
Derivation of Estimator Equations 541 

In both cases (3 18) assumes E[x(T~)] = 0. The modification for other 
initial conditions is straightforward (see Problem 6.3.20). Differentiating 
(3 18), we have 

dj2(t) t - = h,(t, t) r(t) + 
s 

as4 4 - 
dt at 

r(7) dT. (319 
Tf 

Substituting (3 17) into the second term on the right-hand side of (3 19) and 
using (3 18), we obtain 

‘F = F(t) 2(t) + h,(t, t)[r(t) - C(t) R(t)]. (320) 

It is convenient to introduce a new symbol for h,(t, t) to indicate that it is 
only a function of one variable 

z(t) Li h,(t, t). (321) 

The operations in (322) can be represented by the matrix block diagram of 
Fig. 6.36. We see that all the coefficients are known except z(t), but 
Property 4C-V (53) expresses h,(t, t) in terms of the error matrix, 

, 
z(t) = h,(t, t) = &(t)CT(t) R-‘(t). (322) 

Thus (320) will be completely determined if we can find an expression for 
gp(t), the error covariance matrix for the optimum realizable point 
estimator. 
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Fig. 6.36 Feedback estimator structure. 
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Step 3. We first find a differential equation for the error x,(t), where 

xc(t) a, x(t) - 2(t). (323) 
Differentiating, we have 

d&(0 dW -=-- d2(t) P. 
dt dt dt 

Substituting (302) for the first term on the right-hand side of (324), sub- 
stituting (320) for the second term, and using (309, we obtain the desired 
equation 

y  = [F(t) - z(t) C(olXm - z(t) w(t) + G(t) u(t). 

The last step is to derive a differential equation for gp(t). 

Step 4. Differentiating 

w> A m&) X,Tw 
we have 

&(0 - = dJbT(t) 
dt x&) --&- 

I  

l 

Substituting (325) into the first term of (327), we have 

1 = E{[F(t) - z(t) WI w xt-‘w 
- z(t) w(t) q’(t) + G(t) u(t) xET(t)}- 

(329 

(326) 

(327) 

(328) 
Looking at (325), we see xc(t) is the state vector for a system driven by 

the weighted sum of two independent white noises w(t) and u(t). Therefore 
the expectations in the second and third terms are precisely the same type 
as we evaluated in Property 13 (second line of 266). 

E dxdt) 
[ -Jj--- xc’(t) I = F(t) b(t) - z(t) c(t> w> 

+ $z(t) R(t) z’(t) + + G(t)Q GT(t). (329 

Adding the transpose and replacing z(t) with the right-hand side of (322), 
we have 

y’= F(t) gp(t) + gp(t) FT(t) - &(t) CT(t) R-l(t) C(t) Ep(t) 

+ G(t)Q GT(t), (330) 

which is called the variance equation. This equation and the initial condition 

w-i) = EMT,) x,Tml (331) 
determine &Jt) uniquely. Using (322) we obtain z(t), the gain in the 
optimal filter. 
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Observe that the variance equation does not contain the received signal. 
Therefore it may be solved before any data is received and used to deter- 
mine the gains in the optimum filter. The variance equation is a matrix 
equation equivalent to yt2 scalar differential equations. However, because 
gp(t) is a symmetric matrix, we have &+z(n + 1) scalar nonlinear coupled 
differential equations to solve. In the general case it is impossible to obtain 
an explicit analytic solution, but this is unimportant because the equation 
is in a form which may be integrated using either an analog or digital 
computer. 

The variance equation is a matrix Riccati equation whose properties 
have been studied extensively in other contexts (e.g., McLachlan [3i]; 
Levin [32]; Reid [33], [34]; or Coles [35]). To study its behavior adequately 
requires more background than we have developed. Two properties are of 
interest. The first deals with the infinite memory, stationary process case 
(the Wiener problem) and the second deals with analytic solutions. 

Property 15. Assume that Tf is fixed and that the matrices F, G, C, R, and 
Q are constant. Under certain conditions, as t increases there will be an 
initial transient period after which the filter gains will approach constant 
values. Looking at (322) and (330), we see that as fp(t) approaches zero 
the error covariance matrix and gain matrix will approach constants. We 
refer to the problem when the condition ep(t) = 0 is true as the steady- 
state estimation problem. 

The left-hand side of (330) is then zero and the variance equation 
becomes a set of +z(rt + 1) quadratic algebraic equations. The non- 
negative definite solution is gP. 

Some comments regarding this statement are necessary. 

1. How do we tell if the steady-state problem is meaningful? To give 
the best general answer requires notions that we have not developed [23]. 
A suficient condition is that the message correspond to a stationary 
random process. 

2. For small y2 it is feasible to calculate the various solutions and select 
the correct one. For even moderate yt (e.g. yt = 2) it is more practical to 
solve (330) numerically. We may start with some arbitrary nonnegative 
definite gP(7Yi) and let the solution converge to the steady-state result (once 
again see 1231, Theorem 4, p. 8, for a precise statement). 

3. Once again we observe that we can generate &(t) before the data is 
received or in real time. As a simple example of generating the variance 
using an analog computer, consider the equation: 

wt> - = -2k &(t) - 
dt 

$- tp2(t) + 2kP. 
0 

(332) 
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(This will appear in Example 1.) A simple analog method of generation is 
shown in Fig. 6.37. The initial condition is &(&) = P (see discussion in 
the next paragraph). 

4. To solve (or mechanize) the variance equation we must specify 
&( T$). There are several possibilities. 

(a) The process may begin at ZYj with a known value (i.e., zero 
variance) or with a random value having a known variance. 

(b) The process may have started at some time to which is much 
earlier than T. and reached a statistical steady state. In Property 
14 on p. 533 we derived a differential equation that R,(c) satisfied. 
If it has reached a statistical steady state, A,(t) = 0 and (273) 
reduces to 

0 = FA, + A,FT + GQGT. (333a) 

This is an algebraic equation whose solution is A,. Then 

b(T) = Ax (3333) 

if the process has reached steady state before Tie In order for the 
unobserved process to reach statistical steady state (k,(t) = 0), 
it is necessary and sufficient that the eigenvalues of F have 
negative real parts. This condition guarantees that the solution 
to (333) is nonnegative definite. 

In many cases the basic characterization of an unobserved 
stationary process is in terms of its spectrum S&). The elements 
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Fig. 6.37 Analog solution to variance equation. 



