
ica~ Course Outline 

It would be presumptious of us to tell a professor how to teach a course at 
this level, On the other hand, we have spent a great deal of time experi- 
menting with different presentations in search of an efficient and peda- 
gogically sound approach. The concepts are simple, but the great amount 
of detail can cause confusion unless the important issues are emphasized. 
The following course outline is the result of these experiments; it should 
be useful to an instructor who is using the book or teaching this type of 
material for the first time. 

The course outline is based on a 15-week term of three hours of lectures 
a week. The homework assignments, including reading and working the 
assigned problems, will take 6 to 15 hours a week. The prerequisite assumed 
is a course in random processes. Typically, it should include Chapters 1 to 
6, 8, and 9 of Davenport and Root or Chapters 1 to 10 of Papoulis. Very 
little specific material in either of these references is used, but the student 
needs a certain level of sophistication in applied probability theory to 
appreciate the subject material. 

Each lecture unit corresponds to a one-and-one-half-hour lecture and 
contains a topical outline, the corresponding text material, and additional 
comments when necessary. Each even-numbered lecture contains a prob- 
lem assignment. A set of solutions for this collection of problems is 
available. 

In a normal term we get through the first 28 lectures, but this requires 
a brisk pace and leaves no room for making up background deficiencies. 
An ideal format would be to teach the material in two lo-week quarters. 
The expansion from 32 to 40 lectures is easily accomplished (probably 
without additional planning). A third alternative is two 15.week terms, 
which would allow time to cover more material in class and reduce the 
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636 Appendix: A Typical Course Outline 

homework load. We have not tried either of the last two alternatives, but 
student comments indicate they should work well. 

One final word is worthwhile. There is a great deal of difference between 
reading the text and being able to apply the material to solve actual 
problems of interest. This book (and therefore presumably any course 
using it) is designed to train engineers and scientists to solve new problems. 
The only way for most of us to acquire this ability is by practice. Therefore 
any effective course must include a fair amount of problem solving and a 
critique (or grading) of the students’ efforts. 



Lecture 1 pp. l-18 

Chapter 1 Discussion of the physical situations that 
detection, estimation, and modulation t 
lems 

11 8 Detection theory, l-5 
Digital communization systems (known signal in 
noise), L-2 
~adar/s~nar systems (signal ith unknown para- 
meters), 3 

municati~n, passive sonar (random 
signals), 4 
Show hierarchy in Fig. 1.4, 5 

systems (known signal in noise), 6 
ler estimation in radar (signal with 

unknown parameters)~ 7 
Power spectrum parameter estimation (random 
signal), 8 

hierarchy in Fig. 1.7, 8 

12 * Various appr~aches~ 12-l 5 
Structured versus nonstru~ture 
Classical versus waveforms 15 

13 0 Outline of course, 15-18 
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Chapter 2 

2.2.1 

Lecture 2 pp. 19-33 

Formulation of the hypothesis testing problem, 19-23 

Decision criteria (Bayes), 23-30 
Necessary inputs to implement test; a priori proba- 
bilities and costs, 23-24 
Set up risk expression and find LRT, 25-27 
Do three examples in text, introduce idea of suf- 
ficient statistic, 27-30 

Minimax test, 3 l-33 
Minimum Pr(E) test, idea of maximum a posteriori rule, 
30 

Problem Assignment 1 



2‘2.2 

23 0 

Lecture 3 639 

Lecture 3 pp. 33-52 

Neyman-Pearson tests, 33-34 
Fundamental role of LRT, relative unimportance of the 
criteria, 34 
Sufficient statistics, 34 

Definition, geometric interpretation 

Performance, idea of ROC, 3 
Example 1 on pp. 36-38; Bound on erfc*(X), (72) 

Properties of ROC, 44-48 
Concave down, slope, minimax 

~-Hypotheses, 46-52 
Set up risk expression, do M = 3 case and demon- 
strate that the decision space has at most two 
dimensions; emphasize that regardless of the obser- 
vation space dimension the decision space has at 
most M - 1 dimensions, 52 
Develop idea of maximum a posteriori probability 
test (109) 

The randomized tests discussed on p. 43 are not important in the sequel 
and may be omitted in the first reading. 



