
Special Categories of Detection 
Problems 

In Chapters 2 and 3, we studied the simple binary detection problem and 
the general binary detection problem. Most of our examples dealt with 
state-representable processes, because we could obtain a complete solution 
for this class of problem. In this chapter, we discuss three categories of 
problems for which we can also obtain a complete solution. The three 
categories are the following : 

1. The stationary-processes, long-observation-time (SPLOT) problem. 
2. The separable-kernel (SK) problem. 
3. The low-energy-coherence (LEC) problem. 

We shall explain the categories in detail in the appropriate sections. 
The discussion is important for two reasons. First, almost all physical 
situations fall into one of these four categories (the above three categories 
plus finite-state processes). Second, we can obtain a complete solution 
for problems in these categories. 

4.1 STATIONARY PROCESSES: LONG OBSERVATION TIME 

In many physical situations of interest, the received waveforms under 
both hypotheses are segments of stationary processes. Thus, we can 
characterize the processes by their power density spectra. If the spectra 
are rational, they will have a finite-dimensional state representation and 
we can solve the problem using state-variable techniques. In our previous 
work with state variables we saw that when the input was a stationary 
process the gains in the optimum system approached constant values and 
the system approached a time-invariant system. In this section, we consider 
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cases in which the observation time is lotzg compared with the time neces- 
sary for the system transients to decay. By ignoring the transient, we can 

Stationary Processes: Long Observation Time 

obtain much simpler solutions. If desired, we can always check the validity 
of the approximation by solving the problem with state-variable techniques. 
We refer to the results obtained by ignoring the transients as asymptotic 
results and add a subscript 00 to the various expressions. As in the general 
case, we are interested in optimum receiver structures and their per- 
formance. We begin our discussion with the simple binary problem. 

4.1.1 Simple Binary Problem 

The model for the simple binary problem was given in Section 2.1. 
For algebraic simplicity we discuss only the zero-mean case in the text. 
The received waveforms are 

(1) 

We assume that s(t) is a zero-mean Gaussian process with spectrum S,(m). 
The noise w(t) is a white, zero-mean Gaussian process that is statistically 
independent of s(t) and has a spectral height N,/2. The LRT is 

We first examine various receiver realizations for computing I,. Next 
we derive a formula for ZB. Finally, we compute the performance. 

If we use Canonical Realization No. 1 (pages 1516), 

Tf 

1 
1 

R 
=N, ss 

r(t)h,(t, u)r(u) dt h-4, 

Ti 

(3) 

where h,(t, u) is a solution to (4), 

5 h,(t, u) + Tr 
2 s h,( t, x)K,(x - u) dx = K,(t - Zl), T < t, u < Tf. - - 

Ti 
(4) 

From our work in Chapter I-4 (page I-321), we know that the total 
solution is made up of a particular solution that does not depend on the 
limits and a weighted sum of bounded homogeneous solutions that give 
the correct endpoint conditions. These homogeneous solutions decay 
as we move into the interior of the interval. If the time interval is large, the 
partiCUhr solution will exert the most influence on I,, so that we can 
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obtain a good approximation to the solution by neglecting the homo- 
geneous solutions. To accomplish this, we let & = - 00 and 7’f = oo 
in (4). With the infinite limits, we would assume that we could find a 
solution to (4) that corresponded to a time-invariant filter. To verify this, 
we let 

hlk 4 = h,,(t - u) (5) 

in (4) and try to find a solution. Rewriting (4), we have 

N, h,,(t 
2 s 

Go 
- ll) + hl& - x)K,(z - Zf) dx = K,(t - u), 

-a3 
- 00 < t, u < 00, (6) 

which can be solved by using Fourier transforms. Transforming, we have 

Sk4 
H1adjoJ) = S&o) + (N,/2) ’ 

(7) 

which is the desired result. This filter is familiar from our work with 
unrealizable MMSE estimators in Section I-6.2.3. The resulting receiver is 
shown in Fig. 4.1. Notice that we have used only the infinite limits to 
solve the integral equation. The receiver still operates on r(t) over [T,, T,]. 

To implement Canonical Realization No. 3, we must solve (2.45). 

h,(t, u) = [Tfhf(z, t)h,(x, u) k 
c Ti 

Ti < t, u < Tf* - - (8) 

To find the asymptotic solution, we let Ti = - 00 and 7’, = 00, use (5), 
and assume that a time-invariant solution exists. The resulting equation is 

hla(t - u) = 
s 

* h& - t)h,,(z - u) dx, -cQ < t,tr < 00. (9 
-al 

Transforming, we have 
%o(j4 = Wfa,(jcu)12* (10) 

Hl 
> 
CY 
Ho 

Fig. 4.1 Canonical Receiver No. 1: stationary process, long observation time. 
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This type of equation is familiar from our spectrum factorization work in 
Section I-6.2. Because H,,(jcu) has all the properties of a power density 
spectrum, we can obtain a realizable solution easily. 

We recall that the superscript + means that we assign all the poles and 
zeros of H,,(s) that lie in the left half of the complex s-plane to H&(s). 
Notice that this assignment of zeros is somewhat arbitrary. (Recall the 
discussion on page I-31 1.) Thus the solution to (10) that we have indicated 
in (11) is not unique. The resulting receiver is shown in Fig. 4.2. Notice 
that we can also choose an unrealizable solution to (10). An example is 

H,,,,(j4 = I H,,(j4l x9 (12) 
To implement Canonical Realization No. 4, we must solve the realizable 

filtering problem. By letting Ti = - 00 and assuming stationarity, we 
obtain the Wiener filtering problem. The solution is given by (I-6.78), 

1 

[ 
w4 

HoT&4 = [S&o) + (N,/2)1’ [S&o) + (A/,/2)]- 1 +’ 
(13) 

The receiver is shown in Fig. 4.3. Comparing Figs. 4.1, 4.2, and 4.3, we 
see that Canonical Realization No. 3 in Fig. 4.2 is the simplest to imple- 
ment. 

To evaluate the bias lB, we begin with (2.73). 

1 
s 

Tf 
1 I;‘=-- 

N, Ti 
b40 dt, (14) 

where lps(t) is the realizable mean-square error in estimating s(t), assum- 
ing that HI is true. In our work in Section I-6.3 (particularly Examples 1 
and 2 on pages I-546-1-555), we saw that tps(t) approached the steady- 
state, mean-square error, &, reasonably quickly. Thus, if Tf - T. a T 
is long compared to the length of this initial transient, we can obtain a 
good approximation to lB by replacing &,(t) with lPco. 

. , 

r(t) ssw + -,[ II 1 
NO 

* Squarer z 
w4 + 2 

Fig. 4.2 Canonical Receiver No. 3: stationary process, long observation time. 



Fig. 4.3 Canonical Realization No. 4: stationary process, long observation time, 

In Section I-6.2.4 we derived a closed-form expression for lPco. From 
(I-6.152), 

Using (16) in (15) gives 

(17) 

where 
TA Tf- Ti. (18) 

The result in (17) can also be obtained directly from the asymptotic value 
of the logarithm of the Fredholm determinant in (2.74) [e.g., page I-207 
(I-3.182)]. 

An identical argument gives the asymptotic form of p(s), which we 
denote by ru,(s). From (2.138), 

(Notice that p(s) = ,LQ&) because of the zero mean assumption.) Replac- 
ing h--@ 1 s(% l ) by Epca (s(e), l ), we have 

Using (16), we obtain 

(21) 
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An equivalent form is 

[l + (2S,(4/N,)]1-” dcu 

[1 + (2(1 - w,bNNJ1 1 g 
To illustrate the application of these asymptotic results, we consider two 
simple examples. 

Example 1. First-Order Butterworth Spectrum. The received waveforms on the two 
hypotheses are 

r(t) = 40 + w(t), Ti 2 t 5 Tf:H,, 

r(t) = w(t), Ti < t 2 Tf:H,-,. 
(23) 

The signal process, s(t), is a sample function from a stationary, 
random process with spectrum S&O), 

zero-mean, Gaussian 

2kP 
S&u) = - 

m2 + k2, 
--<~<~. (24) 

The noise process is a statistically independent, zero-mean white Gaussian random 
process with spectral height NO/2. 