Derivation of Estimator Equations 545 

in A, follow easily from S&O). As an example consider the state 
vector in (191), 

xi = 
dcf - l’y(t) 

,&W-l ’ i= 1,2 ,..., n. (334a) 

If y(t) is stationary, then 

A x,11 = 
s 

c0 (3343) 
--a0 

or, more generally, 

A x,fk = 

Note that, for 

s Go 

-00 

this particular state vector, 

A x,ik = 0 when i + k is odd, (334d) 

because S’&) is an even function. 

A second property of the variance equation enables us to obtain analytic 
solutions in some cases (principally, the constant matrix, finite-time 
problem). We do not use the details in the text but some of the problems 
exploit them. 

Property 16. The variance equation can be related to two simultaneous 
linear equations, 

y = F(t) VI(t) + G(t) QCF(t) vz(t), 

dv,w - = CT(t) R-l(t) C(t) v&) - F(t) vz(t), 
dt 

or, equivalently, 

1 [ F(t) I G(t) QGT(O I vi(t) = .------------------ I-------------. I[ I . CT(t) R-l(t) C(t) : - FT(t) v&l 

Denote the transition matrix of (336) by 

T(4 T,) = 
Tll(4 T,) 1 Tl&, n 
-------------------- ’ I 
T& G) i Tm(4 n 1 

Then we can show 1321, 

(339 

(336) 

(337) 

b(t> = ITll(4 T) km + T12(t, n1 CT& n km + Tdt, TN- l* (338) 
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When the matrices of concern are constant, we can always find the transi- 
tion matrix T (see Problem 6.3.21 for an example in which we find T by 
using Laplace transform techniques. As discussed in that problem, we 
must take the contour to the right of all the poles in order to include all 
the eigenvalues) of the coefficient matrix in (336). 

In this section we have transformed the optimum linear filtering problem 
into a state variable formulation. All the quantities of interest are expressed 
as outputs of dynamic systems. The three equations that describe these 
dynamic systems are our principal results. 

The Estimator Equation. 

‘9 = F(t) 9(t) + z(t)[r(t) - C(t) 2(t)]. 

The Gain Equation. 

1 WV 
z(t) = &a(t) CT(t) R--l(t). 

c 

The Variance Equation. 

y = F(t) EP(~) + b(t) FT(t) - b(t) CT(t) R- ‘(t> C(t) b(t) 
+ G(t) QGT(t). (341) 

To illustrate their application we consider some simple examples, chosen 
for one of three purposes: 

1. To show an alternate approach to a problem that could be solved 
by conventional Wiener theory. 

2. To illustrate a problem that could not be solved by conventional 
Wiener theory. 

3. To develop a specific result that will be useful in the sequel. 

6.3.3 Applications 

In this section we consider some examples to illustrate the application 
of the results derived in Section 6.3.2. 

Example 1. Consider the first-order message spectrum 

slso) 
2kP = -. 

o2 + k2 (342) 
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In this case x(t) is a scalar; x(t) = a(t). I f  we assume that the message is not modulated 
and the measurement noise is white, then 

r(t) = x(t) + w(t). (343) 

The necessary quantities follow by inspection : 

F(t) = -k, 
G(t) = 1, 
C(t) = 1, 

Q = 2kP, 

R(t) = $ 

(3W 

Substituting these quantities into (339), we obtain the differential equation for the 
optimum estimate : 

d$(t) 
- = -kZ(t) + z(t)[r(t) - a(t)]. dt (345) 

The resulting filter is shown in Fig. 6.38. The value of the gain z(t) is determined by 
solving the variance equation. 

First, we assume that the estimator has reached steady state. Then the steady-state 
solution to the variance equation can be obtained easily. Setting the left-hand side 
of (341) equal to zero, we obtain 

0 = -2kfm - f;a, + + 2kP. (346) 
0 

where fPa, denotes the steady-state variance. 

There are two solutions to (346); one is positive and one is negative. Because tpoo is 
a mean-square error it must be positive. Therefore 

f Pm = k?(-1 + driin) (34-a 

(recall that A = 4P/kN,). From (340) 

z(m) Li za, = 5‘pooR-1 = k(-1 + 41 + A). (348) 

Fig. 6.38 Optimum filter: example 1. 
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Clearly, the filter must be equivalent to the one obtained in the example in Section 
6.2. The closed loop transfer function is 

Ho(jw) = ‘* 
jw + k + zo3* (349) 

Substituting (348) in (349), we have 

HOW = 
k(dl+ - 1) 
jo + kdl+’ 

which is the same as (94). 
The transient problem can be solved analytically or numerically. The details of 

the analytic solution are carried out in Problem 6.3.21 by using Property 16 on p. 545. 
The transition matrix is 

I cash (~7) 
k - 7 sinh (YT) i 2kP 

I 
7 sinh (~7) 

T(Ti + 7, Ti) = 1 --------------------I --------------------. I ’ (351) 
2 

G sinh (~7) i cash (~7) + 
k 

0 

; sinh (~7) 
I 

where 
y  4i kd+h. (352) 

If  we assume that the unobserved message is in a statistical steady state then 2 (Ti) = 0 
and tp(Ti) = P. [(342) implies a(t) is zero-mean.] Using these assumptions and (351) 
in (338), we obtain 

As t-+-co, wehave 

2kP No 
lim fp(t + Tr) = y+k = 7 [y - k] = fp*, 
t+a 

(354) 

which agrees with (347). In Fig. 6.39 we show the behavior of the normalized error 
as a function of time for various values of A. The number on the right end of each 
curve is &( 1.2) - &. This is a measure of how close the error is to its steady-state value. 

Example 2. A logical generalization of the one-pole case is the Butterworth family 
defined in (153) : 

2nP sin (n/2n) S&w: n) = - 
k (1 + (u/k)2n)’ (355) 

To formulate this equation in state-variable terms we need the differential equation of 
the message generation process. 

@j(t) + J3n - 1 atn- l’(t) + l l l +po a(t) = u(t)= (356) 

The coefficients are tabulated for various n in circuit theory texts (e.g., Guillemin 
[37] or Weinberg [38]). The values for k = 1 are shown in Fig. 6.40a. The pole 
locations for various n are shown in Fig. 6.406. If  we are interested only in the 
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Fig. 6.40 (6) pole plots, Butterworth spectra. 

message process, we can choose any convenient state representation. An example is 
defined by (191), 

XL0 = a(t) 
x2(t) = b(t) = A,(t) 
x3(t) = 6(t) = 2,(t) wn 
. . 

xn(t) = a(“- *j(t) = &-l(t) 

*a(t) = - 2 pk - 1 atkB1)(t) + u(t) 
k=l 

=- 2 pk-1 Xk(f) + dt) 
k=l 
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The resulting F matrix for any n is given by using (356) and (193). The other 
quantities needed are 

0 e. 
G(t) = ; [I wo 

; 

C(t) = [l I 0 : l l l ; O] (359) 

R(t) = ?- (361) 

From (340) we observe that z(t) is an n x 1 matrix, kll0 
2 &2(t) z(t) = N L I 9 

0 : 

Il:(t 1 

&(t) = 2,(t) + + S‘ll(t)[~o) - &WI 
0 

$20) = 2,(t) + + 512MW - &(Ol 
0 

: . 

