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Linear Es tima tion 

In this chapter we shall study the linear estimation problem in detail. 
We recall from our work in Chapter 5 that in the linear modulation 
problem the received signal was given by 

40 = c(t> a(t) + co(t) + n(t), Ti < t < T,, (1) 

where a(t) was the message, c(t) was a deterministic carrier, co(t) was a 
residual carrier component, and n(t) was the additive noise. As we pointed 
out in Chapter 5, the effect of the residual carrier is not important in our 
logical development. Therefore we can assume that co(t) equals zero for 
algebraic simplicity. 

A more general form of linear modulation was obtained by passing a(t) 
through a linear filter to obtain x(t) and then modulating c(t) with x(t). 
In this case 

r(t) = 40 x(0 + 40, Ti < t < Tf. (2) 
In Chapter 5 we defined linear modulation in terms of the derivative of the 
signal with respect to the message. An equivalent definition is the following: 

Definition. The modulated signal is s(t, a(t)). Denote the component of 
s(t, a(t)) that does not depend on a(t) as co(t). If the signal [s(t, a(t)) - co(t)] 
obeys superposition, then s(t, a(t)) is a linear modulation system. 

We considered the problem of finding the maximum a posteriori 
probability (MAP) estimate of a(t) over the interval Tr < t < T,. In the 
case described by (1) the estimate s(t) was specified by two integral 
equations 
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6.1 Properties of Optimum Processors 

and 40 - c(t) b(t) = s Tf Klk u)bAu) - g(u)1 du, Ti s t < T/ - . (4) 
T, 

We shall study the solution of these equations and the properties of the 
resulting processors. Up to this point we have considered only inter& 
estimation. In this chapter we also consider point estimators and show the 
relationship between the two types of estimators. 

In Section 6.1 we develop some of the properties that result when we 
impose the linear modulation restriction. We shall explore the relation 
between the Gaussian assumption, the linear modulation assumption, the 
error criterion, and the structure of the resulting processor. In Section 6.2 
we consider the special case in which the infinite past is available (i.e., 
Ti = -oo), the processes of concern are stationary, and we want to make 
a minimum mean-square error point estimate. A constructive solution 
technique is obtained and its properties are discussed. In Section 6.3 we 
explore a different approach to point estimation. The result is a solution 
for the processor in terms of a feedback system. In Sections 6.2 and 6.3 we 
emphasize the case in which c(t) is a constant. In Section 6.4 we look at 
conventional linear modulation systems such as amplitude modulation 
and single sideband. In the last two sections we summarize our results 
and comment on some related problems. 

PROPERTIES OF OPTIMUM PROCESSORS 

As suggested in the introduction, when we restrict our attention to 
linear modulation, certain simplifications are possible that were not 
possible in the general nonlinear modulation case. 

The most important of these simplifications is contained in Property 1. 

Property 1. The MAP interval estimate ci(t) over the interval Ti < t < T,, 
where 

r(t) = c(t) a(t) + n(t), Ti ,< t < T,, (5) 
is the received signal, can be obtained by using a linear processor. 

Proof. A simple way to demonstrate that a linear processor can generate 
b(t) is to find an impulse response h,(t, u) such that 

i(t) = hl(t, 4 4u) du, Ti 5 t < Tf. 0 

First, we multiply (3) by c(t) and add the result to (4), which gives 

r(t) = 
s 

T’ fc(O Jw, 4 c(u) + ut, u)l[r,W - &)I du9 Ti 
Ti < t < T,. (7) 
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We observe that the term in the bracket is K,(t, u>. We rewrite (6) to 
indicate K,(t, u) explicitly. We also change t to x to avoid confusion of 
variables in the next step: 

Now multiply both sides of (8) by h(t, X) and integrate with respect to X, 

s Tf 

h(t, x) r(x) dx = 
Ti 

STf k,(u) - g(u)1 dz4 STf 44 x) K,(x, u) dx (9) 
Ti T, 

We see that the left-hand side of (9) corresponds to passing the input 
T(X), Ti ,< x 5 T, through a linear time-varying unrealizable filter. Com- 
paring (3) and (9), we see that the output of the filter will equal i(t) if we 
require that the inner integral on the right-hand side of (9) equal KJt, u)c(u) 
over the interval 7’i < u < T,, T* 5 t 5 Tf. This gives the equation for the 
optimum impulse response. 

Kdt, 4 c(u) = s Tf M4 4 Kk 4 dx, Ti < u < 7”, Ti < t 5 Tf. (10) 
Ti 

The subscript o denotes that h,(t, x) is the optimum processor. In (10) we 
have used a strict inequality on u. If [TV - g(u)] does not contain 
impulses, either a strict or nonstrict equality is adequate. By choosing the 
inequality to be strict, however, we can find a continuous solution for 
h,(t, x). (See discussion in Chapter 3.) Whenever r(t) contains a white noise 
component, this assumption is valid. As before, we define h&t, x) at the 
end points by a continuity condition: 

h,(t, T,) n lim h,(t, x), 
x-*Tf - 

h,(t, TJ A lim h,(t, x). (11) 
x+Tf + 

It is frequently convenient to include the white noise component 
explicitly. Then we may write 

K,(x, u) = 
No c(x) K&x, u) c(u) + I&(x, u) + 2 6(x - u)* (12) 

and (10) reduces to 

K&9 4 c(u) = $ h,(t, u) + k(x> Kzk 4 44 + Kc@, 4lho(t, x) d-? 
Tr < u < T,, Ti s t < T/. (13) 

If KJt, u), K,(t, u), and c(t) are continuous square-integrable functions, 
our results in Chapter 4 guarantee that the integral equation specifying 
h,(t, x) will have a continuous square-integrable solution. Under these 
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conditions (13) is also true for tc = T/ and u = T. because of our continuity 
assumption. 

The importance of Property 1 is that it guarantees that the structure of 
the processor is linear and thus reduces the problem to one of finding the 
correct impulse response. A similar result follows easily for the case 
described by (2). 

Property 1A. The MAP estimate G(t) of a(t) over the interval T* < t 5 T/ 
using the received signal r(t), where 

40 = c(t) x(t) + n(t), Ti < t 5 T,, (14) 

is obtained by using a linear processor. 

The second property is one we have already proved in Chapter 5 (see 
p. 439). We include it here for completeness. 

Property 2. The MAP estimate d(t) is also the minimum mean-square error 
interval estimate in the linear modulation case. (This results from the 
fact that the MAP estimate is efficient.) 

Before solving (10) we shall discuss a related problem. Specifically, we 
shall look at the problem of estimating a waveform at a single point in 
time. 

Point Estimation Model 

Consider the typical estimation problem shown in Fig. 6.1. The signal 
available at the receiver for processing is r(u). It is obtained by performing 

r -------- 
I Desired 1 
1 linear operation I d(t) 

r -------- -B-----B -I- ----+ 
I I 
I 

,- kd (t, V) ---w-m- i 

l 
I 
I 
I 

I 
I 
I 
i 
I 

a(v) 1 
Linear 

F 
operation 1 
------ x(u) 

c 
Y(u) 

--<V-C= kf (u> v) Ti (U 5 T f  

Fig. 6.1 Typical estimation problem. 
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a linear operation on a(u) to obtain X(U), which is then multiplied by a 
known modulation function. A noise n(u) is added to the output y(u) 
before it is observed. The dotted lines represent some linear operation 
(not necessarily time-invariant nor realizable) that we should like to 
perform on a(u) ifit were available (possibly for all time). The output is 
the desired signal d(t) at some particular time t. The time t may or may not 
be included in the observation interval. 