We shall use Canonical Realization No. 3 (Fig. 4.2) for the receiver. Using (24) in (7), 
we obtain 

2kP/(cu2 + k2) 
H’ co(jw) = (2kp/(m2 + k2)) + &,/2 = 

k2.& 
[co2 + k2(l + AI)]’ 

4P 
A, = - 

kNo 

(25) 

(26) 

is the signal-to-noise ratio in the message bandwidth. From (ll), 

(27) 

We obtain the bias term from (1 5). The mean-square error & was evaluated 
first-order Butterworth spectrum i n Example 3 on page I-495. From (I-6.1 12), 

2P 
6pcL) = 

1+1/iqxy 
Using (28) in (15), we have 

2PT 
lBco = - 

NoI1 + d=+h,l ’ 

(28) 

(2% 

The resulting receiver is shown in Fig. 4.4. By incorporating part of the filter gain in 
the integrator, we can implement the filter as a simple resistor-capacitor circuit. Notice 
that the location of the pole of the filter depends on A,. As A, decreases, the filter pole 
approaches the pole of the message spectrum. As A, increases, the bandwidth of the 
filter increases. 
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2PT 

No[l+ vl+A,] 

Fig. 4.4 Filter-squarer receiver: first-order Butterworth spectrum, long observation time. 

To evaluate the performance, we find ,uGo (s) by using (28) in (20). 

(1 W 
Pal(S) = + 

2P 
- - 

0 1+ 41 +A, 

At this point it is useful to introduce an efficient 
parameters in the performance expression. 

We introduce several quantities, 

ET a PT, 

which is the average energy in the signal process, 

2P 

1 + 41 + (1 - s)h, 
1 

l 

(30) 

notation to emphasize the important 

which is a measure of the time-bandwidth product of the signal process. Notice that 

Using (31) in (30), we obtain 

4 
2QIN, =- . 

4 
(33) 

and 

(30 

(32) 

(34) 

where 

g+, A,) a -4 - d{(l + 41 + hJ1 - (1 + 41 + (1 - s)hJl}. (35) 

The first factor in (34) is the average signal energy-to-noise ratio and appears in all 
detection problems. The second term includes the effect of the spectral shape, the signal- 
to-noise ratio in the message bandwidth, and the threshold. It is this term that will vary 
in different examples. To evaluate the approximate expressions for PF and PO, we need 
&(s) and ,ii&s). Then, from (2.166) and (2.174), 

1 
PF = - exp b ads) - &x&~l 

424i& (s) 
(36) 

and 
1 

pM = 1/2rr(l - s)2ji&) 
exp bb(s) + (1 - Wm(s)l (37) 

From (34) and (35) we can obtain the necessary quantities to substitute into (36) and 
(37). In Figs. 4.5-4.7 we have plotted the approximate performance characteristics 
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Fig. 4.5 Probability of miss versus time-bandwidth product: first-order Butterworth 
spectrum, PE’ = ILO-? 

IO6 
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1 10 lo2 lo3 
D1 = kT/2 - 

Fig. 4.6 Probability of miss versus time-bandwidth product for first-order Butterworth 
spectrum, PF = 10w3. 

indicated by (36) and (37). In Fig. 4.5 we have constrained PF to equal 10% The 
horizontal axis is D, (= U/2). The vertical axis is Pl~jr. The solid curves correspond to 
constant values of 2@&,. We see that the performance is strongly dependent on the 
time-bandwidth product of the signal process. Notice that there is an optimum value 
of A1 for each value of 2E&N,,. This optimum value is in the vicinity of A, = 6. (We 
shall find the exact minimum in a later example.) The dashed curves correspond to 
constant values of A,. Moving to the right on a constant A, curve corresponds physically 
to increasing the observation time. Similar results are shown for PF = 10e3 and PF = 
10m5 in Figs. 4.6 and 4.7, respectively. 

For small values of D, (say, D, < 2), the curves should be checked using state- 
variable techniques, because the SPLOT approximation may not be valid. 

For larger time-bandwidth products our performance calculations give good results, 
for two reasons: 

1. The error resulting from the large time-interval approximation decreases rapidly 
as kT increases. We shall make some quantitative statements about the error on page 
142. 

2. The error resulting from truncating the Edgeworth series at the first term decreases 
as kT increases, because there are more significant eigenvalues. As the number of 
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1.0 -, I J IIIIJJJ I I I I[llll I I I Illf 

1 2 3 4 567810 20 40 lo* 
D1 = kT/2 + 

Fig. 4.7 Probability of miss versus time-bandwidth product for first-order Butterworth 
spectrum, PF = 10v5. 

significant eigenvalues increases, the tilted density becomes closer to a Gaussian 
density. 

Notice that if the system is operating close to the optimum value of A,, D, will 
be large enough to make the SPLOT approximation valid. 

Similar results for higher-order Butterworth spectra can be obtained 
easily (see Problem 4.1.3). In the next example we consider the case in 
which the signal has an ideal bandlimited message spectrum. This is a 
problem that is difficult to treat using state-variable techniques but is 
straightforward when the SPLOT condition is valid. 

Example 2. In this example, we assume that S&B) has a bandlimited spectrum 

r P 
-27rw < w 2 2TW, 

S&o) = Tic 

\ 0, elsewhere. 
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The most practical receiver configuration is No. 3. From (38) and (7), 

I 
P 

-2rrw ,< co 2 27TW, 
Hl,(jw) = P + Now’ 

Thus, 
\ 0, elsewhere. 

1 
-27rw 5 co 2 27rW, 

N,,, (jd = (1 + N,W/P)s ’ (40) 

0, elsewhere. 

The bias term is obtained by using (38) in (17). 

lBo3 = (41) 

The resulting receiver is shown in Fig. 4.8. Notice that we cannot realize the filter in (40) 
exactly. We can approximate it arbitrarily closely by using an nth-order Butterworth 
filter, where n is chosen large enough to obtain the desired approximation accuracy. 

To calculate the performance, we find p,(s) from (21). The result is 

PC(S) = y[NoWln(l + &) - E)ln(l +‘w)}. (42) 

This can be written as 

(43) 

where 

1 
dMss Ad = - r [Cl - d ln (1 + A,) - In (1 + (1 - s)A,)l 00 

and 

Notice that the 00 subscript of Aoo and g&, 0) denotes an infinite-order Butterworth 
spectrum. In Figs. 4.9 and 4.10, we plot the same results as in Example 1. 

* 
9 

r(t) Ideal Hl 
:- low-pass 1 5 Squarer . 

filter 
-- ?r 

* HO 
c * 

II300 

Fig. 4.8 Optimum receiver: ideal low-pass spectrum, long observation time. 
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rb 

Probability of miss versus time-bandwidth product, ideal bandlimited spectrum, 
= lo-? 

In this section we have considered the simple binary problem, 
the appropriate asymptotic formulas, and analyzed two typical 
-4 _ _ A . _ - 
The next problem of interest is the general binary problem. 

examples. 

4.1.2 General Binary Problem 

In Chapter .3 we extended the results from the simple binary case to the : 
general binary case. Because of the strong similarities, we can simply 
summarize some of the appropriate asymptotic formulas for the general 
case. In Table 4.1, we have listed the transfer functions of the filters in the 
optimum receiver. In Table 4.2, we have listed the asymptotic formulas - _ I .- - - 
ior P,(S). In Table 4.3, we have listed various relationships that are 
useful in general binary problems. - .-- 4. I 

To illustrate the application of some of these results, we consider two 
examples. 

L 
I  
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DC0 =2WT e 

Fig. 4.10 Probability of miss versus time-bandwidth product, ideal bandlimited spectrum, 

PE’ = lo-3. 

Example 3. In this example we consider a binary symmetric problem. The transmitted 
signals on the two hypotheses are 

St(t) = 
J 2E 

-J sin qf, 
T 

Ti 2 t s Tf:Hl, 

J 

2E 
2 sin q#, 

T 
Ti < f < Tf;H,-,, 

(46) 

where 
Tfl Tf - Ti. (47) 

The signal passes over a fluctuating Rayleigh channel.? The received waveforms are 

m = q(t) + w(t), Ti 5 t < Tf:Hl, 

m = &J(t) + w(t), Ti 5 t ,< Tf:HO. (48) 

t We previously encountered fluctuating Rayleigh channels in Chapter II-8 and in the 
problem section of Chapter H-2. We discuss the model in more detail in Chapter 9. 