24 l 

Lecture 4 pp. 52-62 

Estimation theory, 52 
Model, 52-54 

Parameter space, question of randomness, 53 
Mapping into observation space, 53 
Estimation rule, 53 

Bayes estimation, 54-63 
Cost functions, 54 
Typical single-argument expressions, 55 

Mean-square, absolute magnitude, uniform, 55 
Risk expression, 55 
Solve for B,,(R), 6,&R), and B,,,(R), 56-58 
Linear example, 58-59 
Nonlinear example, 62 

Problem Assignment 2 

I. 2.2‘10 5. 2.3.3 
2. 2.2.15 6. 2.3.5 
3, 2*2s7 7. 2.4.2 
4. 2.3.2 8. 2.4.3 



2A.2 

Lecture 5 pp. 60-69 

Bayes estimation (c~~~~~~e~) 
Convex cost criteria, 60-61 
Optimality of B,,(R), 61 

Nonrandom parameter estimation, 63-73 
Difficulty with direct approach, 64 

, Bias, variance, 64 
I Maximum likelihood estimation, 65 

Bounds 
Cram&-Rao inequality, 66-67 
Efficiency, 66 
Optimality of d,,(R) when efficient estimate exists, 
68 

Linear example, 68-69 



2.4.3, 2.4.4 
25 a 

26 4 

Lecture 6 pp. 69-98 

Nonrandom parameter estimation (~~~~~~~e~) 
Nonlinear example, 69 

Asymptotic results, 70-71 
Intuitive explanation of when C-R bound is 
accurate, 70-7 1 

hounds for random variables, 72-73 

Assign the sections on multiple parameter estimation and 
composite hypothesis testing for reading, 74-96 

General Gaussian problem, 96-l 16 
Definition of a Gaussian random vector, 96 
Expressions for am, p,(R), 97 
Derive LRT, define quadratic forms, 97-98 

Problem A~$i~nrne~t 3 

1. 2.4.9 5. 2.6S 
2, 2.4.12 o~t~~~~i 
3. 2.4.27 6. 2.5.1 
4. 2.4.28 



26 * 

lkcture 7 643 

Lecture 7 pp. 98433 

General Gaussian problem (~o~~~~~e~) 
Equal covariance matrices, unequal mean vectors, 98407 

Expression for d2, interpretation as distance, 99-100 
Diagonalization of Q, eigenvalues, eigenvectors, 
101407 
Geometric interpretation, 102 

Unequal covariance matrices, equal mean vectors, 107-- 1 f 6 
Structure of LRT, interpretation as estimator, 107 
Diagonal matrices with identical components, x2 
density, 107-f 11 
Computational problem, motivation of performance 
bounds, 116 

Assign section on performance bounds as reading, 116-l 33 

1. (pm 99) Note that Var[l 1 H-J = Var[l 1 Ho] and that d2 completely 
characterizes the test because I is Gaussian on both hypotheses. 

2. (p. 119) Th e i d ea of a “tilted” density seems to cause trouble. 
Emphasize the motivation for tilting. 
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Chapter 3 

3.1, 3.2 

3.3, 3.3.1 

3.3.3 

Lecture 8 pp. 166486 

Extension of results to waveform observations 
Deterministic waveforms 

Time-domain and frequency-domain characteriza- 
tions, 166-l 69 
Orthogonal function representations,, 169-l 74 
Complete orthonormal sets, 17 1 
Geometric interpretation, 172-l 74 

Second-moment characterizations, 174-l 78 
Positive definiteness, nonnegative definiteness, and 
symmetry of covariance functions, 176-177 

Gaussian random processes, 182 
Difficulty with usual definitions, 185 
Definition in terms of a linear functional, 183 
Jointly Gaussian processes, 185 
Consequences of definition ; joint Gaussian density 
at any set of times, 184-185 

