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Estimation of Continuous Waveforms 

INTRODUCTION 

Up to this point we have considered the problems of detection and 
parameter estimation. We now consider the problem of estimating a coyt- 
tirtuous waveform. Just as in the parameter estimation problem, we shall 
find it convenient to discuss both nonrandom waveforms and waveforms 
that are sample functions from a random process. We shall find that the 
estimation procedure for nonrandom waveforms is straightforward. By 
contrast, when the waveform is a sample function from a random process, 
the formulation is straightforward but the solution is more complex. 

Before solving the estimation problem it will be worthwhile to investigate 
some of the physical problems in which we want to estimate a continuous 
waveform. We consider the random waveform case first. 

An important situation in which we want to estimate a random wave- 
form is in analog modulation systems. In the simplest case the message 
a(t) is the input to a no-memory modulator whose output is s(t, a(t)) 
which is then transmitted as shown in Fig. 5.1. The transmitted signal is 
deterministic in the sense that a given sample function a(t) causes a unique 
output s(t, a(t)). Some common examples are the following: 

s(t, a(t)) = d2p a(t) sin w,t. (I) 

. 
Analog 

message 
a^01 ) 

source 41 
‘ 

Fig. 5.1 A continuous no-memory modulation system. 
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424 5. I Introduction 

This is double sideband, suppressed carrier, amplitude modulation 
(DSB-SC-AM). 

s(t, a(t)) = d2p [I + ma(t)] sin o,t. (2) 

This is conventional DSB-AM with a residual carrier component. 

s(t, a(t)) = 2/2p sin [w,t + /3a(t)]. (3) 

This is phase modulation (PM). 
The transmitted waveform is corrupted by a sample function of zero- 

mean Gaussian noise process which is independent of the message process. 
The noise is completely characterized by its covariance function K,(t, u). 
Thus, for the system shown in Fig.5 1, the received signal is 

The simple system illustrated is not adequate to describe many problems 
of interest. The first step is to remove the no-memory restriction. A 
modulation system with memory is shown in Fig. 5.2. Here, h(t, U) 
represents the impulse response of a linear, not necessarily time-invariant, 
filter. Examples are the following: 

1. The linear system is an integrator and the no-memory device is a 
phase modulator. In this case the transmitted signal is 

s(t, x(t)) = Am sin [,,t + Ii, a(u) du]. (5) 

This is frequency modulation (FM). 
2. The linear system is a realizable time-invariant network and the 

no-memory device is a phase modulator. The transmitted signal is 

h(t - u) a(u) du 1 . (6) 
This is pre-emphasized angle modulation. 
Figures 5. I and 5.2 describe a broad class of analog modulation systems 

which we shall study in some detail. We denote the waveform of interest, 
a(t), as the message. The message may come from a variety of sources. In 

c ,  

Analog , a(0 W, 4 r(t) a^(t) 

source Linear filter 
> Receiver 

c b 4 

Fig. 5.2 A modulation system with memory. 
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commercial FM it corresponds to music or speech. In a satellite telemetry 
system it might correspond to analog data from a sensor (e.g., temperature 
or attitude). 

The waveform estimation problem occurs in a number of other areas. 
If we remove the modulator in Fig. 5.1, 

40 = a(t) + n(t), Ti < t < T,. (7) 

If a(t) represents the position of some object we are trying to track in the 
presence of measurement noise, we have the simplest form of the control 
problem. 

Many more complicated systems also fit into the model. Three are 
shown in Fig. 5.3. The system in Fig. 5.3a is an FM/FM system. This type 
of system is commonly used when we have a number of messages to 
transmit. Each message is modulated onto a subcarrier at a different 
frequency, the modulated subcarriers are summed, and modulated onto 
the main carrier. In the Fig. 5.3a we show the operations for a single 
message. The system in Fig. 5.3b represents an FM modulation system 

*sin&t + ji a(u)du) 
i 

-@sin(o,t + sTf z(u)d 
i 

a(t) Frequency ’ 1 ) Frequency * 
modulation h z(t) modulation 

* , 
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a(t) modulation z(t) 
3 W, 4 1 

A r(t) 

Known linear 
time-varying 

channel 

sin o,t 
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I 
I 
I 

* rw 

I ‘ I 
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Fig. 5.3 Typical systems: (a) an FM/FM system; (b) transmission through varying 
channel; (c) channel measurement. 
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transmitting through a known linear time-varying channel. In Fig. 5.3~ 
the channel has an impulse response that depends on the random process 
a(t). The input is a deterministic signal and we want to estimate the 
channel impulse response. Measurement problems of this type arise 
frequently in digital communication systems. A simple example was 
encountered when we studied the Rayleigh channel in Section 4.4. Other 
examples will arise in Chapters II.2 and 11.3. Note that the channel 
process is the “message” in this class of problems. 

We see that all the problems we have described correspond to the first 
level in the hierarchy described in Chapter 1. We referred to it as the 
known signal-in-noise problem. It is important to understand the meaning 
of this description in the context of continuous waveform estimation. If 
a(t) were known, then s(t, a(t)) would be known. In other words, except 
for the additive noise, the mapping from a(t) to r(t) is deterministic. 

We shall find that in order to proceed it is expedient to assume that a(t) 
is a sample function from a Gaussian random process. In many cases this 
is a valid assumption. In others, such as music or speech, it is rtot. 
Fortunately, we shall find experimentally that if we use the Gaussian 
assumption in system design, the system will work well for many non- 
Gaussian inputs. 

The chapter proceeds in the following manner. In Section 5.2 we derive 
the equations that specify the optimum estimate d(t). In Section 5.3 we 
derive bounds on the mean-square estimation error. In Section 5.4 we 
extend the results to vector messages and vector received signals. In 
Section 5.5 we solve the nonrandom waveform estimation problem. 

The purpose of the chapter is to develop the necessary equations and to 
look at some of the properties that can be deduced without solving them. 
A far more useful end result is the solutions of these equations and the 
resulting receiver structures. In Chapter 6 we shall study the linear modula- 
tion problem in detail. In Chapter II.2 we shall study the nonlinear 
modulation problem. 

5.2 DERIVATION OF ESTIMATOR EQUATIONS 

In this section we want to solve the estimation problem for the type of 
system shown in Fig. 5.1. The general category of interest is defined by the 
property that the mapping from a(t) to s(t, a(t)) is a no-memory trans- 
formation. 

The received signal is 



No-Memory Modulation Systems 427 

BY a no-memory transformation we mean that the transmitted 
some time to depends only on a(@ and not on the past of a(t). 

signal at 

5.2.1 No-Memory Modulation Systems. Our specific assumptions are the 
following : 

1. The message a(t) and the noise n(t) are sample functions from 
independent, continuous, zero-mean Gaussian processes with covariance 
functions K&t, U) and K,(t, u), respectively. 

2. The signal s(t, a(t)) has a derivative with respect to a(t). As an 
example, for the DSB-SC-AM signal in (1) the derivative is 

as(t9 a(t>) _ 42p sin o 
aa - 

t 
c l (9 

Clearly, whenever the transformation s(t, a(t)) is a linear transformation, 
the derivative will not be a function of a(t). We refer to these cases as 
linear modulation schemes. For PM 

as(t9 a(t)) = Imp cos (w,t + Pa(t)) wo 
. (10) 

The derivative is a function of a(t). This is an example of a nonlinear 
modulation scheme. These ideas are directly analogous to the linear 
signaling and nonlinear signaling schemes in the parameter estimation 
problem. 

As in the parameter estimation case, we must select a suitable criterion. 
The mean-square error criterion and the maximum a posteriori probability 
criterion are the two logical choices. Both are conceptually straightforward 
and lead to identical answers for linear modulation schemes. 

For nonlinear modulation schemes both criteria have advantages and 
disadvantages. In the minimum mean-square error case, if we formulate 
the a posteriori probability density of a(t) over the interval [Ti, T,] as a 
Gaussian-type quadratic form, it is difficult to find an explicit expression 
for the conditional mean. On the other hand, if we model a(t) as a com- 
ponent of a vector Markov process, we shall see that we can find a 
differential equation for the conditional mean that represents a formal 
explicit solution to the problem. This particular approach requires back- 
ground we have not developed, and we defer it until Chapter 11.2. In the 
maximum a posteriori probability criterion case we are led to an integral 
equation whose solution is the MAP estimate. This equation provides a 
simple physical interpretation of the receiver. The MAP estimate will turn 
out to be asymptotically efficient. Because the MAP formulation is more 
closely related to our previous work, we shall emphasize it$ 

t After we have studied the problem in detail we shall find that in the region in which 
we get an estimator of practical value the MMSE and MAP estimates coincide. 
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To help us in solving the waveform estimation problem let us recall 
some useful facts from Chapter 4 regarding parameter estimation. 

