
General Binary Detection: 
Gaussian Processes 

In this Chapter we generalize the model of Chapter 2 to include other 
Gaussian problems that we encounter frequently in practice. After develop- 
ing the generalized model in Section 3.1, we study the optimum receiver 
and its performance for the remainder of the chapter. 

3.1 MODEL AND PROBLEM CLASSIFICATION 

An obvious generalization is suggested by the digital communication 
system on page 26. In this case we transmit a different signal on each 
hypothesis. Typically we transmit 

J2p sin (w&, Ti < t < Tf: HI B - (1) 
and 

J2p sin (a@), Ti < t < Tf: Ho. - (2) 

If the channel is the simple multiplicative channel shown in Fig. 2.9, the 
received waveforms on the two hypotheses are 

r(t) = JG b(t) sin (qt) + w(t), Ti < t < Tf : HI, (3) 

r(t) = JG b(t) sin (mot) -I- w(t), Ti ,< t ,< T,:H,, (4) 

where b(t) is a sample function of Gaussian random process. This is just 
a special case of the general problem in which the received waveforms on 
the two hypotheses are 

r(t) = m + ~(0, Ti < t < T~zH~, - - 
r(t) = %(t) + w(t), Ti < t < Tr: Ho, 

(5) 
- - 
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Model 57 

where sl(t) and s,(t) are Gaussian processes with mean-value functions 
nt,(t) and 771&) and covariance functions K,(t, U) and &(t, u), respectively. 

In many cases, we also have a colored noise term, I&), present on both 
hypotheses. Then 

r(t) = Q(t) + n,(t) + w(t), Ti < t < T,: HI, _ _ 
r(t) = %co + %W + w, Ti < t < T,: Ho. (6) 

_ _ , 

We can include both these problems and many others in the general 
formulation, 

r(t) = G(t), T’< t < TiIHly - - 

w = w), Ti < t < Ti:Hoe (7) 
- - 

On HI, r(t) is a sample function from a Gaussian random process with 
mean-value function m,(t) and covariance function &,(t, u). On Ho, r(t) 
is a sample function from a Gaussian random process with mean-value 
function m,(t) and covariance function KH,(t, u). For algebraic simplicity, 
we assume that r(t) is zero-mean on both hypotheses in our initial dis- 
cussion. The results regarding mean-value functions in Chapter 2 generalize 
in an obvious manner and are developed in Section 3.4. 

Some of our discussion will be for the general problem in (7). On the 
other hand, many results are true only for subclasses of this problem. For 
bookkeeping purposes we define these classes by the table in Fig. 3.1. In 
all cases, the various processes are statistically independent. The subscript 
w implies that the same white noise component is present on both hypoth- 
eses. There may also be other processes present on both HI and Ho. 
The absence of the subscript means that a white noise component is not 
necessarily present. The class inclusions are indicated by solid lines. Thus, 

B, = A, = A = GB, (8) 

B, = B. (9 

Two additional subscripts may be applied to any of the above classes. 
The additional subscript s means that all of the processes involved have 
a finite-dimensional state representation. The additional subscript m 
means that some of the processes involved have a nonzero mean. The 
absence of the subscript m implies that all processes are zero-mean. We 
see that the simple binary problem in Chapter 2 is the special case of 
class B,, in which nc(t) is not present. This class structure may seem 
cumbersome, but it enables us to organize our results in a clear manner. 

As in the simple binary problem, we want to find the optimum receiver 
and evaluate its performance. The reason the calculation of the likelihood 
ratio was easy in the simple binary case was that only white noise was 
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Aw 

B Hl:s(t) + n(t) 
Ho: n(t) 

H1:s(t)+n,(t)+w(t) B 
Ho:n,(t)+w(t) W 

White noise not 

necessarily present 
~ 

;=b White noise present 

Fig. 3.1 Classification of Gaussian detection problems. 

present on H,. Thus, we could choose our coordinate system based on the 
covariance function of the signal process on H1. As a result of this choice, 
we had statistically independent coefficients on both hypotheses. Now the 
received waveform may have a nonwhite component on both hypotheses. 
Therefore, except for the trivial case in which the nonwhite components 
have the same eigenfunctions on both hypotheses, the technique in Section 
2.1 will give correlated coefficients. There are several ways around this 
difficulty. An intuitively appealing method is the whitening approach, 
which we encountered originally in Chapter I-4 (page I-290). We shall use 
this approach in the text. 

In Section 3.2 we derive the likelihood ratio test and develop various 
receiver structures for the class A, problem. In Section 3.3 we study the 
performance for the class A, problem. In Section 3.4 we discuss four 
important special situations: the binary symmetric problem, the non-zero- 
mean problem, the bandpass problem, and the binary symmetric bandpass 
problem. In Section 3.5 we look at class GB problems and discuss the 
singularity problem briefly. We have deliberately postponed our discussion 
of the general case because almost all physical situations can be modeled 
by a class A, system. Finally, in Section 3.6, we summarize our results and 
discuss some related issues. 
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3.2 RECEIVER STRUCTURES 

In this section, we derive the likelihood ratio test for problems in class 
A, and develop several receiver configurations. Looking at Fig. 3.1, we 
see that class A, implies that the same white noise process is present on 
both hypotheses. Thus, 

r(t) = m + u’(t), Ti < t < Tf: HI, - - 
r(t) = 40 + J40, Ti < t < T,:H,. - - (10) 

In addition, we assume that both sl(t) and so(t) are zero-mean Gaussian 
processes with finite mean-square values. They are statistically independent 
of w(t) and have continuous covariance functions K,(t, z.& and K,(t, u), 
respectively. The spectral height of the Gaussian white noise is &/2. 
Therefore, the covariance functions of r(t) on the two hypotheses are 

ew(~) 1 &I a Kf& u) = &(t, u) + : s(t - u), (11) 

&(t)r(u) ( H,] a KJ& u) = K,(t, u) + T d(t - 24). (12) 

We now derive the likelihood ratio test by a whitening approach. 

3.2.1 Whitening Approach 

The basic idea of the derivation is straightforward. We whiten r(t) on 
one hypothesis and then operate on the whitened waveform using the 
techniques of Section 2.1. As long as the whitening filter is reversible, we 
know that the over-all system is optimum (see page I-289). (Notice that 
realizability is not an issue.) 

The whitening filter is shown in Fig. 3.2. We choose hwo(t, U) so that 
r,(t) is white on Ho and has a unity spectral height. Thus, 

E[r,(t)r*(u) 1 HoI = &t - 4, Ti < t, u < Tf. - - (13) 

On pages 1-290-I-297 we discussed construction of the whitening filter. 

1 

r(t) r* 0) 
* h,,(t,u) 

. c 

1 

Fig. 3.2 Whitening filter. 



60 3.2 Receiver Structures 

From that discussion we know that we can always find a filter such that 
(13) is satisfied. Because 

(13) implies that 

Tf 

ss 
h,,(t, cc)h,,(~, tw,,(~, P> da dB = w - a 

II li 

The covariance function of r,(l) on H1 is 

w 

0 
ii Kf(t, u). (16) 

Ti 

We now expand r,(t) using the eigenfunctions of KT(t, u), which are 
specified by the equation 

Proceeding as in Section 2.1, we find that 

(Remember that the whitened noise on Ho has unity spectral height.) 
AS before we define an inverse kernel, Q:(t, u), 

s TfQ:(t, u)K;(u, x) du = s(t - x), 
Ti 

Then we can write 
Tr 

1 Rs -9 
ss 

dt du c+(t)[Q:(t, u) - s(t - u)]r,(u). 
Ti 

(204 

It is straightforward to verify that the kernel in (2Oa) is always square- 
integrable (see Problem 3.2.11). Using (14), we can write this in terms 
of r(t,. 

