Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory. Harry L. Van Trees Copyright © 2001 John Wiley & Sons, Inc. ISBNs: 0-471-09517-6 (Paperback); 0-471-22108-2 (Electronic)

Appendix : A Typical Course Outline

It would be presumptious of us to tell a professor how to teach a course at this level. On the other hand, we have spent a great deal of time experimenting with different presentations in search of an efficient and pedagogically sound approach. The concepts are simple, but the great amount of detail can cause confusion unless the important issues are emphasized. The following course outline is the result of these experiments; it should be useful to an instructor who is using the book or teaching this type of material for the first time.

The course outline is based on a 15-week term of three hours of lectures a week. The homework assignments, including reading and working the assigned problems, will take 6 to 15 hours a week. The prerequisite assumed is a course in random processes. Typically, it should include Chapters 1 to 6, 8, and 9 of Davenport and Root or Chapters 1 to 10 of Papoulis. Very little specific material in either of these references is used, but the student needs a certain level of sophistication in applied probability theory to appreciate the subject material.

Each lecture unit corresponds to a one-and-one-half-hour lecture and contains a topical outline, the corresponding text material, and additional comments when necessary. Each even-numbered lecture contains a problem assignment. A set of solutions for this collection of problems is available.

In a normal term we get through the first 28 lectures, but this requires a brisk pace and leaves no room for making up background deficiencies. An ideal format would be to teach the material in two 10-week quarters. The expansion from 32 to 40 lectures is easily accomplished (probably without additional planning). A third alternative is two 15-week terms, which would allow time to cover more material in class and reduce the homework load. We have not tried either of the last two alternatives, but student comments indicate they should work well.

One final word is worthwhile. There is a great deal of difference between reading the text and being able to apply the material to solve actual problems of interest. This book (and therefore presumably any course using it) is designed to train engineers and scientists to solve new problems. The only way for most of us to acquire this ability is by practice. Therefore any effective course must include a fair amount of problem solving and a critique (or grading) of the students' efforts.

	Lecture 1 pp. 1–18
Chapter 1	Discussion of the physical situations that give rise to detection, estimation, and modulation theory prob- lems
1.1	 Detection theory, 1-5 Digital communication systems (known signal in noise), 1-2 Radar/sonar systems (signal with unknown parameters), 3 Scatter communication, passive sonar (random signals), 4 Show hierarchy in Fig. 1.4, 5 Estimation theory, 6-8 PAM and PFM systems (known signal in noise), 6 Range and Doppler estimation in radar (signal with unknown parameters), 7 Power spectrum parameter estimation (random signal), 8 Show hierarchy in Fig. 1.7, 8 Modulation theory, 9-12 Continuous modulation systems (AM and FM), 9 Show hierarchy in Fig. 1.10, 11
1.2	Various approaches, 12–15 Structured versus nonstructured, 12–15 Classical versus waveform, 15
1.3	Outline of course, 15–18

		Lecture 2 pp. 19–33
Chapter 2	2	Formulation of the hypothesis testing problem, 19–23
2	2.2.1	Decision criteria (Bayes), 23–30 Necessary inputs to implement test; a priori proba- bilities and costs, 23–24 Set up risk expression and find LRT, 25–27 Do three examples in text, introduce idea of suf- ficient statistic, 27–30 Minimax test, 31–33 Minimum $Pr(\epsilon)$ test, idea of maximum a posteriori rule, 30
		Problem Assignment 1 1. 2.2.1
		2. 2.2.2

	Lecture 3 pp. 33–52
	Neyman-Pearson tests, 33-34 Fundamental role of LRT, relative unimportance of the
	Sufficient statistics, 34 Definition, geometric interpretation
2.2.2	Performance, idea of ROC, 36-46 Example 1 on pp. 36-38; Bound on erfc _* (X), (72) Properties of ROC, 44-48 Concave down, slope, minimax
2.3	<i>M</i> -Hypotheses, 46-52 Set up risk expression, do $M = 3$ case and demon- strate that the decision space has at most two dimensions; emphasize that regardless of the obser- vation space dimension the decision space has at most $M - 1$ dimensions, 52 Develop idea of maximum a posteriori probability test (109)

Comments

The randomized tests discussed on p. 43 are not important in the sequel and may be omitted in the first reading.

