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Estimation of the Parameters 
of a Random Process 

The next topic of interest is the estimation of the parameters of a Gaussian 
process. We study this problem in Chapters 6 and 7. Before developing a 
quantitative model of the problem, we discuss several physical situations 
in which parameter estimation problems arise. 

The first example arises whenever we model a physical phenomenon 
using random processes. In many cases, the processes are characterized 
by a mean-value function, covariance function, or spectrum. We then 
analyze the model assuming that these functions are known. Frequently 
we must observe a sample function of the process and estimate the 
process characteristics from this observation. The measurement problems 
can be divided into two categories. IQ the first, we try to estimate an entire 
function, such as the power density spectrum of stationary processes. In 
the second, we parameterize the function and try to estimate the param- 
eters; for example, we assume that the spectrum has the form 

S(w) = -L- 
co2 + k2 ’ (1) 

and try to estimate P and k. In many cases, this second category will fit 
into the parameter estimation model of this section. An adequate dis- 
cussion of the first category would take us too far afield. Some of the 
issues are discussed in the problems. Books that discuss this problem include 
WPl* 

The second example arises in such areas as spectroscopy, radio astron- 
omy, and passive sonar classification. The source generates a narrow-band 
random process whose center frequency characterizes the source. Thus, the 
first step in the classification problem is to estimate the center frequency 
of the signal process. 
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168 6.1 Parameter Estimation Model 

The third example arises in the underground nuclear blast detection 
problem. An important parameter in deciding whether the event was an 
earthquake or bomb is the depth of the source. At the station, we receive 
seismic waves whose angle of arrival depend on the depth of the source. 

The common feature in all these examples is that in the parameters of 
interest are imbedded in the process characteristics. In other words, the 
mapping from the parameter to the signal is random. In this chapter and 
the next, we develop techniques for solving this type of problem. 

In Chapter 6 we develop the basic results. The quantitative model of 
the problem is given in Section 6.1. In Section 6.2 we derive the likelihood 
function, the maximum likelihood equations, and the maximum a- 
posteriori probability equations. In Section 6.3 we develop procedures 
for analyzing the performance. 

In our study of detection theory we saw that there were special categories 
of problems for which we could obtain complete solutions. In Chapter 7 
we study four such special categories of problems. In Section 7.1 we con- 
sider the stationary-process, long-observation-time case. The examples 
in this section deal with estimating the amplitude of a known covariance 
function. Several issues arise that cannot be adequately resolved without 
developing new techniques, and so we digress and develop the needed 
expressions. This section is important because it illustrates how to bridge 
the gap between the general theory of Chapter 6 and the complete solution 
to an actual problem. In Sections 7.2, 7.3, and 7.4 we consider processes 
with a finite state representation, separable kernel processes, and low- 
energy-coherence problems, respectively. In Sections 7.5 and 7.6 we 
extend the results to include multiple parameter estimation and summarize 
the important results of our estimation theory discussion. 

Two observations are useful before we begin our quantitative discussion. 

1. The discussion is a logical extension of our parameter estimation 
work in Chapters I-2 and I-4. We strongly suggest that the reader review 
Section I-2.4 (pages 52-86), Sections 1-4.2.2-I-4.2.4 (pages 271-287), and 
Section I-4.3.5 (pages 307-309) before beginning this section. 

2.’ Parameter estimation problems frequently require a fair amount of 
calculation to get to the final result. The casual reader can skim over this 
detail but should be aware of the issues that are involved. 

6.1 PARAMETER ESTIMATION MODEL 

The model of the parameter estimation problem can be described 
easily. The received waveform r(t) consists of the sum of signal waveform 
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and a noise waveform, 

r(t) = s(t, 4 + w(t), Ti < t < Tfa - - (2) 

The waveform s(t, A) is a sample function from a random process whose 
characteristics depend on the parameter A, which we want to estimate. 

To emphasize the nature of the model, assume that A is fixed and w(t) 
is identically zero. Then, each time the experiment is conducted, the signal 
waveform s(t, A) will be different because it is a sample function of a 
random process. By contrast, in the parameter estimation problems of 
Chapter I-4, the mapping from the parameter to the signal waveform is 
deterministic. 

