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Problem 4.3.20. Repeat Problem 4.3.19 for the h(t, 7) given below : 

h(t, 7) = a(t - T), 
TT 3T O~r~q9prI~9-00<t<03’ 

= 0, elsewhere. 

Problem 4.3.2I. The system of interest is shown in Fig. P4.6. Design an optimum 
binary signaling system subject to the constraints: 

f 

T 

1. s”(t) dt = Et. 
0 

2. s(t) = 0, t < 0, 
t < T. 

3. h(r) = ewks, 7 2 0, 
= 0, 7 < 0. 

Either 
a LO , 

Source > Transmitter 
* 

OFE T 
Fig. P4.6 

Section P.4.4 Signals with Unwanted Parameters 

MATHEMATICAL PRELIMINARIES 

Formulas. Some of the problems in this section require the manipulation of Bessel 
functions and Q functions. A few convenient formulas are listed below. Other 
relations can be found in [75] and the appendices of [47] and [92] 

I. Modi@ed Bessel Functions 
1 

s 

2n 

L(z) a g exp (+ jne) exp (2 cos e) de, 
0 

(F.l.l) 

L(z) = L(z), (F. 1.2) 

l,(z) = v  # -1, -2 ,..., z<< 1, (F.1.3) 

-5 [ - l,(z) 2i 
42 

1 
7rZ 

--9 4v2 1 I 
82 

z>> 1, (F.1.4) 

f$$ (z-’ Iv(z)) = z-v-kl,+&), (F.1.5) 

f  Sk (zv I,(z)) = zv - kl, - k(Z)* (F.1.6) 

II. Marcurn’s Q-function [92] 

Q(&, 4s) = Ja exp (-a + x) Zo(2dz) dx, (F.2.1) 
b 

Q<a, a) = 311 + Ma2) exp (- a2)1, (F.2.2) 
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1 + Q<a, b) - Q(b, a) 
62 - a2 

= - 
b2 + a2 s 

a 
a2+b2/2 exp (-x)Zo(-$+) dx, b>a>O, (F.2.3) 

Iorn Q(~Y 2) $exp [ -a~]zo(~) d& 

=L[l - Q(j&J&)] al2 + u22 

022 
+- 

=1 2 + a22 Q(J 
Q(a, b) E erfc+ (b - a), b >> 1, b >I b - a. (F.2.4) 

III. Rician variables 1761 
Consider the two statistically independent Rician variables, x1 and x2 with prob- 

ability densities, 

Xk pxk(xk) = -2 exp 
ak2 + Xk2 - 

ok 
&2 (F.3.1) 

9 

k = 1,2. 
The probability of interest is 

P* = Pr [x2 > xl]. 
Define the constants 

a22 
2 

a 
=(T12 

b al Ql 
=(112+ c=;* 

Then 

P* = Q(&, 48) - $2 exp (-a+) Zo(G%), (F.3.2) 

or 

p* = + [l - Q< l/b, 1/;;>1 + k2 Q( 6, 1/s), (F.3.3) 

or 

P* = +[I - Q( d.8, d;;> + Q(l/;;; 2/z)] - i $$ exp (-9) Z&6). (F.3.4) 

Problem 4.4.1. Q-function Properties. Marcum’s Q-function appears frequently in the 
calculation of error probabilities : 

Q(a, k9 = Ia x exp [-+(x2 + a2)] Z&x) dx. 
B 

Verify the following properties : 

1. Q(a, 0) = 1, 

2. Q(0, /I) = eeb212. 

3. Q(a, /3) = e-la2 +f12)f2 O” i n Z,,(ap), 
z() n=O 

a < r6, 

aI 

=1-e -(a2+82)/2 
w 

’ 
n=l a 

n ZnCaBh fl < a. 
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4. Q(a, /3) + Q(& a) = 1 + (e- (a2 + f12)la) &(a/3). 

5. Q(a, /3) z 1 - J-p (&a)‘(e-(a-fl)2j2), 
u- 

a >> /3 >> 1. 

6. Q(a, p) 21 $- (~)‘(ee(II-a)21Q), 
- a 2na 

fl >> a >> 1. 

Problem 4.4.2. Let x be a Gaussian random variable N(mx, a,). 

1. Prove that 

Hint. 

Mx2( jv) & E[exp ( + jvx2)] = 
exp [jvmx2/( 1 - 2jvaX2)]. 

(1 - 2jvax2)?h 

M,2( it)) = [ M,z( jv) Mv2( jv)]“, 

where y  is an independent Gaussian random variable with identical statistics. 
2. Let z be a complex number. Modify the derivation in part 1 to show that 

E[exp (+2x2)] = 
exp [rmX2/(1 - 2zoX2)] 1 

(1 - 2Z(7,2)?h ’ Re (4 -c p2’ x 
3. Let 

y2 = 2$ h2, 
i=l 

where the xi are statistically independent Gaussian variables, N(m*, ai). 
Find M&iv) and E[exp ( +zy2)]. What condition must be imposed on Re (z) in 

order for the latter expectation to exist. 
4. Consider the special case in which Ar = 1 and ai = 02. Verify that the probability 

density of y2 is 

p&Y) = $&Jyexp(- ~)IMB1[($)‘i]9 Y 2 0, 

= 0, elsewhere, 

where S CfFl mi2. = (See Erdelyi [75], p. 197, eq. 18.) 

Problem 4.4.3. Let Q(x) be a quadratic form of correlated Gaussian random variables, 

Q(x) h x=Ax. 

1. Show that the characteristic function of Q is 

M&jv) 4 E(ej@) = 
exp ( - +mxTA- l [I - (I - 2jvRA) - l]mx} . 

II - 2jvRAJy” 

2. Consider the special case in which A-l = A and mx = 0. What is the resulting 
density ? 

3. Extend the result in part 1 to find E(e@), where z is a complex number. What 
restrictions must be put on Re (z) ? 

Problem 4.4.4. [76] Let x1, x2, x3, x4 be statistically independent Gaussian random 
variables with identical variances. Prove 

where 
Pr (xl2 + ~2~ 2 x32 + x42) = i-V - QV, 4 + Q(a, B)l, 
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RANDOM PHASE CHANNELS 

Problem. 4.4.5.On-OffSignaling: Partially coherent Channel. Consider the hypothesis 
testing problem stated in (357) and (358) with the probability density given by (364). 
From (371) we see that an equivalent test statistic is 

(B + &I2 + L2 7 Y, Ho 

1. Express PF as a Q-function. 
2. Express PO as an integral of a Q-function. 

Problem 4.4.6. M-orthogonal Signals: Partially Coherent Channel. Assume that each 
of the M hypotheses are equally likely. The received signals at the output of a random 
phase channel are 

r(t) = v/E* fi(t) cos [wet + &t) + 81 + w(t), 0 S t S T :  H,, i = L2, . . .$ M 

where ~~(8) satisfies (364) and w(t) is white with spectral height NO/~. Find the MU' 

and draw a block diagram of the minimum probability of error receiver. 