	Lecture 4		pp. 52–62		
2.4	Estimation tl	neory,	52		
	Model, 52-54	4			
	Parameter space, question of randomness. 53				
	Mapping into observation space, 53				
	Estimation rule, 53				
	Bayes estima	tion, 5	54-63		
	Cost functions, 54				
	Typical	single-	argument expressions, 55		
	Mean	-squar	e, absolute magnitude, uniform, 55		
	Risk expression, 55				
	Solve for $\hat{a}_{max}(\mathbf{R})$, $\hat{a}_{max}(\mathbf{R})$, and $\hat{a}_{max}(\mathbf{R})$, 56–58				
	Linear example. 58–59				
	Nonline	ar exa	mple, 62		
	Problem Assi	ignmen	nt 2		
	1. 2.2.10	5.	2.3.3		
	2. 2.2.15	6.	2.3.5		
	3. 2.2.17	7.	2.4.2		
	4. 2.3.2	8.	2.4.3		

Lecture 5 641

	Lecture 5 pp. 60–69
	Bayes estimation (continued)
	Convex cost criteria, 60–61 Optimality of $\hat{a}_{ms}(\mathbf{R})$, 61
2.4.2	Nonrandom parameter estimation, 63–73 Difficulty with direct approach, 64
	Bias, variance, 64
	Bounds
	Cramér-Rao inequality, 66-67
	Efficiency, 66 Optimality of $\hat{a}_{-1}(\mathbf{R})$ when efficient estimate exists.
	68
	Linear example, 68–69

	Lecture 6	pp.	69 98
	Nonrandom p Nonlinear exa Asymptot	parameter estimation (<i>continued</i>) ample, 69 ptic results, 70–71	
	Intuitive accurate.	explanation of when $C-R$ bou 70-71	nd is
	Bounds for ra	andom variables, 72-73	
2.4.3, 2.4.4 2.5	Assign the sector composite	ctions on multiple parameter estimation to hypothesis testing for reading, 74–	on and 96
2.6	General Gauss Definitior Expressio Derive Ll	ssian problem, 96–116 n of a Gaussian random vector, 96 ons for $M_r(jv)$, $p_r(\mathbf{R})$, 97 .RT, define quadratic forms, 97–98	
	Problem Assig	gnment 3	
	1. 2.4.9	5. 2.6.1	
	2. 2.4.12 3. 2.4.27	<i>Optional</i> 6. 2.5.1	

	Lecture 7 pp. 98–133
2.6	General Gaussian problem (continued) Equal covariance matrices, unequal mean vectors, 98–107 Expression for d^2 , interpretation as distance, 99–100 Diagonalization of Q , eigenvalues, eigenvectors, 101–107 Geometric interpretation, 102 Unequal covariance matrices, equal mean vectors, 107–116 Structure of LRT, interpretation as estimator, 107 Diagonal matrices with identical components, χ^2 density, 107–111 Computational problem, motivation of performance bounds, 116
2.7	Assign section on performance bounds as reading, 116–133

Comments

1. (p. 99) Note that $Var[l | H_1] = Var[l | H_0]$ and that d^2 completely characterizes the test because l is Gaussian on both hypotheses.

2. (p. 119) The idea of a "tilted" density seems to cause trouble. Emphasize the motivation for tilting.

