were relations 
that showed how estimation errors were coupled by the signal structure 
and the a priori densities. 

In addition to summarizing what we have covered, it is equally important 
to point out some related issues that we have not. 

4.7.2 TOPICS OMITTED 

Digital Communications. We have done a great deal of the groundwork 
necessary for the study of modern digital systems. Except for a few cases, 
however, we have considered only single-digit transmission. (This is 
frequently referred to as the one-shot problem in the literature.) From the 
simple example in Section 4.2 it is clear that performance can be improved 
by transmitting and detecting blocks of digits. The study of efficient 
methods is one of the central problems of coding theory. Suitable references 
are given in [66] and [Ml. This comment does not imply that all digital 
communication systems should employ coding, but it does imply that 
coding should always be considered as one of the possible alternatives in 
the over-all system design. 

Non-Gaussian Interference. It is clear that in many applications the 
prime source of interference is non-Gaussian. Simple examples are man- 
made interference at lower frequencies, impulse noise, and galactic, solar, 
and atmospheric noise. 

Our reason for the omission of non-Gaussian interferences is not because 
of a lack of interest in or appreciation of their importance. Neither is it 
because of our inability to solve a particular non-Gaussian problem. It is 
probable that if we can model or measure the pertinent statistics adequately 
a close-to-optimum receiver can be derived (e.g., [67], [Ml). The reason is 
that it is too difficult to derive useful but general results. 

Our goal with respect to the non-Gaussian problem is modest. First, it 
is to leave the user with an awareness that in any given situation we must 
verify that the Gaussian model is either valid or an adequate approxima- 
tion to obtain useful results. Second, if the Gaussian model does not hold, 
we should be willing to try to solve the actual problem (even approximately) 
and not to retain the Gaussian solution because of its neatness. 

In this chapter we have developed solutions for the problems of detection 
and finite parameter estimation. We now turn to waveform estimation. 

PROBLEMS 

The problems are 
otherwise stated, all 

divided according to sections in the text. Unless 
problems use the model from the corresponding 
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section of the text; for example, the received signals are corrupted by 
additive zero-mean Gaussian noise which is independent of the hypotheses. 

Section P4.2 Additive White Gaussian Noise 

BINARY DETECTION 

Problem 4.2.1. Derive an expression for the probability of detection PD, in terms of d 
and PF, for the known signal in the additive white Gaussian noise detection problem. 
[see (37) and (38)]. 

Problem 4.2.2. In a binary FSK system one of two sinusoids of different frequencies 
is transmitted ; for example, 

s1(t) = f(t) cos 27Tf,t, OurT, 

sdt) = f(t) cos Mfc + Af It, Olt(T, 

where fc >> l/T and Af. The correlation coefficient is 

s T f  2(t) cos(2nn ft)dt 
p= O . 

s 
T f  2(t) dt 

0 

The transmitted signal is corrupted by additive white Gaussian noise (No/2). 

1. Evaluate p for a rectangular pulse; that is, 

f(t) = (T)‘P 0 5 t s T, 

this if Af = 00 ? Plot the increase in E/No over this asymptotic 
to achieve the same Pr (6) as a function of AfT. 

value that is necessary 

Problem 4.2.3. The risk involved in an experiment is 

x = CFpFPo + C&fPMP1. 

The applicable ROC is Fig. 2.9. You are given (a) CM = 2; (b) CF = 1; (c) PI may 
vary between 0 and 1. Sketch the line on the ROC that will minimize your maximum 
possible risk (i.e., assume PI is chosen to make X as large as possible. Your line 
should be a locus of the thresholds that will cause the maximum to be as small as 
possible). 

Problem 4.24. Consider the linear feedback system shown below 

I_ 
Fig. P4.1 
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The function x(t) is a known deterministic function that is zero for t < 0. Under 
HI, Ai = Al. Under H,, Ai = AO. The noise w(t) is a sample function from a white 
Gaussian process of spectral height N0/2. We observe r(t) over the interval (0, T). 
All initial conditions in the feedback system are zero. 