3*(t) = -poZl(t) - pl&(t)- ’ ’ ’ -Pn - 1 h(t) + ~~ 2 41n(t)[r(t 1 - M)l* 

The block diagram is shown in Fig. 6.41. 

(362) 

(363) 

Fig. 6.41 Optimum filter: &h-order Butterworth message. 
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Fig. 6.42 (a) Mean-square error, second-order Butterworth; (6) filter gains, second- 
order Butterworth. 

To find the values of &(t), . . . , II,(t), we solve the variance equation. This could 
be done analytically by using Property 16 on p. 545, but a numerical solution is much 
more practical. We assume that Tt = 0 and that the unobserved process is in a 
statistical steady state. We use (334) to find &(O). Note that our choice of state 
variables causes (334d) to be satisfied. This is reflected by the zeros in &(O) as shown 
in the figures. In Fig. 6.42~~ we show the error as a function of time for the two-pole 
case. Once again the number on the right end of each curve is &( 1.2) - tpa,. We see 
that for t = 1 the error has essentially reached its steady-state value. In Fig. 6.426 
we show the term &(t). Similar results are shown for the three-pole and four-pole 
cases in Figs. 6.43 and 6.44, respective1y.t In all cases steady state is essentially 
reached by t = 1. (Observe that k = 1 so our time scale is normalized.) This means 

t The numerical results in Figs. 6.39 and 6.41 through 6.44 are due to Baggeroer [36]. 
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do - (Note negative scale) 
fl4W 

Fig. 6.44 (d) filter gains, fourth-order Butterworth. 

that after t = 1 the filters are essentially time-invariant. (This does not imply that all 
terms in &(t) have reached steady state.) A related question, which we leave as an 
exercise, is, “If we use a time-invariant filter designed for the steady-state gains, how 
will its performance during the initial transient compare with the optimum time- 
varying filter ?” (See Problems 6.323 and 6.326.) 

Example 3. The two preceding examples dealt with stationary processes. A simple 
nonstationary process is the Wiener process. It can be represented in differential 
equation form as 

Observe that even though the coefficients in the differential equation are constant 
the process is nonstationary If we assume that 

the estimator follows easily 

where 

and 

R(t) = G u(t), 
wo 

x(0) = 0. 

r(t) = x(t) + w(t), (365) 

i(t) = dew - WI, (366) 

dt) = f IPW (367) 
0 

I() pt = -$ gp2(t) + G'Q. (368) 
0 

The transient problem can be solved easily by using Property 16 on p. 545 (see 
Problem 6.3.25). The result is 

&(t) = (2 G”Q)’ = 9 (369 

where y  = [2G2Q/No]K [Observe that (369) is not a limiting case of (353) because the 
initial condition is different.] As t --+ 00, the error approaches steady state. 

Ipa, = (+ G~Q)' (370) 

[(370) can also be obtained directly from (368) by letting I=(t) = 0.1 
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Fig. 6.45 Steady-state filter: Example 3. 

The steady-state filter is shown in Fig. 6.45. It is interesting to observe that this 
problem is not included in the Wiener-Hopf model in Section 6.2. A heuristic way to 
include it is to write 

S&J) = =I 
aJ2 + c2 (371) 

solve the problem by using spectral factorization techniques, and then let c -3 0. 
It is easy to verify that this approach gives the system shown in Fig. 6.45. 

Example 4. In this 
problem : 

example we derive a canonic receiver model for the following 

1. The message has a rational spectrum in which the order of the numerator as a 
function of w2 is at least one smaller than the order of the denominator. We use the 
state variable model described in Fig. 6.30. The F and G matrices are given by (212) 
and (213), respectively (Canonic Realization No. 2). 

2. The received signal is scalar function. 
3. The modulation matrix has unity in its first column and zero elsewhere. In 

other words, only the unmodulated message would be observed in the absence of 
measurement noise, 

C(t) = [l : 0 l l l 01. (372) 

The equation describing the estimator is obtained from (339), 

and 
3(t) = F%(t) + z(t)[r(t) - RI(t)] (373) 

AS in Example 2, the gains are simply 2/N. times the first row of the error matrix. 
The resulting filter structure is shown in Fig. 6.46. As t -+ a, the gains become 
constant. 

For the constant-gain case, by comparing the system inside the block to the two 
diagrams in Fig. 6.30 and 31a, we obtain the equivalent filter structure shown in 
Fig. 6.47. 

Writing the loop filter in terms of its transfer function, we have 

2 
G,,(s) = - 

511sn - l + l l l + e1n 

No sn + Pn-lSnB1 + l .  l + PO’ 

(375) 



Applications 557 

r 
B-----m- ------------s- 1 

r 
1 

s 

I 

I 
I 

\I 

I 

I 
A 

I 
I j j  A A 

I 
tt 

L B------m ---w-B ----- w-- J 
Loop filter 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-T- 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 6.46 Canonic estimator: stationary messages, statistical steady-state. 

Thus the coefficients of the numerator of the loop-filter transfer function correspond 
to the first column in the error matrix. The poles (as we have seen before) are identical 
to those of the message spectrum. 

Observe that we still have to solve the variance equation to obtain the numerator 
coefficients. 

Example 5A [23]. As a simple example of the general case just discussed, consider 
the message process shown in Fig. 6.48a. If  we want to use the canonic receiver 
structure we have just derived, we can redraw the message generator process as shown 
in Fig. 6.486. 

We see that 
p1 = k, pO=O, bl=O, bO=l. (376) 

Fig. 6.47 Canonic estimator : stationary messages, statisticat steady-state. 
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u(t) 

Fig. 6.48 Systems for example 5A : (a) message generator; (b) analog representation; 
(c) optimum estimator. 