	Lecture 8 pp. 166–186
Chapter 3	
3.1, 3.2	Extension of results to waveform observations Deterministic waveforms Time-domain and frequency-domain characteriza- tions, 166–169 Orthogonal function representations, 169–174 Complete orthonormal sets, 171 Geometric interpretation, 172, 174
3.3, 3.3.1	Second-moment characterizations, 172–174 Positive definiteness, nonnegative definiteness, and symmetry of covariance functions, 176–177
3.3.3	Gaussian random processes, 182 Difficulty with usual definitions, 185 Definition in terms of a linear functional, 183 Jointly Gaussian processes, 185 Consequences of definition; joint Gaussian density at any set of times, 184–185
	Problem Assignment 4
	1. 2.6.2 Optional 2. 2.6.4. 5. 2.7.1 3. 2.6.8 6. 2.7.2 4. 2.6.10

	Lecture 9	pp. 178–194
3.3.2	Orthogonal representation for random processes, 178–18 Choice of coefficients to minimize mean-squar representation error, 178 Choice of coordinate system, 179 Karhunen-Loeve expansion, 179 Properties of integral equations, 180–181 Analogy with finite-dimensional case in Section 2.6 The following comparison should be made:	
	Gaussian definition $z = \mathbf{g}^T \mathbf{x}$ Symmetry $K_{ij} = K_{ji}$ Nonnegative definiteness $\mathbf{x}^T \mathbf{K} \mathbf{x} \ge 0$ Coordinate system $\mathbf{K} \mathbf{\Phi} = \lambda \mathbf{\Phi}$ Orthogonality $\mathbf{\phi}_i^T \mathbf{\phi}_j = \delta_{ij}$	$z = \int_0^T g(u) \ x(u) \ du$ $K_x(t, u) = K_x(u, t)$ $\int_0^T dt \int_0^T du \ x(t) \ K_x(t, u)$ $x(u) \ge 0$ $\int_0^T K_x(t, u) \ \phi(u) \ du$ $= \lambda \phi(t) 0 \le t \le T$ $\int_0^T \phi_i(t) \ \phi_j(t) \ dt = \delta_{ij}$
	Mercer's theorem, 181 Convergence in mean-	square sense, 182
3.4, 3.4.1, 3.4.2	Assign Section 3.4 on inte reading, 186–194	gral equation solutions for

	Lecture 10			рр. 186–226
3.4.1 3.4.2	Solution of int Basic tech and satisfy	egral equat nique, obta v boundary	ions, 186–196 ain differential conditions, 18	equation, solve, 86–191
3.4.3	Example:	Wiener pro	ocess, 194-196	
3.4.4	White noise an Impulsive orthogona	d its prope covariand l represent	erties, 196–198 ce function, ation, 197–198	flat spectrum,
3.4.5	Optimum linea This deriva specific re equation appears in in terms adequate	r filter, 193 ation illustr sult is need (144) shou many late of eigenv for the pres	B-204 ates variationa ded in Chapte ld be empha r discussions; values and e sent	Il procedures; the r 4; the integral sized because it a series solution igenfunctions is
3.4.6-3.7	Assign the rem 3.5 and 3.6 are the results); Se (the discussion Section 6.3, wh	ainder of e not used ection 3.7 i of vector nen it beco	Chapter 3 for r in the text (sources is not needed processes can mes essential),	reading; Sections me problems use until Section 4.5 be avoided until 204–226
	Problem Assign	ament 5		
	1. 3.3.1 2. 3.3.6 3. 3.3.19 4. 3.3.22	 3.4.4 3.4.6 3.4.8 		

Comment

At the beginning of the derivation on p. 200 we assumed h(t, u) was continuous. Whenever there is a white noise component in r(t) (143), this restriction does not affect the performance. When $K_r(t, u)$ does not contain an impulse, a discontinuous filter may perform better. The optimum filter satisfies (138) for $0 \le u \le T$ if discontinuities are allowed.

