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variable approach is not useful because the filter that generates the Hilbert 
transform (506) is not a finite-dimensional dynamic system. 

We leave the derivation as an exercise and simply state the results. 
Assuming that the noise is white with spectral height IV,/2 and using 
(5.160), we obtain the estimator equations 

and 
{r(z) - IO [d(z) cos w,z - t(z) sin o,zl} dz (507) 

These equations look complicated. However, drawing the block diagram 
and using the definition of IY(&) (506), we are led to the simple receiver 
in Fig. 6.62 (see Problem 6.4.5 for details). 

We can easily verify that IZ&) has a spectral height of I&,/2. A com- 
parison of Figs. 6.60 and 6.62 makes it clear that the mean-square per- 
formance of SSB-SC and DSB-SC are identical. Thus we may use other 
considerations such as bandwidth occupancy when selecting a system for 
a particular application. 

These two examples demonstrate the basic ideas involved in the estima- 
tion of messages in the linear modulation systems used in conventional 
communication systems. 

Two other systems of interest are double-sideband and single-sideband 
in which the carrier is not suppressed. The transmitted signal for the first 
case was given in (488). The resulting receivers follow in a similar manner. 

From the standpoint of estimation accuracy we would expect that 
because part of the available power is devoted to transmitting a residual 
carrier the estimation error would increase. This qualitative increase is 
easy to demonstrate (see Problems 6.4.6, 6.4.7). We might ask why we 

Fig. 6.62 SSB receiver. 
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would ever use a residual carrier. The answer, of course, lies in our model 
of the communication link. 

We have assumed that c(t), the modulation function (or carrier), is 
exactly known at the receiver. In other words, we assume that the oscil- 
lator at the receiver is syrtchronizedin phase with the transmitter oscillator. 
For this reason, the optimum receivers in Figs. 6.58 and 6.60 are frequently 
referred to as synchronous demodulators. To implement such a demodu- 
lator in actual practice the receiver must be supplied with the carrier in 
some manner. In a simple method a pilot tune uniquely related to the 
carrier is transmitted. The receiver uses the pilot tone to construct a 
replica of c(t). As soon as we consider systems in which the carrier is 
reconstructed from a signal sent from the transmitter, we encounter the 
question of an imperfect copy of c(t). The imperfection occurs because 
there is noise in the channel in which we transmit the pilot tone. Although 
the details of reconstructing the carrier will develop more logically in 
Chapter 11.2, we can illustrate the effect of a phase error in an AM system 
with a simple example. 

Example. Let 
r(t) = dZFa(t) cos w,t + n(t). (509 

Assume that we are using the detector of Fig. 6.58 or 6.60. 
by exactly c(t), however, we multiply by d2p cos (o,t + +), 
that is a random variable governed by some probability dei 
that + is independent of n(t). 

It follows directly that for a given value of 4 the effect 
reference is equivalent to a signal power reduction: 

Instead of multiplying 
where 4 is phase angle 
lsity p&). We assume 

of an imperfect phase 

Pef = P cos2 4. WO) 

We can then find an expression for the mean-square error (either realizable or 
nonrealizable) for the reduced power signal and average the result over p&4). The 
calculations are conceptually straightforward but tedious (see Problems 6.4.8 and 
6.4.9). 

We can see intuitively that if (b is almost always small (say 141 < 15”) the effect 
will be negligible. In this case our model which assumes c(t) is known exactly is a 
good approximation to the actual physical situation, and the results obtained from 
this model will accurately predict the performance of the actual system. A number of 
related questions arise : 

1. Can we reconstruct the carrier without devoting any power to a pilot tone? 
This question is discussed by Costas [50]. We discuss it in the problem section of 
Chapter 11.2. 

2. I f  there is a random error in estimating c(t), is the receiver structure of Fig. 6.58 
or 6.60 optimum? The answer in general is “no “. Fortunately, it is not too far from 
optimum in many practical cases. 

3. Can we construct an optimum estimation theory that leads to practical receivers 
for the general case of a random modulation matrix, that is, 

r(t) = C(t) x(0 + n(t), (511) 
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where C(t) is random? We find that the practicality depends on the statistics of C(t). 
(It turns out that the easiest place to answer this question is in the problem section 
of Chapter 11.3.) 

4. I f  synchronous detection is optimum, why is it not used more often? Here, the 
answer is complexity. In Problem 6.4.10 we compute the performance of a DSB 
residual-carrier system when a simple detector is used. For high-input SNR the 
degradation is minor. Thus, whenever we have a single transmitter and many receivers 
(e.g., commercial broadcasting), it is far easier to increase transmitter power than 
receiver complexity. In military and space applications, however, it is frequently 
easier to increase receiver complexity than transmitter power. 

This completes our discussion of linear modulation systems. We now 
comment briefly on some of the results obtained in this chapter. 

6.5 THE FUNDAMENTAL ROLE OF THE OPTIMUM LINEAR FILTER 

Because we have already summarized the results of the various sections 
in detail it is not necessary to repeat the comments. Instead, we shall dis- 
cuss briefly three distinct areas in which the .techniques developed in this 
chapter are important. 

Linear Systems. We introduced the topic by demonstrating that for 
linear modulation systems the MAP interval estimate of the message was 
obtained by processing r(t) with a linear system. To consider point 
estimates we resorted to an approach that we had not used before. 
We required that the processor be a linear system and found the best 
possible linear system. We saw that if we constrained the structure to 
be linear then only the second moments of the processes were relevant. 
This is an example of the type mentioned in Chapter 1 in which a partial 
characterization is adequate because we employed a structure-oriented 
approach. We then completed our development by showing that a linear 
system was the best possible processor whenever the Gaussian assumption 
was valid. Thus all of our results in this chapter play a double role. They 
are the best processors under the Gaussian assumptions for the classes of 
criteria assumed and they are the best linear processors for any random 
process. 

The techniques of this chapter play a fundamental role in two other 
areas. 

Nonlinear Systems. In Chapter II.2 we shall develop optimum receivers 
for nonlinear modulation systems. As we would expect, these receivers are 
nonlinear systems. We shall find that the optimum linear filters we have 
derived in this chapter appear as components of the over-all nonlinear 
system. We shall also see that the model of the system with respect to its 
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effect on the message is linear in many cases. In these cases the results in 
this chapter will be directly applicable. Finally, as we showed in Chapter 5 
the demodulation error in a nonlinear system can be bounded by the error 
in some related linear system. 

Detection of Random Processes. In Chapter II.3 were turn to the detection 
and estimation problem in the context of a more general model. We shall 
find that the linear filters we have discussed are components of the 
optimum detector (or estimator). 

We shall demonstrate why the presence of an optimum linear filter 
should be expected in these two areas. When our study is completed the 
fundamental importance of optimum linear filters in many diverse con- 
texts will be clear. 

6.6 COMMENTS 

It is worthwhile to comment on some related issues. 

1. In Section 6.2.4 we saw that for stationary processes in white noise 
the realizable mean-square error was related to Shannon’s mutual informa- 
tion. For the nonstationary, finite-interval case a similar relation may also 
be derived 

2. The discussion with respect to state-variable filters considered only 
the continuous-time case. We can easily modify the approach to include 
discrete-time systems. (The discrete system results were derived in Problem 
2.6.15 of Chapter 2 by using a sequential estimation approach.) 

3. Occasionally a problem is presented in which the input has a transient 
nonrandom component and a stationary random component. We may 
want to minimize the mean-square error caused by the random input 
while constraining the squared error due to transient component. This is a 
straightforward modification of the techniques discussed (e.g., [51]). 

4. In Chapter 3 we discussed the eigenfunctions and eigenvalues of the 
integral equation, 

For rational spectra we obtained solutions by finding the associated 
differential equation, solving it, and using the integral equation to evaluate 
the boundary conditions. From our discussion in Section 6.3 we anticipate 
that a computationally ‘more efficient method could be found by using 
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state-variable techniques. These techniques are developed in [52] and [54] 
(see also Problems 6.6.1-6.6.4) The specific results developed are : 

(a) A solution technique for homogeneous Fredholm equations using 
state-variable methods. This technique enables us to find the eigenvalues 
and eigenfunctions of scalar and vector random processes in an efficient 
manner. 