Common examples of desired signals are: 

0 i 40 = a(t). 

Here the output is simply the message. Clearly, if t were included in the 
observation interval, X(U) = a(u), n(u) were zero, and C(U) were a constant, 
we could obtain the signal exactly. In general, this will not be the case. 

(ii) 40 = a(t + a). 

Here, if (X is a positive quantity, we wish to predict the value of a(t) at 
some time in the future. Now, even in the absence of noise the estimation 
problem is nontrivial if t + a > T,. If a is a negative quantity, we shall 
want the value at some previous time. 

. . . 
( ) 111 

Here the desired signal is the derivative of the message. Other types of 
operations follow easily. 

We shall assume that the linear operation is such that d(t) is defined in 
the mean-square sense [i.e., if d(t) = d(t), as in (iii), we assume that a(t) 
is a mean-square differentiable process]. Our discussion has been in the 
context of the linear modulation system in Fig. 6.1. We have not yet 
specified the statistics of the random processes. We describe the processes 
by the following assumption : 

Gaussian Assumption. The message a(t), the desired signal d(t), and the 
received signal r(t) are jointly Gaussian processes. 

This assumption includes the linear modulation problem that we have 
discussed but avoids the necessity of describing the modulation system in 
detail. For algebraic simplicity we assume that the processes are zero-mean. 

We now return to the optimum processing problem. We want to operate 
on r(u), 7’* ,< u s T, to obtain an estimate of d(t). We denote this estimate 
as d(t) and choose our processor so that the quantity 
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is minimized. First, observe that this is a point estimate (therefore the 
subscript P). Second, we observe that we are minimizing the mean-square 
error between the desired signal d(t) and the estimate a(t). 

We shall now find the optimum processor. The approach is as follows: 

1. First, we shall find the optimum linear processor. Properties 3, 4, 5, 
and 6 deal with this problem. We shall see that the Gaussian assumption 
is not used in the derivation of the optimum linear processor. 

2. Next, by including the Gaussian assumption, Property 7 shows that 
a linear processor is the best of allpossible processors for the mean-square 
error criterion. 

3. Property 8 demonstrates that under the Gaussian assumption the 
linear processor is optimum for a large class of error criteria. 

4. Finally, Properties 9 and 10 show the relation between point 
estimators and interval estimators. 

Property 3. The minimum mean-square linear estimate is the output of a 
linear processor whose impulse response is a solution to the integral 
equation 

The proof of this property is analogous to the derivation in Section 
3.4.5. The output of a linear processor can be written as 

A 
40 = 

s 
T’ h(t, T) r(7) dc (17) 
Ti 

We assume that h(t, 7) = 0, 7 < 7’*, 7 > T/. The mean-square error at 
time t is 

= E{ [d(t) - 1; h(t, 7) r(T) dT12}a (18) 

To minimize s,(t) we would go through the steps in Section 3.4.5 (pp. 
198-204). 

1. Let h(t, 7) = h&9 4 + 4(t, 3. 
2. Write tp(t) as the sum of the optimum error &,(l) and an incremental 

error A&t, E). 
3. Show that a necessary and sufficient condition for A&t, C) to be 

greater than zero for c # 0 is the equation 

E{ [d(t) - IT’ h,(t, T) r(7) dr] r(u)} = 0, Ti < u < Tf. (19) 
Ti 
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Bringing the expectation inside the integral, we obtain 

which is the desired result. In Property 7A we shall show that the solution 
to (20) is unique iff K,(t, U) is positive-definite. 

We observe that the only quantities needed to design the optimum 
linear processor for minimizing the mean-square error are the covariance 
function of the received signal K,(t, U) and the cross-covariance between 
the desired signal and the received signal, K& u). We emphasize that-we 
have not used the Gaussian assumption. 

Several special cases are important enough to be mentioned explicitly. 

Property 3A. When d(t) = a(t) and T, = t, we have a realizable filtering 
problem, and (20) becomes 

(21) 

We use the term realizable because the filter indicated by (21) operates 
only on the past [i.e., h,(t, 7) = 0 for 7 > t]. 

Property 3B. Let r(t) = c(t) x(t) + n(t) & y(t) + n(t). If the noise is 
white with spectral height No/2 and uncorrelated with a(t), (20) becomes 

K&9 u) = 2 h,(t, u) + s =’ h&9 7) w, 4 dr, T* 5 24 5 7-f. (22) 
Tf 

Property 3C. When the assumptions of both 3A and 3B hold, and 

x(t) = a(t), (20) becomes 

w, 4 44 = $) h,(t, u) + 
s 

t M, 7) 44 K&9 4 c(u> d? 
T f 

Ti s u 5 t. (23) 
[The end point equalities were discussed after (13).] 

Returning to the general case, we want to find an expression for the 
minimum mean-square error. 

Property 4. The minimum mean-square error with the optimum linear 
processor is 

&,(t) 4 E[eo2(t)l = Ki(4 0 - s T’ h,(t, 7) K&t, 7) dr. (24) 
T f 
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This follows by using (16) in (18). Hereafter we suppress the subscript o 
in the optimum error. 

The error expressions for several special cases are also of interest. They 
all follow by straightforward substitution. 

Property 4A. When d(t) = a@) and T, = t, the minimum mean-square 
error is 

Property 4B. If the noise is white and uncorrelated with a(t), the error is 

&(f) = Kdt, 0 - J 
Tf h,(t, 7) &g(t, 7) dn (26) 
Tf 

Property 4C. If the conditions of 4A and 4B hold and x(t) = a(t), then 

(27) 

If c-l(t) exists, (27) can be rewritten as 

&(f) = 2 c-‘(t) h,(t, t). (28) 

We may summarize the knowledge necessary to find the optimum 
linear processor in the following property: 

Property 5. K,(t, u) and K&t, U) are the only quantities needed to find the 
MMSE point estimate when the processing is restricted to being linear. 
Any further statistical information about the processes cannot be used. 
All processes, Gaussian or non-Gaussian, with the same K,(t, U) and 
K&t, U) lead to the same processor and the same mean-square error if the 
processing is required to be linear. 

Property 6. The error at time t using the optimum linear processor is 
uncorrelated with the input r(u) at every point in the observation interval. 
This property follows directly from (19) by observing that the first term 
is the error using the optimum filter. Thus 

E[e,(t) r(u)1 = 0, Tt < u < T,. (29) 

We should observe that (29) can also be obtained by a simple heuristic 
geometric argument. In Fig. 6.2 we plot the desired signal d(t) as a point 
in a vector space. The shaded plane area x represents those points that can 
be achieved by a linear operation on the given input T(U). We want to 
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Geometric interpretation of the optimum linear filter. 

choose a(f) as the point in x closest to d(t). Intuitively, it is clear that we 
must choose the point directly under d(t). Therefore the error vector is 
perpendicular to x (or, equivalently, every vector in x); that is, 
e, (t) 1_ jb(t, u) r(u) du for every h(t, 24). 

The only difficulty is that the various functions are random. A suitable 
measure of the squared-magnitude of a vector is its mean-square value. 
The squared magnitude of the vector representing the error is E[e”(t)]. 
Thus the condition of perpendicularity is expressed as an expectation: 

E cow 1 s T f  h(t, u) r(u) du 1 = 0 (30) Ti 
for every continuous h(t, u); this implies 

which is (29) [and, equivalently, (19)l.t 

Property 6A. If the processes of concern d(t), r(t), and a(t) are jointly 
Gaussian, the error using the optimum linear processor is statistically 
independent of the input r(u) at every point in the observation interval. 

This property follows directly from the fact that uncorrelated Gaussian 
variables are statistically independent. 