Problem 4.4.7 (continuation). Error Probability; Uniform Phase. [ 181 Consider the 
special case of the above model in which the signals are orthogonal and 8 has a 
uniform density. 

1. Show that 

Pr (@) = 1 - E{[l - exp (-v)]“-l}p 

where x and y  are statistically independent Gaussian random variables with unit 
variance. 

E[xl9] = d2E,/No cos 9, 
E[yl8] = d2EI/No sin 8. 

The expectation is over x and y, given 8. 
2. Show that 

pr (E) = r$ (“, l)(- l)*+lrxp [-(E~~):l(k + ‘)I). 

Problem 4.4.8. In the binary communication problem on pp. 345-348 we assumed 
that the signals on the two hypotheses were not phase-modulated. The general 
binary problem in white noise is 

r(t) = 42E, f1(t) cos [c&t + +1(t) + 01 + MO, 0 s t I T:Hl, 

r(t) = 42E, fo(t) COS [w,t + +0(t) + 81 + w(t), 0 I t s T:Ho, 

where E, is the energy received in the signal component. The noise is white with 
spectral height No/2, and pe(8) satisfies (364). Verify that the optimum receiver 
structure is as shown in Fig. P4.7 for i = 0, 1, and that the minimum probability of 
error test is 

HI 
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zi 
2 

*fiCtl, sin t&t + 9iCtj.l i=O,l 

Fig. P4.7 

Problem 4.4.9 (continuation) [44]. Assume that the signal components on the two 
hypotheses are orthogonal. 

1. Assuming that HO is true, verify that 

where d2 4 2Er/N0 and 

E(x&) = Am + d2 cos 8, 
E(yo) = d2 sin 8, 
E(d) = Am, 
E(Yl) = 0, 

Var (xb) = Var (yO) = Var (xl) = Var (yI) = d2. 

2. Prove that 

P~~w~,~(ZIIH~, B) = $ ew (- 
Zo2 + Am2 + d4 + 2A,d2 cos 6 

2d2 

x [(Am2 + d4 + 2A,,,d2 cos 6)~&] 
d2 >) 

and 

PZl I HO,@1 

3. Show that 

Pr (E) =Pr (~1 HO) = 

Ho, 8) = $ exp ( -q+JIo(+ zl) l 

Pr (20 < 21 IH,) = 
s 

‘, AI(~) de 
I 

00 

Pa(gfo.eWo I Ho, e) dZ0 
0 

4. Prove that the inner two integrals can be rewritten as 

Pr (410) = Qb, 6) - 3 ew (I”?) how), 

where 

b = EWm2 + d4 + 2A,d2 cos t9)]‘/$ . 
d 

5. Check your result for the two special cases in which A,,, -+ 0 and A, - 00. 
Compare the resulting Pr (E) for these two cases in the region where d is large. 
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Problem 4.4.10 (continuation). Error Probability, Binary Nonorthogonal Signals [77]. 
When bandpass signals are not orthogonal, it is conventional to define their correlation 
in the following manner: 

jl(t) 4 fO(t)ef*oct) 

P A - f T,fXt)f:(r) dt, 
0 

which is a complex number. 

1. Express the actual signals in terms of z(t). 
2. Express the actual correlation coefficient of two signals in terms of p. 
3. Assume A,,, = 0 (this corresponds to a uniform density) and define the quantity 

h = (1 - Ip12)y”. 

Show that 

Problem 4.4.11 (continuation). When p*(B) is nonuniform and the signals are non- 
orthogonal, the calculations are much more tedious. Set up the problem and then 
refer to [44] for the detailed manipulations. 

Problem 4.4.12. MIary PSK. Consider the M-ary PSK communication system in 
Problem 4.2.21. Assume that 

Peuo = 
exp (Am cos 0) 

9 - 
27r ~o(kll) 

nS8(7r. 

1. Find the optimum receiver. 
2. Write an expression for the Pr (E). 

Problem 4.4.13. 
likely messages 

ASK: Incoherent Channel [72]. An ASK system transmits 

St(t) = 1/2Etf(t)cosw,t, i = 1,2 ,..., M, OstsT, 
where 

G!$ = (i - I)A, 

and 
s 

Tf2(t) dt = 1, 
0 

CM - I)A & E. 

The received signal under the ith hypothesis is 

r(t) = dmi f(t) COS (CO,t + 0) + W(t), OS~STZH~, i=l,2 ,..., M, 

where w(t) is white noise (I&/2). The phase 8 is a random variable with a uniform 
density (0, 27~). 

2. 
Find the minimum Pr (E) receiver. 
Draw the decision space and compute the Pr (c). 
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Problem 4.4.14. Asymptotic Behavior of Incoherent M-ary Systems [78]. In the text we 
saw that the probability of error in a communication system using M orthogonal 
signals approached zero as M - co as long as the rate in digits per second was less 
than P/N0 In 2 (the channel capacity) (see pp. 264-267). Use exactly the same model as 
in Example 4 on pp. 264-267. Assume, however, that the channel adds a random phase 
angle. Prove that exactly the same results hold for this case. (Comment. The derivation 
is somewhat involved. The result is due originally to Turin [78]. A detailed derivation 
is given in Section 8.10 of [69].) 

Problem 4.4.15 [79]. Calculate the moment generating function, mean, and variance 
of the test statistic G = Lc2 + LS2 for the random phase problem of Section 4.4.1 
under the hypothesis HI. 

Problem 4.4.16 (continuation) [793. We can show that for d 2 3 the equivalent test 
statistic 

R= VL,2 + Ls2 

is approximately Gaussian (see Fig. 4.73a). Assuming that this is true, find the 
and variance of R. 

mean 

Problem 4.4.17 (continuation) [79). Now use the result of Problem 4.4.16 to derive an 
approximate expression for the probability of detection. Express the result in terms 
of d and PF and show that PD is approximately a straight line when plotted versus d 
on probability paper. Compare a few points with Fig. 4.59. Evaluate the increase in 
d over the known signal case that is necessary to achieve the same performance. 