(b) A solution technique for nonhomogeneous Fredholm equations using 
state-variable methods. This technique enables us to find the function 
g(t) that appears in optimum detector for the colored noise problem. It is 
also the key to the optimum signal design problem. 

(c) A solution of the optimum unrealizable filter problem using state- 
variable techniques. This enables us to achieve the best possible per- 
formance using a given amount of input data. 

The importance of these results should not be underestimated because 
they lead to solutions that can be evaluated easily with numerical techn- 
niques. We develop these techniques in greater detail in Part II and use 
them to solve various problems. 

5. In Chapter 4 we discussed whitening filters for the problem of detect- 
ing signals in colored noise. In the initial discussion we did not require 
realizability. When we examined the infinite interval stationary process 
case (p. 312), we determined that a realizable filter could be found and one 
component interpreted as an optimum realizable estimate of the colored 
noise. A similar result can be derived for the finite interval nonstationary 
case (see Problem 6.6.5). This enables us to use state-variable techniques 
to find the whitening filter. This result will also be valuable in Chapter 
11.3. 

6.7 PROBLEMS 

P6.1 Properties of Linear Processors 

Problem 6.1.1. Let 
40 = a(t) + n(t), Tt 5 t s Tf, 

where a(t) and n(t) are uncorrelated Gaussian zero-mean processes with covariance 
functions &(t, u) and &(t, u), respectively. Find ~~~~~~~~~~~~~~ st s&iIr(t):Ti 5 t 5 Tr). 

Problem 6.1.2. Consider the model in Fig. 6.3. 

1. Derive Property 3V (51). 
2. Specialize (51) to the case in which d(t) = x(t). 

Problem 6.1.3. 

Consider the vector model in Fig. 6.3. 
Prove that 

W, $1 R(t) = W) c’(t). 
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Comment. Problems 6.1.4 to 6.1.9 illustrate cases in which the observation is a 
finite set of random variables. In addition, the observation noise is zero. They 
illustrate the simplicity that (29) leads to in linear estimation problems. 

Problem 6.11.4. Consider a simple prediction problem. We observe a(t) at a single 
time. The desired signal is 

d(t) = act + 4, 

where a is a positive constant. Assume that 

&ml = 0, 
E[a(t) a(u)] = K&t - u) 4 K,(r). 

1. Find the best linear MMSE estimate of d(t). 
2. What is the mean-square error? 
3. Specialize to the case K=(T) = emkIT’. 
4. Show that, for the correlation function in part 3, the MMSE estimate would 

not change if the entire past were available. 
5. Is this true for any other correlation function? Justify your answer. 

Problem 6.1.5. Consider the following interpolation problem. You are given the 
values a(0) and a(T): 

EbWl = 0, --CO<t<oO, 

E[a(t)a(u)l = L(f - 4 -m < t,u -c co. 

1. Find the MMSE estimate of a(t). 

2. What is the resulting mean-square error? 
3. Evaluate for t = T/2. 
4. Consider the special case, K&) = e -klTl, and evaluate the processor constants 

Problem 6.1.6 [HI. We observe a(t) and h(t). Let d(t) = a(t + a), where a is a positive 
constant. 

1. Find the MMSE linear estimate of d(t). 
2. State the conditions on K&T) for your answer to be meaningful. 
3. Check for small a. 

Problem 6.1.7 [SS]. We observe a(0) and a(t). Let 

d(t) = 
s 

t a(u) du. 
0 

1. Find the MMSE linear estimate of d(t). 
2. Check your result for t << 1. 

Problem 6. I .8. 
a(2t) l l l a(nt). 

1. Find the equations which specify the 
2. Find an explicit solution for nt << 1. 

Generalize the preceding model to n+l observations; a(O), a(t). 

d(t) = 
s 

nt a(u) 
0 

optimum linear processor. 
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Problem 6.2.9. [55]. We want to reconstruct a(r) from an infinite number of samples; 
a(nT),n =***-l,O, +l,..., using a M MSE linear estimate: 

G(t) = 2 en(t) a(nT). 
n=-co 

1. Find an expression that the 
2. Conside r the special case in 

coefficients Cn(t) must satisfy. 
which 

S,(w) = 0 Iml > ;* 

Evaluate the coefficients. 
3. Prove that the resulting mean-square error is zero. (Observe that this proves the 

sampling theorem for random processes.) 

Problem 6.1.10. In (29) we saw that 

ok, WI = 0, Ti < u < Tf. 

1. In our derivation we assumed h,(t, u) was continuous and defined h,(t, Ti) and 
h&t, Tf) by the continuity requirement. Assume r(u) contains a white noise com- 
ponent. Prove 

E k&)r(Ti)l # 0, 

E koW(T/)l # 0. 
2 

whi 
Now remove the continuity 

te noise component. Find an 
assumption on h,(t, u) and assume r(u) contains a 
equation specifying an ho(t, u), such that 

~ko(t)rWl = 0, Ti I U I T/e 

Are the mean-square errors for the filters in parts 1 and 2 the same? Why? 
3. Discuss the implications of removing the white noise component from r(u). 

Will h,(t, u) be continuous ? Do we use strict or nonstrict inequalities in the integral 
equation ? 

P6.2 Stationary Processes, Infinite Past, (Wiener Filters) 

REALIZABLE AND UNREALIZABLE FILTERING 

Problem 6.2.1. We have restricted our attention to rational spectra. We write the 
spectrum as 

where N and A4 are even. 
the following statements : 

We assume that ST(w) is integrable on the real line. 

1. SW = S,*(o). 
2. c is real. 
3. All nf’s and di’s with nonzero imaginary parts occur in conjugate pairs. 
4. S,(w) 2 0. 
5. Any real roots of numerator occur with even multiplicity. 
6. No root of the denominator can be real. 
7. N-c M. 

Verify that these results imply all the properties indicated in Fig. 6.7. 
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Problem 6.2.2. Let 

--co<ust. 

The waveforms a(u) and n(u) are sample functions from uncorrelated zero-mean 
processes with spectra 

and 

respectively. 
Sri(o) = N2w2, 

1. The desired signal is a(t). Find the realizable linear filter which minimizes the 
mean-square error. 

2. What is the resulting mean-square error? 
3. Repeat parts 1 and 2 for the case in which the filter may be unrealizable and 

compare the resulting mean-square errors. 

Problem 6.2.3. Consider the model in Problem 6.2.2. Assume that 

ww) = N,, + N2w2. 

1. Repeat Problem 6.2.2. 
2. Verify that your answers reduce to those in Problem 6.2.2 when No = 0 and to 

those in the text when N2 = 0. 

Problem 6.2.4. Let 

G 

44 = a(u) + n(u), 

The functions a(u) and n(u) 
,aussian random processes. 

are sample functions from independent zero-mean 

--oocu52. 

S,(w) = -g$ 

w4 
2can2 =-. 

w2 + c2 

We want to find the MMSE point estimate of a(t). 

1. Set up an expression for the optimum processor. 
2. Find an explicit expression for the special case 

on 
2 2 

= aa 9 

c = 2k. 

3. Look at your answer in (2) and check to see if it is intuitively correct. 

Problem 6.2.5. Consider the model in Problem 6.2.4. Now let 

Sri(w) = F + --$$ 

1. Find the optimum realizable linear filter (MMSE). 
2. Find an expression for &,,. 
3. Verify that the result in (1) reduces to the result in Problem 6.2.4 when No = 0 

and to the result in the text when on2 = 0. 



590 6.7 Problems 

Problem 6.2.6. Let 
44 = a(u) + w(u), -a<ust. 

The processes are uncorrelated with spectra 

and 

s&4 = 
2d P/k 

1 + (w2/k2)2 

The desired signal is a(t). Find the optimum realizable linear filter (MMSE). 