1 R= -9 h,,(t, 4CQfk u) 

1 r(p) da d/3. (20b) 
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We want to examine the term in the braces. The term contributed by the 
impulse is just QH,(a, /Q, the inverse kernel of KH,(a, /3) [see (I-4.152)]. 
We now show that the remaining term is QH,(a, p). We must show that 

This result is intuitively obvious from the relationship between K&(a, Is) 

and K,*(t, U) expressed in (16). It can be verified by a few straightforward 
manipulations. [Multiply both sides of (16) by 

Integrate the left side with respect to u, /3, x2, and a, in that order. Inte- 
grate the right side with respect to t, zl, U, and x2, in that order. At each 
step simplify by using known relations.] The likelihood function in (19) 
can now be written as 

Tr 

1 R =- i 
u 

da dP rWr(B)[Q&, B) - QHo(a, ,%I- (22) 

Ti 

In a moment we shall see that the impulses in the inverse kernels cancel, 
so that kernel is a square-integrable function. This can also be written 
formally as a difference of two quadratic forms, 

The reader should note the similarity between (23) and the LRT for the 
finite-dimensional general Gaussian problem in (I-2.327). This similarity 
enables one to guess both the form of the test for nonzero means and the 
form of the bias terms. Several equivalent forms of (22) are also useful. 

3.2.2 Various Implementations of the Likelihood Ratio Test 

To obtain the first equivalent form, we write QH,(a, @) and QH,(or, 8) 

in terms of an impulse and a well-behaved function, 

QHi(a, rS) = s [S(a - B) - hi@, B)], 
0 

i = 0, 1, (24) 
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where hi(a, b) satisfies the equation 

No hi@, /?) + s Tf 
2 

hi(a, x)Ki(x, @) dx = Ki(a, B), 
Ti 

Using (24) in (22) gives 
T 5 a, @ < T,, i = 0, 1. (25) 

where 
1 1, = I,,- I,,9 ] (26) 

T/ 

1 
1 

Ri = - 
NO ss 

r(a)r(/3)hi(a, p) da dp, i = 0, 1. (27) 
Ti 

It is easy to verify (see Problem 3.2.1) that the bias term can be written as 

1 B= I I B,- B,, (28) 

where [by analogy with (2.73)] 

1 
s 

T/ 
1 Bi=-- 

No z’i 
&,i(t) dt, i = 0, 1. (29 

The complete LRT is 

l,, + l,, - l,, - l,, >< In q* (30) 
Ho 

We see that the receiver can be realized as two simple binary receivers in 
parallel, with their outputs subtracted. Thus, any of the four canonic 
realizations developed in Section 2.1 (Figs. 2.2-2.7) can be used in each 
path. A typical structure using Realization No. 1 is shown in Fig. 3.3. This 
parallel processing structure is frequently used in practice. 

A second equivalent form of (22) is also useful. We define a function 

Then, 

1 R 
= 

Q 
l 

r(t)h*(t, z+-(u) dt du. 

Ti 
(32) 

To eliminate the inverse kernels in (31), we multiply by the two covariance 
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Fig. 3.3 Parallel processing realization of general binary receiver (class A,). 

functions and integrate. The result is an integral equation specifying 
h,(t, u). 

This form of the receiver is of interest because the white noise level does 
not appear e,uplici~ly. Later we shall see that (32) and (33) specify the 
receiver for class GB problems. The receiver is shown in Fig. 3.4. 

Two other forms of the receiver are useful for class B, problems. In 
this case, the received waveform contains the same noise process on both 
hypotheses and an additional signal process on H1. Thus, 

r(t) = w) + %(O + w(t), Ti < t < T/HI, - - 
r(t) = n,(t) + w, Ti < t < Tf:Ho, (34) 

- B 

where s(t), nc(t), and w(t) are zero-mean, statistically independent Gaussian 
random processes with covariance functions K,(t, u), K,(t, u), and 

(N,/2)6(t - u), respectively. On Ho, 

h&9 4 
No = K&t, u) + - qt - u) A K,(t, u), 
2 

Ti < t, U < Tf. - - 
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t 
,- h& u) . 

Fig. 3.4 Receiver for class A, problem. 

For this particular case the first form is an alternative realization that 
corresponds to the estimator-correlator of Fig. 2.3. We define a new 
function h,(t, x) by the relation 

Using (36) and the definition of h,(t, u) in (33), we have 

J h,(C x)[K,(x, 21) + K&G u)] dx = &(t, u), Ti 5 x, x < Tf. 
Ti 

(37) 

This equation is familiar from Chapter 1-6 as the equation specifying the 
optimum linear filter for estimating s(t) from an observation r(t) assuming 
that HI is true. Thus, 

s 0 j(t) = h,( t, u,r(u) drr . 
Ti 

(38) 

We now implicitly define a function r,(t), 

s Tr 
r(t) = K&)(4 J+-g(x) dx, Ti < t < Tf* - - (3% 

Ti 

Equivalently, r,(t) = s ‘b,,(t. :G)T(x) dbc, T < t < T,.. - _ (40) 
Ti 

This type of function is familiar from Chapter I-5 (I-5.32). Then, from 
(36) and (40), we have 

s Tt 1 1: = 4 s”(t)-,,(t) dt. 
Ti ’ 

(41) 

The resulting receiver structure is shown in Fig. 3.5. We see that this has 
the same structure as the optimum receiver for known signals in colored 
noise (Fig. 1-4.38~) except that a MMSE estimate s^(t) has replaced the 
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Fig. 3.5 Estimator-correlator realization for class B, problems. 

known signal in the correlation operation. This configuration is analogous 
to the estimator-correlator in Fig. 2.3. 

The second receiver form of interest for class B, is the filter-squarer 
realization. For this class a functional square root exists, 

h,(t, u) = s Tf M h, Mil (2, t)h, (x9 u) dz, Ti < t, u < Tf. - - (42) 
Ti 

The existence can be shown by verifying that one solution to (42) is 

hF4’(t, u) = s Tf 
h*‘“;‘(t, z)h,,,& u) dz, 

Ti ’ 
ri < t, u < Tf, _ - (43) 

since both functions in the integrand exist (see Problem 3.2.10). This 
filter-squarer realization is shown in Fig. 3.6. For class A, problems a 
functional square root of h,(t, U) may not exist, and so a filter-squarer 
realization is not always possible (see Problem 3.2.10). 

3.2.3 Summary : Receiver Structures 

In this section we have derived the likelihood ratio test for the class A, 
problem. The LRT was given in (23). We then looked at various receiver 
configurations. The parallel processing configuration is the one most 
commonly used. All of the canonical receiver configuration developed for 
the simple binary problem can be used in each path. For class B, problems, 
the filter-squarer realization shown in Fig. 3.6 is frequently used. 

The next problem of interest is the performance of the optimum receiver 

r(t) . 
* hf2](t, u) b Squarer dt \ C 

. HO 

Fig. 3.6 Filter-squarer realization for class BZL, problems. 
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3.3 PERFORMANCE 

All of our performance discussion in Section 2.2 is valid for class A, 
problems with the exception of the closed-form expressions for p(s). In 
this section we derive an expression for p(s). Just as in the derivation of 
the optimum receiver, there is a problem due to the nonwhite process 
that is present on both hypotheses. As before, one way to avoid this is to 
prewhiten the received signal on Ho. It is possible to carry out this deriva- 
tion, but it is too tedious to have much pedagogical appeal. Of the various 
alternatives available at this point the sampling approach seems to be the 
simplest. In Section 3.5, we study the performance question again. The 
derivation of p(s) at that point is much neater. 

In the problems on pages I-231-233 of Chapter I-3, we discussed how 
many of the continuous waveform results could be derived easily using a 
sampling approach. The received waveforms on the two hypotheses are 
given by (5). We sample r(t) every T/N seconds. This gives us an N- 
dimensional vector T whose mean and covariance matrix are sampled 
versions of the mean-value function and covariance function of the 
process. We can then use the p(s) expression derived in Section I-2.7. 
Finally, we let N -+ co to get the desired result. For algebraic simplicity, 
we go through the details for the zero-mean case. 