Problem 4.4.18. Amplitude Estimation. We consider a simple estimation 
which an unwanted parameter is present. The received signal is 

problem in 

r(t) = AdE s(t, 0) + w(t), 

where A is a nonrandom parameter we want to estimate (assume that it is nonnegative) : 

s(t, 6) = f(t) ax bd + w + 4, 

where f(t) and +(t) are slowly varying 
variable whose probability density is, 

w(t) is whi te Gaussian noise of spectral hei ght N0/2. 
Find the transcendental equation satisfied by the max 

known functions of time and 6 is a random 

i 

1 
p@(e) = 5’ 

-vce<n, 

0, otherwise, 

imum-likelihood estimate ofA. 

Problem 4.4.19. Frequency Estimation: Random Phase Channel. The received signal is 

r(t) = d2E f(t) COS (w,t + 4(t) + ot + 8) + w(t), OltlT, 

where st f”(t) dt = 1 and f(t), 4(t), and E are known. The noise w(t) is a sample 
function from a white Gaussian noise process (N0/2). The frequency shift w is an 
unknown nonrandom variable. 

1. Find A[r(t)lw]. 
2. Find the likelihood equation. 
3. Draw a receiver whose output is a good approximation to Gmr. 
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Problem 4.4.20 (continuation). Estimation Errors. 

1. Compute a bound on the variance of any unbiased estimate of W. 
2. Compare the variance of ij ml under the assumption of a small error. Compare 

the result with the bound in part 1. 
3. Compare the result of this problem with example 2 on p. 278. 

RANDOMAMPLITUDEAND PHASE 

Problem 4.4.21. Consider the detection problem in which 
M 

r(t) = 2 ai& + n(t), 0 5 t s T:H,, 
i=l 

= n(t), 0 5 t s T:Ho. 

The ai are jointly Gaussian variables which we denote by the vector a. The signals 
are denoted by the vector s(t). 

E(a) L! ma, 

and 
E[(a - ma)W - maT)] ii h-t, 

s 

T 

P 
= s(t) ST(t) dt, 

0 

EMt 1 n(u)1 = 3 8(t - 4 

1. Find the optimum receiver structure. Draw the various interpretations analogous 
to Figs. 4.66 and 4.67. Hint. Find a set of sufficient statistics and use (2.326). 

2. Find p(s) for this system. (See Section 2.7 of Chapter 2.) 

Problem 4.4.22 (continuation). Extend the preceding problem to the case in which 

EMt 1 WI = + qt - u) + K&, u). 

Problem 4.4.23. Consider the ASK system in Problem 4.4.1 3, 
Rayleigh channel. The received signal under the kth hypothesis is 

operating over a 

r(t) = dEk v  f(t) cos (w,t + 6) + w(t), 0 5 t 5 T:Hk, k = 1,2,,.., M. 

All quantities are described in Problem 4.4.13 except v: 

PVW) = 
Vexp v2 0, 

0, elsewhere, 

and is independent of Hk. The hypotheses are equally likely. 

1. Find the minimum 
2. Find the Pr (E). 

Pr (E) receiver. 

Problem 4.4.24. M-Orthogonal Signals: Rayleigh Channel [80]. One of M-orthogonal 
signals is used to transmit equally likely hypotheses over a Rayleigh channel. The 
received signal under the ith hypothesis is 

r(t) = 14 v  f(t) cos (wit + e) + w(t), Ost(T:Hr, i=1,2 ,..., M, 
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where v  is Rayleigh with variance &, 8 is uniform, w(t) is white (N0/2), and f(t) is 
normalized. 

1. Draw a block diagram of the minimum probability of error receiver. 
2. Show that 

where 

fi A &. 
- No 

Problem 4.4.25 [90]. In this problem we investigate the improvement obtained by 
using M orthogonal signals instead of two orthogonal signals to transmit lnformation 
over a Rayleigh channel. 

1. Show that 

Pr (e) = 1 - W(B + 1) + mm 
rum + 1) + Ml ’ 

Hint. Use the familiar expression 

r(2) rya + 1) 
w + a) 

= %(-l)n a(a - l)‘il’((I - n)r l+ n. 
n=o . 

2. Consider the case in which /3 >> 1. Use a Taylor series expansion and the 
W) properties Of #(x) 4 r(x) - to obtain the approximate expression 

Recall that 

Pr (E) z i (In M - $M + 0.577 . 

#(l) = 0.577, 

#(z) = In z 
1 

- 22 + o(z). 

3. Now assume that the M hypotheses arise from the simple coding system in 
Fig. 4.24. Verify that the bit error probability is 

PB cE) = 1 j$-i Pr (E). 

4. Find an expression for the ratio of the Pre (E) in a binary system to the PrB (E) 
in an M-ary system. 

5. Show that M --+ 00, the power saving resulting from using M orthogonal signals, 
approaches 2/ln 2 = 4.6 db. 

Problem 4.4.26. iW Orthogonal Signals: Rician Channel. Consider the same system as 
in Problem 4.4.24, but assume that v  is Rician. 

1. Draw a block diagram of the minimum Pr (E) receiver. 
2. Find the Pr (E). 

Problem 4.4.27. Binary Orthogonal Signals: Square-Law Receiver [18]. Consider the 
problem of transmitting two equally likely bandpass orthogonal signals with energy 
Et over the Rician channel defined in (416). Instead of using the optimum receiver 
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shown in Fig. 4.74, we use the receiver for the Rayleigh channel (i.e., let a = 0 in 
Fig. 4.74). Show that 

Problem 4.4.28. Repeat Problem 4.4.27 for the case of A4 orthogonal signals. 

COMPOSITE SIGNAL HYPOTHESES 

Problem 4.4.29. Detecting One of M Orthogonal Signals. Consider the following 
binary hypothesis testing problem. Under HI the signal is one of M orthogonal signals 
~~ s1(t), Gg sz(t), . . ., dz s&t): 

s 

T  
s*(t)q(t)dt = a,,, i, j = 1, 2 ,..., M. 

0 

Under HI the i’” signal occurs with probability pi (C& pi = 1). Under Ho there is no 
signal component. Under both hypotheses there is additive white Gaussian noise 
with spectral height Nof2: 

r(t) = GTi s*(t) + w(t), 0 5 t I T with probability pi: HI, 

1. 
2. 

r(t) = w(t), 

Find the likelihood rat io test. 
Draw a block diagram of the 

0 s t s T:Ho. 

optimum receiver. 

Problem’4.4.30 (continuation). Now assume that 

and 

1 = -9 
Pi M 

i = 1, 2,. . ., M 

Ef = E. 

One method of approximating the performance of the receiver was developed in 
Problem 2.2.14. Recall that we computed the variance of A (not In A) on Ho and 
used the equation 

d2 = In (1 + Var [AlHo]). (P.1) 

We then used these values of d on the ROC of the known signal problem to find PF 
and PD. 