	Lecture 11 pp. 239–257
Chapter 4	
4.1	Physical situations in which detection problem arises Communication, radar/sonar, 239–246
4.2	Detection of known signals in additive white Gaussian noise, 246–271 Simple binary detection, 247 Sufficient statistic, reduction to scalar problem, 248 Applicability of ROC in Fig. 2.9 with $d^2 = 2E/N_0$, 250–251 Lack of dependence on signal shape, 253 General binary detection, 254–257 Coordinate system using Gram-Schmidt, 254 LRT, reduction to single sufficient statistic, 256 Minimum-distance rule; "largest-of" rule, 257 Expression for d^2 , 256 Optimum signal choice, 257

Lecture 12 pp. 257–271
<i>M</i> -ary detection in white Gaussian noise, 257 Set of sufficient statistics; Gram-Schmidt procedure leads to at most <i>M</i> (less if signals have some linear dependence); Illustrate with PSK and FSK set, 259 Emphasize equal a priori probabilities and mini- mum $Pr(\epsilon)$ criterion. This leads to minimum- distance rules. Go through three examples in text and calculate $Pr(\epsilon)$ Example 1 illustrates symmetry and rotation, 261 Example 3 illustrates complexity of exact calcula- tion for a simple signal set. Derive bound and discuss accuracy, 261–264 Example 4 illustrates the idea of transmitting sequences of digits and possible performance improvements, 264–267 Sensitivity, 267–271 Functional variation and parameter variation; this is a mundane topic that is usually omitted; it is a crucial issue when we try to implement optimum systems and must measure the quantities needed in the mathematical model
Problem Assignment 6
1. 4.2.4 5. 4.2.16 2. 4.2.6 6. 4.2.23 3. 4.2.8 4. 4.2.9

Lecture 13 649

	Lecture 13 pp. 271–278
4.2.2	Estimation of signal parameters Derivation of likelihood function, 274 Necessary conditions on $\hat{a}_{map}(r(t))$ and $\hat{a}_{ml}(r(t))$, 274 Generalization of Cramér-Rao inequality, 275 Conditions for efficient estimates, 276 Linear estimation, 271–273 Simplicity of solution, 272 Relation to detection problem, 273
4.2.3	Nonlinear estimation, 273–286 Optimum receiver for estimating arrival time (equivalently, the PPM problem), 276 Intuitive discussion of system performance, 277

.

	Lecture 14 pp. 278–289	
4.2.3	Nonlinear estimation (continued), 278–286 Pulse frequency modulation (PFM), 278 An approximation to the optimum receiver (interval selector followed by selection of local maximum), 279 Performance in weak noise, effect of βT product, 280 Threshold analysis, using orthogonal signal approxi- mation, 280–281 Bandwidth constraints, 282 Design of system under threshold and bandwidth constraints, 282 Total mean-square error, 283–285	
4.2.4	Summary: known signals in white noise, 286–287	
4.3	Introduction to colored noise problem, 287–289 Model, observation interval, motivation for includ- ing white noise component	
	Problem Assignment 7	
	1. 4.2.25 3. 4.2.28 2. 4.2.26	

Comments on Lecture 15 (lecture is on p. 651)

1. As in Section 3.4.5, we must be careful about the endpoints of the interval. If there is a white noise component, we may choose a continuous g(t) without affecting the performance. This leads to an integral equation on an open interval. If there is no white component, we must use a closed interval and the solution will usually contain singularities.

2. On p. 296 it is useful to emphasize the analogy between an inverse kernel and an inverse matrix.

	Lecture 15 pp. 289–333
4.3 4.3.1, 4.3.2, 4.3.3	Colored noise problem Possible approaches: Karhunen-Loéve expansion, prewhitening filter, generation of sufficient statistic,
	289 Reversibility proof (this idea is used several times in the text), 289-290
	Define whitening filter $h_{\mu}(t, y)$, 291
	Define inverse kernel $Q_n(t, u)$ and function for correlator $g(t)$, 292
	Derive integral equations for above functions, 293– 297
	Draw the three realizations for optimum receiver (Fig. 4.38), 293
	Construction of $Q_n(t, u)$
	Interpretation as impulse minus optimum linear
	niter, 294–295 Series solutions, 296–297
4.3.4	Performance, 301–307
	Expression for d^2 as quadratic form and in terms of
	eigenvalues, 302
	Optimum signal design, 302–303 Singularity, 303–305
	Importance of white noise assumption and effect of
	removing it
4.3.8	Duality with known channel problem, 331-333
4.3.5-4.3.8	Assign as reading,
	1. Estimation (4.3.5)
	2. Solution to integral equations (4.3.6)
	4 Known linear channels (4.3.8)
	T. Known mical chamers (1910)
	Problem Set 7 (continued)
	4. 4.3.4 7. 4.3.12
	5. 4.3.7 8. 4.3.21
	6. 4.3.8