Then, using (212) and (213), we have 

F= [ik ;], G=[;], c=[l 01 

Q = q, R = NO/2. 
The resulting filter is just a special case of Fig. 6.47 as shown in Fig. 6.48. 
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The variance equation in the steady state is 

-Mu + 522 -- 2 
No 

6 11 I‘ 12 = 0, 

2 
j(g La2 = q* 

Thus the steady-state errors are 

I 12 
=s 2qvr 

2x ( ) 

gll = $‘{-k + [k2 + 2($!-)‘]‘}e 

(378) 

(379) 

We have taken the positive definite solution. The loop filter for the steady-state case 

G (s) 
lo = 

{-k + [k2 + 2($-)K]K}s + ($)’ 
. 

s(s + k) (380) 

Example SB. An interesting example related to the preceding one is shown in Fig. 
6.49. We now add A and B subscripts to denote quantities in Examples 5A and SB, 
respectively. We see that, except for some constants, the output is the same as in 
Example 5A. The intermediate variable x2,(t), however, did not appear in that 
realization. 

We assume that the message of interest is xz,(t). In Chapter II.2 we shall see the 
model in Fig. 6.49 and the resulting estimator play an important role in the FM 
problem. This is just a particular example of the general problem in which the 
message is subjected to a linear operation befire transmission. There are two easy 
ways to solve this problem. One way is to observe that because we have already 
solved Example SA we can use that result to obtain the answer. To use it we must 
express x2,(t) as a linear transformation of xl,(t) and x2,(t), the state variables in 
Example SA. 

p xz,(t) = &,(t) (381) 
and 

x1,(0 = x1,0, (382) 
if we require 

qA = r6’qB* (383) 

Observing that 
x2,4(t 1 = k xl,(t) + h,(t), (384) 

we obtain 
fl x+3(t) = 21,(t) = -kXl,(t) + x2,(t). (385) 

1 
s+K X2J3(t) 

% 
l XlBW 

Fig. 6.49 Message generation, example SB. 
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Now minimum mean-square error filtering commutes over linear transformations. 
(The proof is identical to the proof of 2.237.) Therefore 

Rz,(t) = 2 [k &,(t) + $,(t>l. (386) 

Observe that this is not equivalent to letting /32,,(t) equal the derivative of Z,,(t). Thus 

1 
22,(t) # p %*(t). (3W 

With these observations we may draw the optimum filter by modifying Fig. 6.48. 
The result is shown in Fig. 6.50. The error variance follows easily: 

Alternatively, if we had not solved Example SA, we would approach the problem 
directly. We identify the message as one of the state variables. The appropriate 
matrices are 

F= [I -“,I, G=[;], C=[l 01 (389) 

and 
Q = qB* MO 

Fig. 6.50 Estimator for example 5B. 
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The structure of the estimator is shown in Fig. 6.51. The variance equation is 

Al(t) = 2Pf12(0 - jg f (0 31 9 
0 

412(t) = Bfm(t) - kf12W - j$ fllU)fdO, 
0 

(39~) 

#22(t) = - 2kf 22(t) - j$ f&(t) + !b 
0 

Even in the steady state, these equations appear difficult to solve analytically. In 
this particular case we are helped by having just solved Example 5A. Clearly, fll(t) 
must be the same in both cases, if we let qA = f12qB. From (379) 

f ll,co = !ip{-l + [l + gg!yS} 

The other gain 5 12,co now follows easily 

f 
k2Nou2 

12.00 = -* 
4P 

(393) 

Because we have assumed that the message of interest is x2(t), we can also easily 
calculate its error variance: 

4 
1 22.a~ = - 2k wo 

It is straightforward to verify that (388) and (394) give the same result and that the 
block diagrams in Figs. 6.50 and 6.51 have identical responses between r(t) and a,(t). 
The internal difference in the two systems developed from the two different state 
representations we chose. 

Fig. 6.51 Optimum estimator: example 5B (form #2). 
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Example 6. Now consider the same message process as in Example 1 but assume that 
the noise consists of the sum of a white noise and an uncorrelated colored noise, 

and 
no = r&(t) + w(t) (395) 

sew 
2M’c =-. 

w2 + kc2 ww 

As already discussed, we simply include nc(t) as a component in the state vector. 
Thus, 

x(t) a (397) 

1 0 
G(t) = [ 1 0 1) 

(399) 

c(t) = 11 11, WV 

and 

The gain matrix z(t) becomes 

z(t) = $ glw CT(t), 
0 

(403) 

or 

zu(t) = + [&1(t) + 512w1, (404) 
0 

zzrw = f [512(t) + t22w1. (405) 
0 

The equation specifying the estimator is 

d%(t) 
dt 

= F(t) ji(t) + z(t)[r(t) - C(t) g(t)], 

or in terms of the components 

(406) 

&(t) - = -k&(t) + zll(t)[r(t) - a,(t) - h(t)19 
dt 

(407) 

d%(f) - = -k,a,(t) + zzl(t)[r(t) - &(t) - $2(t)]- 
dt 

(408) 

The structure is shown in Fig. 6.52a. This form of the structure exhibits the 
symmetry of the estimation process. Observe that the estimates are coupled through 
the feedback path. 
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0 a 

Fig. 6.52 Optimum estimator: colored and white noise (statistical steady-state). 

An equivalent asymmetrical structure which shows the effect of the colored noise 
on the message is shown in Fig. 6.526. To find the gains we must solve the variance 
equation. Substituting into (341), we find 

Ill@) = - Wdt) - 
2 

No (MO + MtD2 + 2W (409) 

k,,co = -(k + kc)Sdt) 2 - x (MO + g12(0)(&2(0 + g22(t)), (410) 

#22co = - 2kcQdt) - $ &z(t) + MO12 + 2kcPc. (410 

Two comments are in order. 

1. The system in Fig. 6.52a exhibits all of the essential features of the canonic 
structure for estimating a set of independent random processes whose sum is observed 
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in the presence of white noise (see Problem 6.3.31 for a derivation of the general 
canonical structure). In the general case, the coupling arises in exactly the same 
manner. 

2. We are tempted to approach the case when there is no white noise (No = 0) 
with a limiting operation. The difficulty is that the variance equation degenerates. 
A derivation of the receiver structure for the pure colored noise case is discussed in 
Section 6.3.4. 

Example 7. The most common example of a multiple observation case in com- 
munications is a diversity system. A simplified version is given here. Assume that the 
message is transmitted over m channels with known gains as shown in Fig. 6.53. 
Each channel is corrupted by white noise. The modulation matrix is m x n, but only 
the first column is nonzero: 

c2 ; 
C(t) = c2 ; 0 a [c f  01. [ 1 (412) . . I . I 

Cm !  

For simplicity we assume first that the channel noises are uncorrelated. Therefore 
R(t) is diagonal : 

R(t) = 

‘N 
2 0 

N2 
2 

0 Xl 
. 2. 

(413) 

Fig. 6.53 Diversity system. 
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The gain matrix z(t) is an n x m matrix whose ijth element is 

The general receiver structure is shown in Fig. 6.54a. We denote the input to the 
inner loop as v(t), 

v(t) = z(NW - C(t) WI. (41 Sa) 

Using (412)-(414), we have 

Vi(t) = &l,[ j: 2 r,(t) - (2 ~)"'(')]. 
jY1 j j=l 

(415b) 

We see that the first term in the bracket represents a no-memory combiner of the 
received waveforms. 

