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Detection of Slowly 
Fluctuating Point Targets 

In this chapter we discuss the problem of detecting a slowly fluctuating 
point target in the presence of additive noise. The first step is to develop 
a realistic mathematical model for the physical situations of interest. In 
the course of that development we shall explain the phrases “slowly 
fluctuating” and “point” more explicitly. Once we obtain the mathe- 
matical model, the detection problem is directly analogous to that in 
Sections I-4.2 and I-4.3, so that we can proceed quickly. We consider 
three cases : 

1. Detection in white bandpass noise. 

2. Detection in colored bandpass noise. 

3. Detection in bandpass noise that has a finite state representation. 

In all three cases, we use the complex notation that we develop in detail 
in the Appendix. We begin by developing a model for the target reflection 
process in Section 9.1. In Section 9.2, we study detection in white bandpass 
noise. In Section 9.3, we study detection in colored bandpass noise. In 
Section 9.4, we specialize the results of Section 9.3 to the case in which the 
bandpass noise has a finite state representation. In Section 9.5, we study 
the question of optimal signal design briefly. 

9.1 MODEL OF A SLOWLY FLUCTUATING POINT TARGET 

In order to develop 
sonar system transmits 

our target model, we first a ssume 
a cosine wave continuously. Thus, 

that the radar/ 

%W = JF..cos act = J i Re [J Pt eioct], -oo<t<c;o. (1) 
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Now assume that there is a zero-velocity target located at some range R 
from the transmitter. We assume that the target has a physical structure 
that includes several reflecting surfaces. Thus the returned signal may be 
written as 

s,(t) = & Re (& z gi exp [ jmC(t - T) + OJ]. 
i=l 

(2) 

The attenuation gi includes the effects of the transmitting antenna gain, 
the two-way path loss, the radar cross-section of the ith reflecting surface, 
and the receiving antenna aperture. The phase angle Oi is a random phase 
incurred in the reflection process. The constant T is the round-trip delay 
time from the target. If the velocity of propagation is c, 

We want to determine the characteristics of the sum in (2). If we assume 
that the 0, are statistically independent, that the gi have equal magnitudes, 
and that K is large, we can use a central limit theorem argument to obtain 

s,(t) = JTRe {& b exp (jo,(t - T)]}, (4) 

where 8 is a complex Gaussian random variable. The envelope, 181, is a 
Rayleigh random variable whose moments are 

r 
(5) 

and 

The value of gb2 includes the antenna gains, path losses, and radar cross- 
section of the target. The expected value of the received power is 2P,ob2. 
The phase of d is uniform. In practice, K does not have to very large in 
order for the complex Gaussian approximation to be valid. Slack [l] 
and Bennett [2] have studied the approximation in detail. It turns out that 
if K = 6, the envelope is essentially Rayleigh and the phase is uniform. 
The central limit theorem approximation is best near the mean and is less 
accurate on the ta.il of the density. Fortunately, the tail of the density 
corresponds to high power levels, so that it is less important that our 
model be exact. 

We assume that the reflection process is frequency-independenr. Thus, 
if we transmit 

s,(t) = &Re [‘Fexp (@,t + jcut)], (7) 
we receive 

$(t) = h Re [&6 exp [j(a, + CO)@ - T)]]. (8) 
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We also assume that the reflection process is linear. Thus, if we transmit 

s,(t) = & Re [&&t)ejWct] 

Et 6 exp [ jw& - T)] s 00 
P( jw) exp [ jw(t - T)] 

nco 
- 

-a3 2?T 1 
= & Re [& d exp [ jo,( t - ~)]f(t - T)]. (10) 

Since 6 has a uniform phase, we can absorb the ejUc7 term in the phase. 
Then 

s,.(t) = & Re [JE, hy(t - r)eiwct 1 I . (10 

The function f(t) is the complex envelope of the transmitted signal. We 
assume that it is normalized: 

s 00 If(t nt = 1. (12) 
-a3 

Thus the transmitted energy is E,. The expected value of the received 
signal energy is 

& A 2E,ob2. (13) 

We next consider a target with constant radial velocity v. The range is 

R(t) = R, - vt. (14) 

The signal returned from this target is 

s?.(t) = J? Re [Jz 6f(t - r(t)) exp [jQt - T(t))]], 

where T(t) is the round-trip delay time. Notice that a signal received at t 
was reflected from the target at [t - (T(t)/2)]. At that time the target 
range was 

By definition, 

Rp) ++y. (16) 

7(t) = 
2R(t - T(t)/2) 

. (17) 
c 



Target Model 241 

Substituting (16) into (17) and solving for 7(t), we obtain 

2R,/c (2ulc)t 7(t) = - - - 
1 + v/c 1 + v/c l 

For target velocities of interest, 

Thus, 

V 
- << 1 . (19 
C 

2Ro 2v 2v 
T(t) cz - - - t a 7 - - t. 

C C C 
(20) 

Substituting (20) into (15) gives 

s,(f) = Jz Re [JG Sf( t - T + F t) exp [jw, (t + F t)]]. (21) 

(Once again, we absorbed the c~)~T term in 6.) We see that the target velocity 
has two effects: 

1. A compression or stretching of the time scale of the complex 
envelope. 

2. A shift of the carrier frequency. 

In most cases we can ignore this first effect. To demonstrate this, con- 
sider the error in plotting f(t) instead of f(t - (2vlc)t). The maximum 
difference in the arguments occurs at the end of the pulse (say T) and 
equals 2vT/c. The resulting error in amplitude is a function of the signal 
bandwidth. If the signal bandwidth is W, the signal does not change 
appreciably in a time equal to W-l. Therefore, if 

2vT 1 
<< 

C w 
or, equivalently, 

WT<<;, (2% 

(22) 

we may ignore the time-scale change. For example, if the target velocity 
is 5000 mph, a MIT product of 2000 would satisfy the inequality.? 

The shift in the carrier frequency is called the Doppler shift 

t There are some 
these problems in 

in which (23) is not sonar problems 
Section 10.6. 

20 
wDa cc)c c . ( 1 

satisfied. We shall comment on 

(24) 
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Using (24) in (21), and neglecting the time compression, we obtain 

sr(t) = &Re [& 6f(t - T) exp (jwCt + CO&]. -1 (29 
We shall use this expression for the received signal throughout our dis- 
cussion of slowly fluctuating point targets. We have developed it in 
reasonable detail because it is important to understand the assumptions 
inherent in the mathematical model. 