Property 7. When the Gaussian assumption holds, the optimum linear 
processor for minimizing the mean-square error is the best of any type. 
In other words, a nonlinear processor can not give an estimate with a 
smaller mean-square error. 

Proof. Let d,(t) be an es timate generated by an arbitrary continuous 
processor operating on r(u), Ti I u < Tf. We can denote it by 

d,(t) = f(t:T(U), Ti s u < T,). (32) 

to NUT discussion is obviously heuristic. It is easy to make it rigorous by introducing a 
few properties of linear vector spaces, but this is not necessary for our purposes. 
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Denote the mean-square error using this estimate as t*(t). We want to 
show that 

6*(t) 2 s&)9 (3% 

with equality holding when the arbitrary processor is the optimum linear 
filter: 

t*(t) = EW*W - 4012) 
= E(ld,W - d(t) + d(t) - d(t)12} 
= Jwso - &)I21 + =w*(t) - &MO~ + 5&)* (34) 

The first term is nonnegative. It remains to show that the second term is 
zero. Using (32) and (17), we can write the second term as 

E f(t:r(U), Ti < u 5 Tf) - s 
Tf - 

MC 4 r (u)  d~4 

I  > 

e&t) l 
(35) 

Ti 

This term is zero because r(u) is statistically independent of e*(t) over the 
appropriate range, except for u = Tf and u = Ti- (Because both processors 
are continuous, the expectation is also zero at the end point.) Therefore 
the optimum linear processor is as good as any other processor. The final 
question of interest is the uniqueness. To prove uniqueness we must show 
that the first term is strictly positive unless the two processors are equal. 
We discuss this issue in two parts. 

Property 7A. First assume thatf(t: T(U), Ti s u ,< T,) corresponds to a 
linear processor that is not equal to h,(t, u). Thus 

f(t IT(U), Ti < u 5 Tf) = (h,(t, 4 + h,(t, u)) r(u) du, (36) 

where h,(t, u) represents the difference in the impulse responses. 
Using (36) to evaluate the first term in (34), we have 

E{ [d*(t) - d(t)12) = /I du dz h,(t, u) KT(u, z) h,(t, z). (37) 
Tf 

From (3.35) we know that if Kr(u, z) is positive-definite the right-hand 
side will be positive for every h*(t, u) that is not identically zero. On the 
other hand, if K,(t, u) is only nonnegative definite, then from our dis- 
cussion on p. 181 of Chapter 3 we know there exists an h&t, u) such that 

I Tf h,(t, u) K,(u, z) du = 0, Ti 5 z 5 T/e 
T, 

(38) 

Because the eigenfunctions of K,(u, z) do not form a complete orthonormal 
set we can construct h*(t) u) out of functions that are orthogonal to Kr(u, z). 
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Note that our discussion in 7A has not used the Gaussian assumption 
and that we have derived a necessary and sufficient condition for the 
uniqueness of the solution of (20). If K,(u, z) is not positive-definite, we 
can add an h,(t, U) satisfying (38) to any solution of (20) and still have a 
solution. Observe that the estimate a(t) is unique even if K,(u, z) is not 
positive-definite. This is because any h,(t, U) that we add to h,(t, U) must 
satisfy (38) and therefore cannot cause an output when the input is r(t). 

Property 7B. Now assume that f(f:#), 7’* I u ,< T,) is a continuous 

nonlinear functional unequal to s h,(t, U) T(U) du . Thus 

Tf f(f:r(u), T* 5 24 < 7-f) = r h,(t, 24) r(u)du + f*(t: r(u), T* 5 2.4 < T,). (39) 

Then 
J 
Ti 

EW*W - &)12} 
= E [f*W(u), Ti 5 u < T,)f*(t:r(z), T* 5 2 5 7-J. (40) 

Because T(U) is Gaussian and the higher moments factor, we can express 
the expectation on the right in terms of combinations of K,(u, z). Carrying 
out the tedious details gives the result that if K,(u, z) is positive-definite 
the expectation will be positive unlessf,(t: T(Z), T* 5 z < Tf)) is identically 
zero. 

Property 7 is obviously quite important. It enables us to achieve two 
sets of results simultaneously by studying the linear processing problem. 

1. If the Gaussian assumption holds, we are studying the best possible 
processor. 

2. Even if the Gaussian assumption does not hold (or we cannot justify 
it), we shall have found the best possible linear processor. 

In our discussion of waveform estimation we have considered only 
minimum mean-square error and MAP estimates. The next property 
generalizes the criterion. 

Property 8A. Let e(t) denote the error in estimating d(t), using some 
estimate &). 

e(t) = d(t) - d(l). (41) 
The error is weighted with some cost function C(e(t)). The risk is the 

expected value of C(e(t)), 

%(d(t), t) = E[C(e(t))] = E[C(d(t) - d(t)>]. (42) 

The Bayes point estimator is the estimate &(t> which minimizes the 
risk. If we assume that C(e(t)) is a symmetric convex upward function 
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and the Gaussian assumption holds, the Bayes estimator is equal to the 
MMSE estimator. 

cf (0 B = d&t). (43) 

Proof. The proof consists of three observations. 

1. Under the Gaussian assumption the MMSE point estimator at any 
time (say tl) is the conditional mean of the a posteriori density 
J+J~~,,~~JD~~ Ir(u):T, < u < T/l. Observe that we are talking about a single 
random variable d,, so that this is a legitimate density. (See Problem 6.1.1.) 

2. The a posteriori density is unimodal and symmetric about its con- 
ditional mean. 

3. Property 1 on p. 60 of Chapter 2 is therefore applicable and gives 
the above conclusion. 

Property 8B. If, in addition to the assumptions 
the cost function to be strictly convex, then 

in Property 8A, we require 

a,@) = d(t) (4-4) 

is the unique Bayes point estimator. 
This result follows from (2.158) in the derivation in Chapter 2. 

Property 8C. If we replace the convexity requirement on the cost 
with a requirement that it be a symmetric nondecreasing function 

function 
such that 

for all tl and r(t) of interest, then (44) is still valid. 

These properties are important because they guarantee that the proces- 
sors we are studying in this chapter are optimum for a large class of 
criteria when the Gaussian assumption holds. 

Finally, we can relate our results with respect to point estimators and 
MMSE and MAP interval estimators. 

Property 9. A minimum mean-square error interval estimat 
collection of 
r(u) over the 

point estim .ators. Specifically, suppose we observe 
interval T. < u < T, and want a sign al d(t) over 

T, < t 2 T, such that the mean-square error averaged over - 
is minimized. 

or is just a 
a waveform 
the interval 
the interval 

61 A - E [d(t) - d(t)12 dt l (46) 

Clearly, if we can minimize the expectation of the bracket for each t then 
& will be minimized. This is precisely what a MMSE point estimator does. 
Observe that the point estimator uses T(U) over the entire observation 
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interval to generate d(t). (Note that Property 9 is true for nonlinear 
modulation also.) 

Property 10. Under the Gaussian ass Iumption the minimum mean-square 
error point estimate and MAP point estimate are identical. This is just a 
special case of Property 8C. Because the MAP interval estimate is a 
collection of MAP point estimates, the interval estimates also coincide. 

These ten properties serve as background for our study of the linear 
modulation case. Property 7 enables us to concentrate our efforts in this 
chapter on the optimum linear processing problem. When the Gaussian 
assumption holds, our results will correspond to the best possible pro- 
cessor (for the class of criterion described above). For arbitrary processes 
the results will correspond to the best linear processor. 

We observe that all results carry over to the vector case with obvious 
modifications. Some properties, however, are used in the sequel and 
therefore we state them explicitly. A typical vector problem is shown in 
Fig. 6.3. 