1. Find the likelihood ratio test. 
2. Find an expression for PD and PF for the special case in which x(t) = 8(t) 

(an impulse) and T = 00. 

Problem 4.2.5. Three commonly used methods for transmitting binary signals over an 
additive Gaussian noise channel are on-off keying (ASK), frequency-shift keying 
(FSK), and phase-shift keying (PSK): 

Ho:r(t) = so(t) + w(t), Ost<T, 
Hgft) = Sl(t) + w(t), O,(t<T, 

where w(r) is a sample function from a white Gaussian process of spectral height 
N0/2. The signals for the three cases are as follows: 

ASK FSK PSK 

so(t) 0 d2E/T sin wit 
I 

42E/T sin oat 

Sl(t> 
I 

9 
d2E/T sin wit 42E/T sin wet 42E/T sin (mot + 7~) 

where w. - w1 = 2mt/T for some nonzero integer n and w. = 2mnT for some 
nonzero integer m. 

1. Draw appropriate signal spaces for the three techniques. 
2. Find d2 and the resulting probability of error for the three schemes (assume that 

the two hypotheses are equally likely). 
3. Comment on the relative efficiency of the three schemes (a) with regard to 

utilization of transmitter energy, (b) with regard to ease of implementation. 
4. Give an example in which the model of this problem does not accurately describe 

the actual physical situation. 

Problem 4.2.6. Suboptimum Receivers. In this problem we investigate the degradation 
in performance that results from using a filter other than the optimum receiver 
filter. A reasonable performance comparison is the increase in transmitted energy 
required to overcome the decrease in d2 that results from the mismatching. We would 
hope that for many practical cases the equipment simplification that results from 
using other than the matched filter is well worth the required increase in transmitted 
energy. The system of interest is shown in Fig. P4.2, in which 

s 

T  
s”(t) dt = 1 and E[w(t) W(T)] 

0 
= q 8(t - 7). 

Fig. P4.2 
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The received waveform is 

HI v(t) = z/E s(t) + w(t), 

H,,:r(t) = w(t 1, 

We know that 

Suppose that 
h(t) = e - 54 - 1(t), 

s(t) = T ’ 
1 

1% 
0 
0, 

-cQ<t<cQ, 

--aI < t < 00, 

O(tlT, 

elsewhere, 

-loo<<<, 

OltlT, 

elsewhere. 

1. Choose the parameter a to maximize the output signal-to-noise ratio d2. 
2. Compute the resulting d2 and compare with d&. How many decibels must the 

transmitter energy be increased to obtain the same performance? 

M-ARY SIGNALS 

Problem 4.2.7. Gram-Schmidt. In this problem we go through the details of the 
geometric representation of a set of M waveforms in terms of N(N 5 M) orthogonal 
signals. 

Consider the M signals sl(t), . . ., s&t) which are either linearly independent or 
linearly dependent. I f  they are linearly dependent, we can write (by definition) 

f$ a&) = 0. 
f=l 

1. Show that if M signals are linearly dependent, then sM(t) can be expressed in 
terms of s,(t):i = 1,. . ., M - 1. 

2. Continue this procedure until you obtain N-linearly independent signals and 
M-N signals expressed in terms of them. N is called the dimension of the signal set. 

3. Carry out the details of the Gram-Schmidt procedure described on p. 258. 

Problem 4.2.8. Translation/Simplex Signals [ 181. For maximum a posteriori reception 
the probability of error is not affected by a linear translation of the signals in the 
decision space; for example, the two decision spaces in Figs. P4.3a and P4.36 have 
the same Pr (E). Clearly, the sets do not require the same energy. Denote the average 
energy in a signal set as 

E LA 5 Pr (Hi) ]s,12 = 5 Pr (HJE, 
f  

T 

sf2(t) dt. 
f=l f=l 0 

1. Find the linear translation that minimizes 
signal set; that is, minimize 

the average energy of the 

E * 2 Pr (H,)ls,-m12. - 
i=l 
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0 a 

Ffg. P4.3 

2. Explain the geometric meaning of the result in part 1. 
3. Apply the result in part 1 to the case of M orthogonal equal-energy signals 

representing equally likely hypotheses. The resulting signals are called Simplex 
signals. Sketch the signal vectors for M = 2, 3, 4. 