1. Find Var [AI Ho]. 
2. Using (P.l), verify that 

2E ~0 = In (1 - M + Med2). u-1 

3. For 2E/No 2 3 verify that we may approximate (P.2) by 

2E - 2: In M + In (ed2 - 1). 
No 

(P.3) 

The significance of (P.3) is that if we have a certain performance level (PF, PD) for 
a single known signal then to maintain the performance level when the signal is 
equally likely to be any one of M orthogonal signals requires an increase in the 
energy-to-noise ratio of In M. This can be considered as the cost of signal uncertainty. 
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4. Now remove the equal probability restriction. Show that (P.3) becomes 

2E.w 
No - 

-In 2 pi2 + In (ed2 
( ) 

- 1). 
f=l 

What probability assignment maximizes the first term? Is this result intuitively 
logical ? 

Problem 4.4.31 (alternate continuation). Consider the special case of Problem 4.4.29 
in which M = 2, El = E2 = E, and p1 = p2 = 4. Define 

dtr(t)sf(t) 
E 

- 7 0 
1 9 i = 1, 2. (P.4) 

1. Sketch the optimum decisi .on boundary in II, 12-plane for various values of 7. 
2. Verify that the decision boundary approaches the asymptotes 2, = 27 and 

3. Under what conditions would the following test be close to optimum. 

Test. I f  either Z1 or l2 > 27, say HI is true. Otherwise say Ho is true. 

4. Find PD and PF for the suboptimum test in Part 3. 

Problem 4.4.32 (continuation). Consider the special case of Problem 4.4.29 in which 
Ef=E,i=1,2,...,Mandpf=l/M,i=1,2 ,..., M.Extendingthedefinitionof 
li[r(t)] in (P.4) t0 i = 1, 2, . . ., M, we consider the suboptimum test. 

Test. I f  one or more If 2 In MT, say HI. Otherwise say Ho. 

1. Define 

Show 

= Pr [Zl > In MTJsl(t) is not present], 
i = Pr [11 < In MqIsl(t) is present]. 

and 
PF = 1 - (1 - a)M 

2. Verify that 

and 

PD = 1 - fl(l - a)“-? 

PF 5 Ma 

When are these bounds most accurate? 
3. Find a and fl. 
4. Assume that M = 1 and E/No gives a certain PF, PO performance. How must 

E/No increase to maintain the same performance at M increases? (Assume that the 
relations in part 2 are exact.) Compare these results with those in Problem 4.4.30. 

Problem 4.4.33. A similar problem is encountered when each of the M orthogonal 
signals has a random phase. 

Under HI: 

r(t) = dZ h(t) COS [w,t + +i(t) + St] + W(t), 0 5 t 5 T (with probabilitypf)* 

Under Ho: 
r(t) = w(t), O<tlT. 
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The signal components are orthogonal. The white noise has spectral height N0/2. 
The probabilities, JQ, equal l/M, i = 1, 2, . . . , M. The phase term in each signal & 
is an independent, uniformly distributed random variable (0, 2~). 

1. Find the likelihood ratio test and draw a block diagram of the optimum receiver. 
2. Find Var (AI&). 
3. Using the same approximation techniques as in Problem 4.4.30, show that the 

correct value of d to use on the known signal ROC is 

d L! In [l + Var (AfH,)] = In 1 - & + $10 (?)I* 
[ 0 

Problem 4.4.34 (continuation). Use the same reasoning as in Pro 
a suboptimum test and find an expression for its performance. 

Problem 4.4.35. Repeat Problem 4.4. 33(l) and 4.4.34 for 
orthogonal signals is received over a Ray leigh channel. 

the case in which each of M 

4.4.3 1 to derive 

Problem 4.4.36. In Problem 4.4.30 we saw in the “one-of-M” orthogonal signal 
problem that to maintain the same performance we had to increase 2E/No by ln M. 
Now suppose that under HI one of N(N > M) equal-energy signals occurs with 
equal probability. The N signals, however, lie in an M-dimensional space. Thus, if we 
let 4*(t), j = 1, 2, . . ., M, be a set of orthonormal functions (0, T), then 

where 

q(t)= 5 a&(t), i = lJ,...,N, 
j=l 

M 

c 
arj2 = 1, i=l,2 ,..., N. 

I=1 

The other assumptions in Problem 4.4.29 remain the same. 

1. Find the likelihood ratio test. 
2. Discuss qualitatively (or quantitatively, if you wish) the cost of uncertainty in 

this problem. 

CHANNEL MEASUREMENT RECEIVERS 

Problem 4.4.37. Channel Measurement [18]. Consider the following approach to 
exploiting the phase stability in the channel. Use the first half of the signaling interval 
to transmit a channel measuring signal 42 s,,,(t) cos w,t with energy E,,,. Use the 
other half to send one of two equally likely signals + 42 s&t) cos w,t with energy Ed. 
Thus 

r(t) = [s,,,(t) + s&t)] 42 cos (wet + 0) + w(t): H,, Olt<T, 

r(t) = [&n(t) - sd(t)] d2 cos (u,t + 0) + w(t): Ho, OltlT, 
and 

1. Draw the optimum receiver and decision rule for the case in which E,,, = Ed. 
2. Find the optimum receiver and decision rule for the case in part 1. 
3. Prove that the optimum receiver can also be implemented as shown in Fig. P4.8. 
4. What is the Pr (E) of the optimum system? 
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. ' hl(d 
\ 

r(t) 
Bandpass matched 

/ filters 

l 

l h2W 
\ 

hdr) = -+-s&T - T) cos wcr 
hdr) = -d&(T - 7) cos 0~7 

Fig. P4.8 

Problem 4.4.38 (continuation). Kineplex [81]. A clever way to take advantage of the 
result in Problem 4.4.37 is employed in the Kineplex system. The information is 
transmitted by the phase relationship between successive bauds. If  s&) is transmitted 
in one interval, then to send HI in the next interval we transmit +s&); and to send 
HO we transmit -s&). A typical sequence is shown in Fig. P4.9. 

Source 1 1 0 0 0 1 1 

Trans. + h?aw +sJt) + - + - - - 
sequence 

(Initial reference) 

Fig. P4.9 

1. Assuming that there is no phase change from baud-to-baud, adapt the receiver 
in Fig. P4.8 to this problem. Show that the resulting Pr (t’) is 

E 
Pr(+=+exp -N 9 

( ) 0 

(where E is the energy per baud, E = Ed = E,,,). 
2. Compare the performance of this system with the optimum coherent system in 

the text for large E/No. Are decision errors in the Kineplex system independent from 
baud to baud? 