	Lecture 16	pp. 333–377
4.4	Signals with unwanted parameters, Example of random phase pro- model, 336 Construction of LRT by integ parameters, 334 Models for unwanted parameter	333–366 blem to motivate the rating out unwanted ers, 334
4.4.1	Random phase, 335–348 Formulate bandpass model, 33 Go to $\Lambda(r(t))$ by inspection sufficient statistics L_c and L_s , 3 Introduce phase density (364) phaselock loop discussion, 337 Obtain LRT, discuss properties it can be eliminated here bu diversity problems, 338–341 Compute ROC for uniform ph Introduce Marcum's Q func Discuss extension to binary an selection in partly coherent char	25-336 a, define quadrature 37 b), motivate by brief a of $\ln I_0(x)$, point out t will be needed in the
4.4.2	Random amplitude and phase, 349 Motivate Rayleigh channel m stant approximation, possib measurement, 349–352 Formulate in terms of quadrat Solve general Gaussian problem Interpret as filter-squarer rec correlator receiver, 354 Apply Gaussian result to Rayl Point out that performance w in Chapter 2 Discuss Rician channel, modif obtain receiver, relation to parti in Section 4.4.1, 360–364	-366 odel, piecewise con- ility of continuous ure components, 352 m, 352-353 ceiver and estimator- eigh channel, 355 vas already computed fications necessary to ally-coherent channel
4.5–4.7	Assign Section 4.6 to be read Sections 4.5 and 4.7 may be read la	before next lecture; ater, 366–377

 Leo	cture 16 (c	ontinu	ed)	
Pro	oblem Assi	gnmen	t 8	
1.	4.4.3	5.	4.4.29	
2.	4.4.5	6.	4.4.42	
3.	4.4.13	7.	4.6.6	
4.	4.4.27			

	Lecture 17 pp. 370–460
4.6	Multiple-parameter estimation, 370–374 Set up a model and derive MAP equations for the colored noise case, 374 The examples can be left as a reading assignment but the MAP equations are needed for the next topic
Chapter 5	Continuous waveform estimation, 423–460
5.1, 5.2	Model of problem, typical continuous systems such as AM, PM, and FM; other problems such as channel estimation; linear and nonlinear modula- tion, 423-426 Restriction to no-memory modulation, 427 Definition of $\hat{a}_{map}(r(t))$ in terms of an orthogonal expansion, complete equivalence to multiple para- meter problem, 429-430 Derivation of MAP equations (31-33), 427-431 Block diagram interpretation, 432-433 Conditions for an efficient estimate to exist, 439
5.3-5.6	Assign remainder of Chapter 5 for reading, 433-460

	Lecture 18	pp. 467–481
Chapter 6	Linear modulation	I.
6.1	Model for linear prestimation, 467–46	problem, equations for MAP interval
	Property 1:	MAP estimate can be obtained by using linear processor; derive in- tegral equation, 468
	Property 2:	MAP and MMSE estimates coincide for linear modulation because effi- cient estimate exists, 470
	Formulation of lin	ear point estimation problem, 470
	Gaussian assumpt	ion, 471
	Structured approa	ch, linear processors
	Property 3:	Derivation of optimum linear processor, 472
	Property 4:	Derivation of error expression [em- phasize (27)], 473
	Property 5:	Summary of information needed, 474
	Property 6:	Optimum error and received wave- form are uncorrelated, 474
	Property 6A:	In addition, $e_o(t)$ and $r(u)$ are statistically independent under Gaus- sian assumption, 475
	Optimality of line 475–477	ar filter under Gaussian assumption,
	Property 7:	Prove no other processor could be better, 475
	Property 7A:	Conditions for uniqueness, 476
	Generalization of	criteria (Gaussian assumption), 477
	Property 8:	Extend to convex criteria; unique- ness for strictly convex criteria; extend to monotone increasing cri- teria, 477-478
	Relationship to in	terval and MAP estimators
	Property 9:	Interval estimate is a collection of point estimates, 478
	Property 10:	MAP point estimates and MMSE point estimates coincide, 479