We assume that the signal process is a conditionally Gaussian process. 

Definition. A random process s(t, A) is conditionally Gaussian if, given 
any value of A is the allowable parameter range xa, s( t, A) is a Gaussian 
process. 

A conditionally Gaussian process is completely characterized by a 
conditional mean-value function 

Ebk 4 I 4 * WY 4, - Ti < t < Tf - - (3) 

and a conditional covariance function 

E[(s(t, A) - m(t, A))(@, A) - m(u, A)) I Al A K,(t, u : A), 
Ti < t, u < Tf. - - (4) 

The noise process is a zero-mean, white Gaussian noise process with 
spectral height N,/2 and is statistically independent of the signal process. 
Thus r(t) is also a conditionally Gaussian process, 

and 

EW 1 AI = Eb(4 A) 1 A] = m(t, A), Ti < t < Tf, _ _ (9 

E([r(t? - m(t, A)l[r(~Q - m(u, A)] 1 A} a K,(t, u:A) 

No 
= K,(t, u : A) + - s(t - zi), 

2 
K 2 t, u < Tt. (6) 

Observe that any colored noise component in r(t) can be included in 
s(t, A). We assume that m(t, A), K,(t, U: A), and No/2 are known. 

The parameter A will be modeled in two different ways. In the first, 
we assume that A is a nonrandom parameter that lies in some range xa, 
and we use maximum likelihood estimation procedures. In the second, we 
assume that A is the value of a random variable with a known probability 
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density p&4). For random parameters we can use Bayes estimates with 
various cost functions. We shall confine our discussion to MAP estimates. 

These assumptions specify our model of the parameter estimation prob- 
lem. We now develop an estimation procedure. 

6.2 ESTIMATOR STRUCTURE 

Our approach to the estimation problem is analogous to the one 
taken in Chapters I-2 and I-4. We first find the likelihood function A(A). 
Then, if A is a nonrandom parameter and we want an ML estimate, we 
find the value of A for which A(A) is a maximum. If A is the value of a 
random variable and we desire an MAP estimate, we construct the 
function 

f(A) a ln 44 + lqL(A), (7) 

and find that value of A where it is a maximum. The only new issue is the 
actual construction of A(A) and the processing needed to find the maxi- 
mum. In this section we address these issues. 

62.1 Derivation of the Likelihood Function 

The derivation of the likelihood function is similar to that of the 
likelihood ratio in Chapter 2, and so we can proceed quickly. The first 
step is to find a series expansion for r(t). We then find the conditional 
probability density of the coefficients (given A) and use this to find an 
appropriate likelihood function. The procedure is simplified if we choose 
the coordinate system so that the coefficients are conditionally statistically 
independent. This means that we must choose a coordinate system that is 
conditionally dependent on A. The coefhcients are 

r,(A) a s 
Tr 

r(t)+&: A) dt. 
Ti 

e-9 

The ri(A) are Gaussian random variables whose mean and variance are 
functions of A. 

E[ri(A) 1 A] = E 

We choose the &(r: A) so that 
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From our earlier work, we know that to achieve this conditional inde- 
pendence the #&: A) must be the eigenfunctions of the integral equation 

s Tf 
ai(Aj$i(t I A) = K,(t, U: A)+i(u: A) dl4, 

Ti 
Ti < t < 7”. - - (11) 

Because the covariance function depends on the parameter A, the eigen- 
functions, eigenvalues, or both will depend on A. If K,(t, U: A) is positive 
definite, the eigenfunctions form a complete set. If K,(t, U: A) is only 
non-negative-definite, we augment the set of eigenfunctions to make it 
complete. 