Denote the output of this combiner by rc(t), 

m 2cj t-c(t) = )‘ - uJ(t). j&i w (416) 

We see that it is precisely the maximal-ratio-combiner that we have already en- 
countered in Chapter 4. The optimum filter may be redrawn as shown in Fig. 6.546. 
We see that the problem is reduced to a single channel problem with the received 
waveform rc(t), 

rcw = 2 ( 1 m z a(t) + 3 2 nj(t). 
j=l j=l 

r(t) 
I 3 Loop filter w > 

, m  

Fig. 6.54 Diversity receiver. 

(417a) 
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The modulation matrix is a scalar 

and the noise is 

c = 

* 2c, 
n&) a C - njW. 

j=l w 

(417b) 

(417c) 

If  the message a(t) has unity variance then we have an effective power of 

and an effective noise level of 

Ned - *  zc 2 

2 - j=l Nj j ’ c (419) 

Therefore all of the results for the single channel can be used with a simple scale 
change; for example, for the one-pole message spectrum in Example 1 we would have 

where 

f (-1 + 1/G-z+, (420) 

(421) 

Similar results hold when R(t) is not diagonal and when the message is nonstationary. 

These seven examples illustrate the problems encountered most fre- 
quently in the communications area. Other examples are included in the 
problems. 

6.3.4 Generalizations 

Several generalizations are necessary in order to i 
of interest. We discuss them briefly in this section. 

.nclude other problems 

Prediction. In this case d(t) = x(t + a>, where a is positive. We can 
show easily that 

S(t) = +(t + a, t) 2(t), a > 0, (422) 

where +(t, 7) is the transition matrix of the system, 

k(t) = F(t) x(t) + G(t) u(t) (423) 
(see Problem 6.3.37). 

When we deal with a constant parameter system, 

and (422)& becomes 
+(t + a, t) = eFa, 

&t> = eFa 2(t). 
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Firtering with Delay. In this case d(t) = x(t + a), but a is negative. 
From our discussions we know that considerable improvement is available 
and we would like to include it. The modification is not so straightforward 
as the prediction case. It turns out that the canonic receiver first finds the 
realizable estimate and then uses it to obtain the desired estimate. A good 
reference for this type of problem is Baggeroer [40]. The problem of 
estimating x(Q, where t1 is a point interior to a fixed observation interval, 
is also discussed in this reference. These problems are the state-variable 
counterparts to the unrealizable filters discussed in Section 6.2.3 (see 
Problem 6.6.4). 

Linear Transformations on the State Vector. If d(t> is a linear trans- 
formation of the state variables x(t), that is, 

then 
d(t) = km x0), W) 
A 
d(t) = k&t) a(t). (427) 

Observe that kd(t) is not a linear filter. It is a linear transformation of the 
state variables. This is simply a statement of the fact that minimum mean- 
square estimation and linear transformation commute. The error matrix 
follows easily, 

In Example 5B we used this technique. 

Desired Linear Operations. In many cases the desired signal is obtained 
by passing x(t) or y(t) through a linear filter. This is shown in Fig. 6.55. 

Fig. 6.55 Desired linear operations. 
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Three types of linear operations are of interest. 

1. Operations such as difirentiation ; for example, 

This expression is meaningful only if xl(t) is a sample function from a 
mean-square differentiable pr0cess.T If this is true, we can always choose 
d(t) as one of the components of the message state vector and the results 
in Section 6.3.2 are immediately applicable. Observe that 

d(t) # $ f,(t). (430) 
In other words, linear filtering and realizable estimation do not commute. 
The result in (430) is obvious if we look at the estimator structure in 
Fig. 6.51. 

2. Improper operations; for example, assume y(t) is a scalar function and 

40 = s * WM - 7). dr, 
0 

(43 la) 

(431b) 

In this case the desired signal is the sum of two terms. The first term is 
y(t). The second term is the output of a convolution operation on the past 
of y(t). In general, an improper operation consists of a weighted sum of 
y(t) and its derivatives plus an operation with memory. To get a state 
representation we must modify our results slightly. We denote the state 
vector of the dynamic system whose impulse response is k&T) as xd(t). 
(Here it is a scalar.) Then we have 

and 
i&t) = --h-40 + YW (432) 

d(t) = (01 - r6) &(O + YW* (433) 

Thus the output equation contains an extra term. In general, 

d(t) = C,(t) X&) + Bd(O x(t)* (435) 
Looking at (435) we see that if we augment the state-vector so that it 
contains both xd(t) and x(t) then (427) will be valid. We define an 
augmented state vector 

w> n (436) 

t Note that we havejworked with k(t) when one of its components was not differen- 
tiable. However the output of the system always existed in the mean-square sense. 
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The equation for the augmented process is 

The observation equation is unchanged : 

r(t) = C(t) x(0 + w(t); (438) 
However we must rewrite this in terms of the augmented state vector 

where 
r(t) = C,(t) &(O + w(t)9 (439) 

C,(t) n [C(t) I 01. W) 

Now d(t) is obtained 
vector. Thus 

bY a linear transformation on the augmented state 

8(t) = G(t) %(t> + Bd(O w> = PdW i Cd(t)lPa(ol~ (441) 
(See Problem 6.3.41 for a simple example.) 

3. Proper operation: In this case the impulse response of k&) does not 
contain any impulses or derivatives of impulses. The comments for the 
improper case apply directly by letting Bd(t) = 0. 

Linear Filtering Before Transmission. Here the message is passed through 
a linear filter before transmission, as shown in Fig. 6.56. All comments 
for the preceding case apply with obvious modification; for example, 
if the linear filter is an improper operation, we can write 

%(t> = F,(t) x,(t) + G,(t) x(t), (442) 

Then the augmented state vector is 

xaw = x(0 [ 1 -w-e. 
x , ( t )  l 

(444) 

Fig. 6.56 Linear filtering before transmission. 



