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Discussion: Detection of 
Gaussian Signals 

In Chapters 2 through 4 we studied the problem of detecting Gaussian 
signals in the presence of Gaussian noise. In this chapter we first discuss 
some related topics. 
theory discussion. 

We then summarize the major results of our detection 

5.1 RELATED TOPICS 

5.1.1 M-my Detection : Gaussian Signals in Noise 

All of our discussion in Chapters 2 through 4 dealt with th.e binary 
detection problem. In this section we discuss briefly the M-hypothesis 
problem. The general Gaussian M-ary problem is 

where 

and 

40 = M>, T,<t<T,:H,, i=l,..., M‘, - - (1) 

E[r&) 1 Hi] = q(t) (2) 

Most of the ideas from the binary case carry over to the diary case with 
suitable modifications. As an illustration we consider a special case of the 
general problem. 

The problem of interest is described by the following model. The received 
waveforms on the 1M hypotheses are 

p(t) = s&> + fi(t>, Tb< t< T’:H,, - - i- 1,2 ,..., M’. (4) 

The additive noise n(t) is a sample function from a zero-mean Gaussian 
process with covariance function K,(t, u). A white noise term is not 
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148 5.1 Related Topics 

necessarily present. The signal processes are sample functions from Gaus- 
sian processes and are statistically independent of the noise process. The 
signal processes are characterized by 

aQ(01 = m,(t)9 T,<t<T,, i=l,...,IW - - (5) 

E( h(t) - ~iwlbiw - 4Wl} = &.(t, u), z Tb < t, u < T,, - - 
i-l,.. 

l 9 AL (6) 

The a-priori probability of the ith hypothesis is Pi and the criterion is 
minimum Pr(E). We assume that each pair of hypotheses would lead to a 
nonsingular binary test. The derivation of the optimum receiver is similar 
to the derivation for the binary case, and so we shall simply state the 
results. The reader can consult [l]-[3] or Problem 5.1.1 for details of the 
derivation. 

To perform the likelihood ratio test we compute a set of A4 sufficient 
statistics, which we denote by li, i = 1, . . . , AL The first component of 
the ith sufficient statistic is 

1 Ri = 
J 

r(t)h,(t, u)r(u) dt du 
Tb 

(7) 

where hi(t, u) is specified by the integral equation 

Tr 

SJ K,(t, x)hd% Y)[K,(Y, 21) i- K,,(y, U)] dx dy = K,,(t, U), 

The component of the ith sufficient statistic is 

‘a = /T;r(t) [ i%(t) - IT;hl(t, u)m&) du] dt, 

where gi(t) is specified by the integral equation 

s Tr K,(4 u!g&O du = mz(t>, Tb 
The bias component of the ith s ufficient statistic 

1 -+n (1 + AFk), ni= L k=l 
where the A& are the eigenvalues of the kernel, 

KZ(t, u) = K[,-l/a’(t, x)K&, y)K;-sl(u, y) dx dY= 

Tb 

(9) 

(10) 

(11) 

(12) 
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The complete ith sufficient statistic is 

I i =lR +lD +lBi, i i i=l,..., M. 

The test consists of computing 

Zi+lnP,, i- l,...,M (14) 
and choosing the largest. 

A special case of (4) that occurs frequently is 

No KJt, u) = - qt - u), 
2 

q(t) = 0, i = 1, . . . , M 

Then hi(t, u) satisfies the equation 

. 

(1% 

(16) 

No 
s 

Tr 
- hi@ 4 + 
2 

hi(t9 Y)K,,(YY ‘> dy = K,,(t9 “)9 
Tb 

Tb < t, u < Tr, - - 

i=l,.. . , M. (17) 
All of the canonical realizations in Chapter 2 are valid for this case. 
The bias term is 

1 & = - +J)Pi(l I %C),4) dt, (18) 

where [pi(t ) si( a),) is defined as in (2.137). 
The performance calculation for the general Mary case is difficult. 