Problem 6.2.7. The message a(t) is passed through a linear network before trans- 
mission as shown in Fig. P6.1. The output y(t) is corrupted by uncorrelated white 
noise (I&,/2). The message spectrum is S&J). 

s&) = 2ko,2. 
o2 + k2 

1. A minimum mean-square error realizable estimate of a(t) is desired. Find the 
optimum linear filter. 

2. Find &,, as a function of a and 11 4 4oa2/kN0. 
3. Find the value of a that minimizes &,. 
4. How do the results change if the zero in the prefilter is at + k instead of -k. 

t 
Prefilter 

Fig. P6.1 

Pure Prediction. The next four problems deal with pure prediction. The model is 

and 
r(u) = a(u), --oo<ust, 

d(t) = 4 + 4, 

where a 2 0. We see that there is no noise in the received waveform. The object is 
to predict a(t). 

Problem 6.2.8. Let 

1. Find the optimum (MMSE) realizable filter. 
2. Find the normalized prediction error &,. 

Problem 6.2.9. Let 

s-d4 
1 

t =(1+ 
Repeat Problem 6.2.8. 



Stationary Processes, Infinite Past, (Wiener Filters) 591 

Problem 6.2.10. Let 

Repeat Problem 6.2.8. 

Problem 6.2.1 I. 

1. The received signal is a(u), -CO < u 5 t. The desired signal is 

40 = a(t + a), a > 0. 

Find HO(jw) to minimize the mean-square error 

where 
E&(t) - m)12~, 

d(t) = 
s 

t ho0 - u) a(u) du. 
--oo 

The spectrum of a(t) is 

sa(w) = to @2 “+z k 2)’ 
f 

where kt # k,; i # j for i = 1, . . . , n, j = 1, . . . , n. 
2. Now assume that the received signal is a(u), Ti 5 u 5 t, where Tr is a finite 

number. Find h,(t, 7) to minimize the mean-square error. 

J(t) = s t h,(t, u) a(u) du. 
Ti 

3. Do your answers to parts 1 and 2 enable you to make any general statements 
about pure prediction problems in which the message spectrum has no zeros? 

Problem 6.2.12. The message is generated as shown in Fig. P6.2, where u(t) is a white 
noise process (unity spectral height) and at, i = 1, 2, and hi, i = 1, 2, are known 
positive constants. The additive white noise w(t)(&/2) is uncorrelated with u(t). 

1. Find an expression for the linear filters whose outputs are the MMSE realizable 
estimates of xi(t), i = 1, 2. 

2. Prove that 

3. Assume that 

Prove that 

d(t) = i dt xi(t). 
f=l 

d(t) = i df Z,(t). 
t= 1 

Fig. P6.2 
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Problem 6.2.13. Let 
r(u) = a(u) + n(u), --CO<ust, 

where a(u) and n(u) are uncorrelated random processes with spectra 

The desired signal is a(t). Find the optimum (MMSE) linear filter and the resulting 
error for the limiting case in which E --+ 0. Sketch the magnitude and phase of H&W). 

Problem 6.2.14. The received waveform r(u) is 

44 = a(u) + w(u), --oo<ust, 

where a(u) and w(u) are uncorrelated random processes with spectra 

&(w) = 2ko,2, 
co2 + k2 

Let 

s 

t+a 

40 6 a(u) d4 a > 0. 
t 

1. Find the optimum (MMSE) linear filter for estimating d(t). 
2. Find 6;. 

Problem 6.2.15 (continuation). Consider the same model as Problem 6.2.14. Repeat 
that problem for the following desired signals: 

t 1. d(t) = 1 J 44 a d4 a > 0. 
t-a 

2. d(t) = -!- 
s 

t+4 

B 44 d4 a > -a 0, j3 > 0, /3 2 a. 
t+a 

What happens as (/I - a) - O? 

3. d(t) = 2 k, a(t - na), 
?l= -1 

a > 0. 

Problem 6.2.26. Consider the model in Fig. P6.3. The function u(t) is a sample 
function from a white process (unity spectral height). Find the MMSE realizable linear 
estimates, &(t) and Z,(r). Compute the mean-square errors and the cross correlation 
between the errors (& = - c;o). 

Fig. P6.3 
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Fig. P6.4 

Problem 6.2.17. Consider the communication problem in Fig. P6.4. The message a(t) 
is a sample function from a stationary, zero-mean Gaussian process with unity 
variance. The channel k,(7) is a linear, time-invariant, not necessarily realizable system. 
The additive noise n(t) is a sample function from a zero-mean white Gaussian process 
m/2). 

1. We process r(t) with the optimum unrealizable linear filter to find d(t). Assuming 

s”w IK,(j412(~4271.) = 1, find the kf(7) that minimizes the minimum mean-square 
error. 

2. Sketch for 

CLOSED FORM ERROR EXPRESSIONS 

Problem 6.2.18. We want to integrate 

1. Do this by letting y  = 2c,/N0. Differentiate with respect to y  and then integrate 
with respect to W. Integrate the result from 0 to y. 

2. Discuss the conditions under which this technique is valid. 

Problem 62.19. Evaluate 

‘, = w /J?)~‘~+ (2/No)cn’ 

Comment. In the next seven problems we develop closed-form error expressions 
for some interesting cases. In most of these problems the solutions are difficult. In all 
problems 

44 = a(u) + n(u), --co<uIt, 

where a(u) and n(u) are uncorrelated. The desired signal is a(t) and optimum (MMSE) 
linear filtering is used. The optimum realizable linear filter is HO(jw) and 

G,(jw) 4 1 - HO(jw). 

Most of the results were obtained in [4]. 

Problem 6.2.20. Let 

S,(w) = s2* 

Show that 
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where 
&W dw 

sn(w) In S=(W) + Sri(W) 2n I ’ 

Problem 6.2.21. Show that if lim Sri(w) + 0 then a+- 

4‘ P = 2 
s 

* {Sri(w) - 1 Go(jw) 1 2[Sa(~) + Sn(w)I> $) 
0 

Use this result and that of the preceding problem to show that for one-pole noise 

I P = F (1 - k2). 

Problem 6.2.22. Consider the case 

Show that 
&a(W) = No + N2w2 + N&. 

where 

determines K. 

1 G,(jw) I” = sn(0) + K 
St(W) + Sa(O)’ 

s [ 
Qo In snw + K 

0 S,(W) + S=(W) I dw = O 

Problem 6.2.23. Show that when Sri(w) is a polynomial 

e 1 O” 
P = -- 

f 710 
dm{S,,(o) - I G,( jw) 1 2[S,(o) + S&J)I + &Co) In I GWdl 2>. 

Problem 6.2.24. As pointed out in the text, we can double the size of the class 
of problems for which these results apply by a simple observation. Figure P6.k 
represents a typical system in which the message is filtered before transmission. 

Fig. P6.5 
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Clearly the mean-square error in this system is identical to the error in the system 
in Fig. P6.56. Using Problem 6.2.23, verify that 

ep = -iJoa [$ w2 - &pa + K] +$ln jc,(jw)12]dw 

l h 
NOW2 S?&) + K =- 

s E = 0 - qj+ ( S&J) + Sri(w) )I d** 

Problem 6.2.25 (continuation) [39]. Using the model of Problem 6.2.24, show that 

where 

and 

Problem 6.2.26 

to find IG,(jo) I2 and Ip. 

I P 

O” F(0) = 
s 

2f12S,(w) dw --aD w2 $2 In [ 1 + - w2No 1 V. 
2n 

[20]. Extend the results in Problem 6.2.20 to the case 

FEEDBACK REALIZATIONS 

Problem 6.2.27. Verify that the optimum loop filter is of the form indicated in Fig. 
6.216. Denote the numerator by F(s). 

1. Show that 

F(s) = B(s) B( - s) + P(s) P( - s)] + - P(s), 

where B(s) and P(s) are defined in Fig. 6.21a. 
2. Show that F(s) is exactly one degree less than P(s). 

Problem 6.2.28. Prove 

I 
No . No 

P = 2 lim sG,,(s) = 2 fn+ 
s-*00 

where G1,(s) is the optimum loop filter and fn- 1 is defined in Fig. 6.216. 