4. What is the energy required to transmit each signal in the Simplex set? 
5. Discuss the energy reduction obtained in going from the orthogonal set to the 

Simplex set while keeping the same Pr (E). 

Problem 4.2.9. Equally correlated signals. Consider M equally correlated signals 

ET 
s 

st(t )s,(t ) dt = 
E, i = j, 

0 Pa i # j. 
1. Prove 

1 
--SpPl. 

M- 1 

2. Verify that the left inequality is given by a Simplex set. 
3. Prove that an equally-correlated set with energy E has the same Pr (E) as an 

orthogonal set with energy Earth = E(l - p). 
4. Express the Pr (E) of the Simplex set in terms of the Pr (c) for the orthogonal set 

and M. 

Problem 4.2.10. M Signals, Arbitrary Correlation. Consider an M-ary system used to 
transmit equally likely messages. The signals have equal energy and may be correlated : 

s 

T  

Pij = s,(t)sj(t)dt, i, j = 1,2,. . ., M. 
0 

The channel adds white Gaussian noise with spectral height No/2. Thus 

r(t) = as,(t) + w(t), OstST:H,, i = l,..., M. 

1. Draw a block diagram of an optimum receiver containing M matched filters. 
What is the minimum number of matched filters that can be used? 

2. Let 8 be the signal correlation matrix. The j’j element is prr. If Q is nonsingular, 
what is the dimension of the signal space? 

3. Find an expression for Pr (cIH~), the probability of error, assuming HI is true. 
Assume that Q is nonsingular. 

4. Find an expression for Pr (c). 
5. Is this error expression valid for Simplex signals ? (Is 8 singular ?) 
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Problem 4.2.11 (continuation). Error Probability [69]. In this problem we derive an 
alternate expression for the Pr (c) for the system in Problem 4.2.10. The desired 
expression is 

1 - Pr(f) = $exp (-$)JJ exp [@“X-J 

Develop the following steps : 

1. Rewrite the receiver in terms of M orthonormal functions &(t). Define 

srw = 2 stk+k(t), i= CL..,M k=l 

r(t) = 2 rk #k(t)* 
k=l 

Verify that the optimum receiver forms the statistics 

r(t) St(t) dt = 2 &k&c 
k=l 

and chooses the greatest. 
2, Assume that sm(t) is transmitted. Show 

Pr (i-[m) ii Pr (R in &) 

3. Verify that 

4. Define 

f(R) ==P (m:x [ (&)” & SI*R*]} 

and observe that (P.2) can be viewed as the expectation off(R) over a set of statistically 
independent zero-mean Gaussian variables, R k, with variance &f2. To evaluate this 
expectation, define 

and 
21 

22 
2 .* = [I : 

ZM 

Find p&z). Define 
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Find p&l. 
5. Using the results in (4), we have 

Use p,(X) from (4) to obtain the desired result. 

Problem 4.2.12 (continuation). 

1. Using the expression in (P.l) of Problem 4.2.11, show that a Pr (#$ls > 0. 
Does your derivation still hold if 1 - i and 2 + j? 

2. Use the results of part 1 and Problem 4.2.9 to develop an intuitive argument 
that the Simplex set is locally optimum. 

Comment. The proof of local optimality is contained in [70]. The proof of global 
optimality is contained in [71]. 

Problem 4.2.23. Consider the system in Problem 4.2.10. Define 

1. Prove that Pr (b) on any signal set is less than the Pr (c) for a set of equally 
correlated signals with correlation equal to Pmax. 

2. Express this in terms of the error probability for a set of orthogonal signals. 
3. Show that the Pr (a) is upper bounded by 

Pr (E) s (M - 1) erfc* { ([$ (1 - Pmax)]%)* 

Problem 4.2.14 [72]. Consider the system in Problem 4.2.10. Define 

dr : distance between the ith message point and the nearest neighbor. 