The next step is to characterize the additive noise process. We assume 
that there is an additive Gaussian noise n(t) that has a bandpass spectrum 
so that we can represent it as 

n(t) = & Re [Z(t)e’“c’]. (26) 
(This representation of the bandpass processes is developed in the 
Appendix.) Thus, the total received waveform is 

r(t) = d%$ Re (6f(t - 7) eXP (@bt -i-&Q)) -I- 6Re {ii(t) exp (jq)} 

or, more compactly, 

where 
r(t) = & Re [F(t)eimcf], 

F(t) A 6JE,f(t - 7)eiWDt + C(t). 

Up to this point we have developed a model for the return from a target 
at a particular point in the range-Doppler plane. We can now formulate 
the detection problem explicitly. We want to examine a particular value 
of range and Doppler and decide whether or not a target is present at that 
point. This is a binary hypothesis-testing problem. The received waveforms 
on the two hypotheses are 

r(t) = JS Re { [&hFJ( t - T)eioBf + fi( t)]eioct }, 

and 
(2W 

r(t) = &Re {ii(t)ejwcf}, 

Since we are considering only a particular value of 7 and CO, we can assume 
that they are zero for algebraic simplicity. The modifications for nonzero 
7 and cc) are obvious and will be pointed out later. Setting 7 and oD equal 
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r(t) = h Re {[k&f(t) + fi(t)]ei”c’), q < t 5 T”:H, (30) 

and 

r(t) = & Re [<(t)ei”““], q 5 t 5 T,:H,. (31) 

In the next three sections, we use the model described by (30) and (31) and 
consider the three cases outlined on page 238. 

Before we begin this development, some further comments on the model 
are worthwhile. All of our discussion in the text will use the Rayleigh 
model for the envelope 161. In practice there are target models that cannot 
be adequately modeled by a Rayleigh variable, and so various other 
densities have been introduced. Marcum’s work [8]-[lo] deals with 
no@uc~ting targets. Swerling [7] uses both the Rayleigh model and a 
probability density assuming one large reflector and a set of small reflectors. 
Specifically, defining 

the density given by the latter model is 

z p,(Z) = -2 e--Z’aa, 
% 

where ~~~ is defined in (6). Swerling [l 1 

W) 

] also uses a chi-square density 

-1 
e-KZ/2aa2 

9 z > 0. - (324 

The interested reader can consult the references cited above as well as 
[12, Chapter VI-51 and [13] for discussions of target models. 

Most of our basic results are applicable to the problem of digital 
communication over slowly fluctuating point channels that exhibit 
Rayleigh fading. Other fading models can be used to accommodate different 
physical channels. The Rician channel [14] was introduced on page I-360. 
A more general fading model, the Nakagami channel [ 151, [ 161, models 
151 as 

P,,,(X) = 
2m"X2m--l e-mx2i20a2 

vf4(2%?" 
9 x 2 0, (3% 

which is a generalization of (32~) to include noninteger XT. Various prob- 
lems using this channel model are discussed in [ 17]-[22]. 

We now proceed with our discussion of the detection of a slowly 
fluctuati .ng point target. 
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9.2 WHITE BANDPASS NOISE 

In this case, the complex envelopes of the received waveform on the 
two hypotheses are 

F(t) = JE,6f(t) + i?(t), 0 < t < 7’: H,, 

r”(t) = i?(t), 0 < t < T:H,, v 0 

where d is a zero-mean complex Gaussian random variable (E{ 1612} = 
20,~) and C(t) is an independent zero-mean white complex Gaussian 
random process, 

E[iqt)G*(u)] = N(-J(t - u). (3% 

The complex envelope f(t) has unit energy. Because the noise is white, 
we can . make the 

The first step i 
0 

.S 

bservati .on interval coinciden 
to find a sufficien t statistic. 

t with the signal duration. 
Since the noise is white, 

we can expand using any complete orthonormal set of functions and 
obtain statistically independent coefficients [see (A. 117)]. Just as in Section 
I-4.2, we can choose the signal as the first orthonormal function and the 
resulting coefficient will be a sufficient statistic. In the complex case we 
correlate r”(t) with $*(t) as shown in Fig. 9.1. The resulting coefficient is 

I s T 

& A i(t>f”(t) dt. 
0 

Using (34) in (36), 

(36) 

where i?, is a zero-mean complex Gaussian random variable (E{l$J2} = 
No). We can easily verify that F1 is a sufficient statistic. The probability 
density of a complex Gaussian random variable is given by (A.81). 

Fig. 9.1 Generation of complex sufficient statistic. 
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?* 0) 

Fig. 9.2 Correlation receiver (complex operations). 

The likelihood ratio test is 

[n(202& + N”)l - exp - [ ] RJ2/(2a,2E, + NJ] Ifi = 

Taking the logarithm and rearranging terms, we have 

- 2 7 &(& + 2a,*4 
IR I 1 

2, 
20& (Iv + ln (1 + F)) A y* (39) 

A complex receiver using a correlation operation is shown in Fig. 9.2. A 
complex receiver using a matched filter is shown in Fig. 9.3. Here 

where 
s T  

Fl = qu)h(T - u) du, (40) 
0 

h(u) = f*(T - u). (41) 

The actual bandpass receiver is shown in Fig. 9.4. We see that it is a band- 
pass matched filter followed by a square-law envelope detector and 
sampler. 

The calculation of the error probabilities is straightforward. We have 
solved this exact problem on page I-355, but we repeat the calculation 
here as a review. The false-alarm probability is 

PF = Pr [IhI2 > Y IHOII 

1 
- e-Z2’NoZ dZ d/T, 
TN0 

Fig. 9.3 Matched filter receiver (complex operations). 
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I  l 

r(t) Bandpass Square-law 
I+ matched t * envelope 1 

1 filter J 1 ,detecior J 

Fig. 9.4 Optimum receiver: detection of bandpass signal in white Gaussian noise. 

where we have defined 

Thus, 

Similarly, we obtain 

R, h Ze? 

--Y INO P,=e . 

(43) 

(44) 

P, = exp y  - 
2~7~~4 + No 

) =exp(-$------. (4% 

where 
ET A 20,2E, (46) 

is the expected value of the received signal energy. Combining (42) and 
(45) gives 

(47) 
As we would expect, the performance is only a function of &IN,, and the 
signal shapef(t) is unimportant. We also observe that the exponent of P, 
is the ratio of the expectation of I&i2 on the two hypotheses: 

(48) 

From our above development, it is clear that this result will be valid for 
the test in (39) whenever R, is a zero-mean complex Gaussian random 
variable on both hypotheses. It is convenient to write the result in (48) in a 
different form. 