In (4.464) and (4.465) we obtained the integral equations that specified 
the optimum estimates of a set of parameters. We repeat the result. If 
al, a2:, l l l 9 aK are independent zero-mean Gaussian random variables, 
which we denote by the vector a, the MAP estimates di are given by the 
simultaneous solution of the equations, 

where 
ai !2 Var (a,), 

m n - s Tf Q~(z, U) S(U, a) du, Ti 
Ti 

and the received waveform is 

r(t) = s(t, A) + n(t). Ti 

Now we want to apply this result to our problem. 
Chapter 3 we know that we can represent the message, 
orthonormal expansion : 

a(t) = 1.i.m. 2 L?i $i(t), Ti < t < 
K-a i=l 

(12) 

,< z < T,, - WI= 

5 z < T,, (14) 

< t < T,. (15) 

From our work in 
a(t), in terms of an 

Tf? (16) 

where the $i(t) are solutions to the integral equation 

and 

Pi Mt> = 
J 

’ Ka(t9 u, tbiC”> dU9 Ti < t ,< Tf (17) 
Ti 

s 

Tf 

ai = 40 $4(t) dL (18) 

Ti 

The ai are independent Gaussian variables: 

E(ai) = 0 
and 

(19) 

E (aiaj) =t pi 6ij. (20) 

Now we consider a subclass of processes, those that can be represented 
by the first K terms in the orthonormal expansion. Thus 

aK(t) = 5 ai *i(t), 
i=l 

Ti < t < Tf. (21) 

t Just as in the colored . noise discussions of Chapter 4, the end-points must be treated 
carefully ‘. Thro ughout Chapter 5 we sha .I1 include the end-points in the interval. 
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Our logic is to show how the problem of estimating a&) in (21) is 
identical to the problem we have already solved of estimating a set of K 
independent parameters. We then let K + 00 to obtain the desired result. 
An easy way to see this problem is identical is given in Fig. 5.4a. If we 
look only at the modulator, we may logically write the transmitted signal 
as 

(22) 

By grouping the elements as shown in Fig. 5.4b, however, we may 
logically write the output as s(t, A). Clearly the two forms are equivalent: 

s(t, A) = s t, (23) 

- STfdt a1 
Ti 

IC/zw 
I 

s 
Tf 

T  dt a2 !  
i I 

. I 
,a(0 l I  

.  

I  

I  

I  

I  I I 1 
s Tf aK I 

dt - 
Ti 

I 
I 

Waveform generator 
(conceptual) 

Modulator 

a1 --I Set of orthogonal function ~~ I 
multipliers and summer 

(identical to section to the 

t- 
@, A) right of dotted line in (a)) 

Fig. 5.4 Equivalence of waveform representation and parameter representation. 
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We deJine the MAP estimate of aK(t) as 

dK(t) = 5 ii, &(t), Ti s t < T’. (24) 
r= 1 

We see that i,(t) is an interval estimate. In other words, we are estimating 
the waveform ax(t) over the entire interval Ti < t < T, rather than the 
value at a single instant of time in the interval. To find the estimates of the 
coefficients we can use (11). 

Looking at (22) and (23), we see that 

where the last equality follows from (21). From (11) 

r = 1,2 ,..., K. (26) 

Substituting (26) into (24) we see that 

or 

In this form it is now easy to let K -+ co. From Mercer’s theorem in 
Chapter 3 

= K&t, z). (29 

Now define 

ii(t) = 1.i.m. s,(t), Ti s t < T,. (30) 
K-+a 
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The resulting eauation is 

b(t) = 1 
Tf as(z, d(z)) 

ad(z) &I(4 z)[yB(z) - go1 & T* < t 1< Tf, (31)T 
Tf 

where 

and 

Equations 31, 32, and 33 specify the MAP estimate of the waveform 
a(t). These equations (and their generalizations) form the basis of our 
study of analog modulation theory. For the special case in which the 
additive noise is white, a much simpler result is obtained. If 

then 

K,(t, 24) = 2 8(t - u), (34) 

QJt, u) = $ 8(t - u). (35) 
0 

Substituting (35) into (32) and (33), we obtain 

and 
a> = 

2 
N da (36) 

0 

gc ) 
2 z = N s(z, iI(z 

0 

Substituting (36) and (37) into (31), we have 

(37) 

Now the estimate is specified by a single nonlinear integral equation. 
In the parameter estimation case we saw that it was useful to interpret 

the integral equation specifying the MAP estimate as a block diagram. 
This interpretation is even more valuable here. As an illustration, we 
consider two simple examples. 

t The results in (31)-(33) were first obtained by Youla [I]. In order to simplify the 
notation we have made the substitution 

w, a)) a w, a(z)) 
I 

. 
Wz) Wz) a(z) = iit21 



432 5.2 Derivation of Estimator Equations 

* MT) 

Linear 
nonrealizable 

filter 

w, W) 
aG(t, .-‘ k . Signal 

generator f 
~ a 

Fig. 5.5 A block diagram of an unrealizable system: white noise. 

Example 1. Assume that 
T,= -co,T/= 00, (39) 

Kdt, u) = K&u - 4, (40) 

Kl(t, u) = 2 No 8(t - u). (41) 

In this case (38) is appropriate.? Substituting into (38), we have 

2 O” =- ‘ct) N 
s 

&(t - z) -aoottm. (42) 
0 -CO 

We observe that this is simply a convolution of the term inside the braces with a linear 
filter whose impulse response is K&T). Thus we can visualize (42) as the block diagram 
in Fig. 5.5. Observe that the linear filter is unrealizable. It is important to emphasize 
that the block diagram is only a conceptual aid in interpreting (42). It is clearly not 
a practical solution (in its present form) to the nonlinear integral equation 
we cannot build the unrealizable fi lter. One of the problems to which we sha I 

because 
1 devote 

our attention in succeeding chapters 
diagram. 

is finding a practical approximation to the block 

A second easy example is the nonwhite noise case. 

Example 2. Assume that 
Tr= -oo,T/=ao, (43) 

KLL(t, 4 = Ka(t - 4, (44) 

K,,(t, u) = K,,(t - u). (45) 
Now (43) and (45) imply that 

Q&, u) = Qdt - 4 (46) 

As in Example 1, we can interpret the integrals (31), (32), and (33) as the block 
diagram shown in Fig. 5.6. Here, Q&) is an unrealizable time-invariant filter. 

t For this case we should derive the integral equation by using a spectral representa- 
tion based on the integrated transform of the process instead of a Karhunen-Loeve 
expansion representation. The modifications in the derivation are straightforward 
and the result is identical; therefore we relegate the derivation to the problems (see 
Problem 5.2.6). 
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Fig. 5.6 A block diagram of an unrealizable system: colored noise. 

Before proceeding we recall that we assumed that the modulator was a 
no-memory device. This assumption is too restrictive. As we pointed out 
in Section 1, this assumption excludes such common schemes as FM. 
While the derivation is still fresh in our minds we can modify it to eliminate 
this restriction. 

5.2.2 Modulation Systems with Memory? 

A more general modulation system is shown in Fig. 5.7. The linear 
system is described by a deterministic impulse response h(t, u). It may be 
time-varying or unrealizable. Thus we may write 

x(t) = s Tf w, 4 44 du, Ti < t < Tf. 
Ti 

(47) 

The modulator performs a no-memory operation on x(t), 

s(t, x(t)) = s (s Tf 

t, h( t ,  24) a(u) du 

1 

l 
(48) 

Tt 

a(t) 
) h(t, u) 

x(t) .+ Nonlinear no-memory sot x(t)) 

modulator 
, 

Fig. 5.7 Modulator with memory. 

t The extension to include FM is due to Lawton [2], [3]. The extension to arbitrary 
linear operations is due to Van Trees [4]. Similar results were derived independently 
by Rauch in two unpublished papers [5], [6]. 



434 5.2 Derivation of Estimator Equations 

As an example, for FM, 

where df is the frequency deviation. The transmitted signal is 

s(t, x(t)) = d2p sin(w,t + dfft a(u)du). 