Observe 
dr = rnp 22/(1 - ~rjE/No 

a & 2 4, =- 
I=1 

d mln = min d,. 
Prove 

erfcI (a) s Pr (t) 5 (M- l)erfc+ (dmin) 
Note that this result extends to signals with unequal energies in an obvious manner. 

Problem 4.2.15. In (68) of the text we used the limit 

lim . M+cn 

Use 1’Hospital’s rule to verify the limits asserted in (69) and (70). 

Problem 4.2.16. The error probability in (66) is the probability of error in deciding 
which signal was sent. Each signal corresponds to a sequence of digits; for example, 
if M = 8, 

ooo - sow 100 - s*(t) 
001 - sr(t) 101 - se(t) 
010 - sg(t) 110 - s,(t) 
011 - sa(t) 111 - s,(t). 
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Therefore an error in the signal decision does not necessarily mean that all digits 
will be in error. Frequently the digit (or bit) error probability [Pre (E)] is the error of 
interest. 

1. Verify that if an error is made any of the other M - 1 signals are equally likely 
to be chosen. 

2. Verify that the expected number of bits in error, given a signal error is made, is 

(log, M)M 
2(M - 1) ’ 

3. Verify that the bit error probability is 

4. Sketch the behavior of the bit error probability for M = 2, 4, and 8 (use Fig. 
4.25). 

Problem 4.2.17. Bi-orthogonal Signals. Prove that for a set of M bi-orthogonal signals 
with energy E and equally likely hypotheses the Pr (E) is 

Pr (E) = 1 - 

Verify that this Pr (c) approaches the error probability for orthogonal signals for 
large M and d2. What is the advantage of the bi-orthogonal set ? 

Problem 4.2.18. Consider the following digital communication system. There are four 
equally probable hypotheses. The signals transmitted under the hypotheses are 

Olt<T, 
UC = &f 

Olt<T, 
T 

H4: - 3 ‘A sin u,?, 
0 

OstST. 

The signal is corrupted by additive Gaussian white noise w(t), (No/2). 

1. Draw a block diagram of the minimum probability of error receiver and the 
decision space and compute the resulting probability of error. 

2. How does the probability of error behave for large A2/No? 

Problem 4.2.19. Mary ASK [72]. An ASK system is used to transmit equally likely 
messages 

s*(t) = d&p(t), i = 1,2 ,..., M, 
where 

dz = (i- I)A, 
s 

T+2(t) dt = 1. 
0 
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The received signal under the ith hypothesis is 

r(t) = srw + w(t), OstsT:H,, i = 1,2, . . ., M, 

where w(t) is a white noise with spectral height &/2. 

1. Draw a block diagram of the optimum receiver. 
2. Draw the decision space and compute the Pr (E). 
3. What is the average transmitted energy? 

Note. n$ j2 = (n - 1) n(2n - 1). 
j=1 6 

4. What translation of the signal set in the decision 
Pr (0 while minimizing the average transmitted energy ? 

space would maintain the 

Problem 4.2.20 (continuation). Use the sequence transmission model on pp. 264-265 
with the ASK system in part 4 of Problem 4.2.19. Consider specifically the case in 
which M = 4. How should the digit sequence be mapped into signals to minimize 
the bit error probability? Compute the signal error probability and the bit error 
probability. 

Problem 4.2.21. M-ary PSK [72]. A communication system transmitter sends one of 
M messages over an additive white Gaussian noise channel (spectral height A&,/2) 
using the signals 

St(t) = 
[(T)“cos(2++y)p OltlT, 

b, elsewhere, i= 0, 1, 2, . . ., M - 1, 

where n is an integer. The messages are equally likely. This type of system is called 
an M-ary phase-shift-keyed (PSK) system. 