Pr~bl~rn Assignment 4 

1. 2.6.2 0~~~~~~1 
2. 2.6.4. 5. 2.7.1 
3. 2.6.8 6. 2.7.2 
4. 2.6.10 



3a3.2 

3.4, 3.4.1, 
3.4.2 

Lecture 9 645 

Lecture 9 

Orthogonal representation for random processes, 178-l 82 
Choice of coefficients to minimize meanms~uare 
representation error, I78 
Choice of coordinate system, 179 

Karhun~n~Lo~ve expansion, 179 
Properties of integral ~~uations~ 180-l 8 1 
Analogy with finite-dimensional case in Section 2.6 
The following comparison should be made: 

Gaussian definition 

z = gTx 

Symmetry 

K..j = Kji 

Nonnegative 
definiteness 

xTKx > 0 

Coordinate system 

=b = @w 

Orthogonality 

+iT+j = 6ij 

T  

s s 

T  

dt dz4 x(t) -KS& 4 
0 0 

x(u) 2 0 

= At+(t) 0 < t < T 

Mercer’s theorem, 18 1 
Convergence in mean-square sense, 182 

Assign Section 3.4 on integral equation solutions for 
reading, 186- 194 



3.4.1 
3.4.2 

3.4‘3 

3.4.4 

3.4.5 

Lecture 10 pp. 186-226 

Solution of integral equations, 186-196 
Basic technique, obtain differential equation, solve, 
and satisfy boundary conditions~ 186-l 9 1 
Example : Wiener process, 194- 196 

White noise and its properties, 196-198 
Impulsive eovarianee function, flat spectrum, 
orthogonal representations 197-198 

Optimum linear filter, 198-204 
This derivation illustrates variational procedures ; the 
specific result is needed in Chapter 4; the integral 
equation (144) should be emphasized because it 
appears in many later discussions; a series solution 
in terms of eigenvalues and eigenfun~tions is 
adequate for the present 

Assign the remainder of Chapter 3 for reading; Sections 
3.5 and 3.6 are not used in the text (some problems use 
the results); Section 3.7 is not needed until Section 4.5 
(the discussion of vector processes can be avoided until 
Section 6.3, when it becomes essential), 204-226 

Problem Assignment 5 

1. 3.3.1 5, 3.4.4 
2. 3e3.6 6. 3.4.6 
3. 3.3.19 7. 3.4.8 
4. 3.3,22 

At the beginning of the derivation on p* 200 we assumed h(t, u) was 
continuous. Whenever there is a white noise component in r(t) (143), this 
restriction does not affect the performance. hen K,(t, u) does not contain 
an impulse, a discontinuous filter may perform better. The optimum filter 
satisfies (138) for 0 < u < lir if discontinuities are allowed. 



Lecture I1 647 

Chapter 4 

41 0 

42 l 

Lecture 11 pp. 23~25~ 

Physical situations in which detention problem arises 
Communication, radar/sonar~ 239-246 

Detection of known signals in additive white Gaussian 
noise, 246-27 1 
Simple binary detection, 247 

Sufficient statistic, reduction to scalar problem, 248 
Applicability of ROC in Fig. 2.9 with da = 2E/N~, 
250-25 1 
Lack of dependence on signal shape, 253 

General binary detentions 254-257 
Coordinate system using Gram-Schmidt, 254 
LRT, reduction to single sufficient statistics 256 
Minimum-distance rule ; ” largest-of” rule, 257 
Expression for da, 256 
Optimum signal choice, 257 



Lecture 12 pp. 257-271 

4.2.1 Wary detection in white Gaussian noise, 257 
Set of sufficient statistics ; Gram-Schmidt procedure 
leads to at most M (less if signals have some linear 
dependence); Illustrate with PSK and FSK set, 259 
Emphasize equal a priori probabilities and mini- 
mum Pr(E) criterion. This leads to minimum- 
distance rules. Go through three examples in text 
and calculate Pr(E) 
Example 1 illustrates symmetry and rotation, 261 
Example 3 illustrates complexity of exact calcula- 
tion for a simple signal set. Derive bound and 
discuss accuracy, 26 l-264 
Example 4 illustrates the idea of transmitting 
sequences of digits and possible performance 
improvements, 264-267 