Looking back at our derivation we see that everything proceeds identically 
until we want to take the partial derivative with respect to A, in (25). 
Picking up the derivation at this point, we have 

w A) w, x,(z)) -=-- 
a4 w 

= a+, x,(z)) axK(z); 
ax,(z) w (51) 

but 

axK(z) a w=- Tf h( y) (y) dy 
i?A, aA, Ti ” aK s 

s 

Tf 
= &9 Y) MY) dY* (52) 

Ti 

It is convenient to give a label to the output of the linear operation when 
the input is 6(t). We define 

x,(t) = 
s 

Tf 
h(t, y> sK(Y> dY* 

Ti 

It should be observed that x,(t) is not defined to be the MAP estimate of 
x&t). In view of our results with finite sets of parameters, we suspect that 
it is. For the present, however, it is simply a function defined by (53) 
From (1 l), 

4 = Pr 
s 

Tf &(z, &(Z)) Tf 

Ti (S axK(z) Tf 

As before, 



and from (54), 
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s,(t) = 
s 

Tf a+, X,(z)) 

Ti w4 {J; hk ygil Pr 94(t) MY) dv I > 

x bm - &)I k* (56) 

Letting K -+ 00, we obtain 

Tf 
b(t) = ss dy dz ask ‘(‘)) h( 

E(z) 2, y) K (t y)[r (z) a 9 9 - g(z)] 9 Ti < t < T,, 
Tf 

where rg(z) and g(z) were defined in (32) and (33) [replace B(U) by j?(u)]. 
Equation 57 is similar in form to the no-memory equation (31). If we care 
to, we can make it identical by performing the integration with respect to 
y in (57) 

s 

Tf 

Nz9 Y) Ka(t9 Y) dY n ha(z9 t, (58) 
Ti 

so that 

6(t) = s Tf & “(‘9 ‘(‘>) 

Ti az(z) ha(z9 t)(rg(z) - dz)) dz9 Ti < t < Tf. (59) 

Thus the block diagram we use to represent the equation is identical in 
structure to the no-memory diagram given in Fig. 5.8. This similarity in 
structure will prove to be useful as we proceed in our study of modulation 
systems. 

w, ml 
&.(t, ~ 

T ’ Signal x”(t) 

/ generator * T = 
. &I..\ 

i+ W, u) 
J i?(t) 

s( t, x( VI 

Fig. 5.8 A block diagram. 
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Fig. 5.9 Filter interpretation. 

An interesting interpretation of the filter h&z, t) can be made for the 
case in which Ti = -00, Tf = oo, h(z, y) is time-invariant, and a(t) is 
stationary. Then 

s 

al 
h,(z, t) = h(z - y) K,(t - Y) dY = Mu - 0 

-m 
(60) 

We see that h,(z - t) is a cascade of two filters, as shown in Fig. 5.9. The 
first has an impulse response corresponding to that of the filter in the 
modulator reversed in time. This is familiar in the context of a matched 
filter. The second filter is the correlation function. 

A final question of interest with respect to modulation systems with 
memory is: Does 

w = 2(t)? (61) 

In other words, is a linear operation on a MAP estimate of a continuous 
random process equal to the MAP estimate of the output of the linear 
operation? We shall prove that (61) is true for the case we have just 
studied. More general cases follow easily. From (53) we have 

Z(7) = s Tf 

h(7, t) t.?(t) dt. 
Ti 

Substituting (57) into (62), we obtain 

Tf 

X 
ss 

w, 0 e, y) Kdt, J-9 dt dY dz 

Ti 1 

(62) 

(63) 
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We now want to write the integral equation that specifies R(7) and 
compare it with the right-hand side of (63). The desired equation is identical 
to (31), with a(t) replaced by x(t>. Thus 

We see that X(r) = g(7) if 

Tf 

ss 

&, t) h(,z, y) K&t, y) dt d.y = Kx(7, z>, Ti < 7, z < Tf; (65) 
Ti 

but 

Kk, 4 n E[m @>I = E[lTf &-9 0 a(t) dt s” &, Y> a(Y) dY] 
Ti Ti 

Tf 

which is the desired result. Thus we see that the operations of maximum 
a posteriori interval estimation and linear filtering commute. This result 
is one that we might have anticipated from the analogous results in Chapter 
4 for parameter estimation. 

We can now proceed with our study of the characteristics of MAP 
estimates of waveforms and the structure of the optimum estimators. 

The important results of this section are contained in (31), (38), and (57). 
An alternate derivation of these equations with a variational approach is 
given in Problem 5.2.1. 

5.3 A LOWER BOUND ON THE MEAN-SQUARE ESTIMATION ERROR? 

In our work with estimating finite sets of variables we found that an 
extremely useful result was the lower bound on the mean-square error 
that any estimate could have. We shall see that in waveform estimation 
such a bound is equally useful. In this section we derive a lower bound on 
the mean-square error that any estimate of a random process can have. 

First, define the error waveform 

and 
40 = a(t) - b(t) (67) 

1 

s 

Tf 
eI = - Tf - Ti [ (9 

1 
a T i 

- d(t)]” dt = T 
s 

Tf 
G”(t) & (68) 

Ti 

“f This section is based on Van Trees [7]. 
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where T n Tf - Ti. The subscript I emphasizes that we are making an 
interval estimate. Now el is a random variable. We are concerned with its 
expectation, 

- 6,) ++(t) dt . (69) 
j=l 

Using the orthogonality of the eigenfunctions, we have 

&T = $ E(ar - ii)2. 
f=l 

We want to find a lower bound on the sum on the right-hand side. 
We first consider the sum 25 1 E(q - 8i)2 and then let K-+ 00. The 
problem of bounding the mean-square error in estimating K random 
variables is familiar to us from Chapter 4. 

From Chapter 4 we know that the first step is to find the information 
matrix JT, where 

JT = JD + JP, VW 

and 

J Dfj = -Er”;2;x)]9 (W 

After finding JT, we invert it to obtain JT-l. Throughout the rest of this 
chapter we shall always be interested in JT so we suppress the subscript T 
for convenience. The expression for In A(A) is the vector analog to (4.217) 

Tf 

In A(A) = 
ss 

[r(t) - 3 s(t, A)1 QnCt, u) s(u, 4 dt du wa) 
Tt 

or, in terms of a,(t), 

Tf 

In A(a,(t)) = 
ss 

[r(t) - 3 s(t, a&))1 Qn<t, 4 s(u, a&>) dt da Pb) 
Ti 

From (19) and (20) 

lnp@) = 5 [ -$ - iln (2*)]. (724 
i=l i 

Adding (72b) and (72~) and differentiating with respect to At, we obtain 

aClnPa(A) + In &&)1 = 
w 

4 w, aK(t>) -- + s Tf dt MO 
pi Tf 

aa @) Qn(t, 4[+) - 4~ a&)1 c-k VW 
K 



Derivation 439 

Differentiating with respect to A, and including the minus signs, we have 

+ terms with zero expectation. (79 

Looking at (73), we see that an efficient estimate will exist only when the 
modulation is linear (see p. 84). 

To interpret the first term recall that 

Because we are using only K terms, we define 

The form of the first term in (73) suggests defining 

Qa& 4 = i$l i VW) VW), . = 
We observe that 

s Tf Qa,<t, 4 Kc&, 3 du = 3 #i(t) VW), Ti < t, z < - Tf . (77) 
Tf f=l 

Once again, Qa,(t, u) is an inverse kernel, but because the message a(t) 
does not contain a white noise component, the limit of the sum in (76) as 
K -+ a will not exist in general. Thus we must eliminate Q&t, u) from 
our solution before letting K -+ 00. Observe that we may write the first 
term as 

8 ii = tcr Qa,(t, U) h(t) #i(u) dt du, Tf 
so that if we define 

&(I, u> A Qa& U) + E as(t, aK(t 1) Q  

aaK(t) n 

(t, u) as(u9 aK(u)) 

aaK(u) I 

we can write the elements of the J matrix as 

T f 

Jij = 
ss 

JK(t, U)#i(t)#j(U)dt dU, i,j = 1, 2, l l '3 K 

Ti. 