Denote the sample at ti as ri. The covariances between the samples are 

E[rirj 1 HJ =KHa(ti,tj)=Kaij, , i,j= l,..., N,x=O,l. (44) 

The set of samples is denoted by the vector r. The covariance matrix of r is 

E[rPIHJ= K,, o!=O,l. (45) 

The matrices in (45) are N x N covariance matrices. The elements of the 
matrices on the two hypotheses are 

Notice that 

and 

K 
No 

1,ij = Ks, ij + - dij, 8 2 
(46) 

K K No 
0,ij = ’ * + - djj* SO,23 2 

(47) 

K s,,ii = K,l(ti9 tj) (48) 
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We can write (46) and (47) in matrix notation as 

N 
K, ii K,, + o I. 

2 
(51) 

We can now use the p(s) expression derived in Chapter I-2. From the 
solution to Problem I-2.7.3, 

l%ds) = -4 In (lw- IWs II(,s + w - s)l), o<s< 1. (52) 

Notice that 1.1 denotes the determinant of a matrix. Substituting (50) and 
(51) into (52), we have 

pN(s) = -i In 
(i 

~I+K,,/I~~~I+K,,/^ 

x I(?I+K,,)s+ (:I+K+ -s)i)e (53) 

The matrices in (53) cannot be singular, and so all of the indicated opera- 
tions are valid. Collecting N,/2 frf 
as a sum of logarithms, we have 

PA@> = ;((I -~)ln/I+$~ 

- 

m the various terms and rewriting (53) 

+slnlI+$&-~ 
n 1 + + (SK,,, + (1 - s)K,,) i). (54) 

0 

Now each term is the logarithm of the determinant of a matrix and can be 
rewritten as the sum of the logarithms of the eigenvalues of the matrix by 
using the Cayley-Hamilton theorem. For example, 

(55) 

where AsI i is the ith eigenvalue of Ksl. As Iv -+ 00, this function of the 
eigenvaluks of the matrix, KS , will approach the same function of the 
eigenvalues of the kernel, K$, u).? We denote the eigenvalues of K&, U) 
by $1. Thus, 

lim 5 In 1 + - 
:\r+ m i=l ( 

ry20Asl,i) =Aln (1 + $$;')- (56) 

t We have not proved that this statement is true. It is shown in various integral equation 
texts (e.g., Lovitt [l, Chapter III]). 



68 3.4 Four Special Situations 

The sum on the right side is familiar from (2.73) as 

Thus, the first term in ,u(s) can be expressed in terms of the realizable 
mean-square error for the problem of filtering sl(t) in the presence of 
additive white noise. A similar interpretation follows for the second term. 
To interpret the third term we define a new composite signal process, 

This is a fictitious process constructed by generating two sample functions 
s,(l) and s&) from statistically independent random processes with 
covariances K,((t, U) and &(t, u) and then forming a weighted sum. The 
resulting composite process has a covariance function 

Kxdt, 2.4: s) = SK&, u) + (1 - s)K,(t, u), T.. < t, 24 < Tf. - - (59) 

We denote the realizable mean-square filtering error in the presence of 
white noise as &(t 1 s,,,,(*), N,/2). The resulting expression for p(s) is 

We see that for the general binary problem, we can express p(s) in terms of 
three different realizable filtering errors. 

To evaluate the performance, we use the expression for ,u(s) in (60) 
in the Chernoff bounds in (2.127), or the approximate error expressions in 
(2.164), (2.166), (2.173), and (2.174). We shall look at some specific 
examples in Chapter 4. We now look at four special situations. 

3.4 FOUR SPECIAL SITUATIONS 

In this section, we discuss four special situations that arise in practice: 

1. The binary symmetric problem. 

2. The non-zero-mean problem. 

3. The stationary independent bandpass problem. 

4. The binary symmetric bandpass problem. 

We define each of these problems in detail in the appropriate subsection. 
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3.4.1 Binary Symmetric Case 

In this case the received waveforms on the two hypotheses are 

w = s1(t) + w, Ti < t < Tr: HI, - - 
r(t) = sow + dt), Ti < t < Tr: H,,. _ _ (61) 

We assume that the signal processes sl(t) and s,(t) have identical eigen- 
values and that their eigenfunctions are essentially disjoint. For stationary 
processes, this has the simple interpretation illustrated by the spectra in 
Fig. 3.7. The two processes have spectra that are essentially disjoint in 
frequency and are identical except for a frequency shift. The additive 
noise w(t) is white with spectral height N,/2. This class of problems is 
encountered frequently in binary communications over a fading channel 
and is just the waveform version of Case 2 on page I-l 14. We shall discuss 
the physical channel in more detail in Chapter 11 and see how this mathe- 
matical model arises. The receiver structure is just a special case of Fig. 
3.3. We can obtain ,LQ&) from (60) by the following observations (the 
subscript denotes binary symmetric) : 

1. The minimum mean-square filtering error only depends on the 
eigenvalues of the process. Therefore, 

fP(f I slchy = E,(t 1 so(*),:). 
I 

(62) 

2. If two processes have no eigenfunctions in common, then the mini- 
mum mean-square error in filtering their sum is the sum of the minimum 
mean-square errors for filtering the processes individually. Therefore, 

6P(t I scom(*)~ !fo) = tp(t 1 $s So(*), :) + Ep( t I Jrs so(.), :). 

S(w) 
m 

Fig. 3.7 Disjoint processes 
quencies are shown). 

is symmetric around o = 0; only 
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Using (62) and (63) in (64), we have 

+ &(t 1 so(*),?) - El+ ) “so(+)]. (64) 

This can be rewritten in two different forms. Looking at the expression for 

p(s) in (2.139) for the simple binary problem, we see that (64) can be 
written as 

where the subscript SIS denotes simple binary, and, from (2.139), 

(66) 
From (65), it is clear that ,u&) is symmetric about s = l/2. A second 
form of ,Q~(s) that is frequently convenient is 

The binary symmetric model is frequently encountered in communica- 
tion systems. In most cases the a-priori probabilities of the two hypotheses 
are equal, 

Pr wiol = Pr [HI] = ij, (68) 

and the criterion is minimum Pr (E), 

Pr (E) = p, + &p (6% 

Under these conditions the threshold, In ‘I, equals zero. All of our bounds 
and performance expressions require finding the value of s where 

In this case, we want the value of s where 

t This particular form was derived in [2]. 



From the symmetry it is clear that 

/h&> Is= I,2 = 0. 

Thus, the important quantity is ,~s(1/2). From (65), 
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From (66)) 

Using (I-2.473), we have a bound on Pr (E.), 

In order to get an approximate error expression, we proceed in exactly 
the same manner as in (2.164) and (2.173). The one-term approximation is 

1 Pr(E)‘V [erfc, (F)] exp (,+&) + y). 1 (76) 

When the argument of erfc.&) is greater than two, this can be approxi- 
mated as 

Pr (E) h) LL- [ 1 
‘A 

. . 
Tus & ( ) 

exp (rL1dN* (77) 

As before, the coefficient is frequently needed in order to get a good 
estimate of the Pr (E). On page 79 we shall revisit this problem and 
investigate the accuracy of (77) in more detail. 

Two other observations are appropriate : 

1. From our results in (2.72) and (2.74), we know that P&S) can be 
written in terms of Fredholm determinants. Using these equations, we 
have 

(7% 
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2. The negative of ,u(+) has been used as criterion for judging the quality 
of a test by a number of people. It was apparently first introduced by 
Hellinger [3] in 1909. It is frequently referred to as the Bhattacharyya 
distance [4]. (Another name used less frequently is the Kakutani distance 
[5].) It is essential to observe that the importance of ,u(+) arises from both 
the symmetry of the problem and the choice of the threshold. If either of 
these elements is changed, ,u(s) for some s + 4 will provide a better 
measure of performance. It is easy to demonstrate cases in which ordering 
tests by their ,u(+) value or designing signals to minimize ,u(Q) gives 
incorrect results because the model is asymmetric. 

The formulas derived in this section are essential in the analysis of 
binary symmetric communication systems. In Chapter 5 we shall derive 
corresponding results for Wary systems. The next topic of interest is the 
effect of nonzero means. 