A A E[IRd2 1 H,l - 1 E[I&l” 1 &I y- W&l2 1 &I 
- mu2 1 HOI = ~[IR,12 1 H”1 l 

(49 

Now we can write 
P,, = (PJ-J1+A. (50) 

For the white noise case, 

In the next section we evaluate A for the nonwhite-noise case. 
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Fig. 9.5 Optimum receiver for known Doppler shift. 

The modification to include non-zero T and wg is straightforward. The 
desired output is 

l&(7, @I2 = 

This could be obtained by passing the received waveform through a 

(52) 

filter 
whose complex impulse response is 

i;(u) = f*( T + 7 - z~)eiwDzL du, (53) 

then through a square-law envelope detector, and sampling the output at 

t T. = (54) 

Equivalently, we can use a complex impulse response 

h(u) = f*( -u)ejO~u &f (55) 
and sample the detector output at 

t = 7. (56) 
The obvious advantage of this realization is that we can test all ranges with 
the same filter. This operation is shown in Fig. 9.5. The complex envelope 
of the bandpass matched filter is specified by (55). In practice, we normally 
sample the output waveform at the reciprocal of the signal bandwidth. 
To test different Doppler values, we need different filters. We discuss this 
issue in more detail in Chapter 10. 

We now consider the case in which 5(t) is nonwhite. 

9.3 COLORED BANDPASS NOISE 

In this case, the complex envelopes on the two hypotheses are 

r”(t) = dE,6f(t) + t(t), Ti < t < T,:H,, 

r"(t) = ii(t), Ti < t < Tf:Ho. 
(57) 

- m 

The additive noise ii(t) is a sample function from a zero-mean nonwhite 
complex Gaussian process. It contains two statistically independent 
components, 

ii(t) A &(t) + G(t). w9 
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The covariance of A(t) is 

E[Z(t)fi*(u)] A &(t, u> = RJt, u) + N, qt - zl), Ti < t, u < T,. - - 

(5% 

Notice that the observation interval [Ti, TJ may be different from the 
interval over which the signal is nonzero. Any of the three approaches 
that we used in Section 1.4.3 (pages 1-287-I-301) will also work here. We 
use the whitening approach.? Let &,,(t, x) denote the impulse response 
of a complex whitening filter. When the filter input is ii(t), we denote the 
output as n”*(t), 

s Tf n”*(t) = h.&, m(a dx, q < t < Tf. - - 
Ti 

The complex impulse response hwu(t, x) is chosen so that 

E[Z*(t)E~(u)] = E h”,,(t, z)@,(u, Y)fi@)fi*(y> dx dy 
. 

- - W - 49 Ti < t, u < Tfe - - 
We define 

s 

Tfw 

r”*(t) = h.il,(t9 4@) dz, K<t<T, - - 

and 
Ti 

(60) 

(61) 

Ti s t < Tr. - (63) 

We may now use the results of Section 9.2 directly to form the sufficient 
statistic. From (36), 

Tr 
?I = 

s 
r”*( t>fg< t) dt 

Ti 

Tr Tfw T/ 

= 

s s 
dt h&t, x)?(x) dx 

s 

~~&9 Y)f*w &I* 
Ti T  Ti 

As before, we define an inverse kernel, 

(64) 

t The argument is parallel to that on pages 1-290-I-297, and so we shall move quickly. 
We strongly suggest that the reader review the above pages before reading this section. 
$ In Section I-4.3, we associated the dE with the whitened signal. Here it is simpler 
to leave it out of (63) and associate it with the multiplier g. 
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Fig. 9.6 Optimum receiver: bandpass signal in nonwhite Gaussian noise (complex 
operations) . 

Using (65) in (64) gives 

Defining 

we have 

The optimum test is 

The complex receiver is shown in Fig. 9.6, and the actual bandpass 

(66) 

(67) 

s Tr fl = ?(z)g*(z) dx. 
Ti 

(68) 

receiver is shown in Fig. 9.7. 
Proceeding as in Section I-4.3.1, we obtain the following relations : 

and 
s 

Tt 
&(t, x)&z, u) nx = d(t - u), q < t, u< T, (70) 

Ti 

Q-,<t, 21) = j$ [d(t - u) - h,,(t, u)], q < t, u < Tr, (70 
0 

Sample at 
Tf 

r(t) Bandpass Square-law 
> matched * envelope 

filter detector 
A-77 

, A HO 

(Filter is matched 
to aw 

Fig. 9.7 Optimum receiver: bandpass signal in nonwhite Gaussian noise. 
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where &,(t, u) satisfies the integral equation 

The function &,Jt, u) is the impulse response of the optimum unrealizable 
filter for estimating g,(t) in the presence of white noise G(t) of spectral 
height N,. Using (70) in (67), we have 

u 
f(t) = s 

Tf N 

k(4 4gw du, &<t<T, (73) 
Ti 

or 

u)g’(u> du + &g’(t), q < t < Tf. - - (74) 

This equation is just the complex version of (I-4.169b)J In Section I-4.3.6, 
we discussed solution techniques for integral equations of this form. All 
of these techniques carry over to the complex case. A particularly simple 
solution is obtained when i?,(t) is stationary and the observation interval 
is infinite. We can then use Fourier transforms to solve (73), 

For finite observation intervals we can use the techniques of Section I-4.3.6. 
However, when the colored noise has a finite-dimensional complex state 
representation (see Section A.3.3), the techniques developed in the next 
section are computationally more efficient. 

To evaluate the performance, we compute A using (49). The result is 

Tr 

A = Er 
ss 

r’<t)o;(t, u)f*(u) dt du 

Ti 

(76) 

or 

Notice that A is a real quantity. Its functional form is identical with that 
of d2 in the known signal case [see (I-4.198)]. The performance is obtained 

t It is important for the reader to identify the similarities between the complex case and 
the known signal case. One of the advantages of the complex notation is that it empha- 
sizes these similarities and helps us to exploit all of our earlier work. 
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(78) 

From (78) it is clear that increasing A always improves the performance. 
As we would expect, the performance of the system depends on the signal 
shape. We shall discuss some of the issues of signal design in Section 9.5. 

9.4 COLORED NOISE WITH A FINITE STATE REPRESENTATION? 

When the colored noise component has a finite state representation, we 
can derive an alternative configuration for the optimum receiver that is 
easy to implement. The approach is just the complex version of the 
derivation in the appendix in Part II, We use the same noise model as in 
w-9 . 