Sensitivity, 267-27 1 
Functional variation and parameter variation ; this 
is a mundane topic that is usually omitted; it is a 
crucial issue when we try to implement optimum 
systems and must measure the quantities needed in 
the mathematical model 

Problem Assignment 6 

1. 4.2.4 5, 4.2.16 
2. 4.2.6 6. 4.2.23 
3. 4.2.8 
4. 4.2.9 



Lecture 13 649 

Lecture 13 pp. 271-278 

4.2.2 

4.2.3 

Estimation of signal parameters 
Derivation of likeliheod function, 274 
Necessary conditions on ~~~*(~(~)) and ~~~(~(~)), 274 
Generalization of Cramer-Rao inequality, 275 
Conditions for efficient estimates, 276 

Linear estimation, 27 l-273 
Simplicity of solution, 272 
Relation to detection problem, 273 

Nonlinear estimation, 273-286 
Optimum receiver for estimating arrival time 
(equivalently, the PPM problem), 276 
Intuitive discussion of system performance, 277 



4.2.3 

4.2.4 

4.3 

Lecture 14 pp. 278-289 

Nonlinear estimation (continued), 278-286 
Pulse frequency modulation (PFM), 278 

An approximation to the optimum receiver (interval 
selector followed by selection of local maximum), 
279 
Performance in weak noise, effect of byproduct, 280 
Threshold analysis, using orthogonal signal approxi- 
mation, 280-28 1 
Bandwidth constraints, 282 
Design of system under threshold and bandwidth 
constraints, 282 
Total mean-square error, 283-285 

Summary: known signals in white noise, 286-287 

Introduction to colored noise problem, 287-289 
Model, observation interval, motivation for includ- 
ing white noise component 

Problem A~~ig~rne~t 7 

1. 42.25 3, 4.2.28 
2, 4.2.26 

Comments on Lecture 15 (lecture is unp 651) 

1. As in Section 3.45, we must be careful about the endpoints of the 
interval. If there is a white noise component, we may choose a continuous 
g(t) without affecting the performance. This leads to an integral equation 
on an open interval. If there is no white component, we must use a closed 
interval and the solution will usually contain singularities, 

2, On p. 296 it is useful to emphasize the analogy between an inverse 
kernel and an inverse matrix. 



43 
4.3.1, 4.i.2, 

4.3.3 

4.3.4 

4.3.8 

4.3,5-4.3.8 

Lecture 15 pp. 289-333 

Colored noise problem 
Possible approaches : Karhunen-Loeve expansion, 
prewhitening filter, generation of sufficient statistic, 
289 
Reversibility proof (this idea is used several times in 
the text), 289-290 

Whitening derivation, 29~297 
Define whitening filter, h,(t, u), 291 
Define inverse kernel Q&, U) and function for cor- 
relator g(t), 292 
Derive integral equations for above functions, 293- 
297 
Draw the three realizations for optimum receiver 
(Fig. 4.38), 293 

Construction of Q~(~, u) 
Interpretation as impulse minus optimum linear 
filter, 294-295 
Series solutions, 296-297 

Performance, 301-307 
Expression for d2 as quadratic form and in terms of 
eigenvalues, 302 
Optimum signal design, 302-303 
Singularity, 303-305 
Importance of white noise assumption and effect of 
removing it 

Duality with known channel problem, 331--333 

Assign as reading, 

1. Estimation (4.3.5) 
2. Solution to integral equations (4.3.6) 
3. Sensitivity (4.3.7) 
4. Known linear channels (4.3.8) 

Problem Set 7 (continued) 

4. 4.3.4 7. 4.3.12 
5, 4.3.7 8. 4.3.21 
6, 4.3.8 



44 * 

4.4.1 

4‘4.2 

4.5-4.7 

Lecture 16 pp. 333-377 

Signals with unwanted parameters, 333-366 
Example of random phase problem to motivate the 
model, 336 
Construction of LRT by integrating out unwanted 
parameters, 334 
Models for unwanted parameters, 334 