(78) 

(79) 

(80) 
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Now we find the inverse matrix J - l. We can show (see Problem 5.3.6) that 

Tf 

Jii = 

ss 

JK - ‘(4 4 VW) 9$(u) dt dz4 uw 
Tt 

where the function JK -‘(t, u) satisfies the equation 

s Tf 

T Jz?(t, $JK(% z> dl2 = 2 VW> Ma. 
i i= 1 

(82) 

(Recall that the superscript ij denotes an element in J-l.) We now want 
a 

to put (82) into a more usable form 
If we denote the derivative of 

4~~9 a,(t>), then 

Similarly 

s(t, a&t)) with respect to aK(t) as 

E as& a(t)) as(u, a(u)) 
W) W) 1 = E[d,(t, a(t)) d&, a(u))1 A && 4. (8W 

Therefore 
J& 7 z> 4 Qa& 4 + R&u, z> Qn<u, 4. (84) 

Substituting (84) into (82), multiplying by K&z, x), integrating with 
respect to z, and letting K -+ CD, we obtain the following integral equation 
for J-l@, x), 

J-‘(t, x) + 
Tf 

s s 
du 

Tf 

dz J- ‘(t, u) R&G 4 Q&-G 4 KG, 4 
Ti Ti (85) 

= KS4 x>, Ti < t, x 5 Tfe 

From (2.292) we know that the diagonal elements of J-l are lower bounds 
on the mean-square errors. Thus 

EK ai - Q2] 2 Jii. wa) 

Using (81) in (86a) and the result in (70), we have 

or, using (3.128), 

(87) 
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Therefore to evaluate the lower bound we must solve (85) for J-‘(t, x) 
and evaluate its trace. By analogy with the classical case, we refer to 
J(t, x) as the information kernel. 

We now want to interpret (85). First consider the case in which there is 
only a white noise component so that, 

Qn(t, u) = $ 8(t - u>. (88) 
0 

Then (85) becomes 

J-‘(t, x) + 
s 

Tf 
du N 2 J-l@, u) R&G u) K,(u, x) = &(t, x), 

Ti 0 

Ti < t, x < Tf. (89) 

The succeeding work will be simplified if R&t, t) is a constant. A sufficient, 
but not necessary, condition for this to be true is that d,(t, a(t)) be a 
sample function from a stationary process. We frequently encounter 
estimation problems in which we can approximate R&t, t) with a constant 
without requiring d,(t, a(t)) to be stationary. A case of this type arises 
when the transmitted signal is a bandpass waveform having a spectrum 
centered around a carrier frequency 0,; for example, in PM, 

s(t, a(t)) = ICP sin [w,t + pa(t)]. (90) 
Then 

d,(t, 40) = aa@) ‘@’ a(t)) = 1/P/3 cos [wet + /3 a(t)] 

and 
&,(t, u) = /32P&{cos [q(t - u) + 18 a(t) - fl a(u)] 

+ cos [q(t + u) + /3 a(t) + /3 a(u)]}. (92) 

Letting u = t, we observe that 

R&t, t) = p2P(1 + &{cos [h,t + 33 a(t)]}). (93) 

We assume that the frequencies contained in a(t) are low relative to w,. 
To develop the approximation we fix t in (89). Then (89) can be represented 
as the linear time-varying system shown in Fig. 5.10. The input is a 
function of u, J-‘(t, u). Because &(u, X) corresponds to a low-pass filter 
and K&t, x), a low-pass function, we see that J-‘(t, X) must be low-pass 
and the double-frequency term in R&u, u) may be neglected. Thus we 
can make the approximation 

Rd,(t, t) N /12P N, Rzs(0) (94) 

to solve the integral equation. The function Rzs(0) is simply the stationary 
component of Rd,(t, t). In this example it is the low-frequency component. 
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Fig. 5.10 Linear system interpretation. 

(Note that RZJO) = R&O) when d,(t, a(t)) is stationary.) For the cases in 
which (94) is valid, (89) becomes 

2R,*,(O) Tf 
J-Q x) + 7 

s 
du J-‘(t, u) K,(u, x) = K&t, x), 

0 Ti (95) 
Ti < t, x 5 T,, 

which is an integral equation whose solution is the desired function. From 
the mathematical viewpoint, (95) is an adequate final result. 

We can, however, obtain a very useful physical interpretation of our 
result by observing that (95) is familiar in a different context. Recall the 
following linear filter problem (see Chapter 3, p. 198). 

49 = 40 + n&h Ti < t < T,, w9 

where a(t) is the same as our message and nl(t) is a sample function from 
a white noise process (N,/2, double-sided). We want to design a linear 
filter h(t, X) whose output is the estimate of a(t) which minimizes the 
mean-square error. This is the problem that we solved in Chapter 3. The 
equation that specifies the filter h,(t, X) is 

$ h,(t, x) + s Tf h,(t, u) K,(u, x) du = Kz(t, x>, Ti < t, x 5 T,, (97) 
Ti 

where IVJ2 is the height of the white noise. We see that if we let 

then 

J-‘09 4 = 2R,*,o w, x>. 

(98) 

(99 
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The error in the linear filtering problem is 

6 
1 

s 
=f Nl 1 

I =:- 

T =t 
2 h&c, x) dx = T 

s 
Tf 

J- l(x, x) dx, 
=i 

uw 
Our bound for the nonlinear modulation problem corresponds to the 
mean-square error in the linear filter problem except that the noise level 
is reduced by a factor RZJO). 

The quantity RfS(0) may be greater or less than one. We shall see in 
Examples 1 and 2 that in the case of linear modulation we can increase 
R, s (0) only by increasing the transmitted power. In Example 3 we shall see 
that in a nonlinear modulation scheme such as phase modulation we can 
increase Rzs(0) by increasing the modulation index. This result corresponds 
to the familiar PM improvement. 

It is easy to show a similar interpretation for colored noise. First 
define an effective noise whose inverse kernel is, 

Qn&, u> = R& u) Q&, ub 

Its covariance function satisfies the equation 

s Tf K&, u) Qne(U, 3 du = s(t - z), T* < t, z < T-f. 
=i 

Then we can show that 

J-‘(u, z) = s =f 
K&9 x) kix, 4 d% Tr < u, z < T, 

=i 

where h&, z) is the solution to, 

s Tf [I& t) + K,&, t)] h,(t, 2) dt = K,(x, z>, T 2 x, 2 s Tf =i 
This is the colored noise analog to (95). 

Two special but important cases lead to simpler expressions. 

Case 1. J-‘(t, u) = J-l(t - u). Observe that when J-‘(t, U) is a function 
only of the difference of its two arguments 

J-‘(t, t) = J- ‘(t - t) = J-l(O). (105) 

Then (87) becomes, 
& > J-‘(O). ww 

If we define 

then 

‘J-l(w) = Ia J-l(T)ewiwt dr, (107) --oo 



5.3 Lower Bound on the Mean-Square Estimation Error 

A further simplification develops when the observation interval includes 
the infinite past and future. 

Case 2. Stationary Processes, Infinite Interval.? Here, we assume 

Ti = -00, 

Tf = 00, 

&(t, u) = &(t - u), 

K,(t, u) = Kn(t - U), 

Then 
J-‘(t, u) = J- ‘(t - u). 

The transform of J(T) is 

a(w) = Ia J(T)e-jwT dn 
-03 

Then, from (82) and (89, 

p(o) = & = [& + sd,bm&jj-l 
(where @I denotes convolution/) and the resulting error is 

(I 19 

(116) 

Several simple examples illustrate the application of the bound. 

Example 1. We assume that Case 2 applies. In addition, we assume that 

s(t, a(t)) = a(t). (118) 

Because the modulation is linear, an efficient estimate exists. There is no carrier so 
as(t, a(t))/aa(t) = 1 and 

sd,h) = 2&(w). (11% 

Substituting into (117), we obtain 

The expression on the right-hand side of (120) will turn out to be the minimum mean- 
square error with an unrealizable linear filter (Chapter 6). Thus, as we would expect, 
the eficient estimate is obtained by processing r(t) with a linear filter. 

A second example is linear modulation onto a sinusoid. 

Example 2. We assume that Case 2 applies and that the carrier is amplitude- 
modulated by the message, 

s(t, a(t)) = 1/2Pa(t) sin WC?, (121) 

t See footnote on p. 432 and Problem 5.3.3. 
$ We include 1/2~ in the convolution operation when w is the variable. 



where a(t) is low-pass compared with w,. The derivative is, 

w, act )I - = d2p sin w,t. 
wt 1 (122) 

For simplicity, we assume that the noise has a flat 
much larger than that of a(t). It follows easily that 

spectrum bandwidth is 

uw) dw 
” = /:a 1 + S&J)(~P/NO) z’ (123) 

We can verify that an estimate with this error can be obtained by multiplying r(t) by 
1/2/p sin w,t and passing the output through the same linear filter as in Example 1. 
Thus once again an eficient estimate exists and is obtained by using a linear system 
at the receiver. 

