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10

Parameter Estimation:
Slowly Fluctuating Point Targets

At the beginning of Chapter 9, we developed a model for the return
from a slowly fluctuating point target that was located at a particular
range and was moving at a particular velocity. The received signal in the
absence of noise was

s(f) = V2 Re [VE, bf (t — 7)e’®»1]. (1)

In the detection problem we assumed that = and wp, were known, and made
a decision on the presence or absence of a target. We now consider the
problem in which 7 and wy, are unknown, nonrandom parameters that we
want to estimate.

Since the chapter is long, we briefly describe its organization. In Section
10.1 we derive the optimum receiver and discuss signal design qualitatively.
In Section 10.2 we analyze the performance of the optimum receiver. We
find that a function called the ambiguity function plays a central role in the
performance discussion. In Section 10.3 we develop a number of properties
of this function, which serve as a foundation for the signal design problem.
In Section 10.4 we investigate the performance of coded pulse sequences.
In Section 10.5 we consider the situation in which there are interfering
targets in addition to the desired target whose parameters we want to
estimate. Finally, in Section 10.6, we summarize our results and discuss
several related topics.

10.1 RECEIVER DERIVATION AND SIGNAL DESIGN

The target reflection model was discussed in Section 9.1, and the
received signal in the absence of noise is given in (1). We assume that the
additive noise is white bandpass Gaussian noise with spectral height

275



276 10.1 Receiver Derivation and Signal Design

Ny/2. We shall assume that the observation interval is infinite. For nota-
tional simplicity we drop the subscript D from the frequency shift. Thus,
the complex envelope of the received waveform is

A1) = BVE f(t — e + W(t), —o0<1t< o, )
The multiplier, b, is a zero-mean complex Gaussian random variable,
E[|b*] = 20,2 A3)

The complex signal envelope is normalized as in (A.15), so that E, is the
transmitted energy. The average received signal energy is

E, = 20,2E,. 4
The complex white noise has a covariance function
Ko(t,u) = Ngo(t —u), —oo<t,u< oo. (5)

The parameters 7 and w are unknown nonrandom parameters whose
values we shall estimate.

The first step is to find the likelihood function. Recalling from Chapter
1-4 the one-to-one correspondence between the likelihood function and the
likelihood ratio, we may use (9.36), (9.38), and (9.39) to obtain the
answer directly. The result is

1 E >
In Ay(r, w) = — ———{|L(7, 0)|?}, 6
(7, @) N0N0+Er{| (7, w)|*} (6)
where

I(r, ) = f " HOFHt — )e ! dt. )

The coefficient in (6) is of importance only when we compute the
Cramér-Rao bound, and we can suppress it in most of our discussion.
Then we want to compute

In A(r, w) = |L(r, 0)|? ®)

as a function of 7 and w. The values of = and w where this function has its
maximum are 7, and &,,. Because we are considering only maximum
likelihood estimates, we eliminate the subscript in subsequent expressions.

We now must generate In A(r, w) for the values of 7 and w in the
region of interest. For any particular w, say w,, we can generate In A(r, w,)
as a function of time by using a bandpass matched filter and square-law
envelope detector (recall Fig. 9.5). For different values of @ we must use
different filters. By choosing a set of w; that span the frequency range of
interest, we can obtain a discrete approximation to In A(r, w). For the
moment we shall not worry about how fine the frequency grid must be in
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order to obtain a satisfactory approximation. The processing system is a
bank of matched filters and square-law envelope detectors as shown in
Fig. 10.1. We now want to investigate the properties of the output of the
processor. For simplicity, we view it as a continuous function of = and w.

Let us assume that the actual delay and Doppler shift are 7, and w,,
respectively. (Recall that 7 and w are the variables in the likelihood
function.) Then we may write

L(r, w) = f THOTHE = Dt

= [ WE B — m)es + w0l — e rar,  ©)

or

L(r, w) = JE, 5fwf(t — )Xt = Tl @ gy

+ f "WOfH = otdn (10)

To simplify this expression we define

TI =T = To (11)
0 =0 — w, (12)

and
fi(t, ) =fw w(O)f¥(t — r)e"@tdt. (13)

The effect of (11) and (12) is to shift the origin to the point in the =, w
plane where the target is located. This is shown in Fig. 10.2. Using (11)-(13)
in (10), we have

)

+ 2 Re {\/E b ( fwf*(t - ft—7+ T’)e""“"tdt\’ i*(r, w)

In A(’T, w) = E, |5|2 { fwf(t _ T)f‘*(t —r 4+ T:)ejw’tdt

+ |ii(r, w)[. (14)

The first term in (14) is due entirely to the signal and is the only term that
would be present in the absence of noise. By making the substitution

!

r
=t -, 15
2= 7-+2 (15)
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Fig. 10.2 Coordinate systems in the T, w plane.

we see that it is not a function of 7 and w. We denote the term in braces

as (7', '),
) ’ ’ 2
f_wf(z — %)f* (2 + 7_'2_) ea‘m’z dz

It corresponds to a scaled (by E, |5|2) version of the output of the receiver
in the absence of noise.