Lec	ture 18 (contin	ued)
Sur	nmary, 4 Empha Gaussia Point c central and de (Chapto	81 size int an assu out tha role ir tection er II.3)	terplay between structure, criteria, and umption at the optimum linear filter plays a n nonlinear modulation (Chapter II.2) n of random signals in random noise)
Pro	blem As	signme	nt 9
1.	5.2.1	3.	6.1.1
2	535	4	614
	Pro 1.	Lecture 18 (Summary, 4 Empha Gaussia Point of central and de (Chapto Problem Ass 1. 5.2.1 2. 5.3.5	Lecture 18 (continSummary, 481Emphasize in Gaussian assi Point out th central role in and detection (Chapter II.3)Problem Assignme1. 5.2.13.2. 5.3.54

	Lecture 19	pp. 481–51	5
6.2	Realizable linear filters, s (Wiener-Hopf prob	tationary processes, infinite time lem)	e
	Hopf equation 482	meral equation to get whener	-
	Solution of Wiener-Hop Whitening property ample and then ind Demonstrate a unio cedure, 485	f equation, rational spectra, 482 y; illustrate with one-pole ex icate general case, 483–486 que spectrum factorization pro	2
	Express $H'_0(j\omega)$ in define "realizable p	terms of original quantities art" operator, 487	;
	Example of one-pole spe Desired signal is me	ectrum plus white noise, 488–492 essage shifted in time	3
	Find optimum linea Prove that the mean creasing function of importance of filte mean-square error.	ar filter and resulting error, 494 n-square error is a monotone in α , the prediction time; emphasizering with delay to reduce the 493–495	4 - e
	Unrealizable filters, 496-	-497	
	Solve equation by u Emphasize that err pute and bounds t system; unrealizabl formance; filters ca closely by allowing	nsing Fourier transforms or performance is easy to com he performance of a realizable e error represents ultimate per an be approximated arbitrarily delay	e ;- y
	Closed-form error expre	essions in the presence of whit	e
	noise, 498–508 Indicate form of res studies Assign derivation a	sult and its importance in systen s reading	n
	Discuss error behav	vior for Butterworth family, 50	2
	Assign the remainder of	Section 6.2 as reading, 508-51	5
	Problem Assignment 9 (a	continued)	
	5. 6.2.1 7. 6.2.7	,	
	6. 6.2.3 8. 6.2.4	3	

	Lecture 20*	pp. 515–538
6.3	State-variable appr Bucy problem), 515	roach to optimum filters (Kalman- -575
6.3.1	Motivation for diffe State variable repre- Differential equ Initial condition Analog comput Process generat Example 1: First- Example 2: Syster vector diagra Example 3: Gener Vector-inputs, time System observation State transition mat Properties, solu Relation to im Statistical propertie Properties 13 a Linear modulation	erential equation approach, 515 esentation of system, 515–526 uation description ons and state variables ter realization tion order system, 517 m with poles only, introduction of r differential equation, vector block ams, 518 ral linear differential equation, 521 -varying coefficients, 527 n model, 529 trix, $\phi(t, \tau)$, 529 ution for time-invariant case, 529–531 pulse response, 532 es of system driven by white noise and 14, 532–534 model in presence of white noise, 534 model, 535–538
	Problem Assignmen	t 10
	1. 6.3.1 4 2. 6.3.4 4 3. 6.3.7(a, b) 4	 6.3.9 6.3.12 6.3.16

*Lectures 20-22 may be omitted if time is a limitation and the material in Lectures 28-30 on the radar/sonar problem is of particular interest to the audience. For graduate students the material in 20-22 should be used because of its fundamental nature and importance in current research.