Problem 6.2.29. In this problem we construct a realizable whitening filter. In Chapter 4 
we saw that a conceptual unrealizable whitening filter may readily be obtained in 
terms of a Karhunen-Lo&e expansion. Let 

r(u) = n,(u) + w(u), -oo<ult, 

where n,(u) has a rational spectrum and w(u) is an uncorrelated white noise process. 
Denote the optimum (MMSE) realizable linear filter for estimating n&) as Hdjw). 

1. Prove that 1 - H&j&) is a realizable whitening filter. Draw a feedback realiza- 
tion of the whitening filter. 
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Hint. Recall the feedback structure of the optimum filter (173). 
2. Find the inverse filter for 1 - W,(jw). Draw a feedback realization of the inverse 

filter. 

Problem 6.2.30 (continuation). What are the necessary and sufficient conditions for 
the inverse of the whitening filter found in Problem 6.2.29 to be stable? 

GENERALIZATIONS 

Problem 6.2.31. Consider the simple unrealizable filter problem in which 

and 
44 = a(u) + n(u), --oo<u<oo 

d(t) = a(t). 

Assume that we design the optimum unrealizable filter Hou(jw) using the spectrum 
S&J) and S,(W). In practice the noise spectrum is 

sn,w = S?dw) + L?(w). 

1. Show that the mean-square error using N,,(jw) is 

4 UP = 4u* + 
s 

ao 
-CO 

1 HOu(j412 Sk4 k& 

where up denotes unrealizable mean-square error in practice and uo denotes un- 
realizable mean-square error in the optimum filter when the design assumptions are 
exact. 

2. Show that the change in error is 

3. Consider the case 

The message spectrum is flat and bandlimited. Show that 

A&=‘R, 
(1 + A)” 

where A is the signal-to-noise ratio in the message bandwidth. 

Problem 6.2.32. Derive an expression for the change in the mean-square error in an 
optimum unrealizable filter when the actual message spectrum is different from the 
design message spectrum. 

Problem 6.2.33. 
noise. 

Repeat Problem 6.2.32 for an optimum realizable. filter and white 

Problem 6.2.34. Prove that the system in Figs. 6.236 is the optimum realizable filter 
for estimating a(t). 
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problem 6.2.35. Derive (181) and (183) for arbitrary &(jo). 

Problem 6.2.36. The mean-square error using an optimum unrealizable filter is given 
by (183): 

s 

a3 
f S&J) S&J) du 
uo = - Qo S,(w) Sf(W) + S&J) 7s’ 

where Srb) Lz IK,f(jw)l 2. 

1. Consider the following problem. Constrain the transmitted power 

Find an expression for S(W) that minimizes the 
2. Evaluate the resulting mean-square error. 

mean-square error. 

Problem 6.2.37. Let 

r(u) = a(u) + n(u), -m<ust, 

where a(u) and n(u) are uncorrelated. Let 

The desired signal is d(t) = (d/dt ) a(t). 

1. Find H,(jw). 
2. Discuss the behavior of H,(jw) and fp as E: -+ 0. Why is the answer misleading? 

Problem 6.2.38. Repeat Problem 6.2.37 for the case 

saw = j&49 S&l) = c4. 

What is the important difference between the message random processes in the two 
problems ? Verify that differentiation and opt imum realizable filtering do not commute. 

Problem 6.2.39. Let 

44 = cos (2nfu + 4), --oo<ust, 

where + and fare independent variables: 

1 
P@(9) = 25’ OS5bI2n 

and 
P/(X) = 09 x 52 0. 

1. Describe the resulting ensemble. 
2. Prove that &(f) = p,(( f 1)/4. 
3. Choose a p!(X) to make a(t) a deterministic process (see p. 512). Demonstrate a 

linear predictor whose mean-square error is zero. 
4. Choose a pr(X) to make a(t) a nondeterministic process. Show that you can 

predict a(t) with zero mean-square error by using a nonlinear predictor. 
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Problem 6.2.40. Let 
g+(7) = F1[G+(jo)]. 

Prove that the MMSE error for pure prediction is 

4 f+ s a [g+ (r)]= dr. 
0 

Problem 6.2.41 

1. Show that 

[l]. Consider the message spectrum 

S&J) = [(l + $)J-l* 

P- lexp( - &n> 
g+(7) = It-n/2(n _ l)r ’ 

. 

2. Show that (for large n) 

3. Use part 2 to show that for any c2 and a we can make 

by increasing IZ sufficiently. Explain why this result is true. 

Problem 6.2.42. The message a(t) is a zero-mean process observed in the absence of 
noise. The desired signal d(t) = a(t + a), a > 0. 

1. Assume 

K,(T) = -J----* 
r2 + k2 

Find &) by using a(t) and its derivatives. What is the mean-square error for a < k? 
2. Assume 

l&(r) = ewkZa. 
Show that 

d(t + a) = 

and that the mean-square error is zero for all a. 

Problem 6.2.43. Consider a simple diversity system, 

r1w = 40 + ndt), 

r2w = a(t) + ndt 1, 

where a(t), nl(t), and r&t) are independent zero-mean, stationary Gaussian processes 
with finite variances. We wish to process rl(t) and rz(t), as shown in Fig. P6.6. The 
spectra S,,(w) and Snz(w) are known; S,(O), however, is unknown. We require that 
the message a(t) be undistorted. In other words, if nl(t) and nz(t) are zero, the output 
will be exactly a(t). 

1. What conditiondoes this impose on Hl(jw) and Hz(jw)? 
2. We want to choose Hl(jm) to minimize E[nc2(t)], subject to the constraint that 
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Fig. P6.6 

a(t) be reproduced exactly in the absence of input noise. The filters must be realizable 
and may operate on the infinite past. Find an expression for H&O) and H&W) in 
terms of the given quantities. 

3. Prove that the d(t) obtained in part 2 is an unbiased, efficient estimate of the 
sample function a(t). [Therefore d(t) = d,,(t).] 

Problem 6.2.44. Generalize the result in Problem 6.2.43 to the n-input problem. 
Prove that any n-dimensional distortionless filter problem may be recast as an 
(n - 1).dimensional Wiener filter problem. 

P6.3 Finite-time, Nonstationary Processes (Kalman-Bucy filters) 
STATE-VARIABLE REPRESENTATIONS 

Problem 6.3.1. Consider the differential equation 

y’“‘(t) + pn-ly(n-l)(t) + ”  ’ + P()y( t )  = bn-ldnwl)(t) + l ”  + bOU(t)* 

Extend Canonical Realization 1 on p. 522 to include this case. The desired F is 

Draw an analog computer realization and find the G matrix. 

Problem 6.3.2. Consider the differential equation in Problem 6.3.1. Derive Canonical 
Realization 3 (see p. 526) for the case of repeated roots. 

Problem 6.3.3 [27]. Consider the differential equation 

y’“‘(t) + pn-ly(n-l)(t) + l l l + pay(t) = bn-ldnml’(t) + l l l + boU(t)* 

1. Show that the system in Fig. P6.7 is a correct analog computer realization. 
2. Write the vector differential equation that describes the system. 

Problem 6.3.4. Draw an analog computer realization for the following systems: 

1. j(t) + 33(t) + 4y(t) = G(t) + u(t), 
2. j;,(t) + 3P1(t) + 2y2(t) = lb(t) + 2&(t) + 2uz(t), 

j%(t) + 49,(t) + 3yz(t) = 3&(t) + 4(t). 

Write the associated vector differential equation. 
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Fig. P6.7 

Problem 6.3.5 [27]. Find the transfer function matrix and draw the transfer function 
diagram for the systems described below. Comment on the number of integrators 
required. 

1. jQt) + 3Y&) + 2Y&) = ti1(t) + &41(t) + c2(t) + u20, 

32(t) + 2yz(t) = -l&(t) - 2udt) + u2w. 

2. 31(t) + J?(t) = k(t) + 2~2(t), 

j;,(t) + 392(t) + 2yz(t) = Liz(t) + uz(t) - u1w. 

3. J,(t) + 2)&(f) + y1(t) = h(t) + k(t) + u2w, 

jgt) + J&(t) + y2(f) = u2(t) + M). 