Since the resulting set is complete, we can expand the mean-value func- 
tion m(t, A) and the received waveform r(t) in a series expansion. These 
series are 

and 

m(t, A) = 2 mi(Aj&(t: A), T < t < Tf (12) 
i=l 

r(t) = 1.i.m. i [r,(A) - %(A)lq4(4 A) + m(t, A), & 5 t < Tfe (13) 
Ir’-+ co i=l 

We denote the first K coefficients by the vector R. The probability 
density of r given the value of A is 

P,,G(R 1 A) = fi 1 

i=l J% (~$42 + l,(A)) 

(14) 
Just as in the known signal case (Section I-4.2.3), it is convenient to 

define a likelihood function &(A), which is obtained from p,,,(R 1 A) 
by dividing by some function that does not depend on A (see page I-274). 
As before, we divide by 

Dividing (14) by (15), taking the logarithm of the result, and letting 
a, we have 

1* 
lnA(A) = -2 

N&4 &(A> + No/2 

K-+ 

(16) 



172 6.2 Estimator Structure 

Comparing (16) with the limit of (2.19) as K -+ 00 in our detection theory 
discussion, we see that there is a one-to-one correspondence. Thus, all of 
the closed-form expressions in the detection theory section will have 
obvious analogs in the estimation problem. By proceeding in a manner 
identical with that in Chapter 2, we can obtain four terms corresponding to 
those in (2.3 lj-(2.34). 

The first term can be written as 

Tf 

l,(A) = -!- 
No ss 

r(t)h(t, u: A)r(u) dt du, 

Ti 

(17) 

where h(t, U: A) satisfies the integral equation N, s Tf 

- h(t, u:A) + 
2 

hit, x: A)K,(x, u: A) dx = K&t, u: A), 
Ti 

K ,< t, u 2 Tf. (18) 

We see that h(t, u: A) is the optimum unrealizable filter for the problem in 
which we observe 

r(t) = s(t, 4 + w(t), Ti < t < Tr, - - (19) 

and we want to make the MMSE error estimate of s(t, A) under the 
assumption that A is known. As in the detection problem, we shall fre- 
quently use the inverse kernel Q,<t, U: A), which can be written as 

Q,(t, u: A) = ; [6(t - u) - h(t, u: A)], 
0 

Ti < t, u < Tf. (20) 

The second term in (16) can be written as 

Tf 

MA) = 

ss 

r(t)Q,(t, u: Ajm(u, A) dt du. 

Ti 

(21) 

Recall that the subscript D denotes deterministic and is used because I,(A) 
is a’nalogous to the receiver output in the known signal problem. Alter- 
natively, 

I I 

I 1 
Tj 

MA) = r(tjg(4 4 dt, Ti (22) 

where g(t, A) is defined as 

s Tf rs(t, 4 = Q,(t, u: A)m(u, A) du. 
Ti 

(23) 
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We can also specify g(t, A) implicitly by the equation 

s Tf 
m(t, A) = K,(t, u :A)g(u, A) du, Ti < t < Tf* - - (24) 

Ti 

The function g(t, A) is familiar from the problem of estimating the 
parameters of a known signal in colored noise. 

The remaining terms in (16) are the bias terms. The first is 

1 + y) = - k/TyE&:A) dt, (25) 

where &Jt : A) is the realizable mean-square filtering error for the filtering 
problem in (19). As in the detection case, we can also evaluate the second 
term in I,(A) by means of the Fredholm determinant [see (2.74)]. The 
second bias term is 

m(t, A)Q,(t, 21: A)m(u, A) dt du 

/ = --$:m(t,A)g(t,A)dt. 

(26) 

Notice that the integral in $](A) is’just d2(A) for the problem of detecting 
a known signal m(t, A) in colored noise. The likelihood function is 

In A(A) = b(A) + l,(A) + l%‘(A) + Z%‘(A), (27) 

where the component terms are defined in (17), (22), (25), and (26). 
We can now use In A(A) to find cimap (r(t)) or ci,&(t)). The procedure 

is conceptually straightforward. To find a,,, we construct In A(A) as a 
function of A and find the value of A where it is a maximum. To find 
A amap we construct the function 

f(A) A ln A(A) + lnp,(A) = b(A) -I- I,(A) -i- b(A) + 1~ p,(A) (28) 

and find the value of A where it is a maximum. 
Even though the procedure is well defined, the actual implementation is 

difficult. A receiver structure analogous to that in the PFM problem 
(Fig. I-4.31) of Section I-4.2.3 is usually needed. 