1. Draw a block diagram of the optimum receiver. Use the minimum number of 
filters. 

2. Draw the decision-space and decision lines for various M. 
3. Prove 

~1 I Pr (E) 5 2a, 
where 

a = erfc* ((g)” sin-&)* 

Problem 4.2.22 (continuation). Optimum PSK [73]. The basic system is shown in 
Fig. 4.24. The possible signaling strategies are the following: 

1. Use a binary PSK set with the energy in each signal equal to PT. 
2. Use an M-ary PSK set with the energy in each signal equal to PT log2 M. 

Discuss how you would choose M to minimize 
bi-phase and four phase PSK on this basis. 

the digit error probability. Compare 

Problem 4.2.23 (continuation). In the context of an M-ary PSK system discuss qualita- 
tively the effect of an incorrect phase reference. In other words, the nominal signal 
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set is given in Problem 
signal set, however, is 

4.2.22 and the receiver is designed on that basis. The actual 

si(t) = (y cos (T t + g + 8). 05tI T, i= I,2 ,..., M, 

0, elsewhere, 
II is an integer, 

where 0 is a random 
as 1M increases? 

angle. How does the importance of a phase error 

ESTIMATION 

Problem 4.2.24. Bhattacharyya Bound. Let 

r(t) = s(t, A) + w(t), OltlT, 

where s(t, A) is differentiable k times with respect to A. The noise has spectral height 
NO/~. 

1. Extend the Bhattacharyya bound technique developed in Problem 2.4.23 to the 
waveform for the n = 2 case. Assume that A is nonrandom variable. 

2. Repeat for the case in which A is a Gaussian random variable; N(0, a,). 
3. Extend the results in parts 1 and 2 to the case in which n = 3. 

Problem 4.2.25. Consider the problem in Example 1 on p. 276. In addition to the 
unknown time of arrival, the pulse has an unknown amplitude. Thus 

r(t) = b s(t - a) + w(t), -T<tlT, 

where a is a uniformly distributed random variable (see Fig. 4.29b) and b is Gaussian, 
NO, 4. 

Draw a block diagram of a receiver to generate the joint MAP estimates, ci,,, 
and 6,,,. 

Problem 4.2.26. The known signal s(t), 0 s t 5 T, is transmitted over a channel 
with unknown nonnegative gain A and additive Gaussian noise n(t): 

s 

T  
s”(t) dt = E, 

0 

Kn(4 4 = q 8(t - 7). 

1. What is the maximum likelihood estimate of A? 
2. What is the bias in the estimate? 
3. Is the estimate asymptotically unbiased? 

Problem 4.2.27. Consider the stationary 
sample function is shown n Fig. P4.4. 

Poisson random process x(t). A typical 

I 4 
Event times 

x-x-xx-x-x L‘t 
0 T 

Fig. P4.4 
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The probability of n events in any interval T is 

(k 1 Pr (n, 7) = --$ e- kz. 
. 

The parameter k of the process is an unknown nonrandom 
to estimate. We observe x(t) over an interval (0, T). 

variable we want 

1. Is it necessary to record the event times or is it adequate to count the number 
of events that occur in the interval? Prove that n*, the number of events that occur 
in the interval (0, T) is a sufficient statistic. 

2. Find the Cramer-Rao inequality for any unbiased estimate of k. 
3. Find the maximum-likelihood estimate of k. Call this estimate &. 
4. Prove that k is unbiased. 
5. Find 

Var (k - k). 

6. Is the maximum-likelihood estimate efficient? 

Problem 4.2.28. When a signal is transmitted through a particular medium, the 
amplitude of the output is inversely proportional to the murkiness of the medium. 
Before observation the output of the medium is corrupted by additive, white Gaussian 
noise. (Spectral height N0/2, double-sided.) Thus 

w =&f f(t) + w(t), OltlT, 

where f(t) is a known signal and 

f 
Tf2(t)dt = E. 

0 

We want to design an optimum Murky-Meter. 

1. Assume that M is a nonrandom variable. Derive the block diagram of a system 
whose output is the maximum-likelihood estimate of iL4 (denoted by riz,,,,). 