We would anticipate this because, even in the known signal case, exact 
M-ary performance calculations are usually not feasible. 

An important problem in which we can get accurate bounds is that of 
digital communication over a Rayleigh channel using M-orthogonal 
signals. The binary version of this problem was discussed in Examples 3 
and 4 of Chapter 4 (see pages 11 l-l 17). We now indicate the results for 
the Mary problem. 

The transmitted signal on the ith hypothesis is 

q(t) = J 24 T sin wit Tb < t < T,:H, - - (19) 

the signal passes over a fluctuating Rayleigh channel. The received wave- 
form on the ith hypothesis is 

et> = si(t) + ~(0, Tb < t < T,:H+ - - (20) 

The ith signal si(t) is a sample function of a bandpass process centered 
at CC)~, whose spectrum is symmetric around wJ The signal processes 

t The symmetric assumption is included to keep the notation simple. After we introduce 
complex notation in Chapter 9, we can handle the asymmetric case easily. 
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are essentially disjoint in frequency. The additive noise is a sample function 
from a zero-mean white Gaussian random process with spectral height 
N,/2. The low-pass spectra of the signal processes are identical. We denote 
them by SS,(CCQ. The total received power in the signal is 

6 = 2ab2 s O” S,,(m) do . -co 27T 
(21) 

Kennedy [4] and Viterbi [5] have studied the performance for this case. 
Our discussion follows the latter’s. Starting from a general result in [6], 
one can show that 

[D4No(:“, pJll+p ’ 
(22) 

where D&x) is the Fredholm determinant of the low-pass process, T is 
the length of interval, and 

R = 1nM (23) 

is the transmission rate in nats per second. The parameter p is used to 
optimize the bound. When the observation time is long, we can use 
(I-3.182) to obtain 

In DF(z) = T 
s --x 

( 4) 2 

We now define 

E,(P) A (1 + P> p 2&,(o) dto 
l+--- 

1 + p N, 1 27r 

and 

E(R) = max [E,(p) - pR]. ( 6) 2 
O$<l 

Comparing (25) and (4.21), we observe that 

T E,(P) --- 
2 1 + p p=(l--s)!e 

= P,(S) 

and, in particular, 

Pn 

(28) 



Using (24)-(26), (22) 

The final step is to 
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reduces to 

Pr (E) < e- TE(R) (29) 
perform the maximization indicated in (26). The 

result is obtained as follows: 

1. If 

has a solution for 0 < p 5 1, we denote it as pm. Then 

E(R) = Eo(p,) - p,E()(pm), (31) 

and 
R = ~o~p7n), 

Eo(l) < R < Co, = go(O). - 

(32) 

(33) 
2. If (30) does not have a solution in the allowable range of p, the 

maximum is at p = 1, and 

E(R) = E,(l) - R, (34) 

0 < R < Eo(l). (3% 
The results in (31) and (34) provide the exponents in the Pr (E) expression. 
In the problems, we include a number of examples to illustrate the applica- 
tion of these results. 

This concludes our brief discussion of the M-ary problem. For a large 
class of processes we can find the optimum receiver, but, except for 
orthogonal signal processes, the performance evaluation is usually difficult. 

5.1.2 Suboptimum Receivers 

We have been able to find the optimum receiver to implement the 
likelihood ratio test for a large class of Gaussian signal processes. Fre- 
quently, the filters in the receiver are time-varying and may be difficult to 
implement. This motivates the search for suboptimum receivers, which 
are simpler to implement than the optimum receiver but perform almost 
as well as the optimum receiver. To illustrate this idea we consider a 
simple example. 

Example . Consider the simple binary detection 
received waveforms on the two hypotheses are 

example discussed on page 104. The 

r(t) = s(t) + w(t), Ti < t 5 T+H,, 

r(t) = w(t), Ti < t 5 T+H,, (36) 
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r(t) 
’ hub (7) 

y(t) 
* Squarer ?I- l-f 

dt 
lx 

b Ti 
t 

Fig. 5.1 Suboptimum receiver. 

where w(t) is a white Gaussian process with spectral height IVY,/2 and s(t) is a Gaussian 
process with spectrum 

2kP 
S&u) = - 

w2-+ k2 l 

(37) 

We saw that the optimum receiver could be implemented as a cascade of a time-varying 
filter, a square-law device, and an integrator. The difficulty arises in implementing the 
time-varying filter. 