Example 
that a(t) 

3. 
1s 

Consider a phase-modulated 
stationary. Thus 

sine wave in additive white noise. 

s(t, a(t)) = IBF sin [w,t + /3 a(t)], 

w, a(t)) -= aa CE/3 cos [o,t + /3 a(t)] (125) 
and 

Kn(t, u) = -7j- No 8(t-U). (126) 

Then, using (92), we see that 

R$(O) = Pp2. (127) 

* By analogy with Example 2 we have 

(128) 

In linear modulation the error was only a function of the spectrum of 
the message, the transmitted power and the white noise level. For a given 
spectrum and noise level the only way to decrease the mean-square error 
is to increase the transmitted power. In the nonlinear case we see that by 
increasing 18, the modulation index, we can decrease the bound on the 
mean-square error. We shall show that as pIA&, is increased the mean- 
square error of a MAP estimate approaches the bound given by (128). 
Thus the MAP estimate is asymptotically efficient. On the other hand, if /3 
is large and P/N0 is decreased, any estimation scheme will exhibit a 
“threshold.” At this point the estimation error will increase rapidly and 
the bound will no longer be useful. This result is directly analogous to that 
obtained for parameter estimation (Example 2, Section 4.2.3). We recall 
that if we tried to make /3 too large the result obtained by considering the 
local estimation problem was meaningless. In Chapter 11.2, in which we 
discuss nonlinear modulation in more detail, we shall see that an analogous 
phenomenon occurs. We shall also see that for large signal-to-noise ratios 
the mean-square error approaches the value given by the bound. 



5.4 Multidimensional Waveform Estimation 

The principal results of this section are (85), (95), and (97). The first 
equation specifies J-l@, x), the inverse of the information kernel. The 
trace of this inverse kernel provides a lower bound on the mean-square 
interval error in continuous waveform estimation. This is a generalization 
of the classical Cramer-Rao inequality to random processes. The second 
equation is a special case of (85) which is valid when the additive noise is 
white and the component of d,(t, a(t)) which affects the integral equation 
is stationary. The third equation (97) shows how the bound on the mean- 
square interval estimation error in a nonlinear system is identical to the 
actual mean-square interval estimation error in a linear system whose 
white noise level is divided by RZJO). 

In our discussion of detection and estimation we saw that the receiver 
often had to process multiple inputs. Similar situations arise in the wave- 
form estimation problem. 

MULTIDIMENSIONAL WAVEFORM ESTIMATION 

In Section 4.5 we extended the detection problem to 1M received signals. 
In Problem 4.5.4 of Chapter 4 it was demonstrated that an analogous 
extension could be obtained for linear and nonlinear estimation of a single 
parameter. In Problem 4.6.7 of Chapter 4 a similar extension was obtained 
for multiple parameters. In this section we shall estimate N continuous 
messages by using M received waveforms. As we would expect, the deriva- 
tion is a simple combination of those in Problems 4.6.7 and Section 5.2. 

It is worthwhile to point out that all one-dimensional concepts carry 
over directly to the multidimensional case. We can almost guess the form of 
the particular results. Thus most of the interest in the multidimensional 
case is based on the solution of these equations for actual physical 
problems. It turns out that many issues not encountered in the scalar case 
must be examined. We shall study these issues and their implications in 
detail in Chapter 11.5. For the present we simply derive the equations 
that specify the MAP estimates and indicate a bound on the mean-square 
errors. 

Before deriving these equations, we shall find it useful to discuss several 
physical situations in which this kind of problem occurs. 

54.1 Examples of Multidimensional Problems 

Case 1. Multilevel Modulation Systems. In many communication systems 
a number of messages must be transmitted simultaneously. In one common 
method we perform the modulation in two steps. First, each of the 
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Fig. 5.11 An FM/FM system. 

messages is modulated onto individual subcarriers. The modulated sub- 
carriers are then summed and the result is modulated onto a main carrier 
and transmitted. A typical system is the FM/FM system shown in Fig. 5.11, 
in which each message a,(t), (i = 1, 2, . . . , N), is frequency-modulated 
onto a sine wave of frequency oi. The ui are chosen so that the modulated 
subcarriers are in disjoint frequency bands. The modulated subcarriers are 
amplified, summed and the result is frequency-modulated onto a main 
carrier and transmitted. 

Notationally, it is convenient to denote the IV messages by a column 
matrix, al(T) a(7) n a&) [ 1 . . (129 . . aAm 
Using this notation, the transmitted signal is 

s(t, a(7)) = d2p sin [,,t + df, j:* z(u) du], W)i= 
where 

z(u) = 5 16 gj sin o u + 
j = 1 

[ i (131) 

t The notation s(t, a(7)) is an abbreviation for s(t; a(T), Ti 5 T s t). The second 
variable emphasizes that the modulation process has memory. 
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The channel adds noise to the transmitted signal so that the received 
waveform is 

r(t) = s(t, a(+) + n(t). (132) 

Here we want to estimate the N messages simultaneously. Because there 
are N messages and one received waveform, we refer to this as an N x l- 
dimensional problem. 

FM/FM is typical of many possible multilevel modulation systems such 
as SSB/FM, AM/FM, and PM/PM. The possible combinations are 
essentially unlimited. A discussion of schemes currently in use is available 
in [8]. 

Case 2. Multiple-Channel Systems. In Section 4.5 we discussed the use of 
diversity systems for digital communication systems. Similar systems can 
be used for analog communication. Figure 5.12 in which the message a(t) 
is frequency-modulated onto a set of carriers at different frequencies is 
typical. The modulated signals are transmitted over separate channels, 
each of which attenuates the signal and adds noise. We see that there are 
IM received waveforms, 

where 
ri(t) = Si(t, a(7)) + n,(t), (i = 1, 29 l l l 7 M ) ,  

(133) 

Si(t, a(T)) = gi dz sin W t + d ( c ft 5:, wg. (134) 

Once again matrix notation is convenient. We define 

1 1 

> Frequency * 
modulator 

. -1 sin (wit + dfl j. a(r) dr) 
i Attenuator 

. 

. 

I . 
nM(t) 1 

* GM sin(uMt + dfM s, a(T)dT) 
- Frequency , i 

modulator 

Attenuator 

Fig. 5.12 Multiple channel system. 
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Receiving 
array 

Fig. 5.13 A space-time system. 

and 

n(t) = 

Then 

(136) 

r(t) = s(t, 44) + n(t). (137) 
Here there is one message a(t) to estimate and M waveforms are available 
to perform the estimation. We refer to this as a 1 x M-dimensional 
problem. The system we have shown is a frequency diversity system. 
Other obvious forms of diversity are space and polarization diversity. 

A physical problem that is essentially a diversity system is discussed in 
the next case. 

Case 3. A Space-Time System. In many sonar and radar problems the 
receiving system consists of an array of elements (Fig. 5.13). The received 
signal at the ith element consists of a signal component, si(t, a(~)), an 
external noise term nEi(t), and a term due to the noise in the receiver 
element, nRi(t). Thus the total received signal at the ith element is 

ri(t) = sitt, a(7)) + nR*tt) + n&t)* (138) 
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We define 

We see that this is simply a different physical situation in which we have 
A4 waveforms available to estimate a single message. Thus once again we 
have a 1 x M-dimension problem. 

Case 4. IV x M-Dimensional Problems. If we take any of the multilevel 
modulation schemes of Case 1 and transmit them over a diversity channel, 
it is clear that we will have an N x M-dimensional estimation problem. 
In this case the ith received signal, ri(t), has a component that depends on 
N messages, q(t), (j = 1,2, . . . , N). Thus 

rfw = q(t, a(7)) + q(t), i = 1, 2, . . ., M. W) 

In matrix notation 
r(t) = s(t, a(+) + n(t). (141) 

These cases serve to illustrate the types of physical situations in which 
multidimensional estimation problems appear. We now formulate the 
model in general terms. 

5.4.2 Problem Formulation-t 

Our first assumption is that the messages q(t), (i = 1, 2, . . . , N), are 
sample functions from continuous, jointly Gaussian random processes. 
It is convenient to denote this set of processes by a single vector process 
a(t). (As before, we use the term vector and column matrix interchange- 
ably.) We assume that the vector process has a zero mean. Thus it is 
completely characterized by an N x N covariance matrix, 

Ku1 a1 ( t ,  4 i Ku1 a@J (4 f4 ;  l l l :  Ku1 a,(4 4 

I  I  

I  I  I  

- - - - - - - - - - - - - - - - - - - - - - - .  I s . - . - . - . - . -  -  - . -  - . - .  

.  .  

= 
.  .  

.  l . (142) 
--.---------* c---------- 

K,,&,u) ;  l * *  i &z&9 u) 

I  I  

Thus the ijth element represents the cross-covariance function between 
the ith and jth messages. 