Z(t) = j&(t) + G(t)* (79) 

We assume that the colored noise can be generated by passing a complex 
white Gaussian noise process, fi( t), through a finite-dimensional linear 
system. The state and observation equations are 

i(t) = P(t)Z(t) + G(t)ii(t), (80) 

n”,(l) = C(t)Z(t) (81) 

The initial conditions are 

and 
E[Si(T,)] = 0 (82) 

E[Z(T$it(Ti)] = P,. (83) 

The covariance matrix of the driving function is 

E[ii(t)i?(a)] = Q&t - a). (84) 

In the preceding section we showed that the optimum receiver computed 
the statistic 

Tf 2 
1 A 

0- 
IS 

@&j*(z) dx 
I 

(8% 
Ti 

t In this section, we use the results of Section A.3.3, Problem I-4.3.4, and Problem 
I-6.6.5. The detailed derivations of the results are included as problems. This section 
can be omitted on the first reading. 
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and compared it with a threshold [see (69)]. The functiong’(t) was specified 
by 

From (81) we have 

&(t, u) = E[fi,(t)gyu)] = E[C(t)qt)z+(u)Ct(u)] 

= C(t)ii;,(t, up+(U). (87) 
Using (87) in (86) gives 

&(t, u)Ct(u)S(u) du + N&t), & 2 t 5 T,. (88) 

The performance was characterized by 

0 Tf 
A = Er 

s 
f(t)g’*(t) dt = Er 

s 
fu’(t)g(t) nt. 

Tt Ti 
(8% 

In this section we want to derive an expression for I, and A in terms of 
differential equations. These expressions will enable us to specify the 
receiver and its performance completely without solving an integral 
equation. We derive two alternative expressions. The first expression is 
obtained by finding a set of differential equations and associated boundary 
conditions that specify g’(t). The second expression is based on the 
realizable MMSE estimate of G,(t). 

9.4,l Differential-equation Representation of the Optimum Receiver 
and Its Performance: I 

We define 

Using (90) in (88) gives 

or 

q < t < Tfe - Y (92) 

$ Notice that e(t) is defined by (90). It should not be confused with &(t), the error 
covariance matrix. 
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Thus, if we can find c(t), we have an explicit relation for g’(t). By modifying 
the derivation in the appendix of Part II, we can show that e(t) is specified 
by the equations 

dm = F(t)&t) + E(tj@+(t);l(t), 
dt 

di(O = 
dt 

+ C+(Oe(t)&) - F+(t);i(t) - + C+(t>fl(t), (94) 
0 

O m = porn, (99 

and 
iv-2 = 0, (96) 

PO = &I. (97) 

This is a set of linear matrix eauations that can be solved numericallv. 
To evaluate A, we substitute 

A - - 51 
-L NO 

(90) into (89) to obtain 

- 
s 

Tj*(t)c(t)&t) dt 1 . Ti 
(Recall that we assume 

Tf N 

s. 
T IfWl” dt = 14 (99) 

The first term is the performance in the presence of white noise only. The 
second term is the degradation due to the colored noise, which we denote 
as 

Later we shall discuss how to designf(t) to minimize Adg. Notice that Adg 
is normalized and does not include the &/N, multiplier. 

We now develop an alternative realization based on the realizable 
estimate. 

9.4.2 Differential-equation Representation of the Optimum Receiver 
and Its Performance: II 

There are several ways to develop the desired structure. We carry out 
the details for two methods. 

The first method is based on a whitening filter approach. In Section 9.3, 
we used an unrealizable whitening filter to derive g(t). Now we use a 
realizable whitening filter. Let &,,(t, x) denote the impulse response of 



2.54 9.4 Colored Noise with a Finite State Representation 

the complex realizable whitening filter. When the filter input is fi(t), the 
output is a sample function from a white noise process. 

By extending the results of Problem I-4.3.4 to the complex case, we can 
show that 

L(t, 4 = -!- 
‘A 

( 1 No [so - x) - h,(t, ct)], (101) 

where &(t, 7: t) is the linear filter whose output is the MMSE estimate of 
j&(t) when the input is Z&) + G(t). The test statistic can be written as t 2 1 0 

= s C(t9 yv*(Y) dY 
Ti II 

(102) 

The receiver is shown in Fig. 9.8. Notice that the operation inside the 
dashed lines does not depend on r”(t). The functionfw,(t) is calculated when 
the receiver is designed. The operation inside the dashed lines indicates 
this calculation. 

A state-variable implementation is obtained by specifying h,(t, 7 : t) in 
terms of differential eauations. Because it can be interpreted as an optimum 

r ------d--w------- 

-t 

-- 

l 
1 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

\ ’ 
Conj. 

A 
. 

30 \A T 
L(t) 

* h,(t, T : t) . 
1 * 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

l- - - -w - - s - - - - - - - - - - - -  1 

Fig. 9.8 Optimum receiver realization using realizable whitening filters. 
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estimator of n”,(t), we can use (A. 159)-(A. 162). The estimator equation is 

d?(t) -= 
dt 

F&t) + tp(t)C+(t) ; [T(t) - C&t)], q 5 t, (103) 
0 

and the variance equation is 

d! (0 P -i 

dt 
w~~Pw + ~P(OE‘t(t) - fPw~+(t) 

with initial conditions 
g(q) = E&T,)] = 0 (105) 

and 
l$p(&) = E[%(T$+(TJ]. uw 

The estimate of A,(t) is 
ior = C(t)%(t). (107) 

Notice that this is the MMSE realizable estimate, assuming that Ho is true. 
Using (103), (107), and Fig. 9.8, we obtain the receiver shown in Fig. 9.9. 

The performance expression follows easily. The output of the whitening 
filter in the bottom path is f&t). From (76), E s TI 

A =- ; T IL(0l” dt* 
0 i 

(108) 

From Fig. 9.8 or 9.9 we can write 

wherefr(t) is the output of the optimum realizable filter when its input is 
f(t). Using (109) in (108), we have 

A 

From (100) we see that 

(110) 

We can also derive the optimum receiver directly from (85) and (92). 
Because this technique can also be used for other problems, we carry out 
the details. 
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An Alternative Derivation.7 This method is based on the relationship 

&O = %)6(t) + t,(t), Ti 5 t S Tf, (112) 

where z(t) and ET(t) are matrices that we now specify. Differentiating (112) and using 
(93)-(96), we find that E(t) must satisfy 

dZ(t) l- N 
dt 

= i!(t)E(t) + Z(t)&t) - N, C(t)ct(t)e(t)g(t) + &t)Qifit(t>, (11% 

with 
%(Ti) = PO, (114) 

which is familiar as the variance equation (104). [Thus, g(t) = ep(t).] The function 
t,(t) must satisfy 

&o 1 N 
dt 

= h)i&(t) + jy c(t)Ew)[f(t) - E(t)&(t)], (115) 
0 

with 
&(T& = 0. (116) 

This has the same structure as the estimator equation, except that T(t) is replaced by 
3c 1 t . 