To illustrate this, we consider the case of the maximum likelihood 
estimation of a parameter A. We assume that it lies in the interval [A,, AB]. 
In addition, we assume that the mean m(t, A) is zero. We divide the 
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parameter range into intervals of length A. The center points of these 
intervals a re 

A, 
A 

=A,+-, 
2 

3A 
A, = A, + - 9 

2 

(29) 

and so forth. There are M intervals. We then construct In A(&), i = 
1 M’, by using the parallel processing shown in Fig. 6.1. Several 
observations are worthwhile : 

1. In general we have to solve a different integral equation to find the 
filter in each path. Thus the estimation problem has the same degree of 
complexity as an M-ary detection problem in the sense that we must 
build M-parallel processors. 

2. The bias terms are usually functions of A and cannot be neglected. 
3. In analyzing the performance, we must consider both global and 

local errors. 

4. We have to consider the effect of the grid size A. There is a trade-off 
between accuracy and complexity. 

Before leaving our discussion of the estimator structure, we digress 
briefly and derive two alternative forms for I,(A). Repeating (17), 

E,(A) = -!- 
No 

r(t)h(t, u: A)r(u) dt du. (17) 

This corresponds to Canonical Realization No. 1 in the detection 
problem. To obtain Canonical Realization No. 3, we define /?(t, U: A) 
implicitly, 

h(t, u:A) = 
s 

T’hc’/iJ(z, t : A)h[‘ml(z, u : A) dx, 
Ti 

Then 

Ti < f, u < Tf. (30) 

2 

t : A)r(t) dt 1 . (31) 

This can be implemented by a filter-squarer-integrator for any particular A. 
To obtain Canonical Realization No. 4, we go through an argument 

parallel to that on pages 19-21. The result is 

Z,(A) = 2- N 
s 
aI2r(t)S,(r : A) - &“(t: A)] dt, 

0 i 
(32) 
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Fig. 6.1 Generation of In A(A). 

where 

s t ,$(t: A) = h,(t, u : A)r(u) du. 
Ti 

(33) 

The filter h,(r, U: A) satisfies the equation 

No h,(t, u: A) + s t 2 
h&t, 2: A)K,(z, u : A) dx = K&t, u : A), 

Ti 

T$ < u 5 t. (34) 

For the zero-mean case, the function !,(t : A) is the realizable MMSE 
estimate of s(t: A), assuming that A is given. We encounter examples of 
these realizations in subsequent sections. Many of the same issues that we 
encountered in the detection problem will also arise in the estimation 
problem. 

Before considering some specific cases, we derive the maximum likeli- 
hood (ML) equations and the maximum a-posteriori probability (MAP) 
equations. 

6.2.2 Maximum Likelihood and Maximum A-Posteriori Probability 
Equations 

If the maximum of In A(A) is interior to ~a and In A(A) has a continuous 
first derivative, the ML equations specify a necessary condition on dml. 

The ML equation follows easily by differentiating (27) and setting the 
results equal to zero. Taking the partial derivative of In h(A) with respect 
to A, we have 

a ln 44 - WA) + al&o + al,(A) _- . 
aA i?A aA aA 

(35) 
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To evaluate the first term, we differentiate the function in (17). The 
result is Tf WA) 1 ah(t, u : A) --m - 

aA N, ss r(t) 
aA 

r(u) dt du 

Ti 
Tr 

1 =-- 
2 ss 

r(t> aQ,(t, u : A) 
aA 

r(u) dt du. (36) 

Ti 

Notice that to find a/i@, U: A)/&4 we must solve (17) as a function of A 
and then differentiate it. To evaluate the second term, we differentiate 
(21) and use (20) to obtain Tr ah&9 2 i?h(t, u : A) - - -- 

aA N, 
f-0) 

aA 
m(u, A) dt du 

Ti 
Tf 

+ 
WG 4 

r(t)Q,(t, u: A) - 
aA 

dt du. (37) 

Finally, from (25) and (26), I’f %3(A) 1 i?h(t, u: A) --- - 
aA N, ss m(4 A) 

aA 
m(u, A) dt du 

Ti Tf - m(t, A)Q,(t, u :A) - am(u, Aj dt du 
aA 

Ti 

1 -- 
s 

Tf at,‘,(t, A) dt. 
No Ti aA 

Two alternative forms of the last term in (38) are 

1 
s 

Tr 
-- 

N 0 Ti aA 
dt 

1 -- - 
2 SC 

K,(t, u : A) 