The message a(t) is a p-dimensional vector. We operate on it with a 
matrix linear filter which has p inputs and n outputs. 

s 
a0 

x(u) = k,(u, 0) a(v) do, T* < u < - Tf . --oo (47) 

r-------- 

kf (u, VI x(u) Y(U) y(u) -------a-- I 
Matrix filter nxl mxl mxl 

F inputs-n outputs 
4 

c(u) 
mxn 

Fig. 6.3 Vector estimation problem. 
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The vector x(u ) is multiplied by 
m-dimensional vector y(t) which 
that we have generated 
memory and no-memory 

an m x yt modulation 
is transmitted over the 

Y(O bY a 
operation. 

cascade of 
The reason 

a linear 
for this t 

matrix to give the 
channel. Observe 
operation with a 

wo-step procedure 
will become obvious later. The desired signal d(t) is a q x l-dimensional 
vector which is related to a(v) by a matrix filter withp inputs and q outputs 
Thus 

00 
d(t) = 

s 
kd(t, u) a(u) du. (48) -CO 

We shall encounter some typical vector problems later. Observe that p, q, 
m, and n, the dimensions of the various vectors, may all be different. 

The desired signal d(t) has q components. Denote the estimate of the 
ith component as di(t). We want to minimize simultaneously 

tpi(t) A E{ [ d * ( t )  -  ai(t)]2>, 

(49) 

The message a(u) is a zero-mean vector Gaussian process and the noise 
is an m-dimensional Gaussian random process. In general, we assume that 
it contains a white component w(t): 

E[w(t) wT(u)] n, R(t) s(t - u), (50) 
where R(t) is positive-definite. We assume also that the necessary co- 
variance functions are known. We shall use the same property numbers 
as in the scalar case and add a I? We shall not restate the assumptions. 

Property 3V. 

&r(t, u) = j=’ h&9 +w, 4 d? Ti < u c Tf. (51) 
Ti 

Proof: See Problem 6.1.2. 

Property 3A-V. 

L(4 u) = s t w, T) Kr(T u) d7; Ti < u < t. (52) 
Ti 

Property 4C-V. 

h,(t, t) = L(t) CT(t) R-W), 
where tp(t) is the error covariance matrix whose elements are 

[Pi,(t) 4 E{[Qitt) - cit(t>l[aj(t> - si(t>l>* 

(53) 

(54) 
(Because 
identical. 

the errors are zero-mean, the correlation and covariance are 

> 

Proof. See Problem 6.1.3. 

Other properties of the vector case follow by direct modification. 
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Summary 

In this section we have explored properties that result when a linear 
modulation restriction is imposed. Although we have discussed the 
problem in the modulation context, it clearly has widespread applicability. 
We observe that if we let c(t) = 1 at certain instants of time and zero 
elsewhere, we will have the sampled observation model. This case and 
others of interest are illustrated in the problems (see Problems 6.1.4-6.1.9). 

Up to this point we have restricted neither the processes nor the observa- 
tion interval. In other words, the processes were stationary or nonstation- 
ary, the initial observation time & was arbitrary, and Tf ( 2 T*) was 
arbitrary. Now we shall consider specific solution techniques. The easiest 
approach is by means of various special cases. 

Throughout the rest of the chapter we shall be dealing with linear 
processors. In general, we do not specify explicitly that the Gaussian 
assumption holds. It is important to re-emphasize that in the absence of 
this assumption we are finding only the best linear processor (a nonlinear 
processor might be better). Corresponding to each problem we discuss 
there is another problem in which the processes are Gaussian, and for 
which the processor is the optimum of all processors for the given criterion. 

It is also worthwhile to observe that the remainder of the chapter could 
have been studied directly after Chapter 1 if we had approached it as a 
“ structured” problem and not used the Gaussian assumption. We feel that 
this places the emphasis incorrectly and that the linear processor should 
be viewed as a device that is generating the conditional mean. This view- 
point puts it into its proper place in the over-all statistical problem. 

6.2 REALIZABLE LINEAR FILTERS: STATIONARY PROCESSES, INFINITE 
PAST: WIENER FILTERS 

In this section we discuss an important case relating to (20). First, we 
assume that the final observation time corresponds to the time at which 
the estimate is desired. Thus t = Tf and (20) becomes 

Second, we assume that Ti = -a. This assumption means that we have 
the infinite past available to operate on to make our estimate. From a 
practical standpoint it simply means that the past is available beyond the 
significant memory time of our filter. In a later section, when we discuss 
finite Ti, we shall make some quantitative statements about how large 
t- Ti must be in order to be considered infinite. 
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Third, we assume that the received signal is a sample function from a 
stationary process and that the desired signal and the received signal are 
jointly stationary. (In Fig. 6.1 we see that this implies that c(t) is constant. 
Thus we say the process is unmodu1ated.t) Then we may write 

s 
t K&t - a) = ho@, u) KT(u - 4 & -0 < a < t. (56) 
--oo 

Because the processes are stationary and the interval is infinite, let us try 
to find a solution to (56) which is time-invariant. 

s t K&t - 0) = h (t 0 - u) K,(u - 0) du, --oO<a<t. = 07) -CO 

If we can find a solution to (57), it will also be a solution to (56). If 
K(u - O) is positive-definite, (56) has a unique solution. Thus, if (57) has 
a solution, it will be unique and will also be the only solution to (56). 
Letting T = t - 0 and v = t - U, we have 

which is commonly referred to as the Wiener-Hopf equation. It was 
derived and solved by Wiener [l]. (The linear processing problem was 
studied independently by Kolmogoroff [2].) 

6.2.1 Solution of Wiener-Hopf Equation 

Our solution to the Wiener-Hopf equation is analogous to the approach 
by Bode and Shannon [3]. Although the amount of manipulation required 
is identical to that in Wiener’s solution, the present procedure is more 
intuitive. We restrict our attention to the case in which the Fourier trans- 
form of Kr(7), the input correlation function, is a rational function. This 
is not really a practical restriction because most spectra of interest can be 
approximated by a rational function. The general case is discussed by 
Wiener [I] but does not lead to a practical solution technique. 

The first step in our solution is to observe that if r(t) were white the 
solution to (58) would be trivial. If 

then (58) becomes Km = s om h,(v) S(T - v) dv, O<T<oo, 

t Our use of the term modulated is the opposite of the normal usage in which the message 
process modulates a carrier. The adjective unmodulated seems to be the best available. 
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Fig. 6.4 Whitening filter. 

and 

where the value at r = 0 comes from our continuity restriction. 

It is unlikely that (59) will be satisfied in many problems of interest. 
If, however, we could perform some preliminary operation on r(t) to 
transform it into a white process, as shown in Fig. 6.4, the subsequent 
filtering problem in terms of the whitened process would be trivial. The 
idea of a whitening operation is familiar from Section 4.3 of Chapter 4. 
In that case the signal was deterministic and we whitened only the noise. 
In this case we whiten the entire input. In Section 4.3 we proved that any 
reversible operation could not degrade the over-all system performance. 
Now we also want the over-all processor to be a realizable linear filter. 
Therefore we show the following property: 

Whitening Property. For all rational spectra there exists a realiza .ble 
time-invariant linear filter whose output z(t) is a white process when the 
input is r(t) and whose inverse is a realizable linear filter. 

If we denote the imp ulse response of the whitening 
the transfer function as IV(&), then the property says : 

filter as W(T) and 

(i) //a w(u) W(V) K$ - u - V) du dv = +), -00 < 7 < 00. 
--a0 

or 
(ii) 1 W(jw>I 2sr(o) = 1. 