A receiver that is simpler to implement is shown in Fig. 5.1. The structure is the same 
as the optimum receiver, but the linear filter is time-invariant, 

hsub (4 = e-BTu-l(d, -aJ<r<a (38) 
We choose /? to optimize the 
we know that if 

performance. From our results in Section 4.1 (page 104) 

(39) 

then the suboptimum receiver will be essentially optimum for long observation times. 
For arbitrary observation times, some other choice of /I might give better performance. 
Thus, the problem of interest is to choose /? to maximize the performance. 

With this example as motivation, we consider the general question of 
suboptimum receivers. The choice of the structure for the suboptimum 
receiver is strongly dependent on the particular problem. Usually one 
takes the structure of the optimum receiver as a starting point, tries 
various modifications, and analyzes the resulting performance. In this 
section we discuss the performance of suboptimum receivers. 

To motivate our development, 
for the optimum receiver. The opti 

we fi 
mum 

rst recall the performance results 
receiver computes I, the logarithm 

of the likelihood ratio, and compares it with a threshold. The error 
probabilities are 

and 

’ P 111 = Pr (EIEQ = 
s 

J+&L 1 U,) dL. (41) 
--co 

All of our performance discussion in the Gaussian signal problem has 
been based on p(s), which is defined as 
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the logarithm of the moment-generating function of I, given that H,, is 
true. Since I is the logarithm of the likelihood ratio, we can also write 
p(s) in terms of M&&S), 

P(S) = In M,IH1(~ - 1) (43) 

(see pages I-l 18-I-l 19). Thus we can express both PN and P, in terms of 
P(S) 

A’ suboptimum receiver computes a test statistic I, and compares it 
with a threshold yZ in order to make a decision. The statistic I, is rtot 
equivalent to I and generally is used because it is easier to compute. For 
suboptimum receivers, the probability densities of I, on HI and Ho are 
not uniquely related, and so we can no longer express PM and P, in terms 
of a single function. This forces us to introduce two functions analogous 
to ,u(s) and makes the performance calculations more involved. 

To analyze the suboptimum receiver, we go through a development 
parallel to that in Sections I-2.7 and 111-2.2. Because the derivation is 
straightforward, we merely state the results. We define 

Pr (E 

and 

Pr (E 

The Chernoff bounds are 

pr (E I Ho) < exp hI(so) - s,yl9 so > 0, 
pr (E I Hl) s exp c/4%> - WI9 Sl < 0, 

where 
fio~so> = Y9 so > 0 

and 
Al = 7% s1 < 0. 

The equations (48) and (49) will have a unique solution if 

E[I, 1 HOI < Y < aI, ) HII- 

The first-order asymptotic approximations are 

) H,) - erfc* (so&“(soN exP 

1 H,) - erfc, (--sl&qs,)) exP 
[ 
p&r) - s&lw + f P&s,) 1 , (52) 
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r(t) .  YW .+-- Filter n- Squarer 8 5 Integrator 1x > 

Fig. 5.2 General filter-squarer-integrator (FSI) receiver. 

where s, and s1 satisfy (48) and (49). Equations (51) and (52) are analogous 
to (179) and (188). Results similar to (181) and (189) follow easily. 