3.4.2 Non-zero Means 

All of our discussion of the general binary problem up to this point has 
assumed that the processes were zero-mean on both hypotheses. In this 
section we consider a class A,, problem and show how nonzero means 
affect the optimum receiver structure and the system performance. The 
received waveforms on the two hypotheses are 

r(t) = m + w 9 Ti < t < T,:H,, _ _ 

where 

and 

The covariance functions of q(t) and so(t) are KJt, u) and &(t, u), 
respectively. The additive zero-mean white Gaussian noise is independent 
of the signal processes and has spectral height &/2. As in the simple 
binary problem, we want to obtain an expression for lD and ,u&). 
[Recall the definition of these quantities in (2.32) and (2.147).] Because of 
the similarity of both the derivation and the results to the simple binary 
case, we simply state the answers and leave the derivations as an exercise 
(see Problem 3.4.1). 

Modifying (23), we obtain 
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This can be written as 

I 1 

Tf 
1 n= WIg1W - go(u)1 du, 

Ti 
where 

and 
s Tr 

g1w ii mdOQrrl(f, u) dt, Ti < u < T' (85) 
Ti 

s 

Tf 
gow L. ~dt)Q ~t~~(t, 4 dt, Ti < tl < Tf . w-9 

Ti 

The functions gI(u) and go(u) can also be defined implicitly by the relations 

and 
s Tr m(t) = KEIl(4 aiu) du, Ti < t < Tf - - (87) 

Ti 

m,(t) = 
s 

T/ 
K,,(t, hM dk Ti < t < Tf. B - (88) 

Ti 

The resulting test is 
IT1 

hit + b r$ Yr, (89) 
0 

where ZR is given by (23) or (32) and y’ is the threshold that includes the 
bias terms. An alternative expression for the test derived in Problem 3.4.1 
1s Tf Tr 
2 * r(t)g(t) dt + - - s 1 Hl 

r 
2 

1: (0 - m,(t)]h&, u)[r(u) - m,(u)] dt dzl >< yrf, 
ff0 

Ti Ti 

(90) 

where g(t) satisfies the equation 

s 
Tf KHo(t9 u>gw du = W) - mow, q < t < 7-f - - (91) 

Ti 

and hA(t, u) satisfies (33). The advantage of the form in (90) is that it 
requires solving two integral equations rather than three. 

The derivation of ,u&) is a little more involved (see Problem 3.4.2). 
We define a function 

mA(t> = mdo - MO (92) 

and a composite signal process 

hn(t, s> = &o(t) + J1 - s @), (9% 
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whose covariance is denoted by Kcom(t, u). In (93), so(t) and sl(t) are 
assumed to be statistically independent processes. Thus, 

Kxnn(t9 4 = sK,(t, u) + (1 - s)K,(t, u). (94) 

This process was encountered previously in (58). Finally we define 
gacom(t 1 n’,/2) implicitly by the integral equation 

Tf 
m*(t) = 

SI1 
Gm.$, 4 + - 

Ti 

;oqt - rr)]ga,,,(u 1:) du. (95) 

Then we can show that 

s(l - s) s Tf 
PnW = - - 

2 Ti 
06) 

To get the p(s) for the entire problem, we add the p(s) from lE [denoted 
now by &s) and defined in (60)] and ,u&). 

PW = P&l + PnW* (97) 
The results in (84), (go), and (96) specify the non-zero-mean problem. 
Some typical examples are developed in the problems. 

3.4.3 Stationary “Carrier-symmetric” Bandpass Problems 

Many of the processes that we encounter in practice are bandpass 
processes centered around a carrier frequency. In Chapter 11, we shall 
explore this class of problem in detail. By introducing suitable notation 
we shall be able to study the general bandpass process efficiently. In this 
section we consider a special class of bandpass problems that can be 
related easily to the corresponding low-pass problem. We introduce this 
special class at this point because it occurs frequently in practice. Thus, it 
is a good vehicle for discussing some of the solution techniques in Chapter 
4. 

The received waveforms on the two hypotheses are 

r(t) = ~l(t> + J4), Ti < t < T,:H,, - - 
r(t) = sow + w(t)9 Ti < t < T,:H,. - - (98) 

The signal sl(t) is a segment of a sample function of a zero-mean stationary 
Gaussian process whose spectrum is narrow-band and symmetric about a 
carrier ml. The signal so(t) is a segment of a sample function of a zero-mean 
stationary Gaussian process whose spectrum is narrow-band and symmetric 
about a carrier mo. The two spectra are essentially disjoint, as illustrated 



Stationary “Carrier-symmetric” Bandpass Problems 75 
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Fig. 3.8 Disjoint bandpass spectra. 

in Fig. 3.8. This problem differs from that in Section 3.4.1 in that we do 
rtot require that the two processes have the same eigenvalues in the 
present problem. 

To develop the receiver structure, we multiply r(t) by the four carriers 
shown in Fig. 3.9 and pass the resulting outputs through ideal low-pass 
filters. These low-pass filters pass the frequency-shifted versions of sI(t) 
and so(t) without distortion. We now have four waveforms, Y&), r&), 
rcn(t), and r&t), to use as inputs for our likelihood ratio test. The four 
waveforms on the two hypotheses are 

Ti < t < Tf - - 

Ti < t < Tf 
HI9 

- - 

r,,(t) = IV, (t), 

s,:(r) + &,(t), 

Ti < t < - - Tf 

r,,w = .Ti < t < Tf 
Ho* 

- - 

r,,w = s,,(t) + %o(o, Ti < t < - - Tf 

(99) 

Because of the assumed symmetry of the spectra, all of the processes are 
statistically independent (e.g., Appendix A.3.1). The processes s, (t) and 
ssl(t) have identical spectra, which we denote by &Jo). It is just be low- 
pass component of the bandpass spectrum after it has been shifted to the 
origin. Similarly, s,,(t) and sso(t) have identical spectra, which we denote 
by &&I). In view of the statistical independence, we can write the LRT 
by inspection. By analogy with (30), the LRT is 

lRc, + IRS, + ~l~cl + lfiyl - lRco - lR,, - bc, - 1H,o >< In 7, jloo) 
Ho 



Fig. 3.9 Generation of low-pass waveforms. 
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Fig. 3.10 Optimum processing of low-pass waveforms. 



Error Probability for the Binary Symmetric Bana’pass Problem 77 

where the definitions of the various terms are parallel to (27) and (29). 
A filter-squarer version of the optimum receiver is shown in Fig. 3.10. 
(Notice that ZB = ZB .) In most cases, the filters before the squarer are 
low-pass, so thgt the Sbeal low-pass filters in Fig. 3.9 can be omitted. In 
Chapter 11, we develop a more efficient realization using bandpass filters 
and square-law envelope detectors. 

To evaluate the performance, we observe that the sine components 
provide exactly the same amount of information as the cosine components. 
Thus, we would expect that 

where the subscript BP denotes the actual bandpass problem and the 
subscript LP denotes a low-pass problem with inputs rc (t) and r&). 
Notice that the power (or energy) in the low-pass problem is one-half 
the power (or energy) in the bandpass problem. 

PBP 
p -9 LP = 

2 
(102) 

E *BP E - TLP = 
2 l 

(10~) 

It is straightforward to verify that (lOl)-(103) are correct (see Problem 
3.4.8). Notice that since the bandpass process generates two statistically 
independent low-pass processes, we can show that the eigenvalues of 
the bandpass process occur in pairs. 

The important conclusion is that, for this special class of bandpass 
problems, there is an equivalent low-pass problem that can be obtained by 
a simple scale change. Notice that three assumptions were made: 

1. The signal processes are stationary. 

2. The signal spectra on the two hypotheses are essentially disjoint. 

3. The signal spectra are symmetric about their respective carriers. 

Later we shall consider asymmetric spectra and nonstationary spectra. In 
those cases the transition will be more involved and it will be necessary to 
develop a more efficient notation. 