	Lecture 21	pp. 538–546
6.3.2	Derivation of Ka	man-Bucy estimation equations
	Step 1:	Derive the differential equation that $\mathbf{h}_{0}(t, \tau)$ satisfies, 539
	Step 2:	Derive the differential equation that $\hat{\mathbf{x}}(t)$ satisfies, 540
	Step 3:	Relate $\xi_P(t)$, the error covariance matrix, and $\mathbf{h}_o(t, t)$, 542
	Step 4:	Derive the variance equation, 542
	Properties of vari	ance equation
	Property 15:	Steady-state solution, relation to Wiener filter, 543
	Property 16:	Relation to two simultaneous linear vector, equations; analytic solution procedure for constant coefficient case, 545

	Lecture 22 pp. 546–586
6.3.3	Applications to typical estimation problems, 546–566 Example 1: One-pole spectrum, transient behavior,
	Example 3: Wiener process, relation to pole- splitting, 555
	Example 4: Canonic receiver for stationary mes- sages in single channel, 556
	Example 5: FM problem; emphasize that optimum realizable estimation commutes with linear transformations, <i>not</i> linear filter- ing (this point seems to cause confusion unless discussed explicitly), 557-561
	Example 7: Diversity system, maximal ratio com- bining, 564–565
6.3.4	Generalizations, 566–575 List the eight topics in Section 6.3.4 and explain why they are of interest; assign derivations as reading Compare state-variable approach to conventional
	Wiener approach, 575
6.4	Amplitude modulation, 575–584 Derive synchronous demodulator; assign the re- mainder of Section 6.4 as reading
6.5–6.6	Assign remainder of Chapter 6 as reading. Emphasize the importance of optimum linear filters in other areas
	Problem Assignment 11
	1. 6.3.23 4. 6.3.37
	2. 6.3.27 5. 6.3.43 3. 6.3.32 6. 6.3.44

	Lecture 23*
Chapter II–2	Nonlinear modulation Model of angle modulation system Applications; synchronization, analog communica- tion Intuitive discussion of what optimum demodulator should be
II–2.2	MAP estimation equations
II-2.3	Derived in Chapter I-5, specialize to phase modulation Interpretation as unrealizable block diagram Approximation by realizable loop followed by unrealizable postloop filter Derivation of linear model, loop error variance constraint Synchronization example Design of filters Nonlinear behavior Cycle-skipping Indicate method of performing exact nonlinear analysis

*The problem assignments for Lectures 23-32 will be included in Appendix 1 of Part II.

	Lecture 24
II–2.5	Frequency modulation
	Optimum loop filters and postloop filters
	Signal-to-noise constraints
	Bandwidth constraints
	Indicate comparison of optimum demodulator and
	conventional limiter-discriminator
	Discuss other design techniques
II-2.6	Optimum angle modulation
	Threshold and bandwidth constraints
	Derive optimum pre-emphasis filter
	Compare with optimum FM systems

	Lecture 25
II-2.7	Comparison of various systems for transmitting analog messages Sampled and quantized systems Discuss simple schemes such as binary and <i>M</i> -ary signaling Derive expressions for system transmitting at channel capacity Sampled, continuous amplitude systems Develop PFM system, use results from Chapter I–4, and compare with continuous FM system Bounds on analog transmission Rate-distortion functions Expression for Gaussian sources Channel capacity formulas Comparison for infinite-bandwidth channel of continuous modulation schemes with the bound Bandlimited message and bandlimited channel Comparison of optimum FM with bound Comparison of simple companding schemes with bound Summary of analog message transmission and continuous waveform estimation