3. Compare the performance of Kineplex to the partially coherent system perform- 
ance shown in Figs. 4.62 and 4.63. 

Problem 4.4.39 (continuation). Consider the signal system in Problem 4.4.37 and 
assume that E, # Ed. 

1. Is the phase-comparison receiver of Fig. P4.8 optimum? 
2. Compute the Pr (E) of the optimum receiver. 

Comment. It is clear that the ideas of phase-comparison can be extended to Mary 
systems. [72], [82], and [83] discuss systems of this type. 
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MISCELLANEOUS 

Problem 4.440. Consider the communication system described below. A known 
signal s(t) is transmitted. It arrives at the receiver through one of two possible channels. 
The output is corrupted by additive white Gaussian noise w(t). If the signal passes 
through channel 1, the input to the receiver is 

r(t) = a SW + w(t), OstsT, 

where a is constant over the interval. It is the value of a Gaussian random 
WA 4. If  the signal passes through channel 2, the input to the receiver is 

It is given that 
r(t) = SW + w(t), OstsT. 

s 

T  
s2(t) dt = E. 

0 

The probability of passing through channel 
through channel 2 (i.e., PI = p2 = 3) . 

1 is equal to the probability of passing 

variable 

1. Find a receiver that decides which channel the signal passed through with 
minimum probability of error. 

2. Compute the Pr (E). 

Problenr 4.4.41. A new engineering 
system for the following problem: 

graduate is told to 

The signal s(t) is known. To find a suitable 
noise, he asks several engineers for an opinion. 

an optimum detection 

HI : r(t) = s(t) + w(t), Tr 5 t 5 T/, 

Ho:r(t) = n(t), Tt 5 t 5 Tf. 

covariance function K,,(t, u) for the 

Engineer A says 

Engineer B says 

where K,(t, u) is a known, square-integrable, positive-definite function. 

He must 
system. 

now reconcile these different opinions in order to design a signal detection 

1. He decides to combine their opinions probabilistically. Specifically, 

Pr (Engineer A is correct) = PA, 
Pr (Engineer B is correct) = Pe, 

where PA + PB = 1. 
(a) Construct an optimum Bayes test (threshold 7) to decide whether HI or Ho 

is true. 
(b) Draw a block diagram of the receiver. 
(c) Check your answer for PA = 0 and PB = 0. 

2. Discuss some other possible ways you might reconcile these different opinions. 
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Problem 4.4.42. Resolution. The following detection problem is a crude model of a 
simple radar resolution problem : 

H&t) = bti s&f) + br sdt) + w(t), Tr 5 t 5 T, 
HO:r(t) = br sdt) + w(t), Tr 5 t 5 Tf. 

1. $x’ sd(t) sl(t) dt = po 

2. s&t) and sl(t ) are normalized to unit energy. 
3. The multipliers bd and br are independent zero-mean Gaussian variables with 

variances ud2 and o12, respectively. 
4. The noise w(t) is white Gaussian with spectral height NO/2 and is independent of 

the multipliers. 

Find an explicit solution for 
need to specify the threshold. 

the optimum likelihood ratio receiver. You do not 

Section P.4.5. Multiple Channels. 

MATHEMATICAL DERIVATIONS 

Problem 4.5.1. The definition of a matrix inverse kernel given in (4.434) is 

s Tf 
Kn(t, u) Qn(u, z) du = 1 a(t - z). 

Tf 

1. Assume that 

LO, 4 = $ I qt - u) + K,(t, u). 

Show that we can write 

Qn(t, ~1 = $ [I a(t - u) - h&, 41, 
0 

where h,(t, u) is a square-integrable function. Find the matrix integral equation that 
h,(t, u) must satisfy. 

2. Consider the problem of a matrix linear filter operating on n(t). 

where 

d(t) = 
s 

Tf w, 4 n(u) d4 
Ti 

n(t) = n&) + w(t) 

has the covariance function given in part 1. We want to choose h(t, u) so that 

5‘1 4 EjTf MO - WITbcW - WI dt 
T, 

is minimized. Show that the linear matrix filter that does this is the h,(t, u) found in 
part 1. 

Problem 4.5.2 (continuation) 
to include the case in which 

. In this problem we extend the derivation in Section 4.5 

Kn(t, U) = N a(t - u) + &(t, u), Ti 5 t, U 5 T/3 
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where N is a positive-definite matrix of numbers. We denote the eigenvalues of’ N 
as Al, &, a . . , & and define a diagonal matrix, 

-hlk 

0 

To find the LRT we first perform two preliminary transformations on T as shown in 
Fig. P4.10. 

Fig. P4.10 

The matrix W is an orthogonal matrix defined in (2.369) and has the properties 

WT = w-1, 

N = W-=lIAW. 

1. Verify that r”(t) has a covariance function matrix which satisfies (428). 
2. Express I in terms of r”(t), Qg(t, u), and s”(t). 
3. Prove that 

T f  

1 = 
ss 

r=(t) Q& u) s(u) dt du, 

Ti 
where 

Qnk u) n N - ‘[s(t - 4 - Mt, ~41, 

and h,(t, u) satisfies the equation 

w, 4 = h&, u)N + s 
=f 

h&, 2) KG, 4 dz, Ti I t, u 5 T/. 
=t 

4. Repeat part (2) of Problem 4.5.1. 

Problem 45.3. Consider the vector detection problem defined in (4.423). Assume that 
Kc(t, 4 = 0 and that N is not positive-definite. Find a signal vector s(t) with total 
energy E and a receiver that leads to perfect detectability. 

Problem 4.5.4. Let 

r(t) = Nt, 4 + n(t), Tt 5: t 5 Tf, 

where the covariance of n(t) is given by (425) to (428) and A is a nonrandom parameter. 

1. Find the equation the maximum-likelihood estimate of A must satisfy. 
2. Find the Cramer-Rao inequality for an unbiased estimate S. 
3. Now assume that a is Gaussian, N(0, a,). Find the MAP equation and the lower 

bound on the mean-square error. 
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Problem 4.53 (continuation). Let L denote a nonsingular linear transformation on a, 
where a is a zero-mean Gaussian random variable. 

1. Show that an efficient estimate of A will exist if 

s(t, 4 = LA s(t). 

2. Find 
error. 

explicit solution for ci,,, and an expression resulting mean-square 

Problem 4.5.6. Let 

r*(t) = f$ afj stj(t ) + w0 h i = 1, 2,. . ., M:Hl, 
j=l 

h(t) = w(t), i = 1, 2 ,..., M:HO. 

The noise in each channel is a sample function from a zero-mean white Gaussian 
random process 

met) W*(U)1 = ? I s(t - u). 