T;  

aQ,(t, U: A) 

aA 
dt du 

Tr 1 aK,(t, u : A) - -- - 
2 ss aA 

Q,(t, u : A) dt du (39) 

Ti 



A Lower Bound on the Variance 177 

(see Problem 6.2.1). Collecting terms, we have 

TI 
au(A) 1 aQ,(t, u : 4 -- - dt du 

aA 2 
K,(t, u : A) 

aA 

Tf + am@, A) - Q,(t, u: A)[r(u) - m(u, A)] dt du 
aA 

- m(t, 41 
aQ,(t, u : A) 

aA 
Ti 

x W) - m(u, A)] dt du. 

(40) 

If we assume that the derivative exists at the maximum of In A(A) and that 
the maximum is interior to the range, then a necessary condition on the 
maximum likelihood estimate is obtained by equating the right side of (40) 
to zero. To find the MAP equation, we add (a InpJA)/aA) to (40) and 
equate the result to zero. 

The likelihood equation obtained from (40) is usually difficult to solve. 
The reason is that even if the parameter appears linearly in the signal 
covariance function, it may not appear linearly in the inverse kernel. Thus, 
the necessary condition is somewhat less useful in the random signal case 
than it is in the known signal case. 

6.3 PERFORMANCE ANALYSIS 

The performance analysis is similar to that in the nonlinear estimation 
problems in Chapters T-2 and I-4. We divide the errors into local and 
global errors. The variance of the local errors can be obtained from a power 
series approach or by a generalized Cramer-Rao bound. The global 
behavior can be analyzed by an extension of the analysis on pages 1-279- 
1-284. In this section we derive the generalized Cramer-Rao bound and 
discuss methods of calculating it. 

6.3.1 A Lower Bound on the Variance 

We assume that A is a nonrandom variable that we want to estimate. We 
desire a lower bound on the variance of any unbiased estimate of A. 
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The derivation on pages 1-66-I-68 extends easily to this case. The result 
is that for any unbiased estimate ci(r(t)) of the nonrandom variable A, the 
variance satisfies the inequality 

with equality if and only if 

a ‘;tcA) = {d(r(t)) - A}k(A). (42) 

To evaluate the bound we differentiate (40). The result is 

’ a2 In A(A) 1 a2Qr(t, u : A) ---- 
aA 2 - 

K,(t, u : A) dt du 
2 aA 2 

a&( t, u : A) . aQ,(t, u : A) dt du 
aA aA Tf 

a44 4 - - Q,(t, u:A) ““;A A) dt du 
aA 

Ti 
Tf 

- m(t, A)] 
a”Q,.(t, u : A) 

aA 2 [r(u) - m(u, A)] dt du 

Ti 

+ (terms whose expectations are zero). (43) 

When we take the expectation of the last integral, we find that it cancels 
the first term in (43). Thus any unbiased estimate of A will have a variance 
satisfying the bound 

Var [d(r( t)) - A] 2 - Q,(t, ti : A) - 
aA 

am(u, A) dt du 
aA 

Tf -1 

1 -- 
2 ss 

a&U, u:A) aQ,(t, u :A) dt du 
aA aA 

Ti 

(44) 
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For notational convenience in the subsequent discussion, we denote the 
first term in the braces by J(l)(A), the second by J@)(A), and the sum by 

a44 A) 7 Qr( t, u : Aj am(u, A) dt du aA 
, 

and 

Tf 

Jf2’(A) a - + dt du a&k u : A) aQ,(t, u : 4 . 
aA aA 

I 

(45) 

(46) 

Several observations are useful : 

1. The terms in the bound depend on A. Thus, as we have seen before, 
the variance depends on the actual value of the nonrandom parameter. 

2. The bound assumes that the estimate is unbiased. If the estimate is 
biased, a different bound must be used. (See Problem 6.3.1.) 