2. Now assume that 1M is a Gaussian random variable with zero mean and variance 
oM2. Find the equation that specifies the maximum a posteriori estimate of A4 (denoted 
by ha& 

3. Show that 

as 

Section 4.3 Nonwhite Additive Gaussian Noise 

MATHEMATICAL PRELIMINARIES 

Problem 4.3.1. Reversibility. Prove that h,(t, u) [defined in (157)] is a reversible 
operation by demonstrating an h,-l(t, u) such that 

s Tf 
h,(t, u) h, - ‘(u, 2) du = a(t - z). 

Tt 

What restrictions on the noise are needed ? 
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Problem 4.3.2. We saw in (163) that the integral equation 

$ ho(z, v) + 
s 

=/ 
ho@, x) K&q z) dx = Kc(z, v), Tr 5 z, v  5 Tf, 

=, 

specifies the inverse kernel 

Qn<t, 7) = j+ VW - 7) - Mt, 7)lm 
0 

Show that an equivalent equation is 

$’ hok 0) + j 
=/ 

ho@, v) Kc& v) dx = Kc(z, v), Tt s z, v  < T,., 
Tf 

Problem 4.3.3 [74] We saw in Problem 4.3.2 that the inverse kernel Q,& T) can be 
obtained from the solution to an integral equation: 

$ M, 4 + j =’ h,(t, u) Kc(u, 7) du = Kc@, 7)s T, 5 t, 7 5 T,. 
=i 

where 

Qdt, 7) = Go PO - 4 - ho, 7)1- 

Suppose we let Tf, the end point of 
writing h,(t, 7: Tr) instead of hdt, 7): 

the interval, variable. We indicate this by 

F Mt, r:Tf) + h,(t, u: T/) Kc(u, 7) du = K,(t, T), T, s t, T 5 Tf. 

Now differentiate this equation with respect to T, and show that 

ah&, T : T/) 
aT, = 

- h,(t, T, : T,) h&T”, 7 : Ti). 

has no solution for A < 0. 

Problem 4.3.4. Realizabte Whitening Filters [91] In the text, two equivalent realiza- 
tions of the optimum receiver for the colored noise problem were given in Figs. 4.38a 
and 6. We also saw that Q,,(t, u) was an unrealizable filter specified by (162) and (163). 
Furthermore, we found one solution for h,(t, T), the whitening filter, in terms of 
eigenfunctions that was an unrealizable filter. We want to investigate the possibility of 
finding a realizable whitening filter. Recall that we were able to do so in the simple 
example on p. 311. 

1. Write down the log-likelihood ratio in terms of h,(t, T) = h,(t, T: TJ (see 
Problem 4.3.3). 

2. Write 

In A(r(t)) = ITT dt [ 6’ hdt, u) d? s(u) du] [j-z h&t, z) r (z) dz] 4 L(T,) = 1; y  dt. 
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The additional subscript r denotes realizable. 
3. Use the result from Problem 4.3.3 that 

aho(u, v  : t) 
at 

= - h,(t, u: t) h,(t, v: t) 

to show that 

[8(t - u) - h,(t, u: t)]. 

Observe that h,(t, u : t) is a realizable filter. 
4. Write down the integral equation satisfied by h,(t, T: t). In Chapter 6 we discuss 

techniques for solving this equation. 

Problem 4.3.5. M-ary Signals, Colored Noise. Let the received signal on the ith 
hypothesis be 

r(t) = Gf s,(t) + n&) + w(t), T, I t 5 Tf : Hf, i = 1,2, . . ., M, 

where w(t) is zero-mean white Gaussian noise with spectral height No/2 and n&t) is 
independent zero-mean colored noise with covariance function &(t, u). The signals 
St(t) are normalized over (0, T) and are zero outside that interval. Assume that the 
hypotheses are equally likely and that the criterion is minimum Pr (c). Draw a block 
diagram of the optimum receiver. 