4. y,(t) + 391(t.) + @l(t) = 3Cl(t) + 4&(t) + 8u2W, 

Y2(t) + 3Y&) - 4YlW - PlW = l&(t) + 2&(t) + 2u,(t). 

Problem 6.3.6 [27]. Find the vector differential equations for the following systems, 
using the partial fraction technique. 

1. j;(t) + 3Jqt) + 2y(t) = u(t), 
2. ‘j;(t) + 4jqt) + 53(t) + 2y(t) = u(t), 
3. ‘j;(t) + 4j;(t) + 6y(t) + 4y(t) = u(t), 
4. j&(t) - w2w + Ydt) = udt), 

h(f) + 6yz(t) = u&h 

Problem 6.3.7. Compute e Ft for the following matrices: 

1. F= 

3 2 

2. F= [ -1 6’ 1 
3. F= 
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Problem 6.3.8. Compute e Ft for the following matrices: 

0 1 0 

1. F=OOl. [ 1 0 0 0 

r 0 1 0 

3. F= 1 0 0 -6 -11 1. 1 -6 

Problem 6.3.9. Given the system with state representation as follows, 

w = F x(t) + G u(t), 

u(t) = c x(0, 
x(0) = 0. 

Let U(s) and Y(s) denote the Laplace transform of u(t) and y(t), respectively. We 
found that the transfer function was 

H(s) = m = C @(s)G 

= C(s1 - F)- lG. 

Show that the poles of H(s) are the eigenvalues of the matrix F. 

Problem 6.3.10. Consider the circuit shown in Fig. P6.8. The source is turned on 
at t = 0. The current i(O) and the voltage across the capacitor ~~(0) are both zero. 
The observed quantity is the voltage across R. 

1. Write the vector differential equations that describe the system and an equation 
that describes the observation process. 

2. Draw an analog computer realization of the circuit. 

Fig. P6.8 

Problem 6.3.11. Consider the control system shown in Fig. P6.9. The output of the 
system is a(t). The two inputs, b(t) and n(t), are sample functions from zero-mean, 
uncorrelated, stationary random processes. Their spectra are 

S&a) = -$$ 
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Fig. P6.9 

and 

Write the vector differential equation that describes a mathematically equivalent 
system whose input is a vector white noise u(t) and whose output is a(t). 

Problem 6.3.12. Consider the discrete multipath model shown in Fig. P6.10. The 
time delays are assumed known. The channel multipliers are independent, zero-mean 
processes with spectra 

sb,h) 
= 2kPj2 ) 

w2 + kj2 
for j = 1,2,3. 

The additive white noise is uncorrelated and has spectral height N0/2. The input 
signal s(t) is a known waveform. 

1. Write the state and observation equations for the process. 
2. Indicate how this would be modified if the channel gains were correlated. 

Problem 6.3.13. In the text we considered in detail state representations for time 
invariant systems. 

Consider the time varying system 

y(t) + PI(t) j(t) + pa(t) y(t) = bdt) W + b,(t) 40. 

. D Delay : 71 
C 

d . . 
40 

D Delay: 72 1 

D Delay: 73 r 
, . 

Fig. P6.10 
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Show that this system has a state representation of the same form as that in Example 2. 

d 0 
l p(t) = 

-PO(t) -PI(t) 
] x(t) + [:::::1 u(t), 

where h,(t) and h2(t) are functions that you must find. 

Problem 6.3.14 [27]. Given the system defined by the time-varying differential equation 

y’“‘(t) + n$ Pn - /c(t) Ytk’(t) = 5 b,,-k(t) uCk’(t), 
kG0 k%O 

Show that this system has the state equations 

where 

‘&(O 220) . . . -&I(0 I 
u(t) = x1(0 + go(t) u(t), 

go@ 1 = bo (0, 

-a(t)- 

x2(t) 

. 

. 

. 

-&V>- 

+ 

‘g1W’ 
gz(t) 

. 

. 

. 

4?nw- 

40 

n + m - i 

gi(t) = b*(t) - Pi-r-m 0 ) dmV ) r 9 
n -i 

Problem 6.3.15. Demonstrate that the following is a solution to (273). 

r f t  7 
&K(t) = qt, to) L k&o) + J @(to, T)G(T) Q(T) GT(T)*T(fo, 7) dT eT(t, to), 

f0 I 

where *(t, to) is the fundamental transition matrix; that is, 

d po, to) = F(t) W, to), 

aqt,, to) = I. 

Demonstrate that this solution is unique. 

Problem 6.3.16. Evaluate Ky(t, T) in terms of Kx(t, t) and @(t, T), where 

w = F(t) x(t) + G(t) u(t), 
YW = C(t) x(t), 

E[u(t) UT(T)] = Q 8(t - 7). 

Problem 6.3.17. Consider the first-order system defined by 

d-a) - = -k(t) x(t) + g(t) u(t). 
dt 

u(t) = x(t). 
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1. Determine a general expression for the transition matrix for this system. 
2. What is h(t, T) for this system? 
3. Evaluate h(t, 7) for 

k(t) = k(1 + m sin (wet)), 
g(t) = 1. 

4. Does this technique generalize to vector equations? 

Problem 6.3.18. Show that for constant 
of the unobserved process is given by 

parameter systems the steady-state variance 

where 

:im, Kx(t, t) = 
s 

O” e +FrGQGTeFTT dr, 
-* 0 

w = Fx(t) + Gu(t), 

E[u(t) uT(r)] = Q 8(t - T), 

or, equivalently, 

lim KX(t, t) = - 21j/‘; [sI - F]-lGQGT[-s1 - FT]-l ds. t+cO 7r - co 

Problem 6.3.19. Prove that the condition in (317) is necessary when R(t) is positive- 
definite. 

Problem 6. 3.20, In this problem we incorporate the effect of nonzero means 
estimation procedure. The equations describing the model are (302)-(306). 

1, 

and 

It is 
that 

2. 

and 

into our 

Assume that x(Ti) is a Gaussian random vector 

E[x(Z)l n m(T) # 0, 

EUx(T) - m(K)1 [XT(T) - WT,)I> = Kx(Z, Ti). 
statistically independent of u(t) and w(t). Find the vector differential equations 
specify the MMSE estimate 2(t), t 2 Tie 
Assume that m(z) = 0. Remove the zero-mean assumption on u(t), 

mwl = muw, 

Em(t) - mU(t)l[uT(4 - muT(41 = Q(t)W - ~1~ 
Find the vector differential equations that specify 2(t). 

Problem 6.3.21. Consider Example 1 on p. 546. Use Property 16 to derive (351). 
Remember that when using the Laplace transform technique the contour must be 
taken to the right of all the poles. 

Problem 6.3.22. Consider the second-order system illustrated in Fig. P6.11, where 

EM) J441 = 2Pab(a + b) 6(t - T), 

E[w(t) w(r)] = 2 8(t - 7). 

(a, b are possibly complex conjugates.) The state variables are 

x1(t) = YW, 
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1 
(s + a) (s + b) 

. 

Fig. P6.11 

1. Write the state equation and the output equation for the system. 
2. For this state representation determine the steady state variance matrix A, of 

the unobserved process. In other words, find 

A, = lim E[x(t) x*(t)], 
t+QfJ 

where x(t) is the state vector of the system. 
3. Find the transition matrix T(t, T,) for the equation, 

dW, Ti) F GQG* 
- = 

dt C*R-lC -F* I 
w, a, [text (336)] 

by using Laplace transform techniques. (Depending on the values of a, 6, 4, and 
NO/2, the exponentials involved will be real, complex, or both.) 

4. Find &(t) when the initial condition is 

Comment. Although we have an analytic means of determining &(t) for a system 
of any order, this problem illustrates that numerical means are more appropriate. 

Problem 6.3.23. Because of its time-invariant nature, the optimal linear filter, as 
determined by Wiener spectral factorization techniques, will lead to a nonoptimal 
estimate when a finite observation interval is involved. The purpose of this problem 
is to determine how much we degrade our estimate by using a Wiener filter when the 
observation interval is finite. Consider the 

i(t) = 
where 

r(t) = 

au(t) UWI = 

first order system. 