If we denote the impulse response of the inverse filter as W-~(T), then 

(iii) 

or 
1 

a0 
w-yu - v) w(v) dv = 6(u) 

--Q> 

w F[w-l(T)] = $-) = W- 
0 

l( jw) 

and W-~(T) must be the impulse response of a realizable filter. 

We derive this property by demonstrating a constructive technique for a 
simple example and then extending it to arbitrary rational spectra. 
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Example I. Let 

s&4 = -& (62) 

We want to choose the transfer function of the whitening filter so that it is realizable 
and the spectrum of its output z(t) satisfies the equation 

&(w) = S&J)1 W(jo)12 = 1. (63) 
To accomplish this we divide S,(W) into two parts, 

s,(w) = (Sk)(s) 4 [G+(j4l[G+(.Wl*. (64) 

We denote the first term by G+(jw) because it is zero for negative time. The second 
term is its complex conjugate. Clearly, if we let 

W(jw) = &) = ‘sp cc) (65) 

then (63) will be satisfied. 
We observe that the whitening filter consists of a differentiator and a gain term in 

parallel. Because 

d2k W-l(jo) = G+(jw) = J+~ 
w (66) 

it is clear that the inverse is a realizable linear filter and therefore W( jw) is a legitimate 
reversible operation. Thus we could operate on z(t) in either of the two ways shown 
in Fig. 6.5 and, as we proved in Section 4.3, if we choose h’,(7) in an optimum manner 
the output of both systems will be d(t). 

In this particular example the selection of IV&) was obvious. We now 
consider a more complicated example. 

Example 2. Let 
c2(jw + al)( -  jw + al) 

sr(0) = (i+ p ) (  0 1 -ca j + fl )  l 1 

i-T---:-- 
--- 1 

r(t) 
t 

z_(t) I * W(jw) f , W-‘(jo) r r(t) 
- ' Z(t) 

> HO fjd ‘1 = 
. 

I I 
L --- 

-0 

--- -- -l 

(67) 

Fig. 6.5 Optimum filter: (a) approach No. 1; (b) approach No. 2. 
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Split zeros on axis 

Assign 

iw 
f right-half 

A plane to 
G+ (0s) 

x 

s=a+jo 
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” ” >c 

x X 

G+ Cd G+ c-s) 

Fig. 6.6 A typical pole-zero plot. 

We must choose W(~W) so that 

S,(W) = 1 W-l(jo)12 = IG+(j412 (68) 

and both W(~W) and W- l(j~) [or equivalently G+(jw) and W&J)] are realizable. 
When discussing realizability, it is convenient to use the complex s-plane. We extend 
our functions to the entire complex plane by replacing jo by s, where s = (I + jw. 
In order for W(s) to be realizable, it cannot have any poles in the right half of the 
s-plane. Therefore we must assign the (jw + al) term to it. Similarly, for W+(s) [or 
G+(s)] to be realizable we assign to it the (jo + pl) term. The assignment of the 
constant is arbitrary because it adjusts only the white noise level. For simplicity we 
assume a unity level spectrum for z(t) and divide the constant evenly. Therefore 

G+(jw) = c ff--$$$a 
0 

(69) 
1 

To study the general case we consider the pole-zero plot of the typical 
spectrum shown in Fig. 6.6. Assuming that this spectrum is typical, we 
then find that the procedure is clear. We factor S,(w) and assign all poles 
and zeros in the left half plane (and half of each pair of zeros on the axis) 
to G+(jw). The remaining poles and zeros will correspond exactly to the 
conjugate [G+(jw)]*. The fact that every rational spectrum can be divided 
in this manner follows directly from the fact that S,(w) is a real, even, 
nonnegative function of o whose inverse transform is a correlation 
function. This implies the modes of behavior for the pole-zero plot shown 
in Fig. 6.7a-c: 
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x x Symmetry about 

0 0 7 
Q axis 

I Symmetry about 

0 a 

Zeros on jo axis 
in pairs 

(poles can not be 
on axis) 

0 C 

Fig. 6.7 Possible pole-zero plots in the s-plane. 

1. Symmetry about the o-axis. Otherwise S,(O) would not be real. 
2. Symmetry about the jo-axis. Otherwise S,(O) would not also be even. 
3. Any zeros on the jw-axis occur in pairs. Otherwise S,(O) would be 

negative for some value of W. 
4. No poles on the jw-axis. This would correspond to a l/w2 term whose 

inverse is not the correlation function of a stationary process. 

The verification of these properties is a straightforward exercise (see 
Problem 6.2.1). 

We have now proved that we can always find a realizable, reversible 
whitening filter. The processing problem is now reduced to that shown in 
Fig. 6.8. We must design H@.u) so that it operates on z(t) in such a way 

Fig. 6.8 Optimum filter. 
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that it produces the minimum mean-square error estimate of d(t). Clearly, 
then, h’,(7) must satisfy (58) with r replaced by z, 

&z(7) = 
s 
om h;(u) Kt(r - u) du, O<T<OO. (70) 

However, we have forced z(t) to be white with unity spectral height. 
Therefore 

K(7) = K&h 7 > 0. (70 
Thus, if we knew K&T), our solution would be complete. Because z(t) is 
obtained from r(t) by a linear operation, K&(T) is easy to find, 

[ s 
* Kd2( T) !i E d(t) w(u) r(t - 7 - u) dv 
--a0 I 

a0 
ao = 

s 
w(u) K& + u) du = e-P) Kir(7 - 18) dP* (72) 

--oo s --a0 

Transforming, 

&z@J) = 
&i AjO) 

w*(jw) sdr~u) = [G+Cjo)l*’ (73) 

We simply find the inverse transform of S&&J), K&T), and retain the 
part corresponding to 7 > 0. A typical K&) is shown in Fig. 6.9a. The 
associated hi(r) is shown in Fig. 6.96. 

Fig. 6.9 Typical Functions: (n) a typical covariance function; (6) corresponding hi(~). 
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We can denote the transform of K&) for 7 > 0 by the symbol 

Similarly, 

Clearly, 

Kd.bJ)l- a s 
’ - K&e -ja* dr. (75) --oo 

and we may write 

Then the entire optimum filter is just a cascade of the whitening filter and 
HXb49 

We see that by a series of routine, conceptually simple operations we have 
derived the desired filter. We summarize the steps briefly. 

1. We factor the input spectrum into two parts. One term, G+(s), 
contains all the poles and zeros in the left half of the s-plane. The other 
factor is its mirror image about the jw-axis. 

2. The cross-spectrum between d(t) and z(t) can be expressed in terms 
of the original cross-spectrum divided by [G+&J)]*. This corresponds to a 
function that is nonzero for both positive and negative time. The realizable 
part of this function (7 2 0) is hi(~) and its transform is Hi(jo). 

3. The transfer function of the optimum filter is a simple product of 
these two transfer functions. We shall see that the composite transfer 
function corresponds to a realizable system. Observe that we actually 
build the optimum linear filter as single system. The division into two 
parts is for conceptual purposes only. 

Before we discuss the properties and implications of the solution, it 
will be worthwhile to consider a simple example to guarantee that we all 
agree on what (78) means. 

Example 3. Assume that 
r(t) = Ga(t) + n(t), (79) 

t In general, the symbol [ - ] + denotes the tr ,ansfor m 
inverse transform of the expression insi de the bracket. 

of the realizable part of the 
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where a(t) and n(t) are uncorrelated zero-mean stationary processes and 

[We see that a(t) has unity power so that P is the transmitted power.] 