3.4.4 Error Probability for the Binary Symmetric Bandpass Problem 

In this section we consider the binary symmetric bandpass problem. 
The model for this problem satisfies the assumptions of both Sections 
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3.4.1 and 3.4.3. We shall derive tight upper and lower bounds for the 
pr WI- 

Because we have assumed equally likely hypotheses and a minimum 
total probability of error criterion, we have 

Pr [E] = Pr [E 1 KJ 

s 00 - - PI I m-j(L) dL 
0 

O” 1 - - 
s s 

a+im 

0 277j 
Ml,~Io(w)e-‘v~ dw dL for 0 < G < 1. (104) 

a-jc.0 

Notice that 1~ is a complex variable, $ 

W= a+jv. ( 10% 

Interchanging the order of integration and evaluating the results in the 
integral, we obtain 

Pr [E] = L 
s 

a-tic0 

2nj 
M,,,,(w) me-wL dL dw 

a-joo s 0 

1 ~--i- joo 1 -- - 
2Ti s 

- W,&)(w) dlv 
a-joo W 

1 a+ico ej.4(w) 
-- - 

c 
dw 

277j 
7 O<o_<l. uw 

ru-jm W 

For our specific problem, p(w) follows immediately from (57) and (67), 

,(,)=$Jln(l+$) -ln(l+~) -ln(l+2(1N,w)li)]o 

(107) 

Notice that we have used (101) to eliminate the one-half factor in ,u(s). As 
pointed out earlier, this is because the eigenvalues appear in pairs in the 
bandpass problem. From (107)) 

a3 
ep(w) = II 

(1 + (2Wo)) 
i=l (I + (2w&/&))(l + (2( 1 - w)nJrv,)) l 

(108) 

Thus, 
1 a-t ja3 

Pr [E] = - 
277-j s 

1 O” 
rI 

(1 + (&/J’V~)) dw 
fl--im ii i-l (1 + (2WA$Voj)(l + (2(1 - W)&/NJ) 

for 0 < 0 < 1. (109) 

7 Our discussion in this section follows [2]. The original results are due to Pierce [6]. 
$ All of our previous discussions assumed that the argument of IQ& was real. 
The necessary properties are also valid for complex arguments with the restriction 
OsRe[w]<l. 
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The result in (109) is due to Turin ([7], Eq. 27). Pierce [6] started with (109) 
and derived tight upper and lower bounds on Pr (E). Since his derivation 
is readily available, we omit it and merely state the result. (A simple 
derivation using our notation is given in [2].) We can show that 

erfc, - 
( 

The lower bound can be further relaxed to yield 

exP bw 

21 + JW) 
,< Pr [E] < exp bwl ---- 

- 2(1. + Ji*ww> ’ (110 

which is Pierce’s result. Notice that the upper and lower bounds differ at 
most by &. From (76), we see that our first-order approximation to Pr (E) 
is identical with the lower bound in (110). Thus, for the binary-symmetric 
bandpass case, our approximate error expression is always within a factor 
of 4; of the exact Pr (e). Notice that our result assumes that the spectra 
are symmetric about their carriers. The results in (110) and (111) are also 
valid for asymmetric spectra. We shall prove this in Chapter 11. 

We have not been able to extent Pierce’s derivation to the asymmetric 
case in order to obtain tight bounds on P, and P,. However several 
specific examples indicate that our approximate error expressions give 
accurate results. 

In this section we have examined four special models of the Gaussian 
problem. In the next section we return to the general problem and look 
at the effect of removing the white noise assumption. 

3.5 GENERAL BINARY CASE: WHITE NOISE NOT NECESSARILY 

PRESENT: SINGULAR TESTS 

In this section, we discuss the general binary problem briefly. The 
received waveforms on the two hypotheses are 

r(t) = m, Ti < t < T,:H,, - - 
WI = r*(t), Ti < t L; T,:H,. - (112) 

The processes are zero-mean Gaussian processes with covariance functions 
KH (t, U) and KH (t, u), respectively. We assume that both processes are 
(st&ly) positive-definite. 
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3.5.1 Receiver Derivation 

To solve the problem we first pass r(t> through a whitening filter to 
generate an output r*(t), which is white on Ho. Previously we have denoted 
the whitening filter by h,(t, x). In our present discussion we shall denote it 
by KH[-WJ(t, x). The reason for this notation will become obvious shortly. 

0 

r*(t) = 
s 

TfpAl 
Ho (4 +o) dz* (113) 

Ti 
The whitening requirement implies 

E[r*Wr*W 1 H”l = w - u) 
Tf 

- - 

ss 

K&,,“(t, z)KIIo(x, y)K:fo”;A1(u, y) dx dy. (114) 

Ti 
On HI, the covariance of r*(t) is 

E[r,(t)r,(u) 1 H,] = [/K;;;A1(t, Z)K& y)K;;;A1(u, y) dx dy /L K,*(t, u). 
JJ 

Ti 

We can now expand r,(t) using the eigenfunctions of K,*(,, u), 

Tf Ai*& = s K,*(t, 21,+i(U) dld, Ti 
The coefficients are 

Ti < t < T,-- _ - 
and the waveform is 

r*(t) = 1.i.m. 2 ri+i(t>, Ti < t < Tf* _ _ 
K-+co i=l 

The coefficients are zero-mean. Their covariances are 

and 
E[rirj 1 HI] = Ai*dij 

E [rirj ( Ho] = dij. 

Notice that we could also write (116) as 

K;-iA1(t, x)K,&, y)KI:;;“‘](u, y) dx dy 
I 

+&Q du, 

Ti 2 t 5 Tf. (121) 
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Now we define the function KH [*A]@, t> implicitly by the relation 
0 

K,o(4 u) = 
s 

Tp wil K,, (x, t)Kg<‘(z, u) dx. (122) 
Ti 

We see that Kg$(z,t) is just the functional square root of the co- 
variance function KHo(t, u). Observe that 

W u) = 
s 

Tr Ml - K,, (t, z)K;;;~‘(z, tl) dz. (123) 
Ti 

The result in (123) can be verified by writing each term in an orthogonal 
series expansion. Multiplying both sides of (121) by K~~osl(~, a), integrating, 
and using (123), we obtain 1 A” i s Tj k’,,(t, u> du Ti 
If we define 

JTi 1 . (124) 

(12% 
(124) becomes 

yiw A 
s 

TfK;-;A1(u, z)&) dx, 
Ti 

1 (126) 
Notice that we could also write the original waveform r(t) as 

7 

r(t) = 1.i.m. 5 ri K,o(4 +Piw du l 

I - - m  i=l 

(127) 

Thus we have available a decomposition that gives statistically independent 
coefficients on both hypotheses. The likelihood ratio test is 

. (128) 

If we let K -+ a, this reduces to 

1 
We now define a kernel, 
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that satisfies the integral equation 

s 

Tf 
h,(t, +K,*(x, u) dx = K;(t, u) - s(t - u), T s 4 u < Tp (131) 

Ti 
Then 

Tf 

lR = $ 

ss 

r,(t)h,(t, u)r*(u) dt du. 

Using (113), we have 
Ti 

(132) 

1, = i- jdx dy r(x)[/j&--#!A1(t, x)h,(t, tr)K;-;‘I@, y) dt d+(y). (133) 

Ti ’ Ti 
/ 

Defining 

we have 
Ti 

Starting with (134), it is straightforward to show that h,(x, 9) satisfies the 
equation Tr ss K,,(t, x)h&, YW,,(Y, 4 dx dy = K&t, u) - K&t, u), 

Ti 

As we would expect, the result in (136) is identical with that in (33). The 
next step is to evaluate the performance of the optimum receiver. 

3.5.2 Performance : General Binary Case 

To evaluate the performance in the general binary case, we use (2.126) 
to evaluate p(s). 

[S 

00 
Iu(s) 

K-,GCJ i=l 
’ exp(-$)exp(-(’ o;)R1)dRi]. 

--oo J2n (Ai*y2 
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Evaluating the integral, we have 

I ( p(s) = 5 In 
-* (l---s)/2 

(” ) 
i=l I (s + (1 - s)li*)% ’ 

where the Ai* are the eigenvalues of the kernel, 

W) 

In our discussion of performance for the case of a known signal in Gaussian 
noise, we saw that when there was no white noise present it was possible 
to make perfect decisions under some circumstances (see pages 1-303- 
1-306). We now consider the analogous issue for the general Gaussian 
problem. 