ESTIMATION 

Problem 4.3.6. Consider the following estimation problem: 

40 = A s(t) + i bisr(t) + w(t), O<tlT, 
f=l 

where A is a nonrandom variable, bf are independent, zero-mean, Gaussian random 
variables [E(bf2) = af2], w(t) is white noise (No/2), s(t) = & cfsf(t), 

j; St(t) sr(O dt = hj, and Ji = s”(t) dt = 1. 

1. Draw a block diagram of the maximum-likelihood estimator 
2. Choose Cl, c2, c3 to minimize the variance of the estimate. 

of A, &,. 

INTEGRAL EQUATION SOLUTIONS 

Problem 4.3.7. In this problem we solve a simple Fredholm equation of the second 
kind, 

where 

4E s(t) = 3 g(t) + /*f K,(t, u) g(u) du, Tf 5 t s T,, 
Tf 

K,(t, u) = ac2 exp [ - k(t - ul], 

1 
s(t) = T$ O(tlT, 

Tf = 0, 
T/ = T. 

1. Find g(t). 
2. Evaluate the performance index da. 
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Problem 4.3.8 (continuation). Solve Problem 4.3.7 for the case in which T, = -oo and 
T, = 00. Compare the value of d2 that you obtain with the value obtained in that 
problem. 

Problem 4.3.9. Solve the Fredholm equation of the first kind, 

s 

T 

w, u) l?(u) = SW, Olt(T, 
0 

for the triangular kernel 

m u) = 1 - It - ul for It - ul < 1, 0 9 elsewhere. 

Assume that s(t) is twice differentiable and that T < 1. 
Now apply this result to the problem of detecting a known signal s(t), 0 5 t I T, 

which is observed in additive Gaussian noise with covariance 

&(t, u) = 
l-it- ul for It - ul 5 1, 
0 

9 elsewhere. 

1. What is the optimum receiver ? Note that we cannot physically generate impulses 
so that correlation with g(t) is not a satisfactory answer. 

2. Calculate d2. 

if 
What is a necessary 
s(t) is bounded ? 

sufficient condition for singular detection in this problem 

Problem 4.3.10. 

1. Evaluate d2 for the example given on p. 318. 
2. Provided that s(t) is bounded and has finite energy, what is a necessary and 

sufficient condition on s(t) for a nonsingular test? 

Problem 4.3.11 (continuation). The optimum receiver for Problem 4.3.10 includes a 
matched filter plus a sampler. Find d2 for the suboptimum receiver that has the 
matched filter but not the sampler. 

Problem 4.3.12. The opposition is using a binary 
data. The two signals used are the following: 

communication system to transmit 

2V7 
sl(t) = sin2 T t, OltlT, 

2n 
so(t) = -sin2 7 t, O(tsT. 

The received signal is either 

HI:r(t) = Sl(t) + n(t), OltlT, 
Ho: r(t) = sow + n(t), O<tsT, 

where n(t) is a sample function from a zero-mean Gaussian random process with 
covariance function 

Kn(7) = ema? 

Assume that he knows a and builds a min Pr (c) receiver. Choose a to minimize his 
performance. 
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SENSITIVITY AND SINGULARITY 

Problem 4.3.13. Singularity 121. Consider the simple binary detection problem shown 
in Fig. P4.5. On HI the transmitted signal is a finite energy signal x(t). On HO there 
is no transmitted signal. The additive noise w(t) is a sample function from a white 
process 1 v2/cps). The received waveform r(t) is passed through a filter whose transfer 
function is H(jw). The output y(t), 0 ,( t 5 T is the signal available for processing. 
Let hk and +k(t) be the eigenvalues and eigenfunctions, respectively, of n(t), 0 s t s T. 
To have singular detection, we require 

ao Sk2 
2 -= 

k=l hk Ooe 

We want to prove that this cannot happen in this case. 