The desired signal is 
d(t) = a(? + a), (82) 

where a is a constant. 
By choosing a to be positive we have the prediction problem, choosing a to be zero 

gives the conventional filtering problem, and choosing a to be negative gives the 
filtering-with-delay problem. 

. 

The solution is a simple application of the procedure outlined in the preceding 
section : 

It is convenient to define 
A+-* (84) 

0 

(This quantity has a physical significance we shall discuss later. For the moment, it 
can be regarded as a useful parameter.) First we factor the spectrum 

Sr(m) = y2 +wakylk; 4 = G+(jw) [G+(jw)]*. (85) 
so 

G+(jw) = 

Now 

&r(T) = E[d(t) r(t - T)] = 

= z/P E[a(t + a) a(? 

jw + kA + A . 
jo + k (86) 

E{a(t + a)[G a(? - 7) + n(t - 7)]} 

- r)] = G&(7 + a). 

Transforming, 

&(jW) = dP &(w)e+‘wa = 
z&Fe+‘“” 

o2 + k2 (88) 

and 
S&4 

Sda(i4 = [G = 
2&&+‘“” (-jo + k) 

w2 + k2 l dN,/2(-jw + kA + A)’ 
(8% 

To find the realizable part, we take the inverse transform: 

The inverse transform can be evaluated easily (either by residues or a partial fraction 
expansion and the shifting theorem). The result is 

20 1 

Kit(~) = 
1/No/2 1 + dl+h 

e - k(T + a) 9 7+a20, 

20 
(91) 

1 
1/No/2 1 + d= 

,+kJ1+(7+a) 9 7+a<O. 

The function is shown in Fig. 6.10. 
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Kdzb) 

7= -a 

Fig. 6.10 Cross-covariance function. 

Now hi(~) depends on the value a. In other words, the amount of K&) in the 
range T 2 0 is a function of a. We consider three types of operations: 

Case 1. a = 0: filtering with zero delay. Letting a = 0 in (91), we have 

’ 7 
21/P 1 

h,()=m21+ 1/l +Ae -kT u-1(7), (92) 

or 

Then 

Hd(jo) = 
1 2G 1 -. 

i+CETh1/N,I2j~+k 
(93 

We see that our result is intuitively logical. The amplitude of the filter response is 
shown in Fig. 6.11. The filter is a simple low-pass filter whose bandwidth varies as a 
function of k and A. 

We now want to attach some physical significance to the parameter A. The band- 
width of the message process is directly proportional to k, as shown in Fig. 6.12a 

0 
-3 

-20 

* 
log 0 

\ 
- \ 

\ 

Fig. 6.11 Magnitude plot for optimum filter. 
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>w/2n=f =o/27r=f 
-k/21r k/2n -k/4 +k/4 

(a) W 

Fig. 6.12 Equivalent rectangular spectrum. 

The 3-db bandwidth is k/r cps. Another common bandwidth measure is the equivalent 
rectangular bandwidth (ERB), which is the bandwidth of a rectangular spectrum with 
height S,(O) and the same total power of the actual message as shown in Fig. 6.126. 
Physically, A is the signal-to-noise ratio in the message ERB. This ratio is most 
natural for most of our work. The relationship between A and the signal-to-noise 
ratio in the 3-db bandwidth depends on the particular spectrum. For this particular 
case Aadb = (77/2)A. 

We see that for a fixed k the optimum filter bandwidth increases as A, the signal- 
to-noise ratio, increases. Thus, as A + 00, the filter magnitude approaches unity for 
all frequencies and it passes the message component without distortion. Because the 
noise is unimportant in this case, this is intuitively logical. On the other hand, as 
A --+ 0, the filter 3-db point approaches k. The gain, however, approaches zero. Once 
again, this is intuitively logical. There is so much noise that, based on the mean square 
error criterion, the best filter output is zero (the mean value of the message). 

Case 2. a is negative: filtering with delay. Here h:(7) has the impulse response shown 
in Fig. 6.13. Transforming, we have 

2kdP Hi(jo) = - 
eafo 

dNo/2 (jw + k)(-jw + kdTTK+ 
_ eakJTTX 

-k(l + dmR)(-jw + k4G-T) 1 (95) 

0 7 = -a 3 

Fig. 6.13 Filtering with delay. 
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and 
KG-4 

HOW = c+(j) = - 0 

ajo 

+ L(l + A)] 
e akJl+h(jw + k) 

- 

k(1 + ~+A)[uJ~ + k2( 1 + A)] > 
l (96a) 

This can be rewritten as 

2kdp eajo 
Ho(b) = (&/2)[~~ + k2( f + A)] 

(jw + k)e a(kJE - io) 

’ k(l + 41) 1 (964 

We observe that the expression outside the bracket is just 

&(j4 s,(w) eafw- (97) 
We see that when a is a large negative number the second term in the bracket is 
approximately zero. Thus H,(jw) approaches the expression in (97). This is just the 
ratio of the cross spectrum to the total input spectrum, with a delay to make the 
filter realizable. 

We also observe that the impulse response in Fig. 6.13 is difficult to realize with 
conventional network synthesis techniques. 

Case 3. a is positive: filtering with prediction. Here 

h;(r) = 
2G 

w- 
d&/21 

1- 
+ -\/l + A 

(98) 

Comparing (98) with (92), we see that the optimum filter for prediction is just the 
optimum filter for estimating a(t) multiplied by a gain eska, as shown in Fig. 6.14. 
The reason for this is that a(t) is a first order wide-sense Markov process and the 
noise is white. We obtain a similar result for more general processes in Section 6.30 

Before concluding our discussion we amplify a point that was en- 
countered in Case 1 of the example. One step of the solution is to find the 
realizable part of a function. Frequently it is unnecessary to find the time 
function and then retransform. Specifically, whenever S,,(jo> is a ratio of 
two polynomials in jw, we may write 

WjO) - Ki4 + izl ,& + f.. _ jw”+ q ’ [G+(jo)l* - (994 
i j = i 

where F(j,> is a polynomial, the first sum contains all terms corresponding 
to poles in the left half of the s-plane (including the jw-axis), and the 
second sum contains all terms corresponding to poles in the right half of 

* , 
tit) Optimum 

filter for ’ 
w ) ,-ka . 

a^(t + a) 

zero delay 

Attenuator 

Fig. 6.14 Filtering with prediction. 
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the s-plane. In this expanded form the realizable part consists of the first 
two terms. Thus 

(994 

The use of (99b) reduces the required manipulation. 
In this section we have developed an algorithm for solving the Wiener- 

Hopf equation and presented a simple example to demonstrate the 
technique. Next we investigate the resulting mean-square error. 

6.2.2 Errors in Optimum Systems 

In order to evaluate the performance of the optimum linear filter we 
calculate the minimum mean-square error. The minimum mean-square 
error for the general case was given in (24) of Property 4. Because the 
processes are stationary and the filter is time-invariant, the mean-square 
error will not be a function of time. Thus (24) reduces to 

Because h,(7) = 0 for 7 < 0, we can equally well write (100) as 

ao 5 P = K&O) - 
s 

b(7) Kir(4 dT* W) 
--a0 

Now 

&( t )e - jot dt, (102) 

Substituting the inverse transform of (102) into (lOl), we obtain, 

* ao 5 P = Km - 
s --oo 

b(7) d7 & 
E s --oo 

ej”” dw.&) Irn &(t)e-jot dt]. 
w 0 

wo 
Changing orders of integration, we have 

1 6 P = K&O) - e-fwf d6J G+(ju) 
s 

K&)ejws d7 . --oo 1 (10~) 
The part of the integral inside the brackets is just K&(t). Thus, since 
K&t) is real, 

PO0 
6 P = K&O) - 

J 
Kda2(t) dt. (106) 

0 
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The result in (106) is a convenient expression for the mean-square error. 
Observe that we must factor the input spectrum and perform an inverse 
transform in order to evaluate it. (The same shortcuts discussed above are 
applicable.) 