3. The first term is familiar in the context of detection of known 
signals in colored noise. Specifically, it is exactly the value of d2 for the 
simple binary detection problem in which we transmit &z(t, A)/aA and 
the additive colored noise has a covariance function K,(t, U: A). Thus, the 
techniques we have developed for evaluating d2 are applicable here. 

We now consider efficient procedures for evaluating J’“)(A). 

6.3.2 Calculation of J(2)(A)t 

The Jt2)(A) term arises because the covariance function of the process 
depends on A. It is a term we have not encountered previously, and so we 
develop two convenient procedures for evaluating it. The first technique 
relates it to the Bhattacharyya distance (recall the discussion on pages 
7 l-72), and the second expresses it in terms of eigenfunctions and 
eigenvalues. 

The techniques developed in this section are applicable to arbitrary 
observation intervals and processes that are not necessarily stationary. 
In Section 7.1, we shall consider the stationary-process, long-observation- 
time case and develop a simple expression for J(2)(A). 

t This section may be omitted on the first reading 
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Relation to Bhattacharyya Distance. In this section we relate J(A) to the 
Bhattacharyya distance. We first work with r,~-(t) and the vector R and 
then let K --+ co in the final answer. We define a function 

This is simply ~(8) for the general binary detection 

p,,H,(R 1 K) = Pr,a(R 1 Al) 
and 

PrlH,(R ( m = &z(R IA)* 

The Bhattacharyya distance is just 

WA19 4 = -pk Al, 4. 

Using (50) and (47) leads to 
Pm 

A) dR. (47) 

problem in which 

(48) 

(49) 

(50) 

We are interested in the case in which 

AA a A, - A (52) 

is small, and so we expand both sides of (51) in a series. Expanding the 
left side in a Taylor series in A1 about the point Al = A gives 

e-UL41,A) = (@3L4,A) _ aB(A1y A) e-B(A1 A) , AA 

aA 1 1 *4 4 l=L 

+ 1 a2w1, A) 
z aAl N 

- (a’(-$ A))lje-s(~l~~)lAl=A(AA)2 + . . . . 

From (47), it follows easily that 

a~(& 4 =0 
aA 1 Al=A 

(see Problem 6.3.2). Thus, (53) reduces to 

e-B(A~.A) = 1 + a2w1, 4 . . . 
aA 2 

1 

(54) 

(5% 

To expand the right side of (51), we use a Taylor series for the first term 
in the integrand and then integrate term by term. The result is s -00 m p$(RIA,)p$(RIA) dR P 1 - (x 8 2 s -00 cQ ( [aPr,a(R 1 A)l/aA])2 dR 

l P,,(p 1 4 
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The integral on the right side of (56) can be written as 

@,A) do - jy a2 In &,dRIA) 
- 

2 
. 

aA 

The term on the right side of (57) is just the negative of J(A). Substituting 
(55) and (56) into (51) and equating the coefficients of (AA)2, we have 

Notice that the expression in (58) includes both P(A) and J(“)(A). To 
calculate Jt2)(A), we assume that the process is zero-mean and use the 
formula for ,u(s) given in (3.60), 

In the last term we have a composite process of the type discussed in 
(3.63). We emphasize that s(t, A) and s(t, A,) are statistically independent 
components in this composite process. Differentiating twice and sub- 
stituting into (58) gives the desired result. 

f2’(A) = k-5 /T;tp(t 1 ,/is<=, A,) + ,&(a, A), :) dt 

I a2 Tf - 2 s b t 1 SC, Al), No (60) 
1 s ( T 

i 2 Al=A’ 

It is worthwhile pointing out that in many cases it will be easier to 
evaluate Jt2)(A) by using the Fredholm determinant (e.g., Section 2.2.3). 