Table 4.1 Asymptotic formulas for filters in optimum receivers 

No. Problem Reference SPLOT formula 

1 General binary (3.33) H,(jd = 
s&4 - S&)(") 

sw,(cu)s,,(o) 

2 Class A, 

3 Class B, s&4 1 
+ 

(3.42) [&(jdl+ = 
(S&4 + s,@dvw4 

Table 4.2 Asymptotic formulas for p&s) 

No. Problem 
Refer- 
ence 

General 
1 binary : (3.178) Pm (4 

nonsingular 
(sH1 (w)/$&d) (s-4/2 dcc, 

= T 
s + (1 - 4 [S~l(o~IS~o(o)l I g 

2 Class A, (3.60) pm(s) = T 2/Al [(I -ss)ln (I +y) 

+sln(l+y) 

2(ss,,(~) + (1 - dS,,(4) h 

NO z 
3 Class B [S&4 + s,wl’-” ~uf4s df3 

c(1 - s)S,(w) + &(a g 

4 Class B, (3.60) p,:(s) = :\(I - s) 
2\ (1 - s)S,(m) dcu 

' + S&) + (N,/2) %i 

112 
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Table 4.3 Relationship among various p&s) results 

No. Reference Relation 

1 (3.101) PBP, co @) = WLP, co (4 

2 (3.65) PBS, co(s) = (cLSIB,,(d + 1%IB,oo(1 - $1 

3 (3.73) r’%S,BP, co (9) = 4&IB,LP,m (4) 

We assume that so(t) and sl(t) are bandpass processes centered at ~r)~ and CC)~, respectively, 
which are essentially disjoint and are symmetric about their respective carriers (see 
Figs. 3.7 and 3.8). The low-pass spectrum of the signal processes is SS,Lp(o), where 

S s, LT’@) 
=P,l? =- 

co2 + k2 ’ 
(49) 

The power in the received process depends on the transmitted power and the channel 
attenuation , 

EPb2 PLp A ---f-- ’ (50) 

where fib2 is a measure of the mean-square channel strength. Notice that the total 
average received power is 

P, = 2PL1’, 

u 

(51) 

and that the total average received signal energy is 

if?, = 2i!?r,LP = 2Epb2 = 

We assume that the hypotheses are equally likely 
Pr (E). 

2PL Tab2. (52) 

and that the criterion is minimum 

The receiver structure follows easily by combining the results from the bandpass 
discussion (pages 74-77) with the results in Example 1 (page 104). The receiver is 
shown in Fig. 4.11. The four low-pass filters are identical: 

(53) 

We have eliminated the ideal low-pass filters included in Fig. 3.9 because HfT(jo) is 
low-pass. We have also eliminated the gain in the integrator because it is the same in 
each path and the threshold is zero. 

We can evaluate the performance by suitably modifying the results of Example 1. 
The first step to go from the low-pass asymmetric problem to the bandpass asymmetric 
problem. Recall from Table 4.3 that 

~BP,c&) = 2~LP,cm(sh (54) 

Using (30) in (54) gives 

2&(1 
- 

s) l 1 
1 

PH1’,a2(S) = - 
N 0 1+ d-1 1 + dl + (1 - S)hl 

1 ’ (55) 
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* Hfr ($4 > Squarer 
, 

HI 

&in wit 
l 

z Hfr (jw) 1 * Squarer 1 

-&OS wet 

*sin wgt 
Fig. 4.11 Optimum receiver, binary symmetric bandpass problem, long observation time. 

where 

The next step is go from the asymmetric (or simple binary) problem to the binary 
symmetric problem. We recall that 

/tBS(S) = i&IB(s) + &I&l - $0 (57) 

Using (55) in (57) gives 

1 (1 - 4 
- 

1 + dl + A, - 1 + 41 + (1 - s)A, - 1 + 1/l + $A, 

This reduces to 
(58) 

l [(l + A,)% - (1 + n,(l - s))‘/ii - (1 + A# + l] . (59) 

The important quantity in the probability of error expressions is /ABS,BP,~(&> 
Letting s = & in (59) gives 

2ET l (uBS,13P,us~) = N n 
-1 [ 

(1 + A\,)% 
0 1 

-2(l +?Y+ l]]. (60) 
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If we define 
-1 

&3P,l(A,) i 2R (1 + n,P 
1 1 

-2(l+y+l), (61) 

then we can write 
J% 

/4BS,BP,co(Q) = - - ’ 4gBP,l&h 
NO 

(62) 

We refer to 4g BP,l(A1) as the efficiency function of the binary communication system. 
TO find the approximate Pr (E) we need j&S,&p,+(&). Differentiating (59) twice with 

respect to s and evaluating the result at s = 3, we have 

IhH,UP, m  (8 
d5!q1+~~). 

The approximate Pr (e) follows from (3.77) as 

[l + (A,/2)]% 
d?Th, 1 l 

(63) 

(64) 

We see that the Pr (E) depends on A1, the signal-to-noise ratio in the signal process 
bandwidth, and 2&/N,, the ratio of the average received signal energy to the noise 
spectral height. 

The next step in the analysis depends on the transmitter constraints. I f  it is completely 
specified, we simply evaluate Pr (E). I f  the signals are specified to be a segment of sine 
waves, as in (46), and the transmitter is peak-power-limited (i.e., E,/Tis limited), the 
performance is monotonic with T. On the other hand, if the transmitter is energy-limited, 
we may be able to optimize the performance by choosing T appropriately. This is an 
elementary version of the signal design problem. Later we shall look at the effect of 
different signal shapes. 

We assume that 0 & No, and k are fixed. Then, if we fix E,, this fixes E,. The only 
remaining parameter is T (or, equivalently, A,). We could choose A, to minimize the 
Pr (E). A slightiy easier procedure is to choose it to minimize PBS BpJ*). * From (60), 
we see that this is equivalent to 
plotted gL)p l(A1) as a function , 

maximizing the efficiency factor. In Fig. 4.12 we have 
of A,. We see that the maximum occurs in the vicinity 

of A, = 7. We refer to this point as A,,oPT, 

and 
A 1,OPT = 6.88, 

g~p,l(A1,0pT) = OAWE- 

(65) 

(66) 

We observe that the curve is very flat near the maximum, so that a precise adjustment of 
A, is not necessary. Using (66) in (64) gives an expression for the probability of error 
when the optimum value of A, is used. 

Pr, (E) = 1.32 ($)exp( -0.1182). (67) 

We see that when the system uses the optimum value of A,, the 
decreases exponentially with increasing E&N,. 

probability of error 
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Fig. 4.12 gn,,JAl) versus A,. 

We now consider another example. All of the techniques are identical 
with Example 3. The reason for including the example is to derive some 
specific numerical results that we shall use later. 

Example 4. Symmetric Hypotheses, Bandlimited Spectrum. The basic model is the same 
as in the preceding example [see (46) and (48)]. Now we assume that the low-pass 
signal process has a bandlimited spectrum 

-22rrw 5 cz) 5 2nW, 
w3) 

elsewhere. 

The receiver structure is an obvious combination of the structures in Figs. 4.8 and 4.11. 
As pointed out on page 109, we cannot realize the filters exactly but can approximate 
them arbitrarily closely. For the present we are concerned with the system performance. 
Using (42)-(45), Tables 4.2 and 4.3, and (68), we obtain 

where 

El + (1 - s)h,][l + &I 
El + f&l 9 (6% 

PLP no0 A - 
-lV()W’ 

(70) 

Letting s = 6 in (69) gives 

B, lws,nr,oo(4) = - jy l g*pp(LJ, (70 0 
where we have defined 

1 
gn,,a,(A,,) ’ h In 

[1 + uL/2)12 
(72) 
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Thus, 

exp h3S,BP,a3 WI 
[l + (A,/2)]2 -~J%fLi 

= (1 + h,) (73) 

To get the coefficient for the approximate Pr (E) expression, we differentiate (71) twice 
and evaluate the result at s = 4. The result is 

2E, A, 
jiss.m5J~) = -jy- [l + (1\. /2)]2 l (74) 

0 Go 

Then, using (3.76) 
(1 + L=JWT 

Pr (‘) = &WT A,[1 + (hoo/2)]2WT-1 
(75) 

As before, we can find an optimum value of A, by maximizingg~~~,,(h,). The result is 

A &IN, 
oo,OPT = - = 3.07. 