- kx(t) + u(t), 

x(t) + w(t):, 

2kP 8(t - r), 

mw WI = F s(t - r), 

EW)l = 0, 

E[x2(0)] = PO* 

T1 = 0. 

1. What is the variance of error obtained by using Kalman-Bucy filtering? 
2. Show that the steady-state filter (i.e., the Wiener filter) is given by 

4kP/No 
Ho(jw) = (k + y)(jw + y)’ 

where y  = k(1 + 4P/kNo)K Denote the output of the Wiener filter as 3,,(t). 
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3. Show that a state representation for the Wiener filter is 

where 

Rw,O) = 
4Pk 

- y  Rwo(t) + No& + y) r(t), 

a,,(o) = 0. 

4. Show that the error for this system is 

;w,(t) = -y cW,,(t) - dt) + 
4Pk 

N (k + y) w(t), 
0 

5. Define 

Show that 

Ewe(O) = -x(O). 

Iw,o = Ekwo2W* 

#w,(t) = -2,&,(t) + Fk 

Iwo(O) = PO 

and verify that 
two(t) = Qpoo(l - ewayt) + P0eB2? 

6. Plot the ratio of the mean-square error using the Kalman-Bucy filter to the 
mean-square error using the Wiener filter. (Note that both errors are a function of 
time.) 

MO p(t) = m for y  = l.Sk, 2k, and 3k. 

PO = 0, OSP, and P. 

Note that the expression for &(t) in (353) is only valid for PO = P. Is your result 
intuitively correct ? 

Problem 6.3.24, 

Consider the following system : 

w = Fx(t) + Gu(t) 

YW = wo 
where 

I 
9 c = [l OOO]. 

E[u(t) U(T)] = Q s(t - 7). 

Find the steady-state covariance matrix, that is, 

lim Kx(t, t), t+ao 
for a fourth-order Butterworth process using the above representation. 

8 sin (v/16) 
ScSO) = 1 + wa 

Hint. Use the results on p. 545. 
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Problem 6.3.25. Consider Example 3 on p. 555. Use Property 16 to solve (368). 

Problem 6.3.26 (continuation). Assume that the steady-state filter shown in Fig. 6.45 
is used. Compute the transient behavior of the error variance for this filter. Compare 
it with the optimum error variance given in (369). 

Problem 6.3.27. Consider the system shown in Fig, P6.12a where 

E[u(t) u(r)] = u2 8(t - T), 

mo) WWI = + s(t - 7). 

am = ci(Ti) = 0. 

1. Find the optimum linear filter. 
2. Solve the steady-state variance equation. 
3. Verify that the “pole-splitting” technique of conventional Wiener theory gives 

the correct answer. 

0 a 

(b) 
Fig. P6.12 

Problem 6.3.28 (continuation). A generalization of Problem 6.3.27 is shown in Fig. 
P6.12b. Repeat Problem 6.3.27. 

Hint. Use the tabulated characteristics of Butterworth polynomials given in Fig. 
6.40. 

Problem 6.3.29. Consider the model in Problem 6.3.27. Define the state-vector as 

1. Determine K&t, u) = E[x(t) xT(u)]. 
2. Determine the optimum realizable filter for estimating x(t) (calculate the gains 

analytically). 
3. Verify that your answer reduces to the answer in Problem 6.3.27 as t -+ 00. 

Problem 6.3.30. Consider Example 5A on p. 557. Write the variance equation for 
arbitrary time (t 2 0) and solve it. 

Problem 6.3.31. Let 

r(t) + 2 kadt) + w(t), 
f=l 
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where the ai are statistically independent messages with state representations, 

and w(t) 
this case. 

is white 

G*(t) = F*(t) xi(t) + Gi(t) W(t), 
t&(t) = G(t) xi(t), 

WoP)* Generalize the optimum filter in Fig. 6.52a to include 

Problem 6.3.32. Assume that a particle leaves the origin at t = 0 and travels at a 
constant but unknown velocity. The observation is corrupted by additive white 
Gaussian noise of spectral height No/2. Thus 

Assume that 
r(t) = vt + w(t), t 2 0. 

E(v) = 0, 
E(v2) = 02, 

and that v  is a Gaussian random variable. 

1. Find the equation specifying the MAP estimate of vt. 
2. Find the equation specifying the MMSE estimate of ut. 

Use the techniques of Chapter 4 to solve this problem. 

Problem 6.3.33. Consider the model in Problem 6.3.32. Use the techniques of Section 
6.3 to solve this problem. 

1. Find the minimum mean-square error linear estimate of the message 

a(t) A vt. 

2. Find the resulting mean-square error. 
3. Show that for large t 

Problem 6.3.34 (continuation). 

1. Verify that the answers to Problems 6.3.32 and 6.3.33 are the same. 
2. Modify your estimation procedure in Problem 6.3.32 to obtain a maximum 

likelihood estimate (assume that v  is an unknown nonrandom variable). 
3. Discuss qualitatively when the a priori knowledge is useful. 

Problem 6.3.35 (continuation). 

1. Generalize the model of Problem 6.3.32 to include an arbitrary polynomial 
message : 

K 

a(t) = 2 uit i, 
i=l 

where 
E(ui) = 0, 

E(viuj) = t-Q2 a,,. 
2. Solve for k = 0, 1, and 2. 

Problem 6.3.36. Consider the second-order system shown in Fig. P6.13. 

Ebdt) fib)1 = Q W - r), 

E[w(t) w(r)] = 9 s(t - r), 
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Fig. P6.13 

1. Write the state equation and determine the steady state solution to the co- 
variance equation by setting &(t) = 0. 

2. Do the values of a, 6, Q, No influence the roots we select in order that the 
covariance matrix will be positive definite? 

3. In general there are eight possible roots. In the a&plane determine which root 
is selected for any particular point for fixed Q and No. 

Problem 6.3.37. Consider the prediction problem discussed on p. 566. 

1. Derive the result stated in (422). Recall d(t) = x(t + a); a > 0. 
2. Define the prediction covariance matrix as 

ba a Emt) - d(t)l[a’(t) - dT(t)]} 

Find an expression for gpa. Verify that your answer has the correct behavior for a+ a. 

Problem 6.3.38 (continuation). Apply the result in part 2 to the message and noise 
model in Example 3 on p. 494. Verify that the result is identical to (113). 

Problem 6.3.39 (continuation). Let 

and 
r(u) = a(u) + w(u), -m<ust 

d(t) = a(t + 01). 

The processes a(u) and w(u) are uncorrelated with spectra 

&W = 
243 P/k 

1 + (W2/k2)2’ 

Use the result of Problem 6.3.37 to find E[(d(t) - d(t))2] as a function of CL 
Compare your result with the result in Problem 6.3.38. Would you expect that the 

prediction error is a monotone function of n, the order of the Butterworth spectra? 

Problem 6.3.40. Consider the following optimum realizable filtering problem : 

r(u) = a(u) + w(u), O~u~t 

S,(w) = 29 

Saw(w) = 0. 
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The desired signal d(t) is 

d(t) da(t) = -. 
dt 

We want to find the optimum linear filter by using state-variable techniques. 

1. Set the problem up. Define explicitly the state variables you are using and all 
matrices. 

2. Draw an explicit block diagram of the optimum receiver. (Do not use matrix 
notation here.) 

3. Write the variance equation as a set of scalar equations. Comment on how you 
would solve it. 

4. Find the steady-state solution by letting &(t) = 0. 

Problem 6.3.41. Let 
r(u) = 44 + w(u), Olult, 

where a(u) and n(u) are uncorrelated processes with spectra 

and 

S&J) = 2ko,a wa + k2 

S?b) 7 E-e 

The desired signal is obtained by passing a(t) through a linear system whose transfer 
function is 

KiUw) 
-jo + k =- 
iw + Is 

1. Find the optimum linear filter to estimate d(t) and the variance equation. 
2. Solve the variance equation for the steady-state case. 

Problem 6.3.42. Consider the model in Problem 6.3.41. Let 

Repeat Problem 6.3.41. 

Problem 6.3.43. Consider the model in Problem 6.3.41. Let 

1. 
2. 
3. 

d(t) = $- ItCe a(u) du, 
- a t+a 

a > 0, p > 0, /3 > a. 