Ei’genvalue Approach. In this section we derive an expression for J(2)(A) 
in terms of the eigenvalues and eigenfunctions of &(t, u : A). From (20) 
it is clear that we could also write Jf2)(A) as Tr J’“‘(A) = se!- dt du aK,(f, u :A) ah@, u: A) 

l 

NO ss aA dA 
Ti 

This expression still requires finding h(t, u : A), the optimum unrealizable 
filter for all t and u in [T,, T,]. In order to express Jt2)( A) in terms of 
eigenvalues and eigenfunctions, we first write h(t, u : A) as the series 

tfi(t: A)+i(u : A). (62) 
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Differentiating K,.(t, u : A) h(t, u : A) and using the results in (69, we obtain 

where 

2 * a3 -- cc AicAvj(A) &i(A), (63) 
N,i=lj=lA&4) + NJ2 

and 

a,,(A) cs s Tf y +j(t:A) &. (65) Ti 
The expression in (63) is not particularly useful in the most cases. A 
special case of interest in which it is useful is the one in which the eigen- 
functions do not depend on A. A common example of this case is when A 
corresponds to the amplitude of the covariance function. Then the last 
two terms in (63) are zero and 

l 

(66) 

The form in (66) is reasonably easy to evaluate in many problems. 
A simple example illustrates the use of (66). 

Example. The received waveform is 

r(t) = s(t, A) + w(t), O<t<T. (67) 

The signal is a sample function of a Wiener process. It is a Gaussian process with 
statistics 

EM 41 = 0, t>O (68) 
and 

s(0, A) = 0, (69) 

K,(t, u : A) = A min (t, u), 0 < t, u. (70) 

This process was first introduced on page I-195. The additive noise w(t) is a sample 
function from a statistically independent white Gaussian process with spectral height 
N,/2. We want to estimate the nonrandom parameter A. 

In Problem 7.2.1, we shall derive the optimum receiver for this problem. In the 
present example, we simply evaluate the expression in (66). From page I-196, the eigen- 
values are 

AT2 
4b4>= (i-*)2n2 9 i=LL**, 

and the eigenfunctions do not depend on A. Differentiating (71) gives 

(71) 

aAi(A) T2 --E-. 
8A (i - *)2~2 
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Using (71) and (72) in (66) gives 

J(A) = &c2)(A) 
1 

1 + [NO/2AT2](i - 1)2n2 ’ 

The bound on the normalized variance of any unbiased estimate is 

Var [ci - A] 2 
A2 '03 

2 [(l + [NO/2AT2](i - 1)2,2)2]-1’ 
i=l 
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(74) 

The sum can be expressed in terms of polygamma functions whose values are tabulated 
(e.g., [4, page 2651). In Chapter 7 we shall see that for large values of 2AT2/N0, the ML 
estimate is essentially unbiased and its variance approaches this bound. For small 
values of 2AT2/N0, the bias is an important issue. We discuss the bias problem in detail 
in Section 7.1. 

The final topic of interest is the performance when we estimate a random 
variable. In the next section we derive a lower bound on the minimum 
mean -square error. 

6.3.3 Lower Bound on the Mean-Square Error 

To derive the bound on the mean-square error we go through a similar 
procedure (e.g., page I-72). Since the derivation is straightforward, we 
leave it as an exercise. The result is 

The expressions for P(A) and Jt2J(A) are given in (45) and (46). This 
bound holds under weak conditions analogous to those given on page 
I-72. Two observations are useful: 

1. Since a is a random variable, there is no issue of bias. The bound is 
on the mean-square error, rtot the variance. 

2. There is an expectation over p,(A) in each term on the right side of 
(75). Thus the bound is not a function of the actual value of A. In most 
cases it is difficult to perform this integration over A. 

Most of our examples in the text will deal with nonrandom variables. 
The extension of any particular example to the random-variable case is 
straightforward. 

6.3.4 Improved Performance Bounds 

Our discussion of performance has concentrated on generalizations of 
the Cramer-Rao bounds. In many problems when the processes are 
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stationary, one can show that the variance of the ML estimate approaches 
the bound as the observation time increases (e.g., [S]). On the other hand, 
as we have seen before, there are a number of problems in which the bound 
does not give an accurate indication of the actual performance. 

One procedure for obtaining a better estimate is suggested by the 
structure in Fig. 6.1. We consider the problem as an M-ary detection 
problem, find the error probability, and translate this into a global 
estimation error. This technique was introduced for the problem of 
estimating deterministic signal parameters by Woodward [6] and Kotel- 
nikov [7]. It was subsequently modified and extended [8]-[13]. We 
discussed the approach on pages 1-278-I-284. The extension to the random 
signal parameter case is conceptually straightforward but usually difficult 
to carry out. In Problem 7.1.23, we go through the procedure for a 
particular estimation problem. 