The aij are jointly Gaussian and zero-mean. The sfj(t) are orthogonal. Find an 
expression for the optimum Bayes receiver. 

Problem 4.5.7. Consider the 
an M-dimensional vector: 

binary detection problem in which the received signal is 

r(t) = s(t) + n&) + w(t), --cm < t < aMi&, 

= b(t) + w(t), -co < t < co:HO. 

The total signal energy is ME: 

s 

T 

s’(t) s(t) dt = ME. 
0 

The signals are zero outside the interval (0, T). 

1. Draw a block diagram of the optimum receiver. 
2. Verify that 

d2 = ST(ju) S,+(w) S(jo) $f* 

Problem 4.5.8. Maximal-Ratio Combiners. Let 

r(t) = s(t) + w(t), Ost(T. 

The received signal r(t) is passed into a time-invariant matrix filter with M inputs and 
one output y(t): 

s 

T 

r(t) = h(t - 7) r(T) d7. 
0 

The subscript s denotes the output due to the signal. The subscript n denotes the 
output due to the noise. Define 

S 
( > 

Ys2(T) 
iv out n E[m201’ 

1. Assume that the covariance matrix of w(t) satisfies (439). Find the matrix filter 
h(7) that maximizes (S/N),,,. Compare your answer with (440). 

2. Repeat part 1 for a noise vector with an arbitrary covariance matrix K,(t, u). 
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RANDOM PHASECHANNELS 

Problem 4.5.9 [ 141. Let 
M 

x = 
c ai2, 

f=l 

where each ai is an independent random variable with the probability density 

O,(A<oo, 

Show that 
elsewhere. 

where 
= 0, elsewhere, 

M 
P = 02 c q2. 

f=l 

Problem 4.5.10. Generalized Q-Function. 

The generalization of the Q-function to M channels is 

1. Verify the relation 

QM& 16) = Qb PI + exP (-y) ;g (y u40 

2. Find Q&a, 0). 
3. Find Q&O, /3). 

Problem 4.5.1I. On-Off Signaling: N Incoherent Channels. Consider an on-off com- 
munication system that transmits over N fixed-amplitude random-phase channels. 
When HI is true, a bandpass signal is transmitted over each channel. When Ho is 
true, no sign81 is transmitted. The received waveforms under the two hypotheses are 

vi(t) = d2E, fi (t) COS (Wit + +i(t) + et) + w(t)9 O<tlT:H,, 
f?(t) = w(t), Olt<T:H,, 

i = 1, 2, . . ., N. 

The carrier frequencies are separated enough so that the signals are in disjoint 
frequency bands. TheJ;(t) and 4*(t) are known low-frequency functions. The amplitudes 
dz are known. The (If are statistically independent phase angles with a uniform 
distribution. The additive noise w(t) is a sample function from a white Gaussian 
random process (N0/2) which is independent of the &. 

1. Show that the likelihood ratio test is 

where L,, and L,, are defined as in (361) and (362). 
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2. Draw a block diagram of the optimum receiver based on In A. 
3. Using (371), find a good approximation to the optimum receiver for the case 

in which the argument of I&) is small. 
4. Repeat for the case in which the argument is 
5. I f  the Ei are unknown nonrandom variables, 

large. 
does a UMP test exist? 

Problem 4.5.12 (continuation). In this problem we analyze the performance of the 
suboptimum receiver developed in part 3 of the preceding problem. The test statistic is 

I = 2 (L,,2 + L,,2) 5’ y. 
i=l Ho 

1. Find E[L,IH,l, E[L,,IH,l, Var IL,IHoI, Var LJHoI, ELiI& 4, E[L#i, 4, 
Var [Lci I HI, 01, Var [L,i I HI, 81. 

2. Use the result in Problem 2.6.4 to show that 

and 

MIIHl(jv) = (1 - jvNo)-N exp 

MIIHO(jv) = (1 - jvNo)-N. 

3. What is plIHO(XI Ho)? Write an expression for PF. The probability density of 
HI can be obtained from Fourier transform tables (e.g., [75], p. 197), It is 

Pl,H1(XIH1) = $$!JVexp( -~)&el(~), x 2 0, 

= 0, elsewhere, 

ETA 2 E,. 
f=l 

4. Express PD in terms of the generalized Q-function. 

Comment. This problem was first studied by Marcum [46]. 

Problem 4.5.13 (continuation). Use the bounding and approximation techniques of 
Section 2.7 to evaluate the performance of the square-law receiver in Problem 4.5.11. 
Observe that the test statistic I is not equal to In A, so that the results in Section 2.7 
must be modified. 

Problem 4.5.14. N Pulse Radar: Nonfluctuating Target. In a conventional pulse radar 
the target is illuminated by a sequence of pulses, as shown in Fig. 4.5. If  the target 
strength is constant during the period of illumination, the return signal will be 

r(t) = em $ f(t - 7 - kTp) cos (w,t + 0,) + w(t), -co < t < co:Hl, 
k=l 

where T is the round-trip time to the target, which is assumed known, and Tp is the 
interpulse time which is much larger than the pulse length T [f(t) = 0: t < 0, t > T]. 
The phase angles of the received pulses are statistically independent random variables 
with uniform densities. The noise w(t) is a sample function of a zero-mean white 
Gaussian process (No/2). Under Ho no target is present and 

w = w(t), -co < t<oo:Ho. 
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1. Show that the LRT for this problem is identical to that in Problem 4.5.11 
(except for notation). This implies that the results of Problems 4.5.11 to 13 apply 
to this model also. 

2. Draw a block diagram of the optimum receiver. Do not use more than one 
bandpass filter. 

Problem 4.5.15. Orthogonal Signals: N Incoherent Channels. An alternate communica- 
tion system to the one described in Problem 4.5.11 would transmit a signal on both 
hypotheses. Thus 

r*(t) = d2E1, fli(t) COS [wit + &i(t) + ei] + W, O<t<T:H,, 
i = 1,2,. . ., N, 

ri(t) = ag for(t) cos [wit + +oiw + 41 + w, 0 I t 5 T:Ho, 
i= 1,2 ,..., N. 

All of the assumptions in 4.5.11 are valid. In addition, the signals on the two 
hypotheses are orthogonal. 

1. Find the likelihood ratio test under the assumption of equally likely hypotheses 
and minimum Pr (E) criterion. 

2. Draw a block diagram of the suboptimum square-law receiver. 
3. Assume that Et = E. Find an expression for the probability of error in the 

square-law receiver. 
4. Use the techniques of Section 2.7 to find a bound on the probability of error 

and an approximate expression for Pr (E). 

Problem 4.5.16 (continuation). N Partially Coherent Channels. 