Does this problem fit into any of the cases discussed in Section 6.3.4 of the text? 
Demonstrate that you can solve it by using state variable techniques. 
What is the basic reason that the solution in part 2 is possible? 

Problem 6.3.44. Consider the following pre-emphasis problem shown in Fig. P6.14. 

g.&(~) = =, 
o2 + pla 

S,(w) = $5 
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w(u) 
t . 

44 P2 s+Pl 

VI- 
Yf (u) 

Fiqir2 

Fig. P6.14 

and the processes are uncorrelated. 
d(t) = a(t). 

1. Find the optimum realizable linear filter by using a state-variable formulation. 
2. Solve the variance equation for t -+ 00. (You may assume that a statistical 

steady state exists.) Observe that a(u), not y/(t), is the message of interest. 

Problem 6.3.45. Estimation in Colored Noise. In this problem we consider a simple 
example of state-variable estimation in colored noise. Our approach is simpler than 
that in the text because we are required to estimate only one state variable. Consider 
the following system. 

i,(t) = -kl xl(t) + udt), 
is(t) = - ka x2(t) + us(t). 

EMt ) u&N = 0, 
E[ul(t) u&j] = 2klP1 a(t - T), 
E[uIL(t) u&)1 = 2klPz a(t - r), 

E[x1~(0)1 = PI, 
E[x~~(O)I = P2, 

EhUB MVI = 0. 
We observe 

r(t) = x1(t) + x2(0; 

that is, no white noise is present in the observation. We want to apply whitening 
concepts to estimating xl(t) and x2(t). First we generate a signal r’(t) which has a 
white component. 

1. Define a linear transformation of the state variables by 

Note that one of our new state variables, y2(t), is *r(t); therefore, it is known at the 
receiver. 
Find the state equations for y(t). 

2. Show that the new state equations may be written as 

31(t) = - k’rdt ) + b’(t) + m,(t)1 
r’(t) = 92(t) + k’ys(t) = C’y&) + w’(t), 

where 

k’ (kl + ka) z-9 
2 

C' = -(h2- k2), 

u’(t) = 3bhw - u203, 

w’(t) = *[ul(Q + J42(t)l, 

m,(t) = C’u,W. 
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Notice that m,(t) is a known function at the receiver; therefore, its effect upon vi(t) 
is known. Also notice that our new observation signal r’(t) consists of a linear modu- 
lation of ul(t) plus a white noise component. 

3. Apply the estimation with correlated noise results to derive the Kalman-Bucy 
realizable filter equations. 

4. Find equations which relate the error variance of RI(t) to 

EKBdt) - Ym21 * &so* - 

5. Specialize your results to the case in which kl = k2. What does the variance 
equation become in the limit as t --+ co ? Is this intuitively satisfying? 

6. Comment on how this technique generalizes for higher dimension systems when 
there is no white noise component present in the observation. In the case of multiple 
observations can we ever have a singular problem: i.e., perfect estimation? 
Comment. The solution to the unrealizable filter problem was done in a different 
manner in [56]. 

Problem 6.3.46. Let 
d(r) = -km&) + u(r), 0571t, 
r(r) = a(r) + w(r), 0171t, 

where 
E bum = 0, E[a2(0)] = u2/2k,*, 

K,(t, 7) = o2 6( t - r), 

K,(t, 7) = $j ti(t - 7). 

Assume that we are processing r(r) by using a realizable 
the above message model. The actual message process is 

filter which is optimum for 

b(r) = -kc 47) + 43, OSr5t. 

Find the equations which specify t,,(t), the actual error variance. 

P6.4 Linear Modulation, Communications Context 

Problem 6.4.1. Write the variance equation for the DSB-AM example discussed on 
p. 576. Draw a block diagram of the system to generate it and verify that the high- 
frequency terms can be ignored. 

Problem 6.4.2. Let 

where 
s(t, a(t)) = G [a(t) cos (Q + 0) - a”(t) sin (qt + e)], 

&.i4 = H(jw) A( jw). 

H(jw) is specified by (506) and 8 is independent of a(t) and uniformly distributed 
(0, 27~). Find the power-density spectrum of s(t, a(t)) in terms of S,(o). 

Problem 6.4.3. In this problem we derive the integral equation that specifies the 
optimum estimate of a SSB signal [see (505, 506)]. Start the derivation with (5.25) 
and obtain (507). 
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Problem 6.4.4. Consider the model in Problem 6.4.3. Define 

a(t) = 
a0 1 1 l 

a) 

Use the vector process estimation results of Section 5.4 to derive (507). 

Problem 6,4.5. 

1. Draw the block diagram corresponding to (508). 
2. Use block diagram manipulation and the properties of H(jw) given in (506) to 

obtain Fig. 6.62. 

Problem 6.4.6. Let 

s(t, a(t)) = - 
(1 +‘m) 

2 ‘[l + ma(t)] cos w t c 9 

where 

The received waveform is 

where w(t) is white (&/2). Find the opti 
mean-square error as a function of m. 

r(f) = s(t, act 1) + w(t), -m<t<oo 

unrealizable demodulator and plot the 

Problem 6.4.7(continuation). Consider the model in Problem 6.4.6. Let 

0, elsewhere. 

Find the optimum 
function of m. 

unrealizable demodulator and plot the mean-square error 

Problem 6.4.8. Consider the example on p. 583. Assume that 

and 

1. Find an expression for the mean-square error using 
lator designed to be optimum for the known-phase case. 

2. Approximate the integral in part 1 for the case in wh 

an unrealizable demodu- 

ich A, >> 1. 

Problem 6.4.9 (continuation). Consider the model in Problem 6.4.8. Let 

Repeat Problem 6.4.8. 
0, elsewhere. 
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. 
r(t) 

Bandpass Square Low-pass 
) filter l law L ) filter ml 

c 
UC +, 2nw device hL (7) 

, , . 8 

Fig. P6.15 

Problem 6.4.10. Consider the model in Problem 6.4.7. The demodulator is shown in 
Fig. P6.15. Assume m << 1 and 

0, elsewhere, 

where 2~( WI + W) << 0,. 
Choose h&) to minimize the mean-square error. Calculate the resulting error &. 

P6.6 Related Issues 

In Problems 6.6.1 through 6.6.4, we show how the state-variable techniques we have 
developed can be used in several important applications. The first problem develops 
a necessary preliminary result. The second and third problems develop a solution 
technique for homogeneous and nonhomogeneous Fredholm equations (either vector 
or scalar). The fourth problem develops the optimum unrealizable filter. A complete 
development is given in [54]. The model for the four problems is 

k(t) = wow + wMo 
y(t) = wxw 

E[u(t)u=(r)] = Q8(t - r) 

We use a function g(t) to agree with the notation of [54]. It is not related to the 
variance matrix ?&(t). 

Problem 6.6.1. Define the linear functional 

where s(t) is a bounded vector function. 
We want to show that when K,(t, T) is the covariance matrix for a state-variable 
random process x(t) we can represent this functional as the solution to the differential 
equations 

4(t) - = F(t) W + G(t) QGV) q(t) dt 

4(t) - = -FT(t) q(t) - s(t), 
dt 

with the boundary conditions 

and 

where 

qua = 0, 
r(Tf) = Porl(TI), 

PO = WT,, T,). 
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1. Show that we can write the above integral as 

g(t) = j- *(t, 7) K&, 7) S(T) dr + j-=f K&, t ) W( 7, t) s(7) d7. 
Tf t 

Uint. See Problem 6.3.16. 
2. By using Leibnitz’s rule, show that 

dW - = F(t) g(t) + G(t)QGT(t) dt s 
Tf eT(r, t) S(T) dr. 
t 

Hint. Note that Kx(t, t) satisfies the differential equation 

‘9 = F(t) KX(t, t) + KX(t, t)FT(t) + G(t)QGT(t), (text 273) 

with K,(T,, Tr) = PO, and eT(r, t) satisfies the adjoint equation; that is, 

deT(7, t) 
- = --FT(t) @+, t), dt 

with @(T,, T,) = I. 
3. Define a second functional q(t) by 

q(t) = s Tf aT(7, t) S(T) dr. t 
Show that it satisfies the differential equation 

- = -F*(t) q(t) - s(t). 
dt 

4. Show that the differential equations must satisfy the two independent boundary 
conditions 

WY/l = 0, 

WJ = muf). 