In order to carry out the next step, we introduce a notation for c(t) and t(t) to 
indicate the endpoint of the interval. We write [(t, Tf) and fi(t, Tf). These functions 
satisfy (93)-(96) over the interval Ti 5 t < Tf. 

The test statistic is 

2 I* = ;(t)g#‘(t) dt 

1 
Tf 

= No T 
I s 

+)[$(7) - &)~(r)i&, Tf) - &)&)]* dr 2. (117) 
i 

To obtain the desired result, we use the familiar technique of differentiation and 
integration. 

Differentiating the terms in braces gives 

d 
‘;I; l -  

0 -  wm) -  Zl(&,(r)l” + 

We can show (see Problem 9.4.5) that the second term reduces to 

t This alternative derivation can be omitted on the first reading. 
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where g(t) is the state vector of the optimum realizable linear filter when its input is 
T(t). Using (120) in (119) and the result in (118), we obtain 

1 I,= - I s Tf 

No T  

[F(t) - E(t>i(t)][jlt) - E(t)&)]* dt 2. 

i 

(121) 

The receiver specified by (121) is identical with the receiver shown in Fig. 9.9. 

In this section we have developed two state-variable realizations for 
the optimum receiver to detect a bandpass signal in colored noise. The 
performance degradation was also expressed in terms of a differential 
equation. These results are important because they enable us to specify 
completely the optimum receiver and its performance for a large class 
of colored noise processes. They also express the problem in a format in 
which we can study the question of optimal signal design. We discuss 
this problem briefly in the next section. 

9.5 OPTIMAL SIGNAL DESIGN 

The performance in the presence of colored noise is given by (77). This 
can be rewritten as 

A = ET 
s 

Tfj;(t)g*(t) nt 
Ti 

= Er s [ T)(t) Ti +*(t) - ; j-p;#, u)f*(u) du] dt 
0 0 i 

f(t)h,*,(t, u)f*(u) dt du 1 . 

In the last equality, we used (99). The integral in the second term is just Adg, 
which was defined originally in (100). [An alternative expression for Ado 
is given in (11 l).] 

We want to choosef(t) to minimize Adg. In order to obtain a meaningful 
problem, we must constrain both the energy and bandwidth off(t) (see 
discussion on page T-302). We impose the following constraints. The 
energy constraint is 

s Tf CI 
If(t dt = 1. uw T 

i 
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The mean-square bandwidth constraint is 

3f 
hid Y 

2 
dt = 8’. 

. dt 

In addition, we require 
ma = f(T,) = 0 

to avoid discontinuities at the endpoints. 
The function that we want to minimize is 

J = 
ss 

f(t)&(t, u)f*(u) dt du + AE 
[s 

T’if(t)12 dt - 1 
Ti 1 Ti +a B 

where 2, and & are Lagrange 
we let 

Z( ) t 
and require that 

multipliers. To carry out the mmlmi 

=Jxt) + dw 

dJ 
ii e=*= 

0 

for allfE(t) satisfying (123)-( 125). Substituting (127) into (126) and carrying 
out the indicated steps, we obtain 

Re 
i 

Tt 

+ a, s Tk(sJ;c t) dt = 0. (129) 
Ti 

Integrating the last term by parts, using (125), and collecting terms, we 

Sincefe(t) is arbitrary, the term in the brackets must be identically zero. 
From (92) and (122), we observe that 

s Tf 
ii,*,(t, u)Jb*(u) du = [C(t)%(t)]* 

Ti 
when E = 0. (131) 
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We define 

We now have the following set of differential equations that specify j*,(t): 
.  

N 

PM = -4xLw - W&r), (133) 
. 

70 
1 N 

J =-- 
A 

PrW 9 
B 

(134) 
. 
&t) = P&t) + @t)Qtit(t)$t), (135) 
. 
- w = + Ct(t)C(t)&t) - l?(t)?& - + C+(t)&), 

0 0 

with boundary conditions 

A-(Ti) =.mT,) = 0, 

If the process state vector is II-dimensional, we have 2n + 2 linear 
equations. We must solve these as a function of & and & and then 
evaluate il, and 2, by using the constraint equations (123) and (124). 
Since (128) is only a necessary condition, we get several solutions that 
satisfy (133)-( 139) and (123)-( 125). Therefore, we must choose the solution 
that gives the absolute minimum. Baggeroer [3], [4] originally derived 
(133)-( 139) using Pontryagin’s principle, and carried out the solution for 
some typical real-valued processes. The interested reader should consult 
these two references for further details. 

Frequently we want to impose hard constraints on the signal instead of 
the quadratic constraints in (123) and (124). For example, we can require 

IfWl < A Ti < t < Tf. - - wo 

In this case we can use Pontryagin’s principle (cf. [S] or [6]) to find the 
equations specifying the optimal signal. 

The purpose of this brief discussion is to demonstrate how the state- 
variable formulation can be used to study optimal signal design. Other 
signal design problems will be encountered as we proceed through the text. 

9.6 SUMMARY AND RELATED ISSUES 

In this chapter we have discussed the problem of detecting the return 
from a slowly fluctuating point target in additive noise. The derivations 
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were all straightforward extensions of our earlier work. Several important 
results should be emphasized : 

1. When the additive noise is white, the optimum receiver is as shown 
in Fig. 9.4. The received waveform is passed through a bandpass matched 
filter and a square-law envelope detector. The output of the envelope 
detector is sampled and compared with a threshold. The performance is a 
monotonic function of E&V,, 

2. When the additive noise is nonwhite, the optimum receiver is as 
shown in Fig. 9.7. The only difference is in the impulse response of the 
matched filter. The performance is a function of A, 

Tf 

A = ET 
ss 

f(t)&(t, u)f”*(u> dt &I. (142) 
Ti 

Specific nonwhite noises will be studied later. 

3. When the colored noise has a finite-dimensional state representation, 
the optimum receiver implementation is as shown in Fig. 9.9. The advan- 
tage of this implementation is that it avoids solving an integral equation. 

There are several related issues that should be mentioned. In many 
radar/sonar systems it is necessary to illuminate the target with a number 
of pulses in order to achieve satisfactory performance. A typical trans- 
mitted sequence is shown in Fig. 9.10. Once again we assume that the 
Rayleigh reflection model developed in Section 9.1 is valid. We must now 
specify how the returns from successive pulses are related. There are three 
cases of interest. 