1. Consider the model in Problem 4.5.11. Now assume that the 
independent random variables with probability density 

angles are 

Pep) = 
exp (A, cos 0) 2n~~(ll,) 9 -VT< O<IT, i= 1,2,...,N. 

Do parts 1, 2, and 3 of Problem 4.5.11, using this assumption. 
2. Repeat part 1 for the model in Problem 4.5.15. 

RANDOM AMPLITUDE AND PHASE CHANNELS 

Problem 4.5.17. Density of Rician Envelope and Phase. If  a narrow-band signal is 
transmitted over a Rician channel, the output contains a specular component and a 
random component. Frequently it is convenient to use complex notation. Let 

St(t) a 42 Re [ f(t)ej*(t)efwct] 

denote the transmitted signal. Then, using (416), the received signal (without the 
additive noise) is 

where 
s,(t) ii 42 Re {v/f(t) exp [j+(t) + jO* + jwt]}, 

vleW h aejd + veje 
in order to agree with (416). 

1. Show that 
V’ V'2 + a2 - 2 V’a Cos (0’ - 

exp 
8) 

2rro2 - 2a2 > 
? 

Pu,,e,( vf ,  0’) = 
0 s V’ < co, 
0 s 8’ - 8 5 2n, 

0, elsewhere. 
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2. Show that 

V’ l ( 7 exp 

v’2+a21 CCV’ BP 
pv,( V') = 2u2 I( > 

0 ,a' OS V'<oo, 

10 9 elsewhere. 

3. Find E(d) and E(v’~). 
4. Find p&8’), the probability density of 8’. 
The probability densities in parts 2 and 4 are plotted in Fig. 4.73. 

Problem 4.5.18. On-off Signaling: N Rayieigh Channels. In an on-off communication 
system a signal is transmitted over each of N Rayleigh channels when HI is true. 
The received signals are 

HI :rr(t) = v,lci A(t) cos [wit + 4*(t) + 41 + w(t), OstsT, 
i= I,2 ,..., N, 

HO : r&l = w(t), OstsT, 

i= I,2 ,..., N, 

where A(t) and di(t) are known waveforms, the vl are statistically independent 
Rayleigh random variables with variance E,, the 8, are statistically independent 
random variables uniformly distributed 0 s 8 5 2~, and wi(t) are independent white 
Gaussian noises (No/2). 

1. Find the LRT. 
2. Draw a block diagram of the optimum 

realization and a filter-squarer real .ization. 
receiver. Indicate both a bandpass filter 

Problem 4.5.19 (continuation). Optimum Diversity. 
Now assume that E1 = E, (i = 1, 2, . . ., N). 

1. Verify that this problem is mathematically identical to Case 1A on p. 108 in 
Section 2.6. Find the relationships between the parameters in the two problems. 

2. Use the identity in part 1 and the results in Example 2 on pp. 127-129 to find 
p(s) and +(s) for this problem. 

3. Assume that the hypotheses are equally likely and that minimum Pr (c) is the 
criterion. Find an upper bound on the Pr (E) and an approximate expression for the 
Pr (E). 

4. Constrain NE = ET. Use an approximate expression of the type given in (2.508) 
to find the optimum number of diversity channels. 

Problem 4.5.20. N Pulse Radar: Fluctuating Target. Consider the pulsed model 
developed in Problem 4.514. If  the target fluctuates, the amplitude of the reflected 
signal will change from pulse to pulse. A good model for this fluctuation is the 
Rayleigh model. Under HI the received signal is 

r(t) = d i Vi f (t - 7 - kT,) cos (w,t + e,) + w(t), -00 < t < 00, 
i=l 

where vi, et, and w(t) are specified in Problem 4.518. 

1. Verify that this problem is mathematically identical to 
2. Draw a block diagram of the optimum receiver. 

Problem 4.5.18. 

3. Verify 
problem. 

that the results in Figs. 2.35 and 2.42 are immediately applicable to this 
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4. If  the required PF = 10e4 and the total average received energy is constrained 
EVW21 = 64, what is the optimum number of pulses to transmit in order to maxi- 
mize PO? 

Problem 4.5.21. Binary Orthogonal Signals: N Rayleigh Channels. Consider a binary 
communication system using orthogonal signals and operating over N Rayleigh 
channels. The hypotheses are equally likely and the criterion is minimum Pr (c). 
The received waveforms are 

m = a vi fl(t) cos [Wld + #1(t) + 41 + w(t), OltlT, 
i = 1,2,. . ., N:Hl 

= a vi fo(t) cos [god + $0(t) + 41 + w(t), 0 < t < T, 
i = 1, 2,. . ., N:Ho. 

The signals are orthogonal. The quantities vi, 4, and 
4.5.18. The system is an FSK system with diversity. 

wt(t ) are described in Problem 

1. Draw a block diagram of the optimum receiver. 
2. Assume E1 = E, i = 1, 2, . . ., N. Verify that this model is mathematically 

identical to Case 2A on p. 115. The resulting Pr (E) is given in (2.434). Express this 
result in terms of E and No. 

Problem 4.5.22 (continuation) 
may be different. 

Error Bounds: Optimal Diversity. Now assume the E, 

1. Compute p(s). (Use the result in Example 3A on p. 130.) 
2. Find the value of s which corresponds to the threshold y  = @(s) and evaluate 

p(s) for this value. 
3. Evaluate the upper bound on the Pr (E) that is given by the Chernoff bound. 
4. Express the result in terms of the probability of error in the individual channels: 

Pt 4 Pr (E on the ith diversity channel) 

P* = l[(l + &$]* 

5. Find an approximate expression for Pr(4) using a Central Limit Theorem 
argument. 

6. Now assume that Ei = E, i = 1, 2, . . ., N, and NE = ET. Using an approxima- 
tion of the type given in (2.473), find the optimum number of diversity channels. 

Problem 4.5.23. M-ary Orthogonal Signals: N Rayfeigh Channels. A generalization of 
the binary diversity system is an Wary diversity system. The M hypotheses are 
equally likely. The received waveforms are 

ri(t) = 42 Vi fk.(f) COS [ Ukif + +k(t) + 41 + w(t), 0 s t s T:H,, 

i = 1, 2, . . ., N, 

k = I,2 ,..., M. 
The signals are orthogonal. The quantities vi, ol, and w+(t) are described in Problem 
4.5.18. This type of system is usually referred to as multiple FSK (MFSK) with 
diversity. 

1. Draw a block diagram of the optimum receiver. 
2. Find an expression for the probability of error in deciding which hypothesis is 

true. 
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Comment. This problem 
M and N are plot ted. 

is discussed in detail in Hahn [84] and results for various 

Problem 4.5.24 (continuation). Bounds. 