The results in (44)-(52) are applicable to an arbitrary detection problem. 
To apply them to the general Gaussian problem, we must be able to 
evaluate ,u&) and ,u&) efficiently. The best technique for evaluating 
,u&) and ,u&) will depend on the structure of the suboptimum receiver. 
We demonstrate the technique for the general filter-squarer-integrator 
(FSI) receiver shown in Fig. 5.2. The filter may be time-varying. For this 
structure the techniques that we developed in Section 2.2 (pages 35-44) 
are still valid. We illustrate the procedure by finding an expression for 
Pl (sh 

Calculation of pl(s) for an FSI Receiver. To find ,uJs), we expand y(t), the input to 
the squarer under HI, in a Karhunen-Loeve expansion. Thus 

where the #Ii(t) are the eigenfunctions of y(t) on HI. The corresponding eigenvalues 
are illi* We assume that the eigenvalues are ordered in magnitude so that A,i is the 
largest. From (45), 

pl(s) = In VWzx 1 &II 

= In {E[exP (’ XYi2) 1 Hl]} 
= -&z ln(1 -. 2sAli)9 

1 

i=l 
s < r . 

li 
(54) 

The expectation is a special case of Problem I-4.4.2. The sum can be written as a Fred- 
holm determinant ,t 

P&9 = -i ln Dq&-2s), 

A similar result follows for ,uo(s), 

1 
s < %. (55) 

li 

l%)(s) = -8 ln Rq&--2s), 
1 

s < %. (56) 
Oi 

We now have pa(s) and ,u~(s) expressed in terms of Fredholm determinants. The final 
step is to evaluate these functions. Three cases in which we can evaluate In Dsi&) are 
the following: 

1. Stationary processes, long observation time. 
2. Separable kernels. 
3. State-representable processes. 

t This result is due to Kac and Siegert [8] (e.g., [9, Chapter 91). 
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The procedure for the first two cases is clear. In the third case, we can use the algo- 
rithms in section 2.2.1 or section 2.2.3 to evaluate ,u&) and ,+(s). The important 
point to remember is that the state equation that we use to compute ~~(8) corresponds 
to the system that produces yl(t) when driven by white noise. Similarly, the state 
equation that we use to compute ~~(8) corresponds to the system that produces go(t) 
when driven bv white noise. 

In this section we have developed the performance expressions needed 
to analyze suboptimum receivers. Because the results are straightforward 
modifications of our earlier results, our discussion was brief. The analysis 
based on these results is important in the implementation of practical 
receiver configurations. A number of interesting examples are developed 
in the problems. In Chapter 11, we encounter suboptimum receivers again 
and discuss them in more detail. 

51.3 Adaptive Receivers 

A complete discussion of adaptive receivers would take us 
afield. On the other hand, several simple observations are useful. 

too far 

All of our discussion of communication systems assumed that we made 
a decision on each baud. This decision was independent of those made on 
previous bauds. If the channel process is correlated over several bauds, 
one should be able to exploit this correlation in order to reduce the 
probability of error. Since the optimum “single-baud” receiver is an 
estimator-correlator, a logical approach is to perform a continuous channel 
estimation and use this to adjust the receiver filters and gains. An easy 
way to perform the channel estimation is through the use of decision- 
directed feedback. Here we assume that all past decisions are correct in 
order to perform the channel estimation. As long as most of the decisions 
are correct, this reduces the channel estimation problem to that of a 
“known” signal into an unknown channel. Decision feedback schemes for 
simple channels have been studied by Proakis and Drouilhet [lo]. More 
complicated systems have been studied by Glaser [l 11, Jakowitz, Shuey, 
and White [ 121, Scudder [13, 141, Boyd [15], and Austin [16]. Another 
procedure to exploit the correlation of the channel process would be to 
devote part of the available energy to send a known signal to measure the 
channel. 

There has been a great deal of work done on adaptive systems. In 
almost all cases, the receivers are so complicated and difficult to analyze 
that one cannot make many useful general statements. We do feel the 
reader should recognize that many of these systems are logical extrapola- 
tions from the general Gaussian problem we have studied. References 
that deal with various types of adaptive systems include [ 17]-[30]. 
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5.1.4 Non-Gaussian Processes 

All of our results have dealt with Gaussian random processes. When 
the processes involved are non-Gaussian, the problems are appreciably 
more difficult. 
categories : 

We shall divide our comments on these problems into four 

1. Processes derived from Gaussian processes. 
2. Structured non-Gaussian processes. 
3. Unspecified non-Gaussian processes. 
4. Analysis of fixed receivers. 