Fig. 9.10 Typical transmitted sequence. 
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In the first case, the target does not fluctuate during the time the 
entire sequence illuminates it. In this case we can write the received signal 
from a zero-velocity target as 

s,( t) = j? Re (8$&t - iTp - r)ej”‘ct}. (143) 

Notice that there is a single complex multiplier, 5. This model might be 
appropriate for a radar with a high pulse rep.etition rate and a target where 
small movements do not affect the return appreciably. Comparing (25) 
and (143), we see that this reduces to the problem that we just solved if we 
define 

N 
f(t) d Cx(t - iT,). (144) 

i=l 

In a white noise environment, the optimum receiver has a bandpass filter 
matched to the subpulse. The sampled outputs are added before envelope 
detection. The performance is determined by 

A ET iv(202&) --c - 
No N, ’ 

(145) 

where Ei is the transmitted energy in each subpulse. 
In the second case we assume that 161 has the same value on all pulses, 

but we model the phase of each pulse as a statistically independent, 
uniformly distributed random variable. This model might be appropriate 
in the same target environment as case 1 when the radar does not have 
pulse-to-pulse coherence. The optimum receiver for the 
in Problem 9.6.1. 

F broblem is derived 

4. the returns from In the third case, the target fluctuates enough so tha 
successive subpulses are statistically independent. Then 

s,.(t) = ,/2 Re (i&&t - iTP - T)eiwc’ . (146) 

The & are zero-mean, statistically independent, complex Gaussian random 
variables with identical statistics. This model is appropriate when small 
changes in the target orientation give rise to significant changes in the 
reflected signal. 

This model corresponds to the separable-kernel Gaussian signal-in- 
noise problem that we discussed in Section 4.2. The optimum receiver 
passes the received waveform through a bandpass filter matched to the 
subpulse and a square-law envelope detector. The detector output is 
sampled every Tp seconds, and the samples are summed. The sum is 
compared with a threshold in order to make a decision. 
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The performance is evaluated just as in Section 4.2 (see Problem 9.6.2). 
The performance for this particular model has been investigated exten- 
sively by Swerling (Case II in [7]). 

A second related issue is that of digital communication over a slowly 
fluctuating Rayleigh channel using a binary or Nary signaling scheme. 
Here the complex envelope of the received signal is 

r”(t) = JE,@,(t) + k(t), Ti < t ,< T,:H,, k = 1, . . . , M. 

(147) 
The optimum receiver follows easily (see Problem 9.6.7). We shall return 
to the performance in a later chapter. 

This completes our initial discussion of the detection problem. In the 
next chapter we consider the parameter estimation problem. Later we 
consider some further topics in detection. 

9.7 PROBLEMS 

P.9.2 Detection in White Noise 

SUBOPTIMUM RECEIVERS 

Problem 9.2.1. The optimum receiver in the presence of white noise is specified by 
(36) and (39). Consider the suboptimum receiver that computes 

7, = 

I 

Tf 

T(t);*(t) dt (W 
Ti 

and compares &I2 with a threshold y. The function c(t) is arbitrary. 
1. Verify that the performance of this receiver is completely characterized by letting 

A = Av in (50), where 

A A E[l;r,12 1 &I - E[lTvl2 1 &,I 
21- 

al’i,lz 1 N,l l 

(P.2) 

2. Calculate Av for the input 

3. The results in parts 1 and 2 give an expression for Au as a functional of z(t). Find 
the function Z(t) that minimizes A,. [This is the structured approach to the optimum 
receiver of (36) and (39).] 

Problem 9.2.2. Assume that 

elsewhere. 
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The complex envelope of the received waveform is 

%) = ~Z.f(t) + G(t), --<<<a. 

1. Plot the output of the matched filter as a function of time. 
2. Assume that instead of using a matched filter, we use a bandpass filter centered 

at cr),, whose complex envelope’s transfer function is 

Denote the output of this filter due to the signal as&t), and the output due to noise as 
Go(t). Define 

max I ibW12 
A,= t 

aI @&)I21 l 

Verify that this quantity corresponds to A, as defined in (P.2) of Problem 9.2.1. Plot 

as a function of UK What is the optimum value of WT? What is Acn in decibels at this 
optimum value? Is A,, sensitive to the value of WT? 

Problem 9.2.3. The complex envelope of the transmitted signal is 

N 

3c 1 t = a 2 E(t - iT,), 
i=l 

where 

elsewhere, 
and 

1. Plot the Fourier transform off(t). 
2. The matched filter for f(t) is sometimes referred to as a “comb filter.” Consider 

the filter response 

R{f] = 5 F{f- iW,}, 
. 

s=- M 

r 
l9 

S 

i$f} = IfI<; s 

and 
! 0, elsewhere. 

wp >> w,. 
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Assume that 

WP 
1, =- 
TP 

2 
W”=j+ 

P 

and that M is the smallest integer greater than T,/T,. 

(i) Sketch H( f  >. 
(ii) Find the degradation in A due to this suboptimum filter. 
(iii) Why might one use fl{ f } instead of the optimum filter? 

Problem 9.2.4. An on-off signal ing scheme operates over 
channels. The received waveforms on the two hypotheses are 

COMMUNICATION SYSTEMS 

two frequency-diversity 

r(t) = 1/E, Re {&,f(t)ejwlt + h,f(t)ejw2t> + n(t), 0 5 t 5 T:Hp 
r(t) = n(t), 0 5 t 5 T:H,, 

The multipliers bl and 8, are statistically 
random variables 

independent, zero-mean complex Gaussian 

E[h,bT] = E[b,g;] = 2ab2. 

The frequencies co1 and co2 are such that the signals are essentially disjoint. The total 
energy transmitted is E,. (There is E,/2 in each channel.) The additive noise n(t) is a 
sample function from a zero-mean, white Gaussian process with spectral height 
&12. 

1. Find the optimum receiver. 
2. Find Pn and Pp as a function of the threshold. 

3. Assume a minimum probability-of-error criterion and equal a priori probabilities. 
Find the threshold setting and the resulting Pr (E). 

Problem 9.2.5. Consider the model in Problem 9.2.4. Assume that the two channels have 
unequal strengths and that we use unequal energies in the two channels. Thus, 

r(t) = d?Re {h&f(t) ej~lt + 1/F2 b2fl(t)ejQ} + n(t), 0 55 t 5 T:H,, 

where 
El + E2 = E,. (P.0 

The received waveform on HO is the same as in Problem 9.2.4. The mean-square values 
of the channel variables are 

E[@] = 2o12 
and 

E[B,@ = 20~~. 
1. Find the optimum receiver. 
2. Find pD and P’ as functions of the threshold. 

3. Assume a minimum probability-of-error criterion. Find the threshold setting and 
the resulting Pr (E). 
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Problem 9.2.6. Consider the model in Problem 9.2.5. Now assume that the channel 
gains are correlated. BA 6”1 [I b”, 
Repeat parts 1-3 of Problem 9.2.5. 