Random phase, 335-348 
Formulate bandpass model, 335-336 
Go to A(~(~)) by inspection, define quadrature 
sufficient statistics I;, and L,, 337 
Introduce phase density (364), motivate by brief 
phaselock loop discussion, 337 
Obtain LRT, discuss properties of In Z&V), point out 
it can be eliminated here but will be needed in 
diversity problems, 338-341 
Compute ROC for uniform phase case, 344 

Introduce Marcum’s Q function 
Discuss extension to binary and M-ary case, signal 
selection in partly coherent channels 

Random amplitude and phase, 349-366 
Motivate Rayleigh channel model, piecewise con- 
stant approximation, possibility of continuous 
measurement, 349-352 
Formulate in terms of quadrature components, 352 
Solve general Gaussian problem, 352-353 

Interpret as filter-squarer receiver and estimator- 
correlator receiver, 354 

Apply Gaussian result to Rayleigh channel, 355 
Point out that performance was already computed 
in Chapter 2 

Discuss Rician channel, modifications necessary to 
obtain receiver, relation to partially-coherent channel 
in Section 4.4.1, 360-364 

Assign Section 4.6 to be read before next lecture; 
Sections 4.5 and 4.7 may be read later, 366-377 



Lecture I6 653 

Problem Assignment 8 

1. 4.4.3 5. 4‘4.29 
2, 4.4.5 6, 4.4.42 
3, 4.4.13 7, 4.6.6 
4. 4.4.27 
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46 * 

Chapter 5 

5.1, 5.2 

5.3-5.6 

Lecture Sl pp. 370-460 

Multiplenparameter estimation, 370-374 
Set up a model and derive MAP equations for the 
colored noise case, 374 
The examples can be left as a reading assignment but 
the MAP equations are needed for the next topic 

Continuous waveform estimation, 423-460 

Model of problem, typical ~untinuous systems such 
as AM, PM, and FM; other problems such as 
channel estimation ; linear and nonlinear modula- 
tion, 423-426 
Restriction to no-memory modulation, 427 
Definition of & ,&r(t)) in terms of an orthogonal 
expansion, complete equivalence to multiple para- 
meter problem, 429-430 
Derivation of MAP equations (31-33), 427-431 
Block diagram interpretation, 432-433 
Conditions for an efficient estimate to exist, 439 

Assign remainder of Chapter 5 for reading, 433-460 



Lecture 18 655 

Lecture 18 pp. 467-481 

Chapter 6 Linear modulation 

61 l Model for linear problem, equations for MAP interval 
estimation, 467-468 

Property 1: MAP estimate can be obtained by 
using linear processor; derive in- 
tegral equation, 468 

Property 2 : MAP and MMSE estimates coincide 
for linear modulation because effi- 
cient estimate exists, 470 

Formulation of linear point estimation problem, 470 
Gaussian assumption, 47 1 
Structured approach, linear processors 

Property 3 : Derivation of optimum linear pro- 
cessor, 472 

Property 4 : Derivation of error expression [em- 
phasize (27)], 473 

Property 5 : Summary of information needed, 474 
Property 6 : Optimum error and received wave- 

form are uncorrelated, 474 
Property 6A: In addition, co(t) and r(u) are 

statistically independent under Gaus- 
sian assumption, 475 

Optimality of linear filter under Gaussian assumption, 
475-477 

Property 7 : Prove no other processor could be 
better, 475 

Property 7A: Conditions for uniqueness, 476 
Generalization of criteria (Gaussian assumption), 477 

Property 8 : Extend to convex criteria; unique- 
ness for strictly convex criteria; 
extend to monotone increasing cri- 
teria, 477-478 

Relationship to interval and MAP estimators 
Property 9 : Interval estimate is a collection of 

point estimates, 478 
Property 10: MAP point estimates and MMSE 

point estimates coincide, 479 
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Lecture 18 (continued) 

Summary, 48 1 
Emphasize interplay between structure, criteria, and 
Gaussian assumption 
Point out that the optimum linear filter plays a 
central role in nonlinear modulation (Chapter 11.2) 
and detection of random signals in random noise 
(Chapter 11.3) 

~ Problem Assignment 9 

~ 1. 5.2.1 3. 6.1.1 
2. 5.3.5 4. 6.1.4 



62 . 