2WT 

Substituting (76) into (75), we obtain 

Pr, (4 -/zexp (-O.M**[$]) . 

We see that the magnitude of the coefficient in the exponent of (77) is slightly larger 
than in the one-pole case [recall (67)J. 

The communication systems in Examples 3 and 4 have illustrated the 
application of long-time approximations to particular problems. In 
addition, they have given us some interesting results for binary FSK 
communication over fluctuating symmetric Rayleigh channels. It is 
interesting to compare these results with those we obtained in Chapter I-4 
for binary PSK and FSK systems operating over an additive noise channel. 
From (I-4.40) and (I-4.36) we have 

Pr FSK (E) = erfc, (W 

PrFSK k) Vg) 

Similarly, 

Recall that the received signal energy is fixed in an additive noise channel. 
The results from (67), (77), (79), and (80) are summarized in Table 4.4. 
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Table 4.4 Efficiency Factors for Various Binary Communication Systems 
(Large &/IV*) 

System Signals Channel 
Efficiency Loss in db 
Factor (relative to system 1) 

1 PSK Additive white 1 .o 0 
Gaussian noise 

2 FSK Additive white 0.5 3 
Gaussian noise 

3 FSK Rayleigh channel : 0.149 8.28 
ideal bandlimited 
spectrum 

4 FSK Rayleigh 0.118 9.30 
channel : one-pole 
spectrum 

We denote the coefficient of &./No as the eficiency factor of a particular 
communication scheme. Comparing the exponents, we see that a band- 
limited Rayleigh channel requires about 5.28 db more average energy 
than the binary FSK system to obtain the same error exponent. A Ray- 
leigh channel with a first-order Butterworth spectrum requires about 
6.30 db more average energy to obtain the same error exponent. We have 
assumed that &/No is large. 

There are several restrictions to our analysis that should be emphasized: 

1. We assumed that a rectangular pulse was transmitted. In Chapter 11, 
we shall prove that the efficiency factor for any Rayleigh channel and any 
signal shape is bounded by 0.1488. We shall see that for certain channels 
the system in Example 4 corresponds to the optimum binary orthogonal 
signaling scheme. 

2. We used long-time-interval approximations. If &./No is large and we 
use the optimum time-bandwidth product, the approximation will always 
be valid. 

3. We detected each signal individually and did not try to exploit the 
continuity of the channel from baud to baud by performing a continuous 
measurement. In Section 5.1.3, we shall discuss this type of system briefly. 

4. We considered only Rayleigh channels whose fading spectra were 
symmetric about the carrier. In Chapter 11, we shall analyze more general 
channels. 

We now summarize briefly the results for the long time interval- 
stationary process case. 
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4.1.3 Summary : SPLOT Problem 

In this section we studied the case in which the received waveform is a 
sample function of a stationary random process and the observation 
interval is long. By neglecting the transient effects at the ends of the 
observation interval, we were able to implement the receiver using time- 
invariant filters. The resulting receiver is suboptimum but approaches the 
optimum receiver rapidly as the time-bandwidth product of the signal 
process increases. 

We have not discussed how long the observation interval must be in 
order for the SPLOT approximation to be valid. Whenever the processes 
have rational spectra, we can compute the performance of both the 
optimum receiver and the SPLOT receiver using state-variable techniques. 
Thus, in any particular situation we can check the validity of the approxi- 
mation quantitatively. A conservative requirement for using the approxi- 
mation is to check the time-bandwidth product at the input to the squarer 
in Canonical Realization No. 3. If the product is greater than 5, the 
approximation is almost always valid. In many cases, the SPLOT receiver 
is essentially optimum for products as low as 2. 

The performance expressions for the SPLOT case were simplified 
because we could use the asymptotic expressions for the Fredholm 
determinant. Thus, the calculation of ,u&) always reduced to finding the 
mean-square filtering error in some realizable Wiener filtering problem. 
This reduction meant that many of the detailed results in Section I-6.2 
were directly applicable to the Gaussian detection problem. In many 
situations we can exploit this similarity to obtain answers efficiently. 

In addition to considering the general SPLOT problem, we considered 
the problem of binary communication over a Rayleigh channel. We 
fou nd that if we were allowed to control the time-bandwidth product of 
the receiver signal process, we could achieve a Pr (E) that decreased expo- 
nentially with &/N,. This behavior was in contrast to the nonfluctuating 
Rayleigh channel discussed in Section I-4.4.2, in which the Pr (E) decreased 
linearly with &IN,. 

This completes our discussion of the SPLOT problem. There are a 
number of problems in Section 4.5 that illustrate the application of the 
results to specific situations. 

4.2 SEPARABLE KERNELS 

In this section we consider a class of signal covariance functions that 
lead to a straightforward solution for the optimum receiver and its 
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performance. In Section 4.2.1, we consider the separable kernel model 
and derive the necessary equations that specify the optimum receiver and 
its performance. In Sections 4.2.2 and 4.2.3, we consider physical situa- 
tions in which the separable kernel model is valid. Finally, in Section 
4.2.4, we summarize our results. 

4.2.1 Separable Kernel Model 

Our initial discussion is in the context of the simple binary problem 
with zero-mean processes. The received waveforms on the two hypotheses 
are 

40 = s(t) + w(t), Ti < t < T,: HI, - - 

r(t) = w(t), Ti < t < T,:H,. - - (81) 

The noise w(t) is a sample function from a zero-mean white Gaussian 
random process with spectral height N,/2. The signal s(t) is a sample 
function from a zero-mean Gaussian random process with covariance 
function K,(t, 24). 

From (2.28) the LRT is 0 1, = -!- ss 111 
N, 

r(t)hl(t, z+-(u) dt du 5 y, (824 
ml 

Ti 
where h,(t, u) is specified by the integral equation No Tf - h,(t, 21) + 
2 s h,(t, W&(X, u) dx = K,(t, u), Ti 5 t, u < Tf. (82b) 

Ti 

In Section I-4.3.6 we studied solution techniques for this integral equation. 
On page I-322, we observed that whenever the kernel of the integral 
equation [i.e., the signal covariance function K,(t, u)] was separable, the 
solution to (82b) followed by inspection. A separable kernel corresponds 
to a signal process with a finite number of eigenvalues. Thus, we can write 

Ti < t, u < Tf, - - (83) 
i==l 

where &(t) and 3Li8 are the eigenfunctions and eigenvalues, respectively, 
of the signal process. In this case the solution to (82b) is 

hl(t, u, = 5 hi$4it)+i(u) 
i=l 

A s &lt)+i(U)9 
i 

K < t, u < T,. (84) 
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. 

dt 2 

(K- 1) similar paths 0 
l 

l 

Fig. 4.13 Correlator realization of separable kernel receiver. 

This can be verified by substituting (84) into (826). For separable kernels, 
the simplest realization is Canonical Realization No. 3 (the filter-squarer 
receiver). From (2.45), 

whose solution is 

Using (85) and (86) in (82~) and performing the integration on x we 
obtain 

The operations on r(t) can be realized using either correlators or matched 
filters. These realizations are shown in Figs. 4.13 and 4.14. These receiver 
structures are familiar from Fig. I-4.66 on page I-353. Looking at 

Sample 

0 
l 

(K- 1) l similar paths 
l 

l 

0 

Fig. 4.14 Matched filter realization of separable kernel receiver. 



122 4.2 Separable Kernels 

(I-4.399), we see that the received signal on HI was 

r(t) = 5 a&(t) + w(t), O<t<T, - - (88) 
i=l 

where the ai are N(0, cQ and the si(t) are orthonormal. The total signal is 

s(t) = z aisi(t), 
i=l 

W) 

which is a zero-mean Gaussian process with covariance function 

K,(t, ti) = 5 crises,, 0 < t, 21 < l-t - WV 
i=l 

Comparing (90) and (83), we see that the separable kernel problem is 
identical with the problem that we solved in Section I-4.4.2, in the context 
of an unwanted parameter problem. As we observed on page I-353, the 
problem is also identical with the general Gaussian problem that we solved 
in Section I-2.6. The reason for this simplification is that the signal has 
only a finite number of eigenvalues. Thus, we can immediately map r(t) 
into a K-dimensional vector r that is a sufficient statistic. Therefore, all of 
the examples in Sections I-2.6 and I-4.4 correspond to separable kernel 
Gaussian process problems, and we have a collection of results that are 
useful here. 