We shall explain the descriptions in the course of our discussion. 

Processes Derived from Gaussian Processes. We have emphasized cases 
in which the received waveform is conditionally Gaussian. A related class 
of problems comprises those in which r(t) is a sample function of a process 
that can be derived from a Gaussian process. A common case is one in 
which either the mean-value function or the covariance function contains a 
random parameter set. In this case, we might have m(t, 0,J and KJt, u: 0J. 
If the probability densities of 0m and 0, are known, the parameters 
are integrated out in an obvious manner (conceptually, at least). Whether 
we can actually carry out the integration depends on how the parameters 
enter into the expression. 

If either 8, or 8, is a nonrandom variable, we can check to see if a 
uniformly most powerful test exists. If it does not, a generalized likelihood 
ratio test may be appropriate. 

Structural Non-Gaussian Processes. The key to the simplicity in Gaus- 
sian problems is that we can completely characterize the process by its 
mean-value function and covariance function. We would expect that 
whenever the processes involved could be completely characterized in a 
reasonably simple manner, one could find the optimum receiver. An 
important example of such a processes is the Poisson process. References 
[3 l]-[35] d iscuss this problem. A second important example is Markov 
processes (e.g., [2-2 l]-[2-241). 

Unspec@ed Non-Gaussian Processes. In this case we would like to make 
some. general statements about the optimum receiver without restricting 
the process to have a particular structure. One result of this type is 
available in the LEC case that we studied in Section 4.3. Middleton [36], 
[37], derives the LEC receiver without requiring that the signal process 
be Gaussian. (See [39] for a different series expansion approach.) A 
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second important result concerning unspecified Gaussian processes is 
given in [38]. Here, Kailath extends the realizable estimator-correlator 
receiver to include non-Gaussian processes. 

Analysis of Fixed Receivers. In this case, we consider a fixed receiver 
structure and analyze its performance in the presence of non-Gaussian 
signals and noise. Suitable examples of this type of analysis are contained 
in [40], 1411. 

These four topics illustrate some of the issues involved in the study of 
non-Gaussian processes. The selection was intended to be representative, 
not exhaustive. 

5.1.5 Vector Gaussian Processes 

We have not discussed the case in which the received signal is a vector 
random process. The formal extension of our results to this case is 
straightforward. In fact, all of the necessary equations have been developed 
in the problem sections of Chapters 2-4. The important issues in the 
vector case are the solution of the equations specifying the optimum 
receiver and its performance and the interpretation of the results in the 
context of particular physical situations. In the subsequent volume [42], 
we shall study the vector problem in the context of array processing in 
sonar and seismic systems. At that time, we shall discuss the above issues 
in detail. 

5.2 SUMMARY OF DETECTION THEORY 

In Chapters 2 through 5 we have studied the detection of Gaussian 
signals in Gaussian noise in detail. The motivation of this detailed study 
is to provide an adequate background for actually solving problems we 
encounter when modeling physical situations. 

In Chapter 2 we considered the simple binary problem. The first step 
was to develop the likelihood ratio test. We saw that the likelihood ratio 
contained three components. The first was obtained by a nonlinear 
operation on the received waveform and arose because of the randomness 
in the signal. The second was obtained by a linear operation on the 
received waveform and was due to the deterministic part of the received 
signal. This component was familiar from our earlier work. The third 
component was the bias term, which had to be evaluated in order to 
conduct a Bayes test. 
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We next turned our attention to the problem of realizing the nonlinear 
operation needed to generate ZR. Four canonical realizations were de- 
veloped : 

1. The estimator-correlator receiver. 
2. The filter-correlator receiver. 
3. The filter-squarer receiver. 
4. The optimum realizable filter receiver. 

The last realization was particularly appealing when the process had 
finite state-variable representation. In this case we could use all of the 
effective state-variabl e procedures that we developed in Section I-6.3 
actually to find the receiver. 