Lecture 19 657 

Lecture 19 pp. 481-515 

Realizable linear filters, stationary processes, infinite time 
(Wiener-Hopf problem) 
Modification of general equation to get Wiener- 
Hopf equation, 482 

Solution of Wiener-Hoff equation, rational spectra, 482 
Whitening property ; illustrate with one-pole ex- 
ample and then indicate general case, 483-486 
Demonstrate a unique spectrum factorization pro- 
cedure, 485 
Express ~~(~~) in terms of original quantities; 
define “‘realizable part” operator, 487 
Combine to get final solution, 488 

Example of one-pole spectrum plus white noise, 488-493 
Desired signal is message shifted in time 
Find optimum linear filter and resulting error, 494 
Prove that the meanasquare error is a monotone in- 
creasing function of a, the prediction time ; emphasize 
importance of filtering with delay to reduce the 
mean-square error, 493-495 

Unrealizable filters, 496-497 
Solve equation by using Fourier transforms 
Emphasize that error performance is easy to com- 
pute and bounds the performance of a realizable 
system ; unrealizable error represents ultimate per- 
formance ; filters can be approximated arbitrarily 
closely by allowing delay 

Closed-form error expressions in the presence of white 
noise, 498-508 

Indicate form of result and its importance in system 
studies 
Assign derivation as reading 
Discuss error behavior for Butterworth family, 502 

Assign the remainder of Section 6.2 as reading, 508-515 

Problem Assignment 9 (continued) 

5. 6.2.1 7. 6.2.7 
6. 6.2.3 8. 6.2.43 
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Lecture 20” pp. 515-538 

63 a 

6.3.1 

State-variable approach to optimum filters (Kalman- 
Bucy problem), 5 15-575 

Motivation for differential equation approach, 5 15 
State variable representation of system, 5 15-526 

Differential equation description 
Initial conditions and state variables 
Analog computer realization 
Process generation 

Example 1: First-order system, 5 17 
Example 2: System with poles only, introduction of 

vector differential equation, vector block 
diagrams, 5 18 

Example 3 : General linear differential equation, 521 
Vector-inputs, time-varying coefficients, 527 
System observation model, 529 
State transition matrix, +(t, T), 529 

Properties, solution for time-invariant case, 529-53 1 
Relation to impulse response, 532 

Statistical properties of system driven by white noise 
Properties 13 and 14,532-534 

Linear modulation model in presence of white noise, 534 
Generalizations of model, 535-538 

Problem Assignment 10 

1. 6.3.1 4. 6.3.9 
2. 6.3.4 5. 6.3.12 
3. 6.3.7(a, b) 6. 6.3.16 

*Lectures 20--22 may be omitted if time is a limitation and the material in Lectures 
28-30 on the radar/sonar problem is of particular interest to the audience. For graduate 
students the material in 20-22 should be used because of its fundamental nature and 
importance in current research. 



Lecture 21 659 

Lecture 21 pp. 538446 
--- 

6.3.2 Derivation of Kalman-Bucy estimation equations 
step 1: Derive the differential equation that 

h,(t, 7) satisfies, 539 
Step 2: Derive the differential equation that 

s(t) satisfies, 540 
Step 3: Relate &(t), the error covariance 

matrix, and h,(r, t), 542 
Step 4: Derive the variance equation, 542 

Properties of variance equation 
Property 15 : Steady-state solution, relation to 

Wiener filter, 543 
Property 16: Relation to two simultaneous linear 

vector, equations ; analytic solution 
procedure for constant coefficient 
case, 545 
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Lecture 22 pp. 546-586 

6.3.3 

6.3.4 

64 * 

6.5-6.6 

Applications to typical estimation problems, 546-566 
Example 1: One-pole spectrum, transient behavior, 