The approximate performance of the optimum receiver is obtained by 
calculating p(s) and using the approximate expressions in (2.166) and 
(2.174). From the first term in (2.132), we have 

Using (91) in (2.166) and (2.174) gives an approximate expression for PF 
and P,. We recall that when the K eigenvalues were equal we could obtain 
an exact expression. Even in this case the approximate expressions are 
easier to use and give accurate answers for moderate K (see Fig. I-2.42). 

At this point we have established that the separable kernel problem is 
identical with problems that we have already solved. The next step is to 
discuss several important physical situations in which the signal processes 
have separable kernels. 

4.2.2 Time Diversity 

Historically, the first place that this type of problem arose was in pulsed 
radar systems. The transmitted signal is a sequence of pulsed sinusoids 
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at a carrier frequency w, = ~M/T, where yt is a large integer. The sequence 
is shown in Fig. 4.15. The ith signal is 

2 
- sin met, 
T 

(i - l)TP < t 5 (i - 1)7YP + T, 

elsewhere. 
(92) 

If a target is present, the pulses are reflected. We shall discuss target 
reflection models in detail in Chapter 9. There we shall see that for many 
targets the reflection from the ith pulse can be modeled as 

(i - l)T, ,< t 2 (i - I)T, + T 

elsewhere, 
(93) 

where the vi are Rayleigh random variables and the jQ are uniform random 
variables. (Notice that we have put the target at zero range for simplicity.) 
As in Section I-4.4.2,we writes&) in terms of two quadrature components, 

2 
J- y sin qt + bci J 

1 
- cos met, 
T 

elsewhere. 
u- - l)T, < t < (i - UT, + T (944 

Equivalently, we can write 

where +si(t) and &(t) include the time interval in their definition. The 
bsi and bci are statistically independent Gaussian random variables with 
variances CT b2. The average received energy per pulse is 

ET1 A 26,? - (95) 

The received waveform consists of the signal reflected from the sequence 
of pulses plus a white noise component, 

Fig. 4.15 Transmitted pulse sequence. 
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The observation interval includes all of the reflected pulses completely. 
Now, when we let vi and +i be random variables, we are assuming that 
the target reflection is essentially constant over the pulse duration. In 
general, Tp is much larger than the pulse duration. Thus, if the target is 
fluctuating, it is plausible to assume that the vi and +i are independent 
random variables for different i. This means that the bci and bSi are 
independent for different i. The covariance function of the signal process is 

Thus we have a separable kernel with 2K equal eigenvalues. Using Figs. 
4.13 and I-4.68, we obtain the receiver structure shown in Fig. 4.16. Here 
the orthogonality arises because the signals are nonoverlapping in time. 
We refer to this as the time-diversity case. 

We have already computed the performance for this problem (Case 1A 
on page I-108). By letting 

N = 2K, (98) 

the results in Fig. I-2.35 apply directly. Notice that 

IuBP.sK.(s) = K ln 
(1 + &/No)1-s 

1 + (1 - wb1/~0-l 1 (101) 

[use either (I-2.501) or (91)]. 
The ROC is shown in Fig. 4.17. The average received signal energy per 

pulse is &, and the total average received energy is i$, where 

In Fig. 4.18, we fix E,, and P* and plot P, as a function of K. (These are 
Figs. I-2.35b and c relabeled.) This shows us how to optimize the number 

.  9 

w Bandpass Square-law Sample Hl 
* matched z envelope I r every L z 

filter detector 
1 

Tp seconds 

SumK l 03y 
samples 

c HO 

Fig. 4.16 Optimum receiver for pulsed radar problem. 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

PF - 

Fig. 4.17 Receiver operating characteristic: pulsed radar, Rayleigh target. 

of transmitted pulses in various situations. Notice that Fig. I-2.35 was 
based on an exact calculation. As shown in Fig. I-2.42, an approximate 
calculation gives a similar results. 

A second place that time-diversity occurs is in ionospheric communica- 
tion. In the HF frequency range, long-range communication schemes 
frequently rely on waves reflected from the ionosphere. As a result of 
multiple paths, a single transmitted pulse may cause a sequence of pulses 
to appear at the receiver. Having traveled by separate paths, the amplitudes 
and phases of the different pulses are usually not related. A typical 
situation is shown in Fig. 4.19. If the output pulses do not overlap, this 
is commonly referred to as a resolvable multipath problem. If the 
path lengths are known (we discuss the problem of unknown path lengths 
in a later section), this is identical with the time diversity problem 
above. 
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Fig. 4.18 P&f as a function of the number of transmitted pulses (total energy fixed). 

4.2.3 Frequency Diversity 

The obvious dual to the time problem occurs when we transmit K 
pulses at different frequencies but at the same time. A typical application 
would be a frequency diversity communication system operating over K 
nonfluctuating Rayleigh channels. On HI, we transmit K signals in disjoint 
frequency bands, 

O<t<T, - - 

elsewhere. 

On H,,, we transmit K signals in a different set of disjoint frequency bands, 

2 
- sin mOit, 
T 

O<t<T, _ - 

elsewhere. 
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Fig. 4.18 (Continued.) 

Each of the K transmitted signals passes over a Rayleigh channel. The 
output is 

sin bid + &I + w(t), O<t<T:H,, - - 
VW 

sin LmOjt + +jl + w(t>9 0 < t < T:H,. - - 
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(a) Transmitted signal (b) Received signal 

Fig. 4.19 Ionospheric model: resolvable multipath. 

The frequencies mli and moj are chosen so that the outputs due to the 
signals are orthogonal. We shall assume that the fading in the different 
Rayleigh channels is statistically independent and that each channel has 
identical statistical characteristics. The average received signal energy in 
each channel is 

We see that this problem is just the binary symmetric version of the 
problem in Section 4.2.2. The optimum receiver structure is shown in 
Fig. 4.20. To evaluate the performance, we observe that this case is 
mathematically identical with Example 3A on pages I- 130-I-132 if we let 

and 

N = 2K, (107) 

OS2 
E = Gb2 = rl , 
2 

(108) 

N 
(Tn2 = 22 . 

2 
Then I is given by (I-2.510) as 

W) 

Pl3S,HP,Sd~) = K 1Il 1 + MN0 
(1 + 41/2No)2 

WV 

We can also obtain (110) by using Table 4.3 and (101). A bound on the 
Pr (E) follows from (I-2.473) and (110) as 
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Fig. 4.20 Frequency diversity receiver. 

An approximate error expression is given by (I-2.516) and (110) as 

Pr (E) Y 
J 

1 (1 + &,IN,)” - 
d (&/A/,)( 1 + &, /2N,)K’2--1 l 

(112) 

Frequently the total energy available at the transmitter is fixed. We 
want to divide it among the various diversity branches in order to minimize 
the Pr (E). When the channel attenuations are equal, the optimum division 
can be calculated easily using either exact or approximate Pr (E) expres- 
sions. The simplest procedure is to introduce an efficiency factor for the 
diversity system. 

1z; 
I%~,BP.s&) = - z &(A), 

0 
(113) 
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where 

We see that g&) is identical with g,,, ,(&) in Example 4 on page 116. 
’ Thus, it is maximized by choosing 

a = 3.07, (116) 

and the Pr (E) is given by (78). The result in (116) says that the optimum 
strategy is to divide the energy so that the average energy-to-noise spectral 
height ratio in each Rayleigh channel is 3.07. 

The comparison of these two results is interesting. In this case we 
optimized the performance by choosing the diversity properly. Previously 
we chose the signal-to-noise ratio in the signal process bandwidth 
properly. The relationship between the two problems is clear if we inter- 
pret both problems in terms of eigenvalues. In the case of the bandlimited 
spectrum, there are 4 VU’equal eigenvalues (for ?VT >> 1) and in the diver- 
sity system there are 2K equal eigenvalues. 