5. By combining the results in parts 2, 3, and 4, show the desired result. 

Problem 6.6.2. Homogeneous Fredholm Equation. In this problem we derive a set of 
differential equations to determine the eigenfunctions for the homogeneous Fredholm 
equation. The equation is given by 

or 

Define 

so that 

*(t) = i C(t) s” Kdt, 4 ~Tw+o d? for h > 0. 
Tf 

%O J t = Tf Kx(t, 7)CT(r)+( T) dr, 
Ta 
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1. Show that g(t) satisfies the differential equations 

F(t) : W)QG=W ,-----,,,,,,I,,,,,,,,,,, 
-C’(t) C(t) : I x I - F=(t) 1 I 

with 
r(Ti) = pod, 
WI/) = 0, 

(Use the results of Problem 6.6.1.) 
2. Show that to have a nontrivial solution which satisfies the boundary conditions 

we need 
det [Y&T/, Tf : A)Po + Y,,(Tf, Ti : A)] = 0, 

where Y(t, Ti : A) is given by 

d ‘%(t, Tr : 8 ; ‘&,(t, 7-i : A) 
z [ 

v---------- 
Y&t, Tf : A) [ -Y,,ct,-Fi3j I 

[ 

F(f) ! G(t) QGT(t) ------------ ____________ = -CT(t) C(t) i 

Y<<(t, Ti: A) i Ycq(t, Ti : A) ----------- -_---_____L 
’ I A I --F=(t) 

I  I[ Y,,(t, Ti: A) 1 Yqn(t, Ti: A) 1 
and Y( Ti, Ti : A) = I. The values of A which satisfy this equation are the eigenvalues. 

3. Show that the eigenfunctions are given by 

@(t, z: A) = y [Yt<(t, Tr : ‘) PO + Y,,(t, Ti : A)] q(c) 

where q(Tr) satisfies the orthogonality relationship 

W,t(T,, Ti : A) PO + Y,,(Tf, E : A)] q(Ti) = 0. 

Problem 6.6.3. Nonhomogeneous Fredholm Equation. In this problem we derive a set 
of differential equations to determine the solution to the nonhomogeneous Fredholm 
equation. This equation is given by 

s Tf Ky(t, 7) g(T) dT + a g(t) = s(t), T, 5 t 5 T/, 0 > 0. 
=i 

1. I f  we define g(t) as 

a) f t = Tf K& 7) C=(T) g(r) d7, 
=i 

show that we may write the nonhomogeneous equation as 

1 
g(t) = - Es(t) - C(t) WI. 0 

2. Using Problem 6.6.1, show that g(t) satisfies the differential equations 
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with 
wf) = PO qua, 
rl(Tf) = 0. 

Comment. In general we can replace CT by an arbitrary positive-defin 
matrix (R(t)) and the derivation is valid with obvious modifications. 

ite ti me-varying 

Problem No. 6.6.4. Unrealizable Filters. In this problem we show how the nonhomo- 
geneous Fredholm equation may be used to determine the optimal unrealizable 
filter structure. For algebraic simplicity we assume r(t) is a scalar. 

R(t) = No/Z. 

1. Show that the integral equation specifying the optimum unrealizable filter for 
estimating x(t) at any point t in the interval [Ti, Tf] is 

Kx(t, 7) CT( 7) = jTI b,(t, 0) &(a, 7) do, 
Tl 

Tt 5 t 5 Tf, Ti < T < T/. (1) 

2. Using the inverse kernel of &(t, 7) [Chapter 4, (4.161)] show that 

2(t) = JTf K&t, 7) CT(~) (ITf Q&, a) r(o) do), Z 5 t 5 Tf. (2) 
Ti Ti 

3. As in Chapter 5, define the term in parentheses as r&). We note that ~~(7) solves 
the nonhomogeneous Fredholm equation when the input is r(t). Using Problem No. 
6.6.3, show that rg(t) is given by 

where 

(3) 

(4 1 a 

and 

dn(t) 
-z-- = $- CT(t)C(t)&t) - FT(t)q&) - + CT(t)r(t), W) 

0 0 

wi) = Kx(Tt, Ti)rldTi), (5 ) a 

4. Using the results of Problem No. 66.1, show that i(t) satisfies the differential 
equation, 

‘$ = F(t)%(t) + G(t)QGT(t)qz(t), (6 1 a 

where 

aa0 1 - = - CT(t)rg(t) - FT(t)q2(t), 
dt 

f(K) = Kx(Tt, Ti)rlsU’i), 

92(Tf) = 0. 

WQ 

(7 1 a 

(7b) 

5. Substitute (3) into (66). Show that 

rldt) = r/2(0, 

and 
w> = w 

(84 

(W 
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6. Show that the differential equation structure for the optimum unrealizable 
estimate of a(t) is 

where 

Comments 

‘y = F(t)g(t) + G(t)QGT(t)q(t), (9 1 a 

drl(O 
dt 

= CT(t)?+ C(t)k(t) - F=(t)q(t) - CT(t) $ r(t), (9b) 
0 0 

f(Z) = L(Z, Qq(Tr), uw 

rl(Tf) = 0. ww 

1. We have two n-dimensional linear vector differential equations to solve. 
2. The performance given by the unrealizable error covariance matrix is not part 

of the filter structure. 
3. By letting Tf be a variable we can determine a differential equation structure 

for f(Tf) as a function of Tf. These equations are just the Kalman-Bucy equations for 
the optimum realizable filter. 

Problem 6.6.5. In Problems 6.2.29 and 6.2.30 we discussed a realizable whitening 
filter for infinite intervals and stationary processes. In this problem we verify that 
these results generalize to finite intervals and nonstationary processes. 

Let 
47) = n&l + w(7), Ti 5 7 5 t, 

where n,(T) can be generated as the output of a dynamic system, 

ii(t) = wx(t) + GWW 
M) = WWh 

driven by white noise u(t). 
Show that the process 

r'(t) = r(t) - A,(t), 

= r(t) - C(t)%(t), 

is white. 

Problem 6.6.6. Sequential Estimation. Consider the convolutional encoder in Fig. P6.16. 

1. What is the “ state” of this system? 
2. Show that an appropriate set of state equations is 

Xl,n+l [ X2,n+l 

0 I[ = 0 

1 0 

Xn+l = 0 1 

X3,n+l 0 0 0 

(all additions are modulo 2). 

X1.n 

[ 1 
0 

X2,n 0 0 un 

X3.n [I 1 

Assume that the process u is composed of a sequence of independent binary random 
variables with 

E(un = 0) = Pup 
E(un = 1) = 1 - Pu. 
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Sequence of binary digits 

x3 x2 

0101 
l 

Un 

e Shi ft register 

> 

Fig. P6.16 

In addition, assume that the components of y  are sent over two independent identical 
binary symmetric channels such that 

where 
f n =YOW, 

E(wn,l = 0) = Pw, 

E(wn.1 = 1) = 1 - Pw. 

Finally, let the sequence of measurements 

QJ2, l l '9 rn, be denoted by zn. 

3. Show that the a posteriori probability density pxn + 1 lzn + 1(X, + 1 12, + 1) satisfies 
the following recursive relationship : 

PXn+ lIZn+ JXn+llZn+d 

pm+ lIzn+ 1(%+1IXn+d CPxn+ ,Ixn(Xn+1IXn)Px~Izn(X~IZn) 
= 

Xn+ 1 IXn(Xn+lIxn)PXnIZn(x~Izn) 
Xn 

where cxn denotes the sum over all possible states. 

4. HOW would you design the MAP receiver that estimates xn+ 1 ? What must be 
computed for each receiver estimate? 

5. How does this estimation procedure compare with the discrete Kalman filter? 
6. How does the complexity of this procedure increase as the length of the con- 

volutional encoder increases ? 
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