Problem 9.2.7. In an on-off signaling system a signal is transmitted over N Rayleigh 
channels when HI is true. The received waveforms on the two hypotheses are 

r(t)=~~Re{~6iRI).‘“,“) +n(t), 0 5 t 2 T:H,, 

r(t) = n(t), 0 5 t 5 T:H,,, 

The channel multipliers are statistically independent, zero-mean, complex Gaussian 
random variables 

E rS,ggl = 2a,2Sii. 

The frequencies are such that the signal components are disjoint. The total energy 
transmitted is E,. The additive noise n(t) is a zero-mean Gaussian process with spectral 
height N0/2. 

1. Find the optimum receiver. 
2. Find p(s). 
3. Assume that the criterion has a minimum probability of error. Find an approxi- 

mate Pr (E). (Hint: Review Section I-2.7.) 

Problem 9.2.8. Consider the model in Problem 9.2.7. Assume that the transmitted 
energy in the ith channel is Ei, where 

N 

c Ei = E,. 
i=l 

Assume that the channel multipliers are correlated : 

E[“bb”t] = ihi. 
1. Find the optimum receiver. 
2. Find p(s). 

ALTERNATIVE TARGET MODELS 

Problem 9.2.9. Consider the target model given in (32a) and (326). Assume that the 
phase is a uniform random variable. 

1. Derive the optimum receiver. 
2. Calculate PO and PF. 
3. Assume that we require the same PF in this system and the system corresponding 

to the Rayleigh model. Find an expression for the ratio of the values of PO in the two 
systems. 
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Problem 9.2.10. Consider the target model in (32~). Repeat parts 1 and 2 of Problem 
9.2.9. 

P.9.3 Detection in Colored Noise 

Problem 9.3.1. Consider the receiver specified in (P.1) of Problem 9.2.1. The inputs on 
the two hypotheses are specified by (57)-(59). 

1. Verify that the results in part 1 of Problem 9.2.1 are still valid. 
2. Calculate Au for the model in (57)-(59). 

3. Find the function i(t) that minimizes As. 

Problem 9.3.2. Consider the model in (57)-(59). Assume that 

and that 

1 
-9 

1/l-- 
0 s t s Ts, 

II 1 t = S 

0, elsewhere, 

s&4 
2kP, =- 

a2 + k2 ’ 
--oo<cc,<m 

The observation interval is infinite. 

1. Find g, (7). 
2. Evaluate A0 as a function of E,, k, T,, P,, and NO. 
3. What value of T, maximizes A,? Explain this result intuitively. 

Problem 9.3.3. Assume that 

ii,(t) = n#) - jn2W, -m<t<a 

The function nl(t) is generated by passing ul(t) through the filter 

and the function n2(t) is generated by passing u2(t) through an identical filter. The 
inputs u](t) and u2(t) are sample functions of real, white Gaussian processes with unity 
spectral height and 

1. Find S&B). 
EbJt&,(t2)l = a&t1 - t2 - 4. 

2. Consider the model in (57)-(59) and assume that the observation interval is infinite. 
Find an expression for a realizable whitening filter whose inverse is also realizable. 

Problem 9.3.4. Assume that 

where the &(t) are known functions with unit energy and the a”, are statistically inde- 
pendent, complex Gaussian random variables with 

E[lai12] = 24 
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The observation interval is infinite. The model in (57)-(59) is assumed. 

1. Find g(t). Introduce suitable matrix notation to keep the problem simple. 
2. Consider the special case in which 

Ri(t) = f(t - ri)eioit, 

where ri and wi are known constants. Draw a block diagram of the optimum receiver. 

Problem 9.3.5. Assume that 

f(t) = f&i (t - iT,), (W 
i=l 

where 

and 
elsewhere, 

N 

Z’VI i = . 2 1 
i=l 

(P-3) 

Assume that we use the receiver in Problem 92.1 and that 

where 

G(t) = f  “u$(t - iT,), (P.4) 
i=l 

N 

Cl 1 vi2= 1. (P-5) 
i=l 

The model in (57)-(59) is valid and the observation is infinite. Define a filter-weighting 
vector as 

V = . (P.6) 

1. Find an expression for A, in terms of L i, Et, NO, and &(t, u). Introduce suitable 
matrices. 

2. Choose 7 subject to the constraint in (P.5) in order to maximize A,. 

Problem 9.3.6. The complex envelopes on the two hypotheses are 

r(t) = 1/E, bf(t) + &(t) + GCt)9 -m < t < mHl, 

r(t) = fi&) + w, --co < t < oo:H,. 

The signal has unit energy 

s 

00 
If( d? = 1. 

-a2 
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The colored noise is a sample 
spectrum S,(m), where 

function of a zero-mean complex Gaussian process with - s 00 dcc, 

-a3 
S,(o) 2n = 205 

The white noise is a zero-mean complex Gaussian process with spectral 
multiplier b is a zero-mean complex Gaussian random variable, 

The various random processes and random variables are all statistically independent. 

height No. The 

(W 

E[@j*] = 2ab2. (Jw 

1. Find the colored 
minimizes A as defined 

noi 
in 

se spectrum S,(o) that satisfies the constraint 
(76). Observe that A can also be written as 

in (P.3) and 

(Hint: Recall the technique in Chapter 11-5. Denote the minimum A as A,.) 
2. Evaluate Am for the signal 

3c t 
t 
) uemat, 2 0, = 

0, t < 0. 
3. Evaluate Am for the signal 

1 
1 

F{f} = e’ 
Ifl I w 

0, Ifl > w* 

Problem 9.3.7. Consider the same model as Problem 9.3.6. We want to design the 
optimum signal subject to an energy and bandwidth constraint. Assume that $(o) is 
symmetric around zero and that we require 

s 
co 

oF(j0) = 0, W) 
-ccl 

1. Verify that A depends only on the signal shape through 

2. Find the S?(U) subject to the constraints in (P.l) and (P.2) of this probiem and in 
(P.2) of Problem 9.3.6, such that A is maximized. 

3. Is your answer to part 2 intuitively correct? 
4. What is the effect of removing the symmetry requirement on s,(o) and the require- 

ment on p( jo) in (P.l)? Discuss the implications in the context of some particular 
spectra. 

Problem 9.3.8. Consider 
of the desired signal is 

the model in Problem 9.3.5. Assume that the complex envelope 

U 

f&t) = f(t)ei*dt 
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and that ? is chosen to maximize Au for this desired signal. Assume that I&@, U) is a 
stationary process whose spectrum is 

1. Assume that N = 2. Find & and u2. 
2. Assume that 

fi = 1 
and N = 3. Find cl, c2, and &. 