570 6.3 Kahnan-Bucy Filters 

The equation for the augmented process is 

k,(t) = 

The observation equation is modified to give 

(445) 

x(t> 
r(t) = yr(t) + w(t) = [B,(t) i C,(t)] ----- [ 1 x @) + w(t)* w9 

f 

For the last two cases the key to the solution is the augmented state vector. c 

Correlation Between u(t) and w(t). We encounter cases in practice in 
which the vector white noise process u(t) that generates the message is 
correlated with the vector observation noise w(t). The modification in the 
derivation of the optimum estimator is straightforward.? Looking at the 
original derivation, we find that the results for the first two steps are 
unchanged. Thus 

jZ(t) = F(t) s(t) + h,(t, t)[r(t) - C(t) a(t)]. (447) 

In the case of correlated u(t) and w(t) the expression for 

40 4 h&9 0 4 lim h,(t, u) (448) 
u+t- 

must be modified. From Property 3A-V and the definition of gp(t) we have 

Multiplying by CT(t), 

t b(t) CT(t) = lim K,(t, U) CT(t) - 
s 

h,(t, 7) UT, 4 CT(W u+t- Ti 1 
= lim K&t, U) - K,,(t, U) - 

uu-*t- 
1 t ho@, 7) K,(T, 4 CT(~) d~0-j 

Ti 
PO) 

Now, the vector Wiener-Hopf equation implies that 

lim K&t, U) = lim hdt, 7) UT, 4 lb 
u+t- u+t- 1 

. = lim h,(t, mLc(~, 4 CT(U) + R(T) S(T - u> 
u+t- 

i- c(7)& (7, Uj] dT 
I 

l (451) 

t This particular case was first considered in [41]. Our derivation follows Collins [42]. 
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Using (451) in (450), we obtain 

s t L4> c’(t> = lim h,(t, @Z(u) + h , ( t ,  7) C(T) Kxw(7, u) do -  Kx&, u) l 

u+t- 
Ti 1 

(452) 
The first term is continuous. The second term is zero in the limit because 
K,(T, u) is zero except when u = t. Due to the continuity of h,(t, 7) the 
integral is zero. The third term represents the effect of the correlation. 
Thus 

g&C(t) = h,(t, t) R(t) - lim K,,(t, u)~ 
u-*t- 

(453) 

Using Property 13 on p. 532, we have 

where 

lim K&t, u) = G(t) P(t), (454) u+t- 

E[u(t) WT(T)] n 8(t - 7) P(t). w5) 
Then , 

z(t) 4 h,(t, t) = [gp(t) CT(t) + G(t) P(t)]R- l(t). (456) 

The final step is to modify the variance equation. Looking at (328), we 
see that we have to evaluate the expectation 

To do this we define a new white-noise driving function 

Then 
v(t) n -z(t) w(t) + G(t) u(t). (458) 

E[v(t)vT(r)] = [z(t)R(t)zT(t) + G(t)QGT(t)]6(t - 7) 

- [z(t)E[w(t)uT(t)]GT(t) + G(t)E[u(t)wT(t)]zT(t)] 
or 

(459) 

E[v(t) vT(+] = [z(t) R(t) z’(t) - z(t) P’(t) GT(t) - G(t) P(t)zT(t) 
+ G(t) Q GT(t)] 8(t - T) 4 M(t) 8(t - T), W) 

and, using Property 13 on p. 532, we have 

Substituting into the variance equation (327), we have 

w = mt)bw - z(t) WMt>> + WT 
+ z(t) R(t) z’(t) - z(t) P’(t) GT(t) 

- G(t) P(t) z’(t) + GT(t) Q GT(t). 
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Using the expression in (456) for z(t), (462) reduces to 

w = [W) - G(t) P(t) R-l(t) WI MO 
+ MNW) - C’(t) R- ‘(t)PT(t)G(t)] 

- b(t) C’(t) R-W) C(Oy,(O 
+ G(t)[Q - P(t) R-l(t)PT(t)] GT(t), 

which is the desired result. Comparing (463) with the conventional variance 
equation (341), we see that we have exactly the same structure. The 
correlated noise has the same effect as changing F(t) and Q in (330). If 
we define 

K?/(t) n W) - G(t) P(t) R-l(t) C(t) (464) 
and 

Q&t> n Q - P(t) R-l(t) P’(t), (465) 

we can use (341) directly. Observe that the filter structure is identical to 
the case without correlation; only the time-varying gain z(t) is changed. 
This is the first time we have encountered a time-varying Q(t). The results 
in (339)-(341) are all valid for this case. Some interesting cases in which 
this correlation occurs are included in the problems. 

Colored Noise Only. Throughout our discussion we have assumed that 
a nonzero white noise component is present. In the detection problem we 
encountered cases in which the removal of this assumption led to singular 
tests. Thus, even though the assumption is justified on physical grounds, it 
is worthwhile to investigate the case in which there is no white noise 
component. We begin our discussion with a simple example. 

Example. The message process generation is described by the differential equation 

&(t) = F,(t) xl(t) + G(t) ul(t)- (466) 

The colored-noise generation is described by the differential equation 

&(t) = F2(t) x2(t) + G(t) Uz(t)- (467) 

The observation process is the sum of these two processes: 

YW = x1(t) + X2(0* (468) 

Observe that there is no white noise present. Our previous work with whitening 
filters suggests that in one procedure we could pass y(t) through a filter designed so 
that the output due to x2(t) would be white. (Note that we whiten only the colored 
noise, not the entire input.) Looking at (468), we see that the desired output is 
9(t) - F,(t)y(t). Denoting this new output as r’(t), we have 

r’(t) a P(t) - Fz(t ) ~0 
= 21(t) - F2(t) xl(t) + G(t) u2(0, (46% 

r’(t) = VW) - Fz(t )1x&) + w’(t), (470) 
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where 
w’(t) A G&) ul(t) + G,(t) u2(0. (471) 

We now have the problem in a familiar format: 

where 
r’(t) = C(t) x(t) + w’(t), (472) 

C(t) = [F,(t) - F’s(t) i 01. (473) 

The state equation is 

We observe that the observation noise w’(t) is correlated with u(t). 

so that 
E[u(t) W’(T)] = 8(t - r) P(t), (475) 

P(t) = (476) 

The optimal filter follows easily by using the gain equation (456) and the variance 
equation (463) derived in the last section. The general case? is somewhat more 
complicated but the basic ideas carry through (e.g., [43], [41], or Problem 6.3.45). 