4.2.4 Summary : Separable Kernels 

In this section we have studied the separable kernel problem. Here, 
the receiver output consists of a weighted sum of the squares of a finite 
number of statistically independent Gaussian variables. The important 
difference between the separable kernel case and the general Gaussian 
problem is that 
in principle at 

we have Jinite sums rather than iti$inite sums. Therefore, 
least, we can always calculate the performance exactly. 

As we observed in Chapter I-2, if the eigenvalues are different and K is 
large, the procedure is tedious. If the eigenvalues are equal, the sufficient 
statistic has a chi-squared density (see page I-109). This leads to an exact 
expression for P, and PD. As discussed in Section I-2.7 (page I-128), our 
approximate expressions based on ,u(s) are accurate for moderate K. 
Thus, even in cases when an exact probability density is available, we 
shall normally use the approximate expressions because of their simplicity. 

In the foregoing text we have considered examples in which the signal 
process had equal eigenvalues and the additive noise was white. In the 
problems in Section 4.5, we consider more general separable kernel prob- 
lems. 
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4.3 LOW-ENERGY-COHERENCE (LEC) CASE? 

In this section we consider the simple binary problem described in 
Chapter 2 (page 8). The received waveforms on the two hypotheses are 

We assume that IV(~) is a white, zero-mean Gaussian process with spectral 
height NO/2 and that s(t) is a zero-mean Gaussian random process with 
covariance function K,(t, u). The signal covariance function can be 
written as a series, 

K,(t, u> = 2 Ais+iO~i(~l), Ti < t, U < Tt- - - W) 
i=l 

If we write s(t) in a Karhunen-Loeve expansion, the eigenvalue, Ais, is the 
mean-square value of the ith coefficient. Physically this corresponds to the 
average energy along each eigenfunction. If all of the signal energy were 
contained in a single eigenvalue, we could write 

s(t) = s1#M (119) 
and the problem would reduce to known signal with Gaussian random 
amplitude that we solved in Section I-4.4. This problem is sometimes 
referred to as a coherent detection problem because all of the energy is 
along a single known signal. 

In many physical situations we have a completely different behavior. 
Specifically, when we write 

s(t) = 5 si+i( t)9 Ti < t S Tf ,  (120) 
i=l 

we find that the energy is distributed along a large number of coordinates 
and that all of the eigenvalues are small compared to the white noise level. 
Specifically, 

NO 
As << 1, i = 1,2, . . . . (129 

We refer to this case as the low-energy-coherence (LEC) case. In this 
section we study the implications of the restriction in (121) with respect 

t Most of the original work in the low-energy-coherence case is due to Price [l], [2] 
and Middleton [3], [5], [7]. It is sometimes referred to as the “coherently undetectable” 
or “threshold” case. Approaching the performance through ,u(s) is new, but it leads to 
the same results as obtained in the above references. In [9], Middleton discusses the 
threshold problem from a different viewpoint. Other references include [lo], [ll]. 
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to the optimum receiver structure ,and its performance. Before we begin 
our discussion, several observations are worthwhile. 

1. When s(t) is a stationary process, we know from page I-208 that 

Ai” < lmnx - < max S,(f). ‘- - (122) 

Thus, if 
N” max S,(f) << - , 
2 

(123) 
j 

the LEC condition exists. 
2. It might appear that the LEC condition implies poor detection per- 

formance and is therefore uninteresting. This is not true, because the 
receiver output is obtained by combining a large number of components. 
Even though each signal eigenvalue is small, the resulting test statistic 
may have appreciably different probability densities on the two hypotheses. 

3. We shall find that the LEC condition leads to appreciably simpler 
receiver configurations and performance calculations, Later we shall 
examine the effect of using these simpler receivers when the LEC con- 
dition is not satisfied. 

We begin our discussion with the general results obtained in Section 2.1. 
From (2.31) we have 

Tt 

1 
1 

lx=- 
N, 

r(t)h,(t, tl)r(u) dt du, (124) 

and from (2.19), 
Ti 

.s 
1 

A 
1 + (2;N,)A: ri2* 

(125) 

To get an approximate expression, we denote the largest eigenvalue by 
q&. If 

1 s No 
ma5 C-9 

2 
(126) 

we can expand each term of the sum in (125) in a power series in Ai, 

The convergence of each expansion is guaranteed by the condition in 
(126). The LEC condition in (121) is more stringent that (126). When 

[LEC condition] (128) 
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we can approximate lR by retaining the first two terms in the series. 
The reason for retaining two terms is that they are of the order in 2A,s/NO. 
(The reader should verify this.) The first term is 

The second term is 

Tf 

r(t)K.pit, u)r(u) dt du. 

Ti 

p = _ I 2 R 2 ( 1 N 3&2r:. 
0 i=l 

If we define a kernel 

s 
Tr K6”‘(t, u) = at, ww, 2) dz 

Ti 

then 
Tf 

r(t)Kr’(t, u)r(u) dt du. 

Ti 

Similarly, when 2&&V. < 1, we can expand lB. From (2.33), 

1 
II= 

1” lx1 
7 

n - i=l ( 1 
+ 

- 2 NO Ais 1 

- - 

(129) 

(130) 

(133) 

When 2&&V, << 1, we can obtain an approximate expression by using 
the first two terms. 

Tr 

K;(t, u) dt du. (134) 

Ti 

Equations (129)) (132)) and ( 134) correspond to two parallel operations on 
the received data and a bias term. 

We can show that as 
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the ratio of the variance of $’ + Z$ on Ho to the variance of Z$ on Ho 
approaches zero. The same statement is true on HI because 

and 
Var [Q 1 H,] h) Var [@ 1 H,] 

Var [$’ 1 H,] Y Var [@ 1 H,]. (137) 

In this case, we may replace I, (2) by its mean on H,, (the means under both 
hypotheses are approximately equal) : 

Tf 

Ks2(t, U) dt du. uw 
Ti 

Now /g) becomes a bias term and /g’ is the only quantity that depends on 
r(t). The resulting test is 

Tr 

r(t)K,(t, u)r(u) dt du 

2’ f 

Ks2(t, U) dt du. (139) 

Ti 

Including the bias in the threshold gives the test 

r(t)&@, ujt-(tl) dt du z y, 
fI0 

(140) 

d 
where Tf 

K,2(t, u) dt du. (141) 

Ti 

We refer to the receiver that performs the test in (140) as an optimum LEC 
receiver. Observe that it has exactly the same form as the general receiver 
in (124). The difference is that the kernel in the quadratic form is the signal 
covariance function instead of the optimum linear filter. Notice that the 
optimum linear filter reduces to K&t, u) under the LEC condition. One 
form of the receiver is shown in Fig. 4.21. The various other realizations 
discussed in Section 2.1 (Figs. 2.4-2.7) can be modified for the LEC case. 

When 2A~,,/No is less than 1 but does not satisfy (128), we can use more 
terms in the series of lR and IB. As long as 
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Tf (l) H1 
dt , lR > 

27 
Ti HO 

Unrealizable filter 

Fig. 4.21 Optimum SC receiver. 

we can find a series solution for the optimum detector that will converge.? 
The general form follows easily, 

and 

where 

An interesting physical interpretation of higher-order approximations 
is given in Problem 4.3.2. 

The final question of interest is the performance of the optimum 
receiver in the LEC case. We want to find a simpler expression for p(s) 
by exploiting the smallness of the eigenvalues. From (2.134), 

P(S) = 4 2 Kl - s) In (1 + 23L,“/N,j - In (1 + (1 - s)2A[/N,)]. (146) 
i=.i 

Expanding the logarithms and retaining the first two terms, we have 

We see that the terms linear in ;lis cancel. Writing z& (Ris)2 in closed 

t This approach to finding the filter is identical with trying to solve the integral equation 
iteratively using a Neumann series (e.g., Middleton [S] or Helstrom [4]). This procedure 
is a standard technique for solving integral equations. 
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form, we obtain 

Ks2(t, u) dt du k,uLEC(s). 
i 

(148) 

The term in braces has an interesting interpretation. For the krtowvt signal 
problem, we saw in Chapter T-4 that the performance was completely 
determined by d2, where 

Physically, this could be interpreted as the output signal-to-noise ratio. 
For the Gaussian signal problem discussed in this chapter, d2 is no longer 
uniquely related to the error performance, because I(A) is not Gaussian. 
However, in the coherently undetectable case, it turns out that the term in 
braces in (148) is d2, so that whenever our approximations are valid, the 
output signal-to-noise ratio leads directly to the approximate expressions 
for P,, P,, and Pr (E). It remains to be verified that the term in braces in 
(148) equals d2. This result follows easily by using the fact that the expecta- 
tion of four jointly Gaussian random variables can be written as sums of 
second moments (e.g., [8, page 1681 or page I-229). (See Problem 4.3.4.) 