A second procedure for evaluating the performance is to use the 
Barankin bound [14]. This technique has been applied to the deterministic 
signal parameter problem [ 15]-[ 171. Some progress has been made in the 
random signal problem by Baggeroer [18]. Once again, the basic ideas are 
straightforward but the actual calculations are difficult. 

In Chapter 7, we study some particular estimation problems. At that 
point, we consider the performance question again in more detail. We 
may now summarize the results of this chapter. 

6.4 SUMMARY 

In this chapter we have developed the basic results needed to study the 
parameter estimation problem. The formal derivation of the likelihood 
function. was a straightforward extension of our earlier detection results. 
The resulting likelihood function is 

Tf 

In A(A) = ?- 
No ss 

Tf 

r(t)h(t, 21: A)r(u) nt du + 

s 
m& 4 tft 

Ti 

Ti 

1 0 Tf 
-- 

s No Ti 
Eld(t:A) dt - i 

s 
m(t, A)g(t, A) dt, (76) T 

i 

where the various functions are defined in (18), (23), and (25). To find 
A awE we plot In R(A) as a function of A and find the point where it is a 
maximum. 

The next step was to find the performance of the estimator. A lower 
bound on the variance of any unbiased estimate was given in (44). 
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At this point in our discussion we have derived several general results. 
The nest, and more important, step is to see how we can use these results 
actually to solve a particular estimation problem. We study this question 
in detail in Chapter 7. 

6.5 PROBLEMS 

This problem section is brief because of the introductory nature of the chapter. 
Section 7.7 contains a number of interesting estimation problems. 

P.6.2 Estimator Structure 

Problem 6.2.1. Verify the result in (39). (Hint: use the original definition of Q,(t, u: A) 
and an eigenfunction expansion of the various terms.) 

Problem 6.2.2. Consider the vector version of the model in (2). The received waveform is 

r(t) = Sk 4 + w(t), Ti < t 5 Tf. 

The signal process s(t, A) is a vector, conditionally Gaussian process with conditional 
mean-value function m(t, A) and conditional covariance function matrix K,(t, u: A). 
The additive white Gaussian noise has a spectral matrix (N,/2)1. 

1. Find an expression for In A(A). 
2. Find an expression for Z&t) in terms of Canonical Realizations No. 1, 3, 4, 

and 4s. 
3. Derive the vector version of the bound in (44). 

Problem 6.2.3. In Section 6.1, we indicated that if a colored noise component was 
present it could be included in s(t, A). In this problem we indicate the colored noise 
explicitly as 

r(t) = ss(t, A) + n,(t) + w(t), Ti < t 5 Tf* 

The processes are zero-mean Gaussian processes with covariance functions K,,(t, u), 
K,,(t, u), and (&/2)8(t - u), respectively. 

1. Modify (16), (17), and (25) to include the effect of the colored noise explicitly. 
2. Can any of the above expressions be simplified because of the explicit inclusion 

of the white noise? 

Problem 6.2.4. The model in Problem 6.2.3 is analogous to a class B, detection problem. 
Consider the model 

dt> = s(t, A) + n,(t), Ti 5 t I Tf9 

where n,(t) does not contain a white component. 
1. Derive an expression for In R(A). 
2. Derive a lower bound on the variance of any unbiased estimate analogous to (44). 

(Hint: Review Section 3.5.) 

Problem 6.2.5. Assume that 

r(t) = Sk 4 + w(t), Ti I t < Tf, 
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with probabilityp, and that 

r(t) = w(t), Ti S t Ls Tf9 

with probability (1 - p), 
1. Derive an expression for In A(A). 
2. Check your answer for the degenerate cases when p = 0 and p = 1. 

P.6.3 Performance 

Problem 6.3.1. Assume that 
EL@ - A)] = B(A). WI 

Derive a lower bound on the variance of any estimate satisfying (P.1). 

Problem 6.3.2. Use the definition of B(A,, A) in (47) and (50) to verify that (54) is valid. 

Problem 6.3.3. Carry out the details of the derivation of (75). 
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