Sensitiuity. In all of our discussion we have assumed that the matrices 
F(t), G(t), C(t), Q, and R(t) were known exactly. In practice, the actual 
matrices may be different from those assumed. The sensitivity problem is 
to find the increase in error when the actual matrices are different. We 
assume the following model: 

%ncw = F,,(t) Xmo(t> + G,,(t) u&t), vv 

The correlation matrices are Qmo and R,,(t). We denote the error matrix 
under the model assumptions as Emo( t). (The subscript “mo” denotes model.) 
Now assume that the actual situation is described by the equations, 

iac(t) = F,,(t) X&) + G&I UacW~ WV 

rat(t) = Cac(t> XacCt) + Wac(t), (480) 

t We have glossed over two important issues because the colored-noise-only problem 
does not occur frequently enough to warrant a lengthy discussion. The first issue is 
the minimal dimensionality of the problem. In this example, by a suitable choice of 
state variables, we can end up with a scalar variance equation instead of a 2 x 2 
equation. We then retrieve s(t) by a linear transformation on our estimate of the 
state variable for the minimal dimensional system and the received signal. The 
second issue is that of initial conditions in the variance equation. &(O-) may not 
equal &(O+). The interest4 reader should consult the two references listed for a 
more detailed discussion. 
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with correlation matrices Qac and R,,(t). We want to find the actual 
error covariance matrix tBC(t) for a system which is optimum under the 
model assumptions when the input is r&t). (The subscript “ac” denotes 
actual.) The derivation is carried out in detail in [44]. The results are given 
in (484)-(487). We define the quantities: 

W) n WE,&) JCJj)], 

F,(t) 4 Fat(t) - Fnm(t)* (483a) 

C,(t) n cac(t> - Gno(t)* (483b) 

The actual error covariance matrix is specified by three matrix equations: 

I,,(t) = {[F,,(t) 0 em*(t) Cm*‘(t) R,,-‘(t) cm,(t)1 gac(t> 

- [Q(t) - &o(t) GOT(t) kc-‘(t) W)l gae(O> 

+ { N > T  + Gac(t ) Qac GacT(t) 

+ &o(t) C,oT(t) R,,-l(t) &c(t) R,c-l(t) Cm,(t) g*dt>y (484) 

&r(t) = F&f) tar(t> + Eadt) FRl0T(t) 

- gaE(t) Crn~)=(~) Rxnc-l(t) GCCt> EIYlC(t) 

0 R,,(t) FcT(t) + &c(t) CcT(t) R,,-‘(t) C,,(t) tmo(‘) 

+ Gac(t) Qac Gac’o~ (485) 

where 
&c(t) 4 E[xac(t) XacT(t)l (486) 

satisfies the familiar linear equation 

A,,(t) = F,,(t) A,,(t) + &c(t) FacT(t) + G,,(t) Qac GacT(t). (487) 

We observe that we can solve (487) then (485) and (484). In other words 
the equations are coupled in only one direction. Solving in this manner 
and assuming that the variance equation for &&) has already been 
solved, we see that the equations are linear and time-varying. Some typical 
examples are discussed in [44] and the problems. 

Summary 

With the inclusion of these generalizations, the feedback filter formula- 
tion can accommodate all the problems that we can solve by using con- 
ventional Wiener theory. (A possible exception is a stationary process with 
a nonrational spectrum. In theory, the spectral factorization techniques 
will work for nonrational spectra if they satisfy the Paley-Wiener criterion, 
but the actual solution is not practical to carry out in most cases of 
interest). 
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We summarize some of the advantages of the state-variable formulation. 

1. Because it is a time-domain formulation, nonstationary processes 
and finite time intervals are easily included. 

2. The form of the solution is such that it can be implemented on a 
computer. This advantage should not be underestimated. Frequently, 
when a problem is simple enough to solve analytically, our intuition is 
good enough so that the optimum processor will turn out to be only 
slightly better than a logically designed, but ad hoc, processor. However, 
as the complexity of the model increases, our intuition will start to break 
down, and the optimum scheme is frequently essential as a guide to design. 
If we cannot get quantitative answers for the optimum processor in an 
easy manner, the advantage is lost. 

3. A third advantage is not evident from our discussion. The original 
work [23] recognizes and exploits heavily the duality between the estima- 
tion and control problem. This enables us to prove many of the desired 
results rigorously by using techniques from the control area. 

4. Another advantage of the state-variable approach which we shall not 
exploit fully is its use in nonlinear system problems. In Chapter II.2 we 
indicate some of the results that can be derived with this approach. 

Clearly, there are disadvantages also. Some of the more important ones 
are the following: 

1. It appears difficult to obtain closed-form expressions for the error 
such as (152). 

2. Several cases, such as unrealizable filters, are more difficult to solve 
with this formulation. 

Our discussion in this section has served as an introduction to the role 
of the state-variable formulation. Since the original work of Kalman and 
Bucy a great deal of research has been done in the area. Various facets of 
the problem and related areas are discussed in many papers and books. 
In Chapters 11.2, 11.3, and 11.4, we shall once again encounter interesting 
problems in which the state-variable approach is useful. 

We now turn to the problem of amplitude modulation to see how the 
results of Sections 6.1 through 6.3 may be applied. 

6.4 LINEAR MODULATION: COMMUNICATIONS CONTEXT 

The general discussion in Section 6.1 was applicable to arbitrary linear 
modulation problems. In Section 6.2 we discussed solution techniques which 
were applicable to unmodulated messages. In Section 6.3 the general 
results were for linear modulations but the examples dealt primarily with 
unmodulated signals. 
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We now want to discuss a particular category of linear modulation that 
occurs frequently in communication problems. These are characterized 
by the property that the carrier is a waveform whose frequency is high 
compared with the message bandwidth. Common examples are 

s(t, a(t)) = Am [l + ma(t)] cos w,t. (488) 
This is conventional AM with a residual carrier. 

s(t, a(t)) = Am a(t) cos qt. (489) 

This is double-sideband suppressed-carrier amplitude modulation. 

s(t, a(t)) = IO [a(t) cos w,t - ii(t) sin oJ], (490) 
where Z(t) is related to the message a(t) by a particular linear transforma- 
tion (we discuss this in more detail on p. 581). By choosing the trans- 
formation properly we can obtain a single-sideband signal. 

All of these systems are characterized by the property that c(t) is 
essentially disjoint in frequency from the message process. We shall see 
that this leads to simplification of the estimator structure (or demodulator). 

We consider several interesting cases and discuss both the realizable 
and unrealizable problems. Because the approach is fresh in our minds, 
let us look at a realizable point-estimation problem first. 

6.4.1 DSB-AM : Realizable Demodulation 

As a first example consider a double-sideband suppressed-carrier 
amplitude modulation system 

s(t, a(t)) = [7m cos wJ] a(t) = y(t). W) 

We write this equation in the general linear modulation form by letting 

c(t) n Am cos qt. (492) 
First, consider the problem of realizable demodulation in the presence 

of white noise. We denote the message state vector as x(t) and assume 
that the message a(t) is its first component. The optimum estimate is 
specified by the equations, 

y = F(t) ii(t) + z(t)[r(t) - C(t) WI, (493) 
where 

and 
C(t) = [ c ( t )  i 0 ;  0 l l l O ]  

(494) 

z ( t )  = &a(t) CT(t) $0 (495) 
0 

The block diagram of the receiver is shown in Fig. 6.57. 
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Fig. 6.57 DSB-AM receiver: form 1. 