We can use (106) to study the effect of a on the mean-square error. 
Denote the desired signal when a = 0 as d,(t) and the desired signal for 
arbitrary a as d,(t) 4 d,(t + a). Then 

E[d,(O z(t - 41 = Ki&) A +w9 (107a) 
and 

E[d,(t) 20 - 41 = E[d,(t + a) z(t - T)] = #(T + a). (107b) 

We can now rewrite (106) in terms of d(7). Letting 

&z(f) = M + 4 (108a) 

in (106), we have 

6 Pa = K,(O) - 
s 

ao 4”(t + a) dt = K,(O) - 
0 s 

* (62(u) du. (KM) 
a 

Note that C+(U) is not a function of a. We observe that because the integrand 
is a positive quantity the error is monotone increasing with increasing a. 
Thus the smallest error is achieved when a = -a (infinite delay) and 
increases monotonely to unity as a -+ +oo. This result says that for any 
desired signal the minimum mean-square error will decrease if we allow 
delay in the processing. The mean-square error for infinite delay provides 
a lower bound on the mean-square error for any finite delay and is 
frequently called the irreducible error. A more interesting quantity in 
some cases is the normalized error. We define the normalized error as 

6Pna A - 

or 

e Pna = 
1-L 

s 
* 

Kd(o) a 
+2(u) du. 

We may now apply our results to the preceding example. 

Example 3 (continued). For our example 

0 

1 
8P 1 -- 
NO (1 + ~‘iTT)2 (1 

dt e+2kdi% 

a 
+ Joa e-2kt dt), 

I PnQ = 

1-8p 
1 

s 

a0 

NO(l + 41 + A)” a 
e - 2kt dt, 

(109a) 

(109b) 

a 5 0, 

(110) 
a 2 0. 
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Evaluating the integrals, we have 

I PnQ 
1 Ae+2k*ll+ha 

=- 

dl+h + (1 + 1/1iXC)2G7-K’ 

k PnO = 
2 

1+2/G-X’ 
and 

I PnQ = 
2 A[1 - e-2ka] 

(1 + 41+ (1 + G-KQ2 
a 2 0. (113) 

The two limiting cases for (111) and (113) are a = - GO and a = m, respectively.= 

I --Qo 1 
Pn 

=-. 

aTiT 
(115) 

I 
00 

Pn = 1, (114) 

A plot of [pna versus (ka) is shown in Fig. 6.15. Physically, the quantity ka is related 
to the reciprocal of the message bandwidth. If  we define 

1 7, = -9 
k 

the units on the horizontal axis are a/7,, which corresponds to the delay measured in 
correlation times. We see that the error for a delay of one time constant is approxi- 
mately the infinite delay error. Note that the error is not a symmetric function of a. 

Before summarizing our discussion of realizable filters, we discuss the 
related problem of unrealizable filters. 

0.8 

0.6 0.6 - 

G G 
0.4 0.4 - 

0.2 - 0.2 - 
A A = 100 = 100 t 

0 01 I I I I I I I 1 1 I I I I I 
-2 -2 -1.5 -1.5 -1 -1 0.5 0.5 0 0 0.5 0.5 1 1 1.5 1.5 (W (W 

- Filtering with delay 1 Prediction. __t - Filtering with delay 1 Prediction. __t > > 

Fig. 6.15 Effect of time-shift on filtering error. 
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6.2.3 Unrealizable Filters 

Instead of requiring the processor to be realizable, let us consider an 
optimum unrealizable system. This corresponds to letting Tf > t. In other 
words, we use the input r(u) at times later than t to determine the estimate 
at t. 

For the case in which Tf > t we can modify (55) to obtain 

&r(7) = s * h,(t, t-v) Kr(r - u) du, t - Tf < r < 00. (117) 
t-Tf 

In this case h,(t, t-u) is nonzero for all u 2 t - T,. Because this includes 
values of v less than zero, the filter will be unrealizable. The case of most 
interest to us is the one in which T, = co. Then (117) becomes 

We add the subscript u to emphasize that the filter is unrealizable. Because 
the equation is valid for all 7, we may solve by transforming 

/ H,.ciw)=+f$ 1 

From Property 4, the mean-square error is 

6 U = K&l) - 
s 

Ia h-&) K&(T) & 

(119 

(120) 

Note that tu is a mean-square point estimation error. By Parseval’s 
Theorem, 

f 
1 * 

U 
=- 

s 27T -a-J I&(w) - K&4 %diw)l ~UL (121) 

Substituting (119) into (121), we obtain 

For the special case in which 

40 = 40, 
r(t) = 49 + w, 

and the message and noise are uncorrelated, (122) reduces to 

I 1 
co 6 s&J> saw duJ 

U 
= 

--oc) S,(w) + s&J> 27T’ 

(123) 

(124) 
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In the example considered on p. 488, the noise is white. Therefore, 

We now return to the general case. It is easy to demonstrate that the 
expression in (121) is also equal to 

5 U = K&O) - 

s 

* #“(t) dt. 
--a0 (127) 

Comparing (127) with (107) we see that the effect of using an unrealizable 
filter is the same as allowing an infinite delay in the desired signal. This 
result is intuitively logical. In an unrealizable filter we allow ourselves 
(fictitiously, of course) to use the entire past and future of the input and 
produce the desired signal at the present time. A practical way to approxi- 
mate this processing is to wait until more of the future input comes in and 
produce the desired output at a later time. In many, if not most,communi- 
cations problems it is the unrealizable error that is a fundamental system 
limitation. 

The essential points to remember when discussing unrealizable filters 
are the following: 

1. The mean-square error using an unrealizable linear filter (T/ = 00) 
provides a lower bound on the mean-square error for any realizable linear 
filter. It corresponds to the irreducible (or infinite delay) error that we 
encountered on p. 494. The computation of & (124) is usually easier than 
the computation of & (100) or (106). Therefore it is a logical preliminary 
calculation even if we are interested only in the realizable filtering problem. 

2. We can build a realizable filter whose performance approaches the 
performance of the unrealizable filter by allowing delay in the output. We 
can obtain a mean-square error that is arbitrarily close to the irreducible 
error by increasing this delay. From the practical standpoint a delay of 
several times the reciprocal of the effective bandwidth of [S&J) + S,(o)] 
will usually result in a mean-square error close to the irreducible error. 

We now return to the realizable filtering problem. In Sections 6.2.1 and 
6.2.2 we devised an algorithm that gave us a constructive method for 
finding the optimum realizable filter and the resulting mean-square error. 
In other words, given the necessary information, we can always (con- 
ceptually, at least) proceed through a specified procedure and obtain the 
optimum filter and resulting performance. In practice, however, the 
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algebraic complexity has caused most engineers studying optimum filters 
to use the one-pole spectrum as the canonic message spectrum. The lack 
of a closed-form mean-square error expression which did not require a 
spectrum factorization made it essentially impossible to study the effects 
of different message spectra. 

In the next section we discuss a special class of linear estimation 
problems and develop a closed-form expression for the minimum mean- 
square error. 