	Lecture 26
Chapter II–3	Gaussian signals in Gaussian noise
3.2.1	Simple binary problem, white Gaussian noise on H_0 and H_1 , additional colored Gaussian noise on H_1 Derivation of LRT using Karhunen-Loéve expansion Various receiver realizations Estimator-correlator Filter-squarer Structure with optimum realizable filter as component (this discussion is most effective when Lectures 20-22 are included; it should be men- tioned, however, even if they were not studied) Computation of bias terms Performance bounds using $\mu(s)$ and tilted probability densities (at this point we must digress and develop the material in Section 2.7 of Chapter I-2). Interpretation of $\mu(s)$ in terms of realizable filtering errors Example: Structure and performance bounds for the case in which additive colored noise has a one-pole spectrum

	Lecture 27
3.2.2	General binary problem Derive LRT using whitening approach Eliminate explicit dependence on white noise Singularity Derive $\mu(s)$ expression
	Symmetric binary problems $Pr(\epsilon)$ expressions, relation to Bhattacharyya distance Inadequacy of signal-to-noise criterion

	Lecture 28
Chapter II-3	Special cases of particular importance
3.2.3	Separable kernels Time diversity Frequency diversity Eigenfunction diversity Optimum diversity
3.2.4	Coherently undetectable case Receiver structure Show how $\mu(s)$ degenerates into an expression in- volving d^2
3.2.5	Stationary processes, long observation times Simplifications that occur in receiver structure Use the results in Lecture 26 to show when these approximations are valid Asymptotic formulas for $\mu(s)$ Example: Do same example as in Lecture 26 Plot P_D versus kT for various E/N_0 ratios and P_F 's Find the optimum kT product (this is continuous version of the optimum diversity problem) Assign remainder of Chapter II-3 (Sections 3.3-3.6) as reading

	Lecture 29
Chapter II–4	Radar-sonar problem
4.1	 Representation of narrow-band signals and processes Typical signals, quadrature representation, complex signal representation. Derive properties: energy, correlation, moments; narrow-band random processes; quadrature and complex waveform representation. Complex state variables Possible target models; develop target hierarchy in Fig. 4.6
4.2	Slowly-fluctuating point targets System model Optimum receiver for estimating range and Doppler Develop time-frequency autocorrelation function and radar ambiguity function Examples: Rectangular pulse Ideal ambiguity function Sequence of pulses Simple Gaussian pulse Effect of frequency modulation on the signal ambiguity function Accuracy relations

	Lecture 30
4.2.4	Properties of autocorrelation functions and ambiguity functions. Emphasize: Property 3: Volume invariance Property 4: Symmetry Property 6: Scaling Property 11: Multiplication
	Property 13: Selftransform Property 14: Partial volume invariances Assign the remaining properties as reading
4.2.5	Pseudo-random signals Properties of interest Generation using shift-registers
4.2.6	 Resolution Model of problem, discrete and continuous resolution environments, possible solutions: optimum or "conventional" receiver Performance of conventional receiver, intuitive discussion of optimal signal design Assign the remainder of Section 4.2.6 and Section 4.2.7 as reading.

	Lecture 31
4.3	 Singly spread targets (or channels) Frequency spreading—delay spreading Model for Doppler-spread channel Derivation of statistics (output covariance) Intuitive discussion of time-selective fading Optimum receiver for Doppler-spread target (simple example) Assign the remainder of Section 4.3 as reading Doubly spread targets Physical problems of interest: reverberation, scatter communication Model for doubly spread return, idea of target or channel scattering function Reverberation (resolution in a dense environment) Conventional or optimum receiver Interaction between targets, scattering function, and signal ambiguity function Optimum circul design
	Assign the remainder of Chapter II-4 as reading

	Lecture 32
Chapter II-5	
5.1	Physical situations in which multiple waveform and multiple variable problems arise Review vector Karhunen-Loéve expansion briefly (Chap- ter I-3)
5.3	Formulate array processing problem for sonar
5.3.1	Active sonar Consider single-signal source, develop array steering Homogeneous noise case, array gain Comparison of optimum space-time system with conventional space-optimum time system Beam patterns Distributed noise fields Point noise sources
5.3.2	 Passive sonar Formulate problem, indicate result. Assign derivation as reading Assign remainder of Chapter II-5 and Chapter II-6 as reading