P.9.4 Finite-state Noise Processes 

Problem 9.4.1. Consider the model in (79)-(92). Derive the results in (93)-(96). Hint.- 
Read Sections A.4-A.6 of the Appendix to Part Il. 

Problem 9.4.2. Assume that ii,(t) has the state representation in (A.137)-(A.140). Write 
out (93)-(96) in detail. 

Problem 9.4.3. Assume 
out (93)-(96) in detail. 

that e,(t) has the state representation in (A.1 W-(A .153). Write 

Problem 9.4.4. Consider the model in Section 9.4.2. Assume that k,(t) is a complex 
Gaussian process whose real and imaginary parts are statistically independent Wiener 
processes. Find the necessary functions for the receiver in Fig. 9.9. 

Problem 9.4.5. Verify the result in (120). 

Problem 9.4.6. Consider the model in Section 9.4.2. Assume that 

n”,(t) = 2 i&(t)f(t - -ri)eiait, 
i=l 

where the b,(t) are statistically independent, complex Gaussian processes with the state 
representation in (A.1 37)-(A.140). Draw a block diagram of the optimum receiver 
in Fig. 9.9. Write out the necessary equations in detail. 

P.9.5 Optimum Signal Design 

Problem 9.5.1. Consider the optimum signal design problem in Section 9.5. Assume that 

s&4 
2a 

=- 
co2 + a2 ’ 

--oo<CO<oO. 

Write the equations specifying the optimum signal in detail. 

Problem 9.5.2. The optimal signal-design problem is appreciably simpler if we constrain 
the form of the signal and receiver. Assume that S<t) is characterized by (P.l-P.3) in 
Problem 9.3.5, and that we require 

20 = m 
[see (P.4)-(P.5) in Problem 9.351. 

1. Express A,, in terms of the & Et, N,, and l&(t, u). 
2. Maximize AZ, by choosing the & optimally. 
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3. Assume that 
j&(t, u) = e--“lt-u 1 

and N = 2. Solve the equations in part 2 to find the optimum value of A and A. 

4. Consider the covariance in part 3 and assume that N = 3. Find the optimum 
values of fl, 3s, and 3s. 

Problem 9.5.3. Consider the generalization of Problem 9.5.2, in which we let 

3 i- - & ejqt, 

where the & are complex numbers such that 

and the coi may take on values 

The remainder of the model in Problem 9.5.2 is still valid. 

1. Express A,, in terms of f f  , mi, Et, NO, and K,(t, I(). 
2. Explain how the cc)$ should be chosen in order to maximize A,,. 
3. Carry out the procedure in part 2 for the covariance function in part 3 of 

Problem 9.5.2 for N = 2. Is your result intuitively obvious? 

Problem 9.5.4. Consider the models in Problems 9.3.5 and 9.5.2. Assume that v”is 
chosen to maximize AV. Call the maximum value Au,. 

1. Express AVO as a function of?, Et, NO, and &(t, u). 

2. Find that value of? that maximizes AVO. 
3. Consider the special case in part 3 of Problem 9.5.2. Find the optimum f  and 

compare it with the optimum fin part 3 of Problem 9.5.2. 
4. Repeat part 3 for N = 3. 

P.9.6 Related Issues 

MULTIPLE OBSERVATIONS 

Problem 9.6.1. The complex envelopes on the received waveforms on the two hypotheses 
are 

i(t) = 

J 
${ll( Kit - iT,)ejei + G(t), --oo<t<m, 

i = 

‘Z(t) = l?(t), --<<<moo, 

1 

ii(t) = 1/T,’ 
0 I t I: T,, 

0, elsewhere. 
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The multiplier @I is a Rayleigh random variable with mean-square 
are statistically independent, uniform random variables. 

value 2ab2. The & 

1. Find the optimum receiver. 
2. Evaluate PF. 
3. Set up the expressions to evaluate PD. Extensive performance results for this 

model are given by Swerling [7], [lo]. 

Problem 9.6.2. Consider the target model in (146). Review the discussion in Section 
4.2.2. 

1. Draw a block diagram of the optimum receiver. 
2. Review the performance results in Section 4.2.2. Observe that fixing s in the 

~BP,SK(S) expression fixes the threshold and, therefore, PF. Fix s and assume that 

is fixed. Find the value of K that minimizes PBS&S) as a function of s. Discuss the 
implications of this result in the context of an actual radar system. 

Problem 9.6.3. Consider the model in Problem 9.6.1. Define 

and assume that z has the probability density given in (32b). 

1. Derive the optimum receiver. 
2. Evaluate PF. 
3. Set up the expressions to evaluate PD. Results for this model are given in [7] 

and [lo] (Case III in those references). 

Problem 9.6.4. Consider the model in (146). Write 

Assume that the Oi are statistically independent random variables with a uniform prob- 
ability density, Assume that each 

Xi ~ ldi12 

has the probability density in (326) and the xi are statistically independent. 

1. Derive the optimum receiver. 
2. Evaluate PF. 
3. Set up the expressions to evaluate PD. See [7] and [lo] for performance results 

(Case IV in those references). Chapter 11 of [23] has extensive performance results 
based on Swerling’s work. 

COMMUNICATION SYSTEMS 

Problem 9.65 The complex 
communication system are 

received waveforms on the two hypotheses in a binary 

T(t) = dii$~(t)ejwAt + i?(t), 0 < t 5 T:H,, 

T(t) = z/E, bf(t) + G(t), O<t<T:H,, 
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where WA is large enough for the two si gnal components to be orthogonal. 
eses are equally likely, and the criterion is minimum probabili ty of error. 

The hYP” th- 

1. Draw a block diagram of the optimum receiver. 
2. Calculate the probability of error. 

Problem 9.6.6. The complex received waveforms on the two hypotheses in a binary 
communication system are 

F(t) = z/E, bfl(t) + i?(t), 0 < t < T:H,, 

F(t) = 1/E, 63()(t) + C(t), Ojt<T:H,, 

1. Draw a block diagram of the optimum receiver. 
2. Calculate the probability of error. 

Problem 9.6.7. Consider the model in (147) and assume that 

The hypotheses are equally likely, and the criterion is minimum probability of error. 

1. Draw a block diagram of the optimum receiver. 

2. Use the union bound on pages 1-263-I-264 to approximate Pr (E). 

(Comment: The reader who is interested in other communications problems should 
look at Sections P.4.4 and P.4.5 in Part I (Pages 1-394-I-416). Most of those problems 
could also be included at this point.) 
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