Thus, for the LEC case, 

Substituting the expression for ,u,-~~ (s) given in (150) into (2.164) and 
(2.173) gives the desired error expressions as 

PF ‘Y erfc, (sd) = erfc, uw 

P lif YV erf‘c, ((1 - s)d) = erfc, (152) 

The ROC obtained by varying the threshold y is plotted in Fig. I-4.13. 
The low-energy-coherence condition occurs frequently in radar astron- 

omy and sonar problems. Price has studied the first area extensively 
(e.g., [6]), and we shall look at it in more detail in Chapter 11. In the sonar 
area the stationary process-long observation time assumption is often 
valid in addition to the LEC condition. The receiver and the performance 
are obtained by combining the results of this section with those in Section 
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Fig. 4.22 Optimum receiver, low-energy-coherence, stationary-process, long-observation- 
time case. 

4.1. A filter-squarer implementation of the resulting receiver is shown in 
Fig. 4.22. The value of d2 is 

We see that d2 increases linearly with T, the observation time. Thus, 
regardless of the relative signal and noise levels, we can achieve a desired 
performance by observing the process over a sufficiently long observation 
time. We shall discuss the sonar area in more detail in Array Processing. 

Occasionally the LEC receiver in Fig. 4.21 is used even though the LEC 
condition in (128) is not satisfied. In order to analyze the performance, 
we must treat it as a suboptimum receiver. In Chapter 5 we discuss 
performance analysis techniques for suboptimum receivers. 

4.4 SUMMARY 

In this chapter we have developed techniques for finding the optimum 
receiver and evaluating its performance for three special categories of 
detection problems. In Chapter 2, we had demonstrated a solution algo- 
rithm for cases in which the processes had finite-state representations. 

It appears that a large portion of the physical situations that we en- 
counter can be approximated by one of these four special cases. When 
this is true, we can design the optimum receiver completely and analyze 
its performance. 

4.5 PROBLEMS 

P.4.1 Stationary Process, Long Observation Time (SPLOT) 

Unless otherwise indicated, you should assume that the SPLOT condition is valid in 
all problems in this section. 

SIMPLE BINARY DETECTION 

Problem 4.1.1. Consider the model in (1). Assume that s(t) is a Wiener process such that 

and 
K,(t, 4 = G2 min [t, u] 

s(0) = 0. 
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1. Find the optimum receiver. 
2. Evaluate p,(s) by using (20). 
3. Compare your result with that in Problem 2.1.5. 

Problem 4.1.2. Consider the expression for the logarithm of the Fredholm determinant 
given in (2.75). 

1. Derive the asymptotic version of (2.75). 
2. Use the result in part 1 to obtain an alternative expression for /A&S). 

3. Evaluate /d,(s) for the model in Problem 4.1 .l. 

Problem 4.1.3. Consider the model in (1). Assume that 

s,w 
2nP sin (n/2n) 

=- 
k 1 + (co/k)2n ’ 

Evaluate ,u&s) for this case. 

Problem 4.1.4 (continuation). In Problem 4.1.3 we derived an expression for /d,(s). Fix 
s at some value sO, where 

O<s,<l. 
Study the behavior of /~&a) as a function of n. Consider different values of so. How 
does 

enter into the discussion? 

Problem 4.1.5 (non-zero means). Consider the simple binary detection problem with 
nonzero means. 

1. Derive the asymptotic version of (2.32) and (2.34). 
2. Derive the asymptotic version of (2.147). 

GENERAL BINARY DETECTION 

Problem 4.1.6. Consider the binary symmetric bandpass version of the class A, problem. 
Assume that the equivalent low-pass signal spectrum is 

S,,(co) 
2nPLp sin (w/2n) =- 

k 1 + (cu/k)2n ’ 
where 

P 

pLp=;i* 
Recall that 

i%S,BP,d*) = %IB,LP oo(*h , 

1. 
2. 

Use the result of Problem 4.1.3 to find 
Express your answer in the form 

I~Bs,BP,&) a - 

g~p,~(h~) for various n. Find 

G 
- ’ 4gBP ,&h)* 
NO 

fnax ~BP,&~B) . 
AB [ 1 
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3. Find 

Problem 4.1.7. Consider the binary symmetric bandpass version of the class A, problem. 
1. Write PBS ,BP, &l/2) as a function of &,(o) (the equivalent low-pass spectrum) 

and NO/2. 
2. Constrain 

Find the spectrum that minimizes PBS BP ,(1/2) subject to the constraint in (P.1). , , 

Problem 4.1.8. Consider the class 
Tables 4.1 and 4.2 are correct. 

B problem (see Fig. 3.1). Verify that the in 

Problem 4.1.9. Consider the class B, problem in which 

S,(w) 
2kP, =- 

w2 + k2 

S,(w) 
2wn =- 

w2 + k12 

No S,(w) = 2 . 

1. Find the optimum receiver. 
2. Evaluate p,(s). 
3. Consider the special case in which k, = k. Simplify the expressions for p&s). 

Comment: In the discussion of minimum Pr (E) tests in the text, we emphasized the 
case in which the hypotheses were equally likely and p(s) was symmetric around 
s = 6 (see pages 77-79). In many minimum Pr (E) tests the hypotheses are equally 
likely but /d(s) is not symmetric. We must then solve the equation 

for s,. We then use this value of s,, in (I-2.484) or (I-2.485). From the latter, 

1 
pr (4 = [2(27r)i(s,))+s,(l - $rJl 

exp A%&~. (F.2) 

(Assumess&i(s,) > 3 and (1 - s,)$,i(s,) > 3.) From (I-2.473), 

(F.3) 

The next several problems illustrate these ideas. 

Problem 4.1.10. Consider the class A, problem in which 

s,,Cw~ 
2kaP, =- 

w2 + k2 ’ 

s,o(w) 
2kP =- 

w2 + k2 l 
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1. Draw a block diagram of the optimum receiver. Include the necessary biases. 
2. Evaluate p&s). 
3. Assume that a minimum Pr (e) test is desired and that the hypotheses are equally 

likely. Find s, such that 
ciol,=,m = 0. 

4. Compute the approximate Pr (E) using (F.2). 
5. Compute a bound on the Pr (E) using (F.3). 
6. Plot ,u(s,) as a function of a. 

7. Evaluate 
&As, a) 

aa a 0’ 

This result will be useful when we study parameier estimation. 

Problem 4.1.11. Consider the class A, problem in which 

r 77aP 

S&o) = -z-- ’ 
I4 I k, 

0, I4 > k 

and 
7TP 

S,,(w) = -ii- ’ 
I4 ,< k 

0, 1~1 > k. 
Repeat Problem 4.1.10. 

Problem 4.1.12. Consider the class A, problem in which 

and 

s&4 
2aP, 

z-* 
m2 + a2 

1. Repeat parts l-5 of Problem 4.1.10. 
2. Evaluate the approximate Pr (E) for the case in which 

and 
No = 0. 

Problem 4.1.13. Consider the binary symmetric class A, problem. All processes are 
symmetric around their respective carriers (see Section 3.4.3 and Fig. 3.9). The received 
waveform rcl(t) is 

r,,(t) = S,,(t) + n,,(t) + w(t), q 5 t 5 Tf, 

‘cl(t) = nc,(t) + w(t), Ti 5 t < Tf. Wl) 

Notice that (P.l) completely describes the problem because of the assumed symmetries. 
The random processes in (P.l) are statistically independent with spectra S,(o), S&U), 
and No/2, respectively. 
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2. Assume that S&U) and N,/2 are fixed. Constrain the power in nc,(t), 
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s 

dcl, P 
m Sri,(m) z = -f . 