The transmitted signal can be represented as a vector s(t, a(7)). This 
vector signal is deterministic in the sense that if a particular vector sample 

t The multidimensional problem for no-memory 
channels was first done in [9]. (See also [lo].) 

signaling schemes and additive 
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function a(+ is given, s(t, a(r)) will be uniquely determined. The trans- 
mitted signal is corrupted by an additive Gaussian noise n(t). The signal 
available to the receiver is an M-dimensional vector signal r(t), 

r(t) = a, a(7)) + n(t), - Ti < t d Tf, (143) 

[~~]=ffffJ+[~~jy TirtSTf. (144) 

The general model is shown in Fig. 5.14. 
We assume that the M noise waveforms are sample functions from 

zero-mean jointly Gaussian random processes and that the messages and 
noises are statistically independent. (Dependent messages and noises can 
easily be included, cf. Problem 5.4.1.) We denote the M noises by a vector 
noise process n(t) which is completely characterized by an M x M 
covariance matrix K,( t, u). 

5.4.3 Derivation of Estimator Equations. 

We now derive the equations for estimating a vector process. For 
simplicity we shall do only the no-memory modulation case here. Other 
cases are outlined in the problems. 

The received signal is 

r(t) = $4 a(O) + n(t), Ti ,< t s T,, (145) 

where s(t, a(t)) is obtained by a no-memory transformation on the vector 
a(t). We also assume that s(t, a(t)) is differentiable with respect to each a,(t). 

The first step is to expand a(t) in a vector orthogonal expansion. 

a(t) = 1.i.m. 2 a&(t), Ti < t < T,, (146) K-*a r=l 

n(t) 

Source + Transmitter : b Receiver 
, ad - r(t) 

Fig. 5.14 The vector estimation model. 
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or 

a@) = 1.i.m. 5 4 #‘(t), 
K+* ,+=I 

Ti < t s T,, (147) 

where the&(t) are the vector eigenfunctions corresponding to the integral 
equation 

This expansion was developed in detail in Section 3.7. Then we find 8, 
and define 

ii(t) = 1.i.m. 2 ti,+r(t). 
K+* ,-=I (149) 

We have, however, already solved the problem of estimating a parameter 
a,. By analogy to (72d) we have 

3 [In A(A) + In pa (A)] = 
a s 

Tf tW(z, a(z)) 4 
af% 

Mz> - 9m dz - -’ 
Ti Pr 

( r = 1,2,. 
where 

l 3, (150) 

and 

b(z) 4 
s 

Tf Q&, 4 r(u) VIA (151) 
Ti 

g(z) 4 ITf Q&, 4 s(u, a(u)) dz~ (152) 
Ti 

The left matrix in the integral in (I 50) is 

The first element in the matrix can be written as 

am a(O) 
aA, = 

%(4 a(t)) #l'(t) + wt, a(t)) $2’(t) + 

%(t> r aa, ’ l *’ 

(153) 

Looking at the other elements, we see that if we define a derivative 
matrix 

w4 a(O) 4 Va(t,{S’(t, a(t)>) = 

‘as,@, a(t)) : : %4(t, a(t)> 

aa, j* ’ l j %O> 
-------w---’ I -_--------- 

. . . . . . . . . (155) 
_---------- I 
&,(t, a(t)) [. j -&$j(ti, 

- aa, : l l / k,(t) I 
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we may write 

so that 

a [In A(A) + ln p,(A)1 
w 

4 -. 
Pr (157) 

Equating the right-hand side to zero, we obtain a necessary condition on 
the MAP estimate of A,. Thus 

4 = Pr s Tf 

4JrT(z> WY wm,(z) - &)I &* T 
i 

Substituting (158) into (149), we obtain 

(158) 

ii(t) = 

Tf *  

s b 
PrWNrT(Z) DC? W)M4 - &)I dz (159) 

Ti r=l I 

We recognize the term in the bracket as the covariance matrix. Thus 

As we would expect, the form of these equations is directly analogous 
to the one-dimensional case. 

The next step is to find a lower bound on the mean-square error in 
estimating a vector random process. 

5.4.4 Lower Bound on the Error Matrix 

In the multidimensional case we are concerned with estimating the 
vector a(t). We can define an error vector 

ii(t) - a(t) = at(t), (161) 

which consists of N elements: q,(t), a&t), . . . , a,,(t). We want to find 
the error correlation matrix. 

Now, 

i(t) - a(t) = 5 (cii - 4 +itt> a 2 Gt +iCt>* (162) 
i= 1 i= 1 

Then, using the same approach as in Section 5.3, (68), 
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We can lower bound the error matrix by a bound matrix RB in the sense 
that the matrix R,, - R, is nonnegative definite. The diagonal terms in 
RB represent lower bounds on the mean-square error in estimating the 
a&). Proceeding in a manner analogous to the one-dimensional case, we 
obtain 

RB = + 
s 

Tf 
J- ‘(t, t> dt. (164) 

Tf 

The kernel J- ‘(t, X) is the inverse of the information matrix kernel J(t, X) 
and is defined by the matrix integral equation 

J-‘(t,x) + 
Tf 

1 $ 
du T’ & J - ‘(t, 4fEP(u, $4) Qnh 2) DT@, N~WL(z, x> 

Ti Tf 
= Jut, 4, Ti 1< t, SC < - T/ . (165) 

The derivation of (164) and (165) is quite tedious and does not add 
any insight to the problem. Therefore we omit it. The details are contained 
in 1111. 

As a final topic in our current discussion of multiple waveform estima- 
tion we develop an interesting interpretation of nonlinear estimation in the 
presence of noise that contains both a colored component and a white 
component. 

5.4.5 Colored Noise Estimation 

Consider the following problem : 

r(t) = dt, a(t)> + w(t) + n&)9 Ti < t < Tf - . (166) 

Here w(t) is a white noise component (&/2, spectral height) and nc(t) is 
an independent colored noise component with covariance function 
&(t, u). Then 

No K,(t, 24) = 2 s(t - 24) + &(t, 24). (167) 

The MAP estimate of a(t) can be found from (31), (32), and (33) 

d(t) = s Tf w, 44) 
Kz(t, u) &qu) k&4 - g(u)1 du, Ti < t < T,, (168) 

Tf 
where 

r(t) - s(t, b(t)) = 
s 

Tf 
ut, u)Mu) - g(u)1 du9 Ti s t < T/. (169) 

Tf 

Substituting (167) into (169), we obtain 
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We now want to demonstrate that the same estimate, d(t), is obtained 
if we estimate a(t) and n,(t) jointly. In this case 

and 

a(t) A 
40 [ 1 new 

(171) 

Because we are including the colored noise in the message vector, the 
only additive noise is the white component 

No 
Kn(t, 24) = 2 qt - 24). 

To use (160) we need the derivative matrix w, 40~ D(t, a(t)) = [ 1 aa . 
1 

(173) 

Substituting into (160), we obtain two scalar equations, 

A,(t) = s Tf 2 
- K&t, u)[r(u) - s(u, B(u)) - ri,(u)] du, 

Ti NO 
q 5 t < Tf. 

(176) 

Looking at (168), (170), and (175), we see that d(t) will be the same in 
both cases if 

s ; + [Y(U) - s(u, d(u)) - A.(@][+ 8(t - 24) + K,(t, +h 
0 

= r(t) - s(t, b(t)); (177) 
but (177) is identical to (176). 

This leads to the following conclusion. Whenever there are independent 
white and colored noise components, we may always consider the colored 
noise as a message and jointly estimate it. The reason for this result is that 
the message and colored noise are independent and the noise enters into 
r(t) in a linear manner. Thus the N x 1 vector white noise problem includes 
all scalar colored noise problems in which there is a white noise component. 

Before summarizing our results in this chapter we discuss the problem 
of estimating nonrandom waveforms briefly. 
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5.5 NONRANDOM WAVEFORM ESTIMATION 

It is sometimes unrealistic to consider the signal that we are trying to 
estimate as a random waveform. For example, we may know that each 
time a particular event occurs the transmitted message will have certain 
distinctive features. If the message is modeled as a sample function of a 
random process then, in the processing of designing the optimum receiver, 
we may average out the features that are important. Situations of this type 
arise in sonar and seismic classification problems. Here it is more useful 
to model the message as an unknown, but nonrandom, waveform. To 
design the optimum processor we extend the maximum-likelihood estima- 
tion procedure for nonrandom variables to the waveform case. An 
appropriate model for the received signal is 

r(t) = s(t, a(t)> + n(t 19 Ti ,< t 2 T,, (1W 
where n(t) is a zero-mean Gaussian process. 

To find the maximum-likelihood estimate, we write the In likelihood 
function and then choose the waveform a(t) which maximizes it. The In 
likelihood function is the limit of (72b) as K-+ 00. 