To simplify this structure we must examine the character of the loop 
filter and c(t). First, let us conjecture that the loop filter will be low-pass 
with respect to w,, the carrier frequency. This is a logical conjecture 
because in an AM system the message is low-pass with respect to 0,. 

Now, let us look at what happens to d(t) in the feedback path when it 
is multiplied twice by c(t). The result is 

c”(t) k(t) = P(l + cos 2w,t) d(t). (496) 
From our original assumption, d(t) has no frequency components near 

2w,. Thus, if the loop filter is low-pass, the term near 2~, will not pass 
through and we could redraw the loop as shown in Fig. 6.58 to obtain 
the same output. We see that the loop is now operating at low-pass 
frequencies. 

It remains to be shown that the resulting filter is just the conventional 
low-pass optimum filter. This follows easily by determining how c(t) 
enters into the variance equation (see Problem 6.4.1). 

2P 
r Loop filter 

i 

\/ 

c / 1 . 

Fig. 6.58 DSB-AM receiver: final form. 
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We find that the resulting low-pass filter is identical to the unmodulated 
case. Because the modulator simply shifted the message to a higher fre- 
quency, we would expect the error variance to be the same. The error 
variance follows easily. 

Looking at the input to the system and recalling that 

r(t) = [Am cos wet] a(t) + n(t), 

we see that the input to the loop is 

r,(t) = [-I@ a(t) + ns(t)] + double frequency terms, 

where n,(t) is the original noise n(t) multiplied by 2/2/p cos w,t. 

We see that this input is identical to that in Section 6.2. Thus the error 
expression in (152) carries over directly. 

for DSB-SC amplitude modulation. The curves in Figs. 6.17 and 6.19 for 
the Butterworth and Gaussian spectra are directly applicable. 

We should observe that the noise actually has the spectrum shown in Fig. 
6.59 because there are elements oneratine at bandnass that the received 
waveform passes through before 

-1 - - - - -  

being available fo’r processing. Because 
the filter in Fig. 6.58 is low-pass, the white noise approximation will be 
valid as long as the spectrum is flat over the effective filter bandwidth. 

6.4.2 DSB-AM: Demodulation with Delay 

Now consider the same problem for the case in which unrealizable 
filtering (or filtering with delay) is allowed. As a further simplification we 

Bandlimited noise with flat spectrum. 
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assume that the message process is stationary. Thus Tf = oo and K,(t, u) = 
Kc0 - u). In this case, the easiest approach is to assume the Gaussian 
model is valid and use the MAP estimation procedure developed in 
Chapter 5. The MAP estimator equation is obtained from (6.3) and (6.4), 

co 
d,(t) = 

s 
2 

N K&t - u) c(u>[r(u) - c(u) i(u)] du, -m<ttGo. 
--oo 0 

(501) 
The subscript u emphasizes the estimator is unrealizable. We see that the 
operation inside the integral is a convolution, which suggests the block 

Fig. 6.60 Demodulation with delay. 
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diagram shown in Fig. 6.60a. Using an argument identical to that in 
Section 6.4.1, we obtain the block diagram in Fig. 6.60b and finally in 
Fig. 6.60~. 

The optimum demodulator is simply a multiplication followed by an 
optimum unrealizable filter.? The error expression follows easily : 

This result, of course, is identical to that of the unmodulated process case. 
As we have pointed out, this is because linear modulation is just a simple 
spectrum shifting operation. 

6.4.3 Amplitude Modulation : Generalized Carriers 

In most conventional communication systems the carrier is a sine wave. 
Many situations, however, develop when it is desirable to use a more 
general waveform as a carrier. Some simple examples are the following: 

1. Depending on the spectrum of the noise, we shall see that different 
carriers will result in different demodulation errors. Thus in many cases a 
sine wave carrier is inefficient. A particular case is that in which additive 
noise is intentional jamming. 

2. In communication nets with a large number of infrequent users we 
may want to assign many systems in the same frequency band. An example 
is a random access satellite communication system. By using different 
wideband orthogonal carriers, this assignment can be accomplished. 

3. We shall see in Part II that a wideband carrier will enable us to 
combat randomly time-varying channels. 

Many other cases arise in which it is useful to depart from sinusoidal 
carriers. The modification of the work in Section 6.4.1 is obvious. Let 

a9 4m = c(t) a(t). (503) 

Looking at Fig. 6.60, we see that if 

c”(t) a(t) = k[a(t) + a high frequency term] (504) 

the succeeding steps are identical. If this is not true, the problem must be 
re-examined. 

As a second example of linear modulation we consider single-sideband 
amplitude modulation. 

t This particular result was first obtained in [46] (see also [45]). 



Amplitude Modulation: Single-Sideband Suppressed-Carrier 581 

6.4.4 Amplitude Modulation : Single-Sideband Suppressed-Carrier? 

In a single-sideband communication system we modulate the carrier 
cos w,t with the message a(t). In addition, we modulate a carrier sin w,t 
with a time function c?(t), which is linearly related to a(t). Thus the 
transmitted signal is 

s(t, a(t)) = 0 [a(t) cos ~0,t - ii(t) sin wJ]. (505) 

We have removed the 42 so that the transmitted power is the same as 
the DSB-AM case. Once again, the carrier is suppressed. 

The function a(t) is the Hilbert transform of a(t). It corresponds to the 
output of a linear filter h(7) when the input is a(t). The transfer function 
of the filter is 

-9, cr) > 0, 
H(ju) = 

1 

0, CC) = 0, (506) 
+A 0 < 0. 

We can show (Problem 6.4.2) that the resulting signal has a spectrum 
that is entirely above the carrier (Fig. 6.61). 

To find the structure of the optimum demodulator and the resulting 
performance we consider the case T, = co because it is somewhat easier. 
From (505) we observe that SSB is a mixture of a no-memory term and a 
memory term. 

There are several easy ways to derive the estimator equation. We can 
return to the derivation in Chapter 5 (5.25), modify the expression for 
as(t, a(t))/&& and proceed from that point (see Problem 6.4.3). Alter- 
natively, we can view it as a vector problem and jointly estimate a(t) and 
cl(t) (see Problem 6.4.4). This equivalence is present because the trans- 
mitted signal contains a(t) and a”(t) in a linear manner. Note that a state- 

Fig. 6.61 SSB spectrum. 

T We assume that the reader has heard of SSB. Suitable references are [47] to [49]. 