A more difficult issue was the performance of the optimum receiver. 
As we might expect from our earlier work, an exact performance calcula- 
tion is not feasible in many cases. By building on our earlier work on 
bounds and approximate expressions in Section I-2.7, we developed 
performance results for this problem. The key to the results was the ,u(s) 
function defined in (2.148). We were able to express this in terms of both a 
realizable filtering error and the logarithm of the Fredholm determinant. 
We have effective computational procedures to evaluate each of these 
functions. 

We next turned to the general binary problem in Chapter 3, where the 
received waveform could contain a nonwhite component on each hypoth- 
esis. The procedures were similar to the simple binary case. A key result 
was (3.33), whose solution was the kernel of the nonlinear part of the 
receiver. The modifications of the various canonical realizations were 
straightforward, and the nerformance bounds were extended. A new 
issue that we encountered was that of singularity. We first derived simple 
upper and lower bo unds on the probability of error in terms of p(g). We 
then showed that a necessary and sufficient condition for a nonsingular 
test was that p(Q) be finite. This condition was then expressed in terms of a 
square-integrability requirement on a kernel. As before, singularity was 
never an issue when the same 
present on both hypotheses. 

white noise component was assumed to be 

In Chapter 4 we considered three special cases that led to particularly 
simple solutions. In Section 4.1 we looked at the stationary-process- 
long-time-interval case. This assumption enabled us to neglect homoge- 
neous solutions in the integral equation specifying the kernel and allowed 
us to solve this equation using Fourier transform techniques. Several 
practical examples were considered. The separable kernel case was studied 
in Section 4.2, We saw that this was a suitable model for pulsed radars 
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with slowly fluctuating targets, ionospheric communications over resolv- 
able multipath channels, and frequency-diversity systems. The solution 
for this *case was straightforward. Finally, in Section 4.3, we studied the 
low-energy-coherence case, which occurs frequently in passive sonar and 
radar astronomy problems. The energy in the signal process is spread over 
a large number of coordinates so that each eigenvalue is small when 
compared to the white noise level. This smallness enabled us to obtain a 
series solution to the integral equation. In this particular case we found 
that the output signal-to-noise ratio (d2) is an accurate performance 
measure. In addition to these three special cases, we had previously 
developed a complete solution for the case in which the processes have 
a finite state representation. A large portion of the physical situations 
that we encounter can be satisfactorily approximated by one of these 
cases. 

In Section 5.1 we extended our results to the Wary problem. The 
optimum receiver is a straightforward extension of our earlier results, but 
the performance calculation for the general problem is difficult. A reason- 
ably simple bound for the case of M-orthogonal processes was presented. 
In Section 5.2 we derived performance expressions for suboptimum 
receivers. 

Our discussion of the detection problem has been lengthy and, in 
several instances, quite detailed. The purpose is to give the reader a 
thorough understanding of the techniques involved in solving actual 
problems. In addition to the references we have cited earlier, the reader 
may we wish to consult [43]-[48] for further reading in this area. In the 
next two chapters we consider the parameter estimation problem that was 
described in Chapter 1. 

5.3 PROBLEMS 

P.5.1 Related Topics 

MARY DETECTION 

Problem 5.1.1. Consider the model described in (4)-(6). Assume that n(t) contains a 
white noise component with spectral height I&/2. Assume that 

mi(t)=O, i--l ,..., M. 

1. Derive (7)-(8) and (1 l)-(14). 
2. Draw a block diagram of the optimum receiver. 

Problem 5.1.2. Generalize the model in Problem 5. 
unequal costs. Derive the optimum Bayes receiver. 

1 .l to include nonzero means and 
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Problem 5.1.3. Consider the model in (15)-(17). 

Assume that 

that 
KJt, u) = iK,(t - u), i = 1, . . . , M 

SEW 
2k =- 

co2 + k2, 

and that the SPLOT condition is valid. The hypotheses are equally likely. 