546 
Example 3: Wiener process, relation to pole- 

splitting, 555 
Example 4: Canonic receiver for stationary mes- 

sages in single channel, 556 
Example 5 : FM problem; emphasize that optimum 

realizable estimation commutes with 
linear transformations, not linear filter- 
ing (this point seems to cause confusion 
unless discussed explicitly), 557-56 1 

Example 7: Diversity system, maximal ratio com- 
bining, 564-565 

Generalizations, 566-575 
List the eight topics in Section 6.3.4 and explain 
why they are of interest; assign derivations as 
reading 

Compare state-variable approach to conventional 
Wiener approach, 575 

Amplitude modulation, 575-584 
Derive synchronous demodulator ; assign the re- 
mainder of Section 6.4 as reading 

Assign remainder of Chapter 6 as reading. Emphasize 
the importance of optimum linear filters in other areas 

Problem Assignment 11 

1. 6.3.23 4. 6.3.37 
2. 6.3.27 5. 6.3.43 
3. 6.3.32 6. 6.3.44 



Chapter II-2 

11-2.2 

11-2.3 

Lecture 23 661 

Lecture 23” 

Nonlinear modulation 
Model of angle modulation system 

Applications ; synchronization, analog communica- 
tion 
Intuitive discussion of what optimum demodulator 
should be 

MAP estimation equations 

Derived in Chapter I-5, specialize to phase modulation 
Interpretation as unrealizable block diagram 
Approximation by realizable loop followed by 
unrealizable postloop filter 
Derivation of linear model, loop error variance 
constraint 

Synchronization example 
Design of filters 

Nonlinear behavior 
Cycle-skipping 
Indicate method of performing exact nonlinear 
analysis 

*The problem assignments for Lectures 23-32 will be included in Appendix 1 of Part II. 
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II-2.5 

11-2.6 

Lecture 24 

Frequency modulation 
Design of optimum demodulator 
Optimum loop filters and postloop filters 
Signal-to-noise constraints 
Bandwidth constraints 
Indicate comparison of optimum demodulator and 
conventional limiter-discriminator 
Discuss other design techniques 

Optimum angle modulation 
Threshold and bandwidth constraints 
Derive optimum pre-emphasis filter 
Compare with optimum FM systems 



Lecture 25 

comparison of various systems for transmitting analog 
messages 
Sampled and quantized systems 

Discuss simple schemes such as binary and 1M-ary 
signaling 
Derive expressions for system transmitting at 
channel capacity 

Sampled, continuous amplitude systems 
Develop PFM system, use results from Chapter I--4? 
and compare with continuous FM system 

Bounds on analog transmission 
Rate-distortion functions 
Expression for Gaussian sources 
Channel rapacity formulas 
Comparison for infinite-bandwidth channel of 
continuous modulation schemes with the bound 
Bandlimited message and bandlimited channel 

Comparison of optimum FM with bound 
Comparison of simple companding schemes with 
bound 

Summary of analog message transmission and continuous 
waveform estimation 



_ 

Chapter II-3 

3.2.1 

Lecture 26 

Gaussian signals in Gaussian noise 

Simple binary problem, white Gaussian noise on Ho and 
HI, additional colored Gaussian noise on HI 

Derivation of LRT using Karhunen-Lo~ve expan- 
sion 
Various receiver realizations 

Estimator-correlator 
Filter-squarer 
Structure with optimum realizable filter as com- 
ponent (this discussion is most effective when 
Lectures 20-22 are included; it should be men- 
tioned, however, even if they were not studied) 

Computation of bias terms 
Performance bounds using p(s) and tilted probability 
densities (at this point we must digress and develop the 
material in Section 2.7 of Chapter I-2). 
interpretation of p(s) in terms of realizable filtering 
errors 

Example: Structure and performance bounds for 
the case in which additive colored noise 
has a one-pole spectrum 



Lecture 27 665 

Lecture 27 

3.2.2 General binary problem 
Derive LRT using whitening approach 
eliminate explicit dependence on white noise 
Singularity 
Derive ~(~) expression 