In A@(t)) = ” dt 
1 s 

Tf du s(t, 40) Qtdt, u)CW - 3 s(u, 44>1, (179) Ti Ti 
where QJt, U) is the inverse kernel of the noise. For arbitrary s(t, a(t)) 
the minimization of In A@(t)) is difficult. Fortunately, in the case of most 
interest to us the procedure is straightforward. This is the case in which 
the range of the function s(t, a(t)) includes all possible values of r(t). An 
important example in which this is true is 

r(t) = a(t) + n(t). uw 
An example in which it is not true is 

r(t) = sin (wet + a(t)) + n(t). uw 
Here all functions in the range of s(t, a(t)) have amplitudes less than one 
while the possible amplitudes of r(t) are not bounded. 

We confine our discussion to the case in which the range includes all 
possible values of r(t). A necessary condition to minimize In A@(t)) 
follows easily with variational techniques : 

for every Qt). A solution is 

because for every Y(U) there exists at least one a(u) that 
into it. There is n o guarantee, ho wever, that a un ique 

could have mapped 
inverse exists. Once 
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again we can obtain a useful answer by narrowing our discussion. 
Specifically, we shall consider the problem given by (180). Then 

Thus the maximum-likelihood estimate is simply the received waveform. 
It is an unbiased estimate of a(t). It is easy to demonstrate that the 
maximum-likelihood estimate is efficient. Its variance can be obtained 
from a generalization of the Cramer-Rao bound or by direct computation. 
Using the latter procedure, we obtain 

q2 n E - - a(t)]” dt 
> 

’ (185) 

It is frequently convenient to normalize the variance by the length of the 
interval. We denote this normalized variance (which is just the average 
mean-square estimation error) as crnr : 

- a(t)]” dt l 

Using (180) and (184), we have 

4‘ 
1 

s 

Tf 

ml = - 
T  Ti 

Kn(t, t) dt. 

(186) 

(187) 

Several observations follow easily. 
If the noise is white, the error is infinite. This is intuitively logical if we 

think of a series expansion of a(t). We are trying to estimate an infinite 
number of components and because we have assumed no a priori informa- 
tion about their contribution in making up the signal we weight them 
equally. Because the mean-square errors are equal on each component, the 
equal weighting leads to an infinite mean-square error. Therefore to make 
the problem meaningful we must assume that the noise has finite energy 
over any finite interval. This can be justified physically in at least two ways : 

1. The receiving elements (antenna, hydrophone, or seismometer) will 
have a finite bandwidth; 

2. If we assume that we know an approximate frequency band that 
contains the signal, we can insert a filter that passes these frequencies 
without distortion and rejects other frequencies.t 

t Up to this point we have argued that a white noise model had a good physical basis. 
The essential point of the argument was that if the noise was wideband compared with 
the bandwidth of the processors then we could consider it to be white. We tacitly 
assumed that the receiving elements mentioned in (1) had a much larger bandwidth 
than the signal processor. Now the mathematical model of the signal does not have 
enough structure and we must impose the bandwidth limitation to obtain meaningful 
results. 
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If the noise process is stationary, then 

r 1 
s 

Tf 
ml = - 

T  Ti 
K,(O) dt = K,(O) = 

s 
a s&* (188) 

--a, 

Our first reaction might be that such a crude procedure cannot be 
efficient. From the parameter estimation problem, however, we recall that 
a priori knowledge was not important when the measurement noise was 
small. The same result holds in the waveform case. We can illustrate this 
result with a simple example. 

Example. Let n’(t) be a white process with spectral height No/2 and assume that 
Tt = -q Tf = co. We know that a(t) does not have frequency components above 
W cps. We pass r(t) through a filter with unity gain from - W to + W and zero gain 
outside this band. The output is the message a(t) plus a noise n(t) which is a sample 
function from a flat bandlimited process. The ML estimate of a(t) is the output of 
this filter and 

6 ml = NOW. (189) 

Now suppose that a(t) is actually a sample function from a bandlimited random 
process (- W, W) and spectral height P. If we used a MAP or an MMSE estimate, 
it would be efficient and the error would be given by (120), 

6 k 
PNO W 

ms = map = -* P + No/2 (190) 

The normalized errors in the two cases are 

Now 6 - ml:n = P (191) 

!y1+!$ . ( ) 
-1 

I ms:n = !f map:n = (192) 

Thus the difference in the errors is negligible for No/2P < 0.1. 

We see that in this example both estimation procedures assumed a 
knowledge of the signal bandwidth to design the processor. The MAP and 
MMSE estimates, however, also required a knowledge of the spectral 
heights. Another basic difference in the two procedures is not brought out 
by the example because of the simple spectra that were chosen. The MAP 
and MMSE estimates are formed by attenuating the various frequencies, 

w4 
*“(bJ) = NC)/2 + S,(w)’ (193) 

Therefore, unless the message spectrum is uniform over a fixed bandwidth, 
the message will be distorted. This distortion is introduced to reduce the 
total mean-square error, which is the sum of message and noise distortion. 



Summary 459 

On the other hand, the ML estimator never introduces any message 
distortion; the error is due solely to the noise. (For this reason ML 
estimators are also referred to as distortionless filters.) 

In the sequel we concentrate on MAP estimation (an important excep- 
tion is Section 11.53); it is important to remember, however, that in many 
cases ML estimation serves a useful purpose (see Problem 55.2 for a 
further example.) 

5.6 SUMMARY 

In this chapter we formulated the problem of estimating a continuous 
waveform. The primary goal was to develop the equations that specify 
the estimates. 

In the case of a single random waveform the MAP estimate was specified 
by two equations, 

b(t) = s Tf 
w, 4 

wu, 44) 

as(u) 
l?,(u) - &)I du, T* 5 t < Tf, (194) 

Ti 

where [v,(u) - g(u)] was specified by the equation 

r(t) - s(t, d(t)) = Jcz(t3 u>Mu) - g(u)1 & Ti s t < T,. (195) 

For the special case of white noise this reduced to 

We then derived a bound on the mean-square error in terms of the 
trace of the information kernel, 

1 
Sr 2 - 

f 
Tf 

T Ti 

J-‘(t, t) dt. 

For white noise this had a particularly simple interpretation. 

where h,(t, U) satisfied the integral equation 

(197) 
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The function h,(t, U) was precisely the optimum processor for a related 
linear estimation problem. We showed that for linear modulation dmap(t) 
was efficient. For nonlinear modulation we shall find that d,,,(t) is 
asymptotically efficient. 

We then extended these results to the multidimensional case. The basic 
integral equations were logical extensions of those obtained in the scalar 
case. We also observed that a colored noise component could always be 
treated as an additional message and simultaneously estimated. 

Finally, we looked at the problem of estimating a nonrandom waveform. 
The result for the problem of interest was straightforward. A simple 
example demonstrated a case in which it was essentially as good as a 
MAP estimate. 

In subsequent chapters we shall study the estimator equations and the 
receiver structures that they suggest in detail. In Chapter 6 we study linear 
modulation and in Chapter X1.2, nonlinear modulation. 

5.7 PROBLEMS 

Section P5.2 Derivation of Equations 

Problem 5.2.1. If we approximate a(t) by a K-term approximation aK(t), the inverse 
kernel Qa,(t, u) is well-behaved. The logarithm of the likelihood function is 

Tf 

In A(a&t )) + In pa(A) = 
ss 

Mt, adO) Qdt, uM4 - Mu, a&))1 du 
Ti 

-3 /TaK(t) QJt, u) a&u) dt du + constant terms. 
Tt 

1. Use an approach analogous to that in Section 3.4.5 to find &(t) [i.e., let 
azdt) = &(t) + Ea,(t)l. 

2. Eliminate Q&, u) from the result and let K- 00 to get a final answer. 

Problem 5.2.2. Let 

w = & a(t)> + n(t), Ti 5 t I T/, 

where the processes are the same as in the text. Assume that 

EMt )I = m,(t). 

1. Find the integral equation specifyin 
2. Consider the special case in which 

.g d(t), the MAP estimate of a(t). 

s(t, a(t)) = a(t). 

Write the equations for this case. 
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Problem 5.2.3. Consider the case of the model in Section 5.2.1 in which 

1. What does this imply about 40. 
2. Verify that (33) reduces to a previous 

K&t, u> = fAz2, 0 5 t, u s T. 

result under this condition. 

Problem X2.4. Consider the amplitude modulation system shown in Fig. P5.1. The 
Gaussian processes a(t) and n(t) are stationary with spectra S,(W) and &(w), 
respectively. Let Ti = - 00 and Tf = 00. 