3.53 Singularity 

The purpose of our singularity discussion is to obtain a necessary and 
sufficient condition for the test to be nonsingular. The derivation is a 
sequence of lemmas. As before, we say that a test is singular if Pr (E) = 0. 
Notice that we do not assume equally likely hypotheses, and 

Pr (E) = P, Pr (E 1 HI) + P, Pr (E 1 Ho). (140) 

The steps in the development are the following: 

1. We show that the Pr (E) is greater than zero iff ,u(+) is finite. 

2. We then derive a necessary and suficient condition for ,u(i) to be 
finite. 

Finally we consider two simple examples of singular tests. 

Lemma 1. The Pr (E) can be bounded by 

${min [PHI, PH,])e2P(M) ,< Pr (E) < &?(‘/i) - 
Therefore the Pr(c) will equal zero if PO or P, or er(‘A) equals zero. If we 
assume that P, and P, are positive then Pr(E) will be greater than zero zf 
,u(+) is finite. In other words, a singular test will occur Z&U(+) diverges. 

The upper bound is familiar. The proof of the lower bound is straight- 
forward. 

a A epM = - 
s 

(142a) 
--co 

t This result is similar to that in [8]. 
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Now observe, from the Schwarz inequality, that for any set S, 

1 
‘A 5 prlH,(R 1 H,,J dR1 3 m = 0,~ U‘W 

We recall from page I-30 that the probability of error using the optimum test is 

Pr(E) = PI 
J 

prl~q(R 1 HI) dR + PO 

J 

p+&)w 1 4)) dR 

20 21 

s 

prlrlo(R 1 Ho) dR (143a) 
21 

Using the result in (142b) on each integral in (143a) gives 

2 

Pr(E) 2 min [PI, PO] ((s 
[prlHI(R 1 H,)PrlHo(R I 4w Lo2 

20 ) 

(s 

2 + [Pr(H,(R I H,)pr(H,(R I 4ds dR 

21 11 

= min [PI, PO] 
NS 

2 [Pr&(R I H,)prlH&R I %W dR 

20 1 

2 + 

( s 

a- [P&R 1 N,)pr,ri,(R 1 H,)lG dR 
20 )I 

= min [PI, P&c2 + (a - d2>, (143b) 

A X- 

s 

[prlri,(R 1 H,)prlrr,(R I &I)]~ dR, 
20 

(143c) 

and x will lie somewhere in 
The term in the brackets 

the range [0, a] 
in (143b) could 

. 
be minimized by setting 

a 
x=- 

2 
(143d) 

and the minimum value is 

a2 1 e2P(M) -= 
2 2 

(143e) 

Thus, 
1 

Pr (E) 2 min IPI, PO] l j e2p(‘h) (144) 

which is the desired result. We should emphasize tha .t the lower bound in (141) is used 
for the purpose of our singularity discussion and so it does not need to be a tight bound. 
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Lemma 2. From (138), 

I4 ) 
1” *=- n 

a L 

41: 

1 + Ai*,, 1 l 4. ?=l 
(149 

In order for p(i) to be finite, all ;1T must be greater than zero. If this is 
true, then, in order for ,u(&) to be finite, it is necessary and sufficient that 

2 (1 - q,, < 00. (146) 
i=l 

Proof (from [9]). The convergence properties of the following sums can be demon- 
strated. 

00 

2C 

4A,” 
In - <m (147) 

i=l (1 + A.“)2 a 1 
iff 

4Ai” co 

’ - (1 + Ai*) 1 
c 

(1 - Ai”)2 

=iC1(l + Ai*) < 00 
(148) 

iff 

3 (1 - Ai*) < 00. (149) 
i=l 

These equivalences can be verified easily. 

Lemma 3. Define 

and a kernel, 

Tf y(t, u) fi. ss &;"'(t, x)K~~(x, z)K&;'~(u, 2) dx da - a(t - u), 
Ti 

Ti < t, u < T’. - - (151) 

The Lf * are the eigenvalues of Y( t, u). Notice that Y(t , U) is not neces- 
arily positive-definite (i.e., some of the A’* may be negative). 

Lemma 4. The value of p(g) will be finite ifI’: 

(i) All AT* > -1, 
00 

(ii) The sum 2 (At*)” is finite. 
i=l 

Assuming the first condition is satisfied, then, in order for 

2 (A,*)’ < m 
i=l 

(152) 
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it is necessary and sufficient that Tf 
ss Y “(t, Lf) Lit drr < cc. (153) 

Ti 

The equation (151) can also be written as 

This equation must have a square-integrable solution. 

Summarizing, a necessary and sufficient condition for a nonsingular 
test is that the function Y(t, u) defined by (151) or (154) be square- 
integrable and not have - 1 as an eigenvalue. 

Several observations are useful. 

1. The result in (150)-i 154) has a simple physical interpretation. The 
covariance function of the whitened waveform v*(t) on HI must consist of 
an impulse with unit area and a positive-definite square-integrable com- 
ponent. 

2. The problem is symmetric, so that the entire discussion is valid with 
the subscripts 0 and 1 interchanged. Thus we can check the conditions 
given in (151) and (153) for whichever case is the simplest. Notice that it 
is not necessary to check both. 

3. The function p(s) can be written in terms of the eigenvalues of Y(t, u). 
Using (138) and (150), 

iw 

where the Af* are the eigenvalues of Y(t, u), which may be either positive 
or negative. Notice that in order for ,u(s) to be finite, it is sufficient, but 
not necessary, for the logarithm of the numerator and denominator of 
(155) to converge individually (see Problem 3.5.11). 

We now consider two simple examples of singular tests. 

Example 1. Let 

and 
&,(t, u) = orK(t, u). 

(156) 

(157) 
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Then 
Tf 

* ss 
KAvsJ(t, x)KHl(x, y)K&sl(u, y) dx dy = a&t - u) 0 (158) 

Ti 
and 

Y(t, II) = (a - l)s(t - u), (15% 

which is not square-integrable unless a = 1. 
Thus, when the covariance functions on the two hypotheses are identical except for 

an amplitude factor, the test is singular. 

Example 2. Let 

and 
Ka,(t, 4 = Poexp (-a It - 241) (160) 

Ka,(t, 4 = Pl exp C-B It - ul>. (1W 

For this particular 
From page I-312, 

example, the simplest procedure is to construct the whitening filter 

or 

r,(t) = 1 [i(t) + w(t)], 
42aP, 

(162) 

1 _ ..r.i _ T, \ 1 .- --\ 
t = - [#lJ(t - u) + ad(t - u).J WWI 

on H, is The covariance function of r*(t) 

+a 
WIll (t,u) WizJt, 4 
-+a- 

at au 
(164; 

Only the first term contains an impulse, 

a2Ki&, u> 
at au 

= 2/?P, 6(t - z.4) - /32P,exp (-/S It - 241). 

In order for the test to be nonsingular, we require 

BP l 1 -= 
aPo ’ 

wm 

(166) 

Otherwise (153) cannot be satisfied. 

Example 2 suggests a simple test for singularity that can be used when 
the random processes on the two hypotheses are stationary with rational 
spectra. In this case, a necessary and sufficient condition for a nonsingular 
test is 

(see Problem 3.5.12). 

7 The symbol &l](7) denotes a doublet at 7 = 0. 

I (167 > 
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Several other examples of singular tests are discussed in the problems. 
For a rigorous and more detailed discussion, the interested reader should 
consult Root [9], Feldman [lo]-[II], Hajek [12] or Shepp [15]. As we 
commented in our discussion of the class A, problem, we can guarantee 
that the test is nonsingular by including the same white noise component 
on both hypotheses. Since the inclusion of the white noise component 
usually can be justified on physical grounds, we can avoid the singularity 
problem in this manner. We now summarize our results for the general 
binary detection problem. 