-03 

Choose S,&O) to maximize ,~cgp, BS , oo (&). 
3. Assume that S,c(o) and N,/2 are fixed. Constrain the power in s,,(t), 

s 

co dco P, 
s&4 g = 2 l 

--co 

Choose S&X) to minimize ,u]Bp, BS, a (3;). 

Problem 4.1.14. Consider the vector problem described in Problem 3.2.7. Specialize the 
results of this problem to the case in which the SPLOT condition is valid. 

Problem 4.1.15. Consider the special case of Problem 4.1.14 in which 

s 

co 
s#) = h(t - ~)s(r) dr (P.l) 

-a3 
and 

s,(t) = 0. 03 

The matrix filter h(T) has one input and N outputs. Its transfer function is H(jo). 
Simplify the receiver in Problem 4.1.14. 

Problem 4.1.16. Consider Problem 3.2.8. Specialize the results to the SPLOT case. 

Problem 4.1.17. 
1. Consider Problem 3.2.9. Specialize the results to the SPLOT case. 
2. Consider the particular case described in (P. 1) of Problem 4.1.15. Specialize the 

results of part 1. 

Problem 4.1.18. 
1. Review the results in Problem 3 S. 18. Derive an expression for ,u~ (s) for the general 

vector case. 
2. Specialize the result in part 1 to the class A, SPLOT problem. 
3. Specialize the results in part 2 to the class B, SPLOT problem. 
4. Specialize the results in part 1 to the case in which the signal is described by 

(P.l) in Problem 4.1.15. 

Problem 4.1.19. The received waveforms on the two hypotheses are 

r(t) = s#) + w(t), Ti 5 t < Tf:Hl, 

r(t) = s()(t) + w(t), Ti 5 t 5 T+H,. 

The signals sl(t) and so(t) are stationary, zero-mean, bandpass Gaussian processes 
centered at co1 and CC)~, respectively. Their spectra are disjoint and are not necessarily 
symmetric around their carrier frequencies. The additive noise is white (N,/2). 

Find the optimum receiver and an expression for ,uBP, &s). (Hint: Review the results 
of Problem 3.4.9.) 
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Problem 4.1.20. Consider the binary symmetric bandpass problem in Fig. 3.9. Assume 
that 

EL-,,(t) 1 H,l = m9 

E[~,,W 1 &I = m* 
All other means are zero. 

1. Find the optimum receiver using the SPLOT assumption. 

2. Evaluate j&s, ~8, co (8). 

Problem 4.1.21. Consider the expression for /l(s) given in (2.208) and the expression for 
p,(s) given in (30). 

1. Prove 
lim /c(s) = P,(S). 

ET--+al 

2. Consider the binary symmetric bandpass version of (2.208) and (30) [see Example 
3, (59) and (60)]. Denote the BS, BP version of (2.208) as ~~SJP(S, kT). Plot 

as a function of kT in order to study the accuracy of the SPLOT approximation. 

P.4.2 Separable Kernels 

Problem 4.2.1. Consider the pulsed radar problem. The performance is characterized by 
(98)-(102). From (lOl), 

PBP,~&) = K ln 
(1 + &/No)‘-” 

1 + (1 - sE@$J 1 - 

Choosing a particular value of s corresponds to choosing the threshold in the LRT. 
1. Fixs = s, and require 

Constrain 

Choose K to minimize 

P(%J - S&i(S,,) = c. 

ET = K&l. 

F A p&J -I- (1 - s,>P(s,)= 

Explain the physical significance of this procedure. 
2. compare the results of this minimization with the results in Figs. 4.17 and 4.18. 

Problem 4.2.2. 
1. Consider the separable kernel problem in which the ai in (89) have non-zero means 

ai. Find ,uD(s). 
2. Consider the bandpass version of the model in part 1. Assume that each successive 

pair of ai have identical statistics. Evaluate ,ug(s) and p&). 

Problem 4.2.3. 
1. Consider the binary symmetric version of the bandpass model in Problem 4.2.2. 

Evaluate PBS,BP,SK(O 
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2. Simplify the results in part 1 to the case in which all of the ai are identically 
distributed. Assume 

E[ai] = m 
and 

Var [ai] = Os2. 

Problem 4.2.4. Consider the model in Problem 4.2.3. A physical situation in which we 
would encounter this model is a frequency diversity system operation over a Rician 
channel (see Section 4.2.2). I f  the energy in the transmitted signal is E,, then 

m2 = aE,, 

OS2 = PE,, 

where a and B are the strengths of the specular path and the random path, respectively. 

1. Express ~B~,~p,&1/2) in terms of a, p, E,, and K (the number of paths). 

2. Assume that E, is fixed. Choose K to minimize ~B~,BP,sR(&). Explain your 
results intuitively and compare them with (116). 

Problem 4.2.5. Consider the diversity system described in Section 
eigenvalues were differen t, we could write the efficiency factor in (1 

4.2.2. If  the signal 
14) as 

Assume 
K 

c Ai = C* (P-2) 
i=l 

You may choose Kand Ai subject to the restriction in (P.2). Prove thatg,(h) is maximized 
by the choice 

Ai = 
t 

A, i=1,2 ,..., K,, 

0, i > Ko. 
Find KO. 

Problem 4.2.6 Consider the frequency diversity system operating over a Rayleigh 
channel as described in Section 4.2. 

1. G .eneralize the model to allow for unequal path strengths, 
mitted in each channel, and unequal noise levels. 

unequal energy trans- 

2. Consider the two-channel problem. Constrain the total transmitted power. Find 
the optimum division of energy to minimize ~B~,~~,&l/2). 

Problem 4.2.7. Consider the class A, problem in which 

N2 

K,o(t, 4 = 2 Ai”Ogj(t)gj(u), Ti I t, u I Tf, 
j=l 

(P*l) 
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where 

and 

1. Solve (3.33) for h,(t, u). 

i,k= l,..., IV,, 

i,k= I,..., IV,, 

i--l ,..., IV& j=l,..., IV& (P.2) 

2. Specialize part 1 to the case in which 

Pij =0, i-l ,..., N,, j=l,..., N2. W.3) 

Explain the meaning of (P.3). Give a physical situation in which (P.3) is satisfied. 
3. Derive a formula for psK(s). 
4. Specialize the result in part 3 to the case in which (P.3) is satisfied. 

Problem 4.2.8. Consider the class B, problem in which the received waveforms on the 
two hypotheses are 

r(t) = s(t) + w(t), Ti 5 t 5 Tf:Hl, 

r(t) = w(t), Ti < t < Tf:HO. 

The signal and noise processes are statistically independent, zero-mean processes with 
covariance functions K,(t, u) and NO &t - u)/2, respectively. The signal process 
K,(t, u) is separable and has M equal eigenvalues, 

1. Verify that the receiver in Fig. P.4.1 is optimum. 

r(t) CT 

. 

=.g dt- +y 
s 

?t HI 

Ti HO 

Fig. P.4.1 

2. Computeg. Compare the receiver in Fig. P.4.1 with the LEC receiver of Section 4.3. 

P.4.3 Low Energy Coherence (LEC) 

Problem 4.3.1. Consider the development in (129)-(139). Verify that the various approxi- 
mations made in arriving at (139) are valid. 
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1. Verify the general form in (143). 
2. An easy way to remember the structure of ZR in (143) is shown in Fig. P.4.2. This 

is an unrealizable feedback system. Verify that the output is ZR. 

dt 

Fig. P.4.2 

3. Why is the result in part 2 obvious ? Is the receiver in Fig. P.4.2 optimum for the 
general case ? Why is it a useful idea in the LEC case but not in the general case? 

Problem 4.3.3. Consider the vector model in Problem 3.2.7, in which so(t) = 0. 

1. Find the optimum receiver under the LEC condition. Define precisely what the 
LEC condition is in the vector case. 

2. Assume that both the SPLOT and LEC conditions hold. Find the optimum 
receiver and derive an expression for IU,,~&). Express the LEC condition in terms of 
the signal spectral matrix S@). 

Problem 4.3.4. Derive the result in (149). 
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