Symmetric binary problems 
Pr(E) expressions, relation to Bhattacharyya distance 
inadequacy of signal-to-noise criterion 



Chapter II-3 

3.2.3 

3.2.4 

3.2.5 

Lecture 28 

Special cases of particular importance 

Separable kernels 
Time diversity 
Frequency diversity 
Eigenfunction diversity 

Optimum diversity 

Coherently undetectable case 
Receiver structure 
Show how ~(3) degenerates into an expression in- 
volving d2 

Stationary processes, long observation times 
Simplifications that occur in receiver structure 
Use the results in Lecture 26 to show when these 
approximations are valid 
Asymptotic formulas for p(s) 
Example: Do same example as in Lecture 26 

Plot PO versus kT for various ~/~* ratios and 
P/s 
Find the optimum kTproduct (this is continuous 
version of the optimum diversity problem) 

Assign remainder of Chapter II-3 (Sections 3.3-3.6) as 
reading 



Chapter II-4 

41 * 

42 * 

Lecture 29 

Radar-sonar problem 

Representation of narrow-band signals and processes 
Typical signals, quadrature representation, complex 
signal representation. Derive properties : energy, 
correlation, moments ; narrow-band random pro- 
cesses; quadrature and complex waveform repre- 
sentation. Complex state variables 

Possible target models; develop target hierarchy in Fig. 
46 . 

Slowly-fluctuating point targets 
System model 
Optimum receiver for estimating range and Doppler 
Develop time-frequency autocorrelation function 
and radar ambiguity function 
Examples : Rectangular pulse 

Ideal ambiguity function 
Sequence of pulses 
Simple Gaussian pulse 

Effect of frequency modulation on the signal 
ambiguity function 
Accuracy relations 



4.2.4 

4.2.5 

4.2.6 

Lecture 30 

Properties of auto~orrelation functions and ambiguity 
functions. Emphasize : 

Property 3 : Volume invariance 
Property 4 : Symmetry 
Property 6 : Scaling 
Property 11: Multiplication 
Property 13 : Selftransform 
Property 14 : Partial volume invariances 
Assign the remaining properties as reading 

Pseudo-random signals 
Properties of interest 
Generation using shift-registers 

Resolution 
Model of problem, discrete and continuous resolu- 
tion environments, possible solutions : optimum or 
“ conventional ” receiver 
Performance of conventional receiver, intuitive dis- 
cussion of optimal signal design 

Assign the remainder of Section 4.2.6 and Section 4.2.7 
as reading. 



43 . 

Lecture 31 

Singly spread targets (or channels) 
frequency spreading-delay spreading 

Model for Doppler~spread channel 
Derivation of statistics (output covariance) 
Intuitive discussion of time-selective fading 

Optimum receiver for Doppler~spread target (simple 
example) 

Assign the remainder of Section 4.3 as reading 

Doubly spread targets 
Physical problems of interest: reverberation, scatter 
communication 
Model for doubly spread return, idea of target or 
channel scattering function 

Reverberation (resolution in a dense environment) 
Conventional or optimum receiver 
Interaction between targets, scattering functions and 
signal ambiguity function 
Typical targetarevcrberation cunfigurations 

Optimum signal design 

Assign the remainder of Chapter II-4 as reading 
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Chapter II-5 

51 l 

53 l 

5.3.1 

5.3.2 

Lecture 32 

Physical situations in which multiple waveform and 
multiple variable problems arise 
Review vector Karhunen-Loeve expansion briefly (Chap- 
ter I-3) 

Formulate array processing problem for sonar 

Active sonar 
Consider singlensignal source, develop array steering 
Homogeneous noise case, array gain 
Comparison of optimum space-time system with 
conventional space-optimum time system 
Beam patterns 
Distributed noise fields 
Point noise sources 

Passive sonar 
Formulate problem, indicate result. Assign deriva- 
tion as reading 

Assign remainder of Chapter II-5 and Chapter II-6 as 
reading 