1. From 

show that 

Sk = 
I = (bk(t) s(t) dt 

0 

Sk = 
f  

a, X(f) W2wf) W!(f) df, 
-00 

where 
x(f) = la x(t)e-j2nft dt 

--Q) 
and 

@k(f) = j- 
--eo 

+k(f)e-‘2n’t dt = J= +k(t)e-‘““” dt. 
0 

2. Show that 

3. Observe from part 2 that for some set Of numbers ck 

where 

X(f) = 2 F H*0’2nf) @k(f) + u(f ), 
k=l k 

I 
m U(f) H(j2vf)@:(f)df = 0. 
--oo 

4. Using (I), (2), and (3), show that 

Q) Sk2 

s 

00 

c 
k=l 

x 5 _ au X2(t) 4 

hence that perfect detection is impossible in this situation. 

l 

Transmitter r 
HI: x(t) 
Ho: 0 

Fig. P4.5 
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Problem 4.3.14. Consider the following system: 

It is given that 

HI : r(t) = h(t) + n(t), OltlT, 
H&t) = n(t), Ost<T. 

n(t) = 5 
277 

a, cos n 
n=l 

7 t, 

where a, are zero-mean random variables. The signal energy is 

f 

T 

s12(t) dt = E. 
0 

Choose sl(t) and 
with probability 1 

the corresponding receiver perfect decisions can be 

Problem 4.3.15. Because white noise is a mathematical fiction (it has infinite energy, 
which is physically impossible), we sometimes talk about band-limited white noise; 
that is, 

No 
Sri(W) = 2’ 

for w1 5 1~1 5 02, 

0, otherwise. 

Now suppose that we wish to detect a strictly time-limited signal 

OltlT, 

otherwise. 

Is this a good mathematical model for a physical problem? Justify your answer. 

Problem 4.3.16. Sensitivity to White Noise Level. The received waveforms under the 
two hypotheses are 

r(t) = s(t) + nc(t) + w(t), 

r(t) = n&> + W, 

-CD < t < WHI, 

-oo < t < axHo. 

The signal waveform s(t) and the colored noise spectrum S,(w) are known exactly. 
The white noise level is 

NZ 
2 

= 2 (1 + X), 

where No/2 is the nominal value and x is a small variation. Assume that the receiver 
is designed on the basis of the nominal white noise level. 

ad/ax 
1. Find an expression for 7 

alnd a A =- 
X= 0 ax x=0 -  l 

2. Assume that 
s(t) = d2kP e- kt, t 2 0, 

0, t<O 
and 

S,,(w) = --g$ 

Evaluate A as a function of A & 4uc2/kNo. 
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Problem 4.3.17. Sensitivity to Noise Spectrum. Assume the same nominal model as in 
Problem 4.3.16. 

1. Now let 

and 

Na No =- 
2 2 

s&Q = *9 
a 

where 

Find 

ka = k(l + y) 
2 0, = UC2 (1 + 2) 

ad/ay 
d I 

A A 
z=o - Y 

and adlaz A A 
d 2!=0 - 2’ 

y=o y=o 

2. Evaluate Ay and AZ for the signal shape in Problem 4.3.16. 

Problem 4.3.18. Sensitivity to Delay and Gain. The received waveforms under the two 
hypotheses are 

r(t) = 2/E s(t) + brs(t - T) + w(t), - 00 < t < co : H,, 
w) = brs(t - 7) + w(t), - m<tcoo:Ho, 

where br is N(0, Us) and w(t) is white with spectral height IV&. The signal is 

1. 
2. 
3. 

Find an expression for d2 of the nominal receiver as a function of X. Discuss the 
implications of your results. 

4. Now we want to study the effect of changing oz. Let 

UZa2 = uz2 (1 + Y) 

and find an expression for d2 as a function of y. 

LINEAR CHANNELS 

Problem 4.3.19. Optimum Signals. Consider the system shown in Fig. 4.49a. Assume 
that the channel is time-invariant with impulse response h(r) [or transfer function 
H(f )I* Let 

HU) = 1, lfl < w 
= 0, otherwise. 

The output observation interval is infinite. The signal input is s(t), 0 5 t 5 T and is 
normalized to have unity energy. The additive white Gaussian noise has spectral 
height No/2. 

1. Find the optimum receiver. 
2. Choose s(t), 0 5 t s T, to maximize d2. 