1. Draw a block diagram of the optimum receiver. 
2. Consider the case in which M = 3. Derive a bound on the Pr (E). 

Problem 5.1.4. Consider the communication system using M-orthogonal signals that is 
described in (19)-(21). On pages 1-263-I-264, we derived a bound on the Pr (E) in an 
M-ary system in terms of the Pr (E) in a binary system. 

1. Extend this technique to the current problem of interest. 
2. Compare the bound in part 1 with the bound given by (22)-(35). For what values 

of R is the bound in part 1 useful? 

ing one of M-orthogonal bandpass 
that each process has N eigenvalues. 

Problem 5.1 S. Consider 
processes in the presence 

the problem of detect 
of white noise . Assume 

1. We can immediately reduce the problem to one with MN dimensions. Denote this 
resulting vector as R. Compute Prim (R 1 H&. 

2. In [6], Gallager derived the has; formula for a bound on the error probability, 

Pr (E 1 H,) 5 
s s 

9 9 l dR[prlII 
m 

(R 1 f&)l”(‘+P) 

-00 

[ 

,II 
x 2 [PrlHI,(R I Hk)ll’(‘+P) ‘, p 2 0. (P-1) 

kZm 1 
Use (P.l) to derive (22). (Hint: Use the fact that E[@] < (Et+‘, 0 < p 5 1.) 

Problem 5.1.6. 

1. Verify the results in (29)-(35). 
2. One can show that Car is the capacity of the channel for this type of communica- 

tion system (i.e., we require M-orthogonal signals and use rectangular signal envelopes). 
Assume 

and 

Plot C,, as a function of 
P, n 2q. (P.2) 

(P.3) 

3. Repeat for 
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Problem 5.1.7. The error exponent, E(R), is defined by (31) and (34). 

1. Plot E(R) as a function of NOR/P,. for the bandlimited message spectrum in (P.4) 
of Problem X1.6. 

2. Plot E(R) as a function of NOR/P,. for the one-pole message spectrum in (P.l) 
of Problem 5.1.6. 

Problem 5.1.8. Assume that we want to signal at low rates so that 

E(R) NE(O). 

1. Consider the one-pole message spectrum in (P. 1) of Problem 5.1.6. Plot E(O)/ 
(P,/N,) as a function of A,. What value of AB maximizes E(O)/(P,/N,)? 

2. Repeat part 1 for the ideal bandlimited message spectrum in (P.4) of Problem 5.1.6. 
3. Compare the results in parts 1 and 2 with those in (4.60) and (4.69). 

Problem 5.1.9. Assume that we want to signal at the rate 

1 
R 1 p, =- ca3 =----• 

10 lON,, 

We want to maximize E(R)/(P,./N,)) by choosing AB. 

1. Carry out this maximization for the one-pole spectrum. 
2. Carry out this maximization for the ideal bandlimited spectrum. 
3. Compare your results with those in Problem 5.1.8. 

Problem 5.1.10. Define 

E;(R) E(R) = max - 
AB P,lNo l [ 1 

1. Find E,*(R) as R varies from 0 to C, for the ideal bandlimited spectrum. 
2. part 1 for the one-pole spectrum. 

Problem 5.1.11 [S]. Assume that each signal process has a non-zero mean. Specifically, 

E{[s&Z cos (qt)]Lp} = m(t), 

E{[si(t)dZ sin (WtJ]Lp} = 0. 

Show that the effect of the non-zero mean is to add a term to E,(p) in (25), which is 

Problem 5.1.12 [7]. Consider the special case of Problem 5.1.11 in which 

s,l(w) = 0. 
1. Prove 

E(R) -= 
cm 

I 

P-$9 
co 

-2 R 

(J) 
l- 

c,’ 
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CCQ 6 1 =- =- 
No No 

2. Discuss the significance of this result. 

SUBOPTIMUM 

1 
a3 

m2(t) dt. 
-a3 

RECEIVERS 

Problem 5.1.13. Consider the definitions of /lo(s) and ,ul(s) given in (44) and (45). 