6.2.4 Closed-Form Error Expressions 

In this section we shall derive some useful closed-form results for a 
special class of optimum linear filtering problems. The case of interest is 
when 

r(u) = a(u) + n(u), --oo<ust. (128) 

In other words, the received signal consists of the message plus additive 
noise. The desired signal d(t) is the message a(t). We assume that the 
noise and message are uncorrelated. The message spectrum is rational with 
a finite variance. Our goal is to find an expression for the error that does 
not require spectrum factorization. The major results in this section were 
obtained originally by Yovits and Jackson [4]. It is convenient to consider 
white and nonwhite noise separately. 

Errors in elite Presence of White Noise. We assume that n(t) is white 
with spectral height &/2. Although the result was first obtained by Yovits 
and Jackson, appreciably simpler proofs have been given by Viterbi and 
Cahn [5], Snyder [6], and Helstrom[57]. We follow a combination of these 
proofs. From (128) 

and 

From (78) 

H,cjw) = 
1 

[WJ) + w21+ > uwt + 

tTo avoid a double superscript we introduce the notation 

G-(jw) = [G+(jw)]*. 

Recall that conjugation in the frequency domain corresponds to reversal in the time 
domain. The time function corresponding to G+(jw) is zero for negative time. 
Therefore the time function corresponding to G-(jw) is zero for positive time. 
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or 
1 

Hobo) = [S&J) + N,/2]+ 
&(4 + N,P NIP 

[S&o) + No/2]- - [s,(4 + N,Pl- +’ 

Now, the first term in the bracket is just [S&U) + N,/2] +, which is 
realizable. Because the realizable part operator is linear, the first term 
comes out of the bracket without modification. Therefore 

H,(jo) = 1 - 
1 

1 
No/2 

P,(w) + &PI+ [wJ) + N,Pl- > +’ (133) 

We take 1/N0/2 out of the brace and put the remaining z/N,/2 inside the 
[ .] -. The operation [ l ] - is a factoring operation so we obtain No/2 inside. 

H,cjw) = 1 - ml/2 
l 

[S,(w) + N,/2] + + 
The next step is to prove that the realizable part of the term in the brace 
equals one. 

Proof. Let S,(O) be a rational spectrum. Thus 

S,(w) = s;9 (139 

where the denominator is a polynomial in w2 whose order is at least one 
higher than the numerator polynomial. Then 

s,(w) + No/2 
N,/2 = 

Nb2> + (NO/~) Db2) 
wo/2) DbJ2) 

(136) 

(137) 

Observe that there is no additional multiplier because the highest order 
term in the numerator and denominator are identical. 

The ai and pr may always be chosen so that their real parts are positive. 
If any of the ai or /3* are complex, the conjugate is also present. Inverting 
both sides of (138) and factoring the result, we have 

S&o) + Ah,/2 -’ n (--++B*) = NoI2 p1 (--jw + ai) 
n[ ( B = n l+ i-ai 1 l i= 1 -jo + a*) 

(139) 

(140) 
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The transform of all terms in the product except the unity term will be 
zero for positive time (their poles are in the right-half s-plane). Multiplying 
the terms together corresponds to convolving their transforms. Convolving 
functions which are zero for positive time always gives functions that are 
zero for positive time. Therefore only the unity term remains when we take 
the realizable part of (140). This is the desired result. Therefore 

The next 
(27-28)we 

H,(jw) = 1 - dNo/2 
[&(j4 + w21+’ (141) 

step is to derive an expression for the error. From Propertv 4C 
know that 

f P= $ lim h,(t, T) = $ lim h,(c) a 
t+t- E-+0+ 

2 h,(O+) 

for the time-invariant case. We also know that 

s 
O” 
--a0 

because lto(+ is realizable. Combining (142) and (143), we obtain 

I P = No 

Using (141) in (144), we have 

fp = No $-so (1 - 

Using the conjugate of (139) in (145) we obtain 

4 

(142) 

VW 

(144) 

(145) 

VW 

(147) 

Expanding the product, we have 
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The integral in the first term is just one half the sum of the residues 
(this result can be verified easily). We now show that the second term is 
zero. Because the integrand in the second term is analytic in the right half 
of the s-plane, the integral [ -00, a ] equals the integral around a semicircle 
with infinite radius. All terms in the brackets, however, are at least of 
order IsI -2 for large (~1. Therefore the integral on the semicircle is zero, 
which implies that the second term is zero. Therefore 

The last step is to find a closed-form expression for the sum of the 
residues. This follows by observing that 

(To verify this equation integrate the left-hand side by parts with 
u = In [(02 + ai2)/(02 + pi”)] and do = dw/2r.) 

Comparing (150), (151), and (138), we have 

which is the desired result. Both forms of the error expressions (150) and 
(152) are useful. The first form is often the most convenient way to actually 
evaluate the error. The second form is useful when we want to find the 
S,(O) that minimizes tp subject to certain constraints. 

It is worthwhile to emphasize the importance of (152). In conventional 
Wiener theory to investigate the effect of various message spectra we had 
to actually factor the input spectrum. The result in (152) enables us to 
explore the error behavior directly. In later chapters we shall find it 
essential to the solution for the optimum pre-emphasis problem in angle 
modulation and other similar problems. 

We observe in passing that the integral on the right-hand side is equal to 
twice the average mutual information (as defined by Shannon) between 
r(t) and a(t). 

Errors for Typical Message Spectra. In this section we consider two 
families of message spectra. For each family we use (152) to compute the 
error when the optimum realizable filter is used. To evaluate the improve- 
ment obtained by allowing delay we also use (124) to calculate the un- 
realizable error. 
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Case 1. Butterworth Family. The message processes in the first class have 
spectral densities that are inverse Butterworth polynomials of order 2n. 
From (3.98), 

The numerator is just a gain adjusted so that the power in the message 
spectrum is P. 

Some members of the family are shown in Fig. 6.16. For yt = 1 we have 
the one-pole spectrum of Section 6.2.1. The break-point is at w  = k rad/sec 
and the magnitude decreases at 6 db/octave above this point. Foi higher n 
the break-point remains the same, but the magnitude decreases at 612 db/ 
octave. For yt = 00 we have a rectangular bandlimited spectrum 

Butterworth spectra. 
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[height Pm/k; width k rad/sec]. We observe that if we use k/m cps as the 
reference bandwidth (double-sided) the signal-to-noise ratio will not be a 
function of yt and will provide a useful reference: 

A, n P 2wP 
k/v No/2 = kN,’ 

To find & we use (152) : 

This can be integrated (see Problem 6.2.18) to give the following expression 
for the normalized error: 

tPn = t (sin$‘[(l + 2n$sin&)1’2~ - l]. (156) 

Similarly, to find the unrealizable error we use (124) : 

dw Cn 

Z 1 + (u/k)2n + (2/No)cn’ 

This can be integrated (see Problem 6.2.19) to give 

e 
[ 
l+ 

2n n (1/2n)- 1 
un = - AB sin 5 . 

m 1 

(157) 

(158) 

The reciprocal of the normalized error is plotted versus A, in Fig. 6.17. 
We observe the vast difference in the error behavior as a function of n. The 
most difficult spectrum to filter is the one-pole spectrum. We see that 
asymptotically it behaves linearly whereas the bandlimited spectrum 
behaves exponentially. We also see that for n = 3 or 4 the performance is 
reasonably close to the bandlimited (n = co) case. Thus the one-pole 
message spectrum, which is commonly used as an example, has the worst 
error performance. 

A second observation is the difference in improvement obtained by use 
of an unrealizable filter. For the one-pole spectrum 

tun > +SPn, tn = l>* (159) 

In other words, the maximum possible ratio is 2 (or 3 db). At the other 
extreme for n = 00 

6 Pn = & In (1 + A,), (160) 
B 

whereas 

6 
1 

un = P. 
1 + A, 

(161) 