3.6 SUMMARY: GENERAL BINARY PROBLEM 

In this chapter we have discussed the general binary problem. In our 
initial discussion we considered class A, problems. In this class, the same 
white noise process was present on both hypotheses. The likelihood 
ratio test can be implemented as a parallel processing receiver that 
computes lR and lB , i i 

Tf 

1 - $ Ri - 
ss 

r(~r)h&, &o) dot d/%, 
0 

Ti 
where h (a, p> is defined by (25), and i 

i = 0, 1, (168) 

(169) 

where &(t 1 N,/2) 
performs the test 

is a MMSE defined on page 22. The receiver then 

HI 

The processing indicated in (168) can be implemented using the one of the 
canonical realizations developed in Section 2.1. The performance was 
calculated by computing ,u(s) defined in (60). 

where the individual terms are defined on page 68. 
For the general binary case, the test is 

(172) 
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1 R= & dx dy r(z)h&, y)r(y) 

and 

The kernel h,(x, y) satisfies the equation 

ss K,,(t, +-dx, ?l)K,,(y, u) dx dy = KHl(t, u) - KHo(t, u), 
Ti 

The 1: are the eigenvalues of the 

(173) 

Ti < t, u < Tf. (175) 

K;(t, uj = K&;“‘(t, x)&--,(x, x)K;;;~‘(u, x) dx dx. (176) 

Ti 

When we remove the white noise assumption, we have to be careful that 
our model does not lead to a singular test. We demonstrated that a 
necessary and sufficient condition for a nonsingular test is that 

Y(t, 2.4) a qt, u) - d(t - u), Ti < t, u < Tr _ - (177) 

be a square-integrable function which does not have - 1 as an eigenvalue. 
The performance could be evaluated by computing p(s) : 

p(s) = 5 In 
(1 + Ri**)(l-S)i2 

i-l i 1 (1 + (1 - s)A”*)‘m ’ 
iw 

where the A:* are the eigenvalues of Y(t, u). 
In addition to our general discussion, we considered several special 

situations. The first was the binary symmetric problem. The most import- 
ant result was the relationship of pBs(s) to (u,,(s) for the simple binary 
problem of Section 3.4, 

We also observed that when In q = 0, ,u~&) was the appropriate quantity 
for the Pr (E) bounds. 

The second 
new terms, 

situation was the non-zero-mean case. This resulted in two 

s 

Tf 
1 D= wkl(u) - s&01 du9 Ti 
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in the LRT. The functions g&4) were specified by 

?q(t) = &&9 u)giw du, Ti<t<Tf, i=O,l. - (181) 

In the performance calculation we added a term ,u&), which was specified 
by cw- 

We then observed that for bandpass processes whose spectra are 
symmetric about the carrier there is a simple relationship between the 
actual bandpass problem and an equivalent low-pass problem. Finally, 
for the binary symmetric bandpass problem, a tight bound on the Pr (E) 
was derived. 

(182) 

This bound was useful for this particular problem. In addition, it provided 
a good estimate of the accuracy of our approximate expression. There are 
large numbers of problems in which we can evaluate the approximate 
expression but have not been able to find tight bounds. 

Throughout our discussion in Chapters 2 and 3, we have encountered 
linear filters, estimates of random processes, and mean-square error 
expressions that we had to find in order to specify the optimum receiver 
and its performance completely. In many cases we used processes with 
finite state representations as examples, because the procedure for finding 
the necessary quantities was easy to demonstrate. In the next chapter we 
consider three other categories of problems for which we can obtain a 
complete solution. 

3.7 PROBLEMS 

P.3.2 Receiver Structures 

Problem 3.2.1. 

1. Verify the result in (21) by following the suggested approach. 
2. Verify that the bias term can be written as in (28). 

Comment: In many of the problems we refer to a particular class of problems. These 
classes were defined in Fig. 3.1. 

Problem 3.2.2. Consider the class A, problem in which both so(t) and s#) are Wiener 
processes, 

E[so2(t)] = Q2f, o<t 
and 

E[s12(t)] = u12t, 0 < t. 
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Find the optimum receiver. Use a parallel processing configuration 
simplify the result. Describe the filters using state equations. 

in i tially and then 

Problem 3.2.3. Consider the class A, problem in which 

K,,k u> = aK&, u). (P.1) 
1. Use the condition in (P.l) to simplify the optimum receiver. 
2. Derive the optimum receiver directly for the case in (P.l). (Do not use the results of 

Chapter 3. You may use the results of Chapter 2.) 

Problem 3.2.4. Consider the class A, problem in which so(t ) is a Wiener process and 
sl(t) is a samp 1 .e function from a stationary Gaussian random process whose spectrum is 

2kP 
s&d = - m2 + k2’ 

Find the optimum receiver. 

Problem 3.2.5. Consider the class B, problem in which both s(t) and Qt) have finite- 
dimensional state representations. Derive a state-variable realization for the optimum 
receiver. The receiver should contain &(t), the MMSE realizable estimate, as one of the 
internal waveforms. (Notice that the parallel processing receiver in Fig. 3.3 will satisfy 
this requirement if we use Canonical Realization No. 4s in each path. The desired 
receiver is analogous to that in Fig. 3.5.) 

Problem 3.2.6 (continuation). Consider the special case of Problem 3.2.5 in which nc(t) 
is a Wiener process and s(t) is a stationary process whose spectrum is 

s&4 
2kP 

=- 
co2 + k2’ 

Specify the optimum receiver in Problem 3.2.5 completely. 

Problem 3.2.7. In the vector version of the class A, problem, the received waveforms are 

r(t) = s#) + w(t), Ti 5 t 5 Tr:Hl, 

r(t) = so(t) + w(t), Ti 5 t 5 T,:H,,. 

The signal processes are sample functions from N-dimensional, zero-mean, vector 
Gaussian random processes with covariance function matrices K,,(t, u) and KS&t, u). 
The additive noise process w(t) is a sample function from a statistically independent, 
zero-mean, vector Gaussian random process whose covariance function matrix is 
(&/2)&t - u)I. 

1. Find the optimum receiver. 
2. Derive the vector versions of (32) and (33). 
3. Consider the special case in which 

and 
Ks,(t, u> = K,,(t, UP 

b&t, 4 = I&&t, u)I. 

Simplify the optimum receiver. 
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Problem 3.2.8. Consider the model in Problem 3.2.7. Assume 

E[w(t)wT(u)] = N6(t - u), 

where N is a nonsingular matrix. Repeat Problem 3.2.7. 

Problem 3.2.9 (continuation). Consider 
Derive the vector analog to (41). 

vector version of the class B, problem. 

Problem 3.2.10. 

1. Prove the result in (43). 

2. Consider the functional square root defined in (42). Give an example of a class A, 
problem in which h, [‘Al(t, u) does not exist. 

Problem 3.2.11. Consider the development in (16)-(23). The output of the whitening filter 
is a waveform r,(t), whose covariance function on H, is K,*(t, u). Suppose that we write 

K,*(t, u) = d(t - 4 + Y(t, u). 

1. Show that Y(t, u) is not necessarily non-negative-definite. 

2. Prove that Y(t, u) is a square-integrable function. [Hint: Write j$$KF(t, u) 
dt du as a 6-fold integral using (16). Simplify the result by using the fact that the same 
white noise is present on both hypotheses.] 

P.3.3 Performance 

Problem 3.3.1. Derive the result in (60) by using a whitening approach. 

Problem 3.3.2. Consider the composite process defined in (58). Assume that both 
s,(t) and so(t) have finite-dimensional state representations. Write the state equations 
for scorn(t). What is the dimension of the resulting system? 

Problem 3.3.3 (continuation). Specialize your results in Problem 3.3.2 to the case in which 

qt, 4 = c%K()(t, u). 

Problem 3.3.4. Consider the class A, problem in which both so(t) and sl(t) are Wiener 
processes, where 

E[so2(t)] = u02t, tyo 
and 

E[s12(t)] = o12t, t 2 0. 
Evaluate p(s). 