1. Derive the Chernoff bounds in (46)-(49). 
2. Derive the approximate error expressions in (51) and (52). 

Problem 51.14. Consider the simple binary detection problem described on page 151 and 
the filter-squarer-integrator receiver in Fig. 5.1. The filter is time-invariant with transfer 
function 

The message spectrum is given in (37). 

1. Write the state equations that are needed to evaluate pl(s) and (uo(s). 
2. Assume that the long-time-interval approximation is valid. Find pl,(s) and 

poao(s). Verify that the value of ,!Y in (39) is optimum. 

Problem 51.15. 

1. Repeat part 1 of Problem 5.1.14 for the case in which s(t) is a Wiener process, 

s(0) = 0, t 2 0, 
E[s2(t)] = a2t, t 2 0. 

2. Find the optimum value of /? for long observation times. 

Problem 5.1.16. Consider the binary symmetric communication problem whose model 
was given in Section 3.4.3. The quantities r,,(t), rsl(t), rc,(t), and r,,(t) were defined in 
Fig. 3.9. We operate on each of these waveforms as shown in Fig. 3.10. Instead of the 
optimum filter h,,(t, u), we use some arbitrary filter hsU&) in each path. Denote the 
output of the top branch as [I and the output of the bottom branch as I,. Define 

I ,  = Zl -  I , .  

The bias terms are both zero and 
In 7 LL ya: = 0. 

Define 
E1ljCs) = In E[eS1l 1 Hi], j = 0, 1, 

and 

1 Prove 

2. Prove 

/loj(s) = In E[eS20 1 Hj], j = 0, 1. 

PBSJO = rull(S) + iJol(-s)9 

PBS,&) = am + h)(s) = /LBS,l(-S). 

where 
Pr (4 < 4 exp (P~S,l(s,N, 

fiBS,l(s)~s=s, = 0. 
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3. Prove 

Pr (c) = 
1 

2(2~Pss,lcGn))~s,(1 - SmJ 
exp ~BS,lbn)~ 

4. Express ,uBS,Js) in terms of Fredholm determinants. 

Problem 51.17. Consider the binary communication system described in Problem 5.1 .16. 
Assume that s&) is a sample function of a stationary process whose low-pass equivalent 
spectrum is S,,(o) and h(t, T) is a time-invariant filter with a rational transfer function. 
Assume that the SPLOT condition is valid. 

1. Find an expression for ,uBS,~&S) in terms of X&I), H(jcu), and IV,,. 

2. Verify that (u BS,J&S) reduces t0 p()pT&~) when H($I) is chosen optimally. 
3. Plot ,uBS,~&S) for, the case in which 

and 

Find s,. 

1 
H(jo) = - 

jo+p' 

Problem 51.18 (continuation). Consider the binary communication system discussed in 
Problems 51.16 and 51.17. We are interested in the case discussed in part 3 of Problem 
5.1.17. 

One of the problems in designing the optimum receiver is that P,. may be unknown or 
may vary slowly. Assume that we think that 

p, = pm 
and design the optimum receiver. 

1. Evaluate ,uB~,&& and poPT,(# for this receiver when 

1l A 2pm 
1 --= 

kN0 
100 

2. Now assume that 

OSP,, I[ P,< IOP,,. 

Plot ,uBS,~&,). The receiver design is fixed. 
3. Assume that the receiver is redesigned for each P,.. Compare /joPT,co(&) with 

PBS,laA%n)* 

Problem 5.1.1 .9. The LEC receiver was derived in Section 4.3 and was shown 
This receiver is sometimes used when the LEC condition is not satisfied. 

in Fig. 4.21. 

1. Derive an approximate expression for the performance of this receiver. 
2. Assume that s(t) has a finite-dimensional state representation. Find a state equa- 

tion for ,ul(s) and ,uo(s). 
3. Assume that the SPLOT condition is valid. Find a simple expression for ,u~(s) and 

P&). 
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