1. Combine the bounding techniques of Section 2.7 with the simple bounds in 
(4.63) through (4.65) to obtain a bound on the probability of error in the preceding 
problem. 

2. Use a Central Limit Theorem argument to obtain an approximate expression. 

Problem 4.5.25. M Orthogonal Signals: N Rician Channels. Consider the M-ary 
system in Problem 4.5.23. All the assumptions remain the same except now we assume 
that the channels are independent Rician instead of Rayleigh. (See Problem 4.517.) 
The amplitude and phase of the specular component are known. 

1. Find the LRT and draw a block diagram of the optimum receiver. 
2. What are some of the difficulties involved in implementing the optimu m receiver ? 

Problem 4.5.26 (continuation). Frequently the phase of specular component is not 
accurately known. Consider the model in Problem 4. 5.25 and assume that 

Pd,(W = 
exp (A, cos X) 

277 lo(&n) ’ 
7TIXSn, 

and that the 
the model. 

6i are independent of each other and all the other random quantities in 

1. Find the LRT and draw a block diagram of the optimum receiver. 
2. Consider the special case where A,,, = 0. Draw a block diagram of the optimum 

receiver. 

Commentary. The preceding problems show the computational difficulties that are 
encountered in evaluating error probabilities for multiple-channel systems. There are 
two general approaches to the problem. The direct procedure is to set up the necessary 
integrals and attempt to express them in terms of Q-functions, confluent hyper- 
geometric functions, Bessel functions, or some other tabulated function. Over the 
years a large number of results have been obtained. A summary of solved problems 
and an extensive list of references are given in [89]. A second approach is to try to find 
analytically tractable bounds to the error probability. The bounding technique 
derived in Section 2.7 is usually the most fruitful. The next two problems consider 
some useful examples. 

Problem 4.5.27. Rician Channels: Optimum Diversity [86]. 

1. Using the approximation techniques of Section 2.7, find Pr (E) expressions for 
binary orthogonal signals in N Rician channels. 

2. Conduct the same type of analysis for a suboptimum receiver using square-law 
combining. 

3. The question of optimum diversity is also appropriate in this case. Check your 
expressions in parts 1 and 2 with [86] and verify the optimum diversity results. 

Problem 4.5.28. In part 3 of Problem 4.5.27 it was shown that if the ratio of the energy 
in the specular component to the energy in the random component exceeded a certain 
value, then infinite diversity was optimum. This result is not practical because it 
assumes perfect knowledge of the phase of the specular component. As N increases, 
the effect of small phase errors will become more important and should always lead 
to a finite optimum number of channels. Use the phase probability density in Problem 
4.5.26 and investigate the effects of imperfect phase knowledge. 
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Section P4.6 Multiple Parameter Estimation 

Problem 4;6.1. The received signal is 

40 = s(t, A) + w(t), OrtrT. 

The parameter a is a Gaussian random vector with probability density 

p,(A) = [(2n)“‘2]A8]G]-1 exp (-+A’&-lA). 

1. Using the derivative matrix notation of Chapter 2 (p. 76), derive an integral 
equation for the MAP estimate of a. 

2. Use the property in (444) and the result in (447) to find the I,,,. 
3. Verify that the two results are identical. 

Problem 4.6.2. 
is singular. 

Modify the result in Problem 4.6.1 to include the case in which Aa 

Problem 4.6.3. M 
which E(a) = ma. 

odify the result in part 1 of Problem 4.6.1 to 

Problem 4.6.4. Consider 
errors approach the bou 

Problem 4.6.5. Let 

the example on p. 372. 
nd as E/No increases. 

r(t) = s(t, a(t)) + n(t), 

that the actual mean-square 

OstsT. 

the case in 

Assume that a(t) is a zero-mean Gaussian random process with covariance function 
&(t, u). Consider the function a*(t) obtained by sampling a(t) every T/M seconds 
and reconstructing a waveform from the samples. 

1. Define 

Find an equation for d*(t). 
2. Proceeding formally, show that as IM -+ co the equation for the MAP estimate 

of a(t) is 

w = +sT [r(u) w4 4u)> - s(u, ci(u))l aci(u) Kdt, 4 h OstsT. 
0 0 

Problem 4.6.6. Let 
r(t) = s(t, A) + n(t), OstsT, 

where a is a zero-mean Gaussian vector with a diagonal covariance matrix and n(t) 
is a sample function from a zero-mean Gaussian random process with covariance 
function Kn(t, u). Find the MAP estimate of a. 

Problem 4.6.7. The multiple channel estimation problem is 

r(t) = s(t, A) + n(t), OstsT, 

where r(t) is an N-dimensional vector and a is an M-dimensional parameter. Assu 
that a is a zero-mean Gaussian vector with a diagonal covariance matrix. Let 

E[n(t) nT(u)] = K& u). 

Find an equation that specifies the MAP estimate of a. 

me 
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Problem 4.6.8. Let 

r(t) = 42 v f(t, A) cos [w,t + +(t, A) + e] + W(t), O(,t<T, 

where v  is a Rayleigh variable and 8 is a uniform variable. The additive noise w(t) is 
a sample function from a white Gaussian process with spectral height N0/2. The 
parameter a is a zero-mean Gaussian vector with a diagonal covariance matrix; a, v, 
8, and w(t) are statistically independent. Find the likelihood function as a function of a. 

Problem 4.6.9. Let 
r(t) = 42 v f(t - T)  cos fWct + +(t - 7) + d + el + w(t), -co < t < co, 

where w(t) is a sample function from a zero-mean white Gaussian noise process with 
spectral height N0/2. The functions f(t) and d(t) are deterministic functions that are 
low-pass compared with 0,. The random variable v  is Rayleigh and the random 
variable 8 is uniform. The parameters T and w are nonrandom. 

1. Find the likelihood function as a function of T and O. 
2. Draw the block diagram of a receiver that provides an approximate imple- 

mentation of the maximum-likelihood estimator. 

Problem 4.6.10. A sequence of amplitude 
signal transmitted in the kth interval is 

modulated signals is transmitted. The 

sk(t, A) = Ak s(t), (k - l)T 5 t 5 kT, k = 1, 2, l . 0. 

The multiplier @ is fixed. The uf are independent, zero-mean 
variables, N(0, 4. The received signal in the kth interval is 

ak = @a k-l+ uk-1- 

Gaussian random 

r(t) = Sk(t, A) + w(t), (k - l)T 5 t 5 kT, k = 1, 2, . . . . 

Find the MAP estimate of ak, k = 1, 2,. . . . (Note the similarity to Problem 2.6.15.) 
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