Problem 3.3.5. Define 
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Assume that so(t) and s#) have finite-dimensional state representations. 
1. Write a differential equation for ~(s, t). 

2. Define the Bhattacharyya distance as 

NT.) = -P@, T,). 

Write a differential equation for B(t). 

P.3.4 Special Situations 

NON-ZERO MEANS 

Problem 3.4.1. In the class A w,lt problem, the received waveforms on the two hypotheses 
are 

r(t) = s&O + w(t), Ti 5 t 5 T+H, 
and 

r(f) = s,(t) + w(t), T.. 5 t I; T,: H,,, 
where 

Mel = m#) 
and 

Eb,Wl = m,(t). 
1. Derive (83)-(86). 
2. Assume that a Bayes test with threshold q is desired. Evaluate the threshold y’ in 

(89) 
3.’ Derive (90). 
4. Find the threshold y” in (90) in terms of 7. 
5. Check your results in parts l-4 for the case in which 

KH,(t, u> = K&$9 4. 
Problem 3.4.2. Consider the model in Problem 3.4.1. Derive the expression for pg(s) 
in (96). 

Problem 3.4.3. Consider the class A wm problem in which sI(t) and so(t) have finite 
dimensional representations. 

1. Derive a state-variable realization for IO. 

2. Derive a state equation for PO(S). 

Problem 3.4.4. Consider the class A,, problem in which 

m,(t) = +m, Ti I t < T,, 
m,(t) = -m, Ti I t I T,, 

E[w(t)w(u)] = $6(t - u). 
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1. Find the optimum receiver for this problem. 

2. Find pD(s) and ,u&. 

Problem 3.4.5. Consider the modification of Problem 3.4.4 in which 

where 

2uPo 
~K&)l = G2 

BP 1 -= 1. 
up, 

1. Evaluate pD(s) and ,u&) for the case in which No = 0. 

2. Find the optimum receiver for this case. 

Problem 3.4.6. Consider the class A problem in which 
from stationary random processes whose spectra are 

so(t) and sl(t) are sample functions 

(P.0 

and 

where S&J) and S,(o) are rational functions of cr). 
1. Find the optimum receiver. 
2. Find p(s). 
3. How does the model in (P.l) differ from the case in which 

E[s,(t)l = ml(t) = 1/z /3 cos (cog)? 

BANDPASS PROBLEMS 

Problem 3.4.7. Consider the model described in (98). 
1. Verify that a necessary and sufficient condition for r,,(t) and r,,(t) to be statistically 

independent is that S,(u) be symmetric around the carrier. 
2. Verify the result in (102) and (103). 

Problem 3.4.8. Consider the mode1 in (99). This is a four-dimensional vector problem 
that is a special case of the mode1 in Problem 3.2.8. 

1. Use the results of Problem 3.2.8 to verify that (100) is correct. Write out the terms 
on the left side of (100). 

2. Verify that (101) is correct. 

Problem 3.4.9. Whenever the spectra are not symmetric around the carrier, the low-pass 
processes are not statistically independent. The most efficient way to study this problem 
is to introduce a complex signal. We use this technique extensively, starting in Chapter 9. 

In this problem we carry out the analysis using vector techniques. Perhaps the prime 
benefit of doing the problem will be an appreciation for the value of the complex 
representation when we reach Chapter 9. 

1. Consider the model in (98). Initially, we assume 



so that we have the simple binary problem. Evaluate the cross-correlation function 
between s&) and s&). Evaluate the corresponding cross-spectrum. Notice that we 
do not assume that ,!&,(o) is symmetric about col. Check your answer with (A.67) and 
(A.70). 

2. Use the results of Problem 3.2.8 to find the optimum receiver. 

3. Derive an expression for p(s). 
4. Generalize your results to include the original model in (98). Allow so(t) to have 

an asymmetric spectrum about cog. 

Problem 3.4.10. 
1. Read [6] and verify that (110) is correct. 
2. Discuss the difficulties that arise 

the threshold changes). 
when the criterion is not minimum Pr (E) (i.e., 

P.3.5 Singularity 

Problem 3.5.1. Draw a block diagram of the receiver operations needed to generate the 
ri in (117). 

Problem 3.5.2. Consider the integral equation in (126). Assume 

&&,(t, u) = a2 min [t, u] 
and 

&(t, u) = PeeaitwU’ 

Find the eigenfunctions and eigenvalues of (126). 

Problem 3.5.3. Consider the integral equation in (126). 

KH,(t, u) = ;-B’t-u’ 
and 

KHl(t, u) = e-a’t-u’. 

Find the eigenfunctions and eigenvalues of (126). 

Problem 3.5.4. Assume that 

Assume 

&& u) 
N 

= K,(t, u) + $d(t - u) (P.1) 

and 

K&k u> 
NO = K,(t, u) + 2 6(t - u). (P.2) 

How does this assumption affect the eigenvalues and eigenfunctions of (126)? 

Problem 3.5.5. Assume that ro(t) and rl(t) in (112) have finite-dimensional state repre- 
sentations. Extend the technique in the Appendix to Part II to find the solution to 
(126). 

Problem 3.5.6. Assume that KH,(t, u) and KHl(t, u) are both separable: 
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and 

where 

1. Assume 
s Tf 

s 

Tf 

fiW$p) dt = gi(t)gj(t) dt = 6,. 
Ti Ti 

f 

Tf 

fi(t)gj(t) dt = 0, all i, j. (P.1) 
Ti 

Solve (126). 
2. Assume that fi(t) and g,(t) do not necessarily satisfy (P.l) for all i and j. Solve 

(126). How many eigenvalues does (126) have ? 

Problem 3.57. Assume 

and 

Solve (126). 

&&,(t, u) = 
1 

1 -It-l& It-241 < 1, 

0, elsewhere, 

q&9 4 = O2 min [t, u]. 

Problem 3.5.8. Consider the definition of I&(x, y) in (134). Verify that (136) is valid. 

Problem 3.5.9. Verify the equivalences in (147)-( 149). 

Problem 3.5.10. 

1. Can a class A problem be singular? Prove your answer. 

2. Can a class B problem be singular? Prove your answer. 

Problem 3.5.11. Give an example of a case in which the logarithm of neither the numera- 
tor nor the denominator of (155) converges but the sum in (155) does. 

Problem 3.5.12. Verify the result in (167). Is the result also true for nonrational spectra? 

Problem 3.5.13. Assume that 
1 

Assume that I-#) has a finite-dimensional state representation and that the detection 
problem is nonsingular. 

1. Find a state-variable realization of the optimum receiver. 
2. Find a differential equation specifying ,u(s). 

Problem 3.5.14 (continuation). Assume that 

and that rl(t) is a segment of a stationary process with a finite-dimensional state rep- 
resentation. Assume that the detection problem is nonsingular, 

1. Draw a block diagram of the optimum receiver. Specify all components completely. 
2. Evaluate /J(S). 
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Problem 3.5.15. 
1. Generalize the result in Problem 3.514 to the case in which 

2nP sin (r/2n), 
sf&,(“) = - 

k 1 + (cu/k)2n n 
=1,2,.... 

2. How must &(w) behave as m approaches infinity in order for the test to be 
nonsingular ? 

Problem 3.5.16. Assume that both r,Jt) and ro(t) are sample functions from stationary 
processes with flat bandlimited spectra. Under what conditions will the test be non- 
singular ? 

Problem 3.5.17. In Section I-4.3.7 we discussed the sensitivity problem for the known 
signal case. Read [13, page 4201 and discuss the sensitivity problem for the general 
binary case. 

Problem 3.5.18. Extend the discussion in Section 3.5 to the general vector case. Specifi- 
cally, find the vector versions of (126), (135), (136), (138), (139), (151), (154), and 
(167). 

Problem 3.5.19 [ 141. Consider the integral equation in (126). Assume 

It - 111 
+&t, u) = 1 - - 

2T ’ 
-T < t,u 5 T 

and 
&,(t, 4 = e-lt-t(I/Te 

Let Ti = -Tand Tf = + T. Find the eigenvalues and eigenfunctions of (126). 
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