1. Draw a block diagram’ of the optimum receiver. 
2. Find E[ac2(t)] as a function of H(jw), S&J), and S,,(W). 

Fig. P5.1 

Problem 5.2.5. Consider the communication system shown in Fig. P5.2. Draw a 
block diagram of the optimum nonrealizable receiver to estimate a(t). Assume that 
a MAP interval estimate is required. 

w(t) 
(white) 

* 

a(t) 
> W, u) ’ 

xw > Non’inear fiA sin (act + x(t)) 
no-memory L ) w, 4 
modulator 

Linear 
network 

Fig. P5.2 

Linear 
time-varying 

channel 

Problem 5.2.6. Let 

40 = dt, a(t)) + n(t), -al < t < a, 

where a(t) and n(t) are sample functions from zero-mean independent stationary 
Gaussian processes. Use the integrated Fourier transform method to derive the 
infinite time analog of (31) to (33) in the text. 

Problem 5.2.7. In Chapter 4 (pp. 299-301 ) we derived the integral equation for the 
colored noise detection problem by using the idea of a sufficient statistic. Derive (3 1) 
to (33) by a suitable extension of this technique. 

Section P5.3 Lower Bounds 

Problem 5.3.1. In Chapter 2 we considered the case in which we wanted to estimate a 
linear function of the vector A, 

d 4 gd(A) = C&A, 
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and proved that if d” was unbiased then 

E [(d - d)2] r G&J- lG,= 

[see (2.287) and (2.288)]. A similar result can be derived for random variables. Use 
the random variable results to derive (87). 

Problem 5.3.2. Let 

r(t) = SO, a0 )) + n(t), Tt 5 t s Tf. 

Assume that we want to estimate a(T,). Can you modify the results of 
to derive a bound on the mean-square point estimation error ? 

Problem 5.3.1 

6~ a E([s(Tf) - a(T212>. 

What difficulties arise in nonlinear point estimation ? 

Problem 5.3.3. Let 

40 = SO, a(? 1) + n(t), -a3 < t < 00. 

The processes a(t) and n(t) are statistically independent, stationary, zero-mean, 
Gaussian random processes with spectra S&J) and S,,(O) respectively. Derive a 
bound on the mean-square estimation error by using the integrated Fourier transform 
approach. 

Problem 5.3.4. Let 

where 
r(t) = 44 x(t)) + 4t 1, Ti s t 5 T/, 

x(t) = 
s 

=f 
h(t, u) 44 du, Tf 5 t s T/, 

l-1 

and u(t) and n(t) are statistically independent, zero-mean Gaussian random processes. 

1. Derive a bound on the mean-square 
2. Consider the special case in which 

interval error in estimating a(t). 

and the processes are stationary. Verify 
error in terms of the various spectra. 

s(t, x(t)) = x(t), h(t, u) = h(t - u), Ti = -GO, Tf = 00, 

that the estimate is efficient and express the 

Problem 5.3.5. Explain why a necessary and sufficient condition for an efficient 
estimate to exist in the waveform estimation case is that the modulation be linear [see 
(WI. 

Problem 5.3.6. Prove the result given in (81) by starting with the definition of J- l 
and using (80) and (82). 

Section P5.4 Multidimensional Waveforms 

Problem 5.4.1. The received waveform is 

r(t) = SO, a(t)) + n(t), OstsT. 
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The message a(t) and the noise 
Gaussian random processes. 

Derive the integral equations that specify the MAP estimate 
matrix covariance function Kx(t, u) for the vector x(t), where 

n(t) are functions 

E[a(t ) n(u)1 a K&t, 4, 

EIM WI 4 2 8(t - u) + K,(t, u). 

zero-mean, jointly 

s(t). Hint. Write a 

Define an inverse matrix kernel, 

Write 
s 

T Qx(t, u) Kx(u, z) du = I s(t - 2). 
0 

In A(x(t)) = - +/I [e(t) I r(t) - SO, ~KWIQXO~ u) [ F$;‘- s(u 9 aKcujJ dt du9 
0 

- 3; fjk) Qx.az(t, 4 44 dt du 
0 

-3 /]a,(r) Q&, u)aK(u) dt du. 

0 

Use the variational approach of Problem 5.2.1. 

Problem 5.4.2. Let 

40 = SO, 4th B) + 4th Tt 5 t ,( T/, 

where a(t) and n(t) are statistically independent, zero-mean, Gaussian random 
processes. The vector B is Gaussian, N(0, As), and is independent of a(t) and n(t). 
Find an equation that specifies the joint MAP estimates of a(t) and B. 

Problem 5.4.3. In a PM/PM scheme the messages are phase-modulated onto sub- 
carriers and added : 

z(t) = 5 45 gj sin [wjt + flj aj(t)]. 
j=l 

The sum z(t) is then phase-modulated onto a main carrier. 

s(t, a(t)) = 42p sin [w,t + p&t)]. 

The received signal is 

40 = 4t, a(t)) + w(t), -0ooottm. 

The messages ai are statistically independent with spectrum S,(w). The noise is 
independent of a(t) and is white (No/2). Find the integral equation that specifies ii(t) 
and draw the block diagram of an unreali .zable receiver. Simplify the diagram by 
exploiting the frequency difference between the messages and the carriers. 
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Problem 5.4.4. Let 

where a(t) and n(t) are 
and S&4, respectively. 

r(t) = a(t) + n(t), 

.dependent Gaussian processes with spectral matrices S&J) 

-a<t<m, 

1. Write (151), (152), and (160) in the frequency domain, using integrated trans- 
forms. 

2. Verify that s[Q&)] = S/(U). 
3. Draw a block diagram of the optimum receiver. Reduce it to a single matrix 

filter. 
4. Derive the frequency domain analogs to (164) and (165) and use them to write 

an error expression for this case. 
5. Verify that exactly the same results (parts 1, 3, and 4) can be obtained heuristi- 

ca& by using ordinary Fourier transforms. 

Problem 5.4.5. Let 

r(t) = 
s 

* h(t - 7) a(T) dr + n(t), -00 < t < 00, 
--oo 

where h(7) is a matrix filter with one input and N outputs. Repeat Problem 5.4.4. 

Problem 5.4.6. Consider a simple five-element linear array with uniform spacing A. 
(Fig. P5.3). The message is a plane wave whose angle of arrival is 8 and velocity of 
propagation is c. The output at the first element is 

r1w = 40 + n&h 

The output at the second element is 

r2w = a(t - rA) + n20, 

-al < t < 00. 

-cQ<t<GO, 

where 74 = A sin e/c. The other outputs follow in an obvi .ous manner. The 
are statistically independent and white (N0/2). The message spectrum is S,(w). 

1. Show that this is a special case of Problem 5.4.5. 
2. Give an intuitive interpretation of the optimum processor. 
3. Write an expression for the minimum mean-square interval estimation error. 

41 = E[a,2(t)]. 

05 
Fig. P5.3 
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Problem 5.4.7. Consider a zero-mean stationary Gaussian random process a(t) with 
covariance function I&(T). We observe a(t) in the interval (Tr, T,) and want to estimate 
a(t) in the interval (T,, TJ, where To > Tf. 

1. Find the integral equation specifyi 
2. Consider the special case in which 

Verify that 
K&T) = a,2e-k1z1, -co < 7 < co. 

&a,(tl) = a(Tf)ewk$ -Tf) for Ta 5 tl 5 Ta. 

Hint. Modify the procedure in Problem 54.1. 

Section P5.5 Nonrandom Waveforms 

Problem 5.5.1. Let 

r(t) = x(t) + n(t), -co<t<Go, 

where n(t) is a stationary, zero-mean, Gaussian process with spectral matrix Sri(w) 
and x(t) is a vector signal with finite energy. Denote the vector integrated Fourier 
transforms of the function as Z,(W), Z,(W), and Z,(W), respectively [see (2.222) and 
(2.223)J. Denote the Fourier transform of x(t) as X(jw). 

1. Write In A(x(t)) in terms of these quantities. 
2. Find %,&). 
3. Derive %,,(j~) heuristically using ordinary Fourier transforms for the processes. 

Problem 5.5.2. Let 

r(t) = s co h(t - 7) a(7) dr + n(t), - 
--co 

al < t < Go, 

where h(7) is the impulse response 
and transfer function H(jw). 

of a matrix filter with one input and N outputs 

1. Modify the results of Problem 5.51 to include this case. 
2. Find d&t). 
3. Verify that d,,(t) is unbiased. 
4. Evaluate Var [t&(t) - a(t)]. 
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