We define the function inside the magnitude signs as the time-frequency
autocorrelation function of f(t) and denote it by ¢(7’, ’),}

(', w') &

. (16)

é(', ) Af_:f‘ (t - g—) 7* (t + 72—,) e’ dt. (17)

It is a measure of the degree of similarity between a complex envelope and
a replica of it that is shifted in time and frequency. Clearly,

b(r', o) = |$(', )P (18)

The function 6(7’, w’) was introduced originally by Ville [1] and is referred
to as the ambiguity function. Later we shall see why this is an appropriate
name. It is sometimes referred to as Woodward’s ambiguity function
because of his pioneering work with it [8], [60].

Because f(t) is normalized it follows that

$(0,0) = 1. (19)
From the Schwarz inequality,
]¢(T,s C‘)')I < ¢(0’ 0) =1 (20)

t There is a certain degree of choice in defining the time-frequency autocorrelation
function, and various definitions are used in the literature.
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and
0(r', ) < 6(0,0) = 1. @1

Thus, the output of the receiver is a surface in the 7, w plane that
contains three components. The first is 6(+', "), which is a positive
function whose maximum value is at that point in the plane where the
target is located. The second and third terms are due to the additive noise.
In a moment, we shall consider the effect of these two terms, but first we
look at 6(+', ") in more detail.

To get some feeling for the behavior of 6(r, w) and ¢(r, w) for some
typical signals, we consider several examples.

Example 1. Single Rectangular Pulse. Let f(¢) be a real rectangular pulse,

: I <t< T
f(t) = 7:7-', E 2’ 22)
0, elsewhere.
Then
1Tt (1) fsin (@T12) = (/D)
$(r, 0) = T»L(T_m,e’ tdt = (1 - T)( (@T[2)(1 — (|7]/T)) ) TsT,
o, elsewhere,
(23)
and
| Y (sin [@T12(1 — (T <T
b(r, @) = T)\"@mpa -y ) T @

0, elsewhere.

The magnitude of the time-frequency autocorrelation function is shown in Fig. 10.3.
(Actually we show some cuts through the surface along constant = and constant  lines.)
Notice that the function is symmetric about both axes.

|é(7, w)]|

Fig. 10.3 Magnitude of the time-frequency correlation function for a rectangular pulse.
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Fig. 10.4 Equal-height contours of ambiguity function of rectangular pulse.

A convenient method of representing the ambiguity function is shown in Fig. 10.4.
The curves are equal-height contours of 6(r, w). Notice that the r-axis and w-axis
are scaled by factors of 71 and 7, respectively. Notice also that the ambiguity function
has a single peak whose width along the r-axis is directly proportional to T and whose
width along the w-axis is inversely proportional to 7.

Before considering a second example it is worthwhile discussing quali-
tatively how the other two terms in (14) affect the estimate of 7 and w in a
typical realization of the experiment. In order to see this, we first consider
a vertical cut along the 7-axis of In A(r, w) as shown in Fig. 10.5a. From
(14) we see that the function consists of E, |5|2 6(r, 0) plus the contribu-
tions due to noise indicated by the second and third terms. In Fig. 10.55,
we show a top view of In A(7, w). The shaded surface is the E, 162 6(r, w)
from Fig. 10.4. The contour lines are the equal-height loci of In A(r, w).
The values of = and w where the surface has its maximum are #,,; and @ ;.
We see that in the absence of noise we always choose the correct values.
There will be an error if the noise contributions at some 7" 5 0 and w’ # 0
are large enough to move the peak of the total function away from the
origin. Therefore, in order to minimize the errors, we should try to find
an f(r) whose ambiguity function is one at the origin and zero elsewhere.
An ideal 6(r, w) function might be the one shown in Fig. 10.6a. We
expect that it will be difficult to find an f(¢) that has such a discontinuous
ambiguity function. However, a close approximation such as is shown in
Fig. 10.6b might be practical.

Thus, it appears that we want to choose f(f) so that 6(r, ) is a narrow
spike. From (24) or Fig. 10.3, it is clear that, with a rectangular pulse,
we can make the peak arbitrarily narrow in either direction (but not both)
by varying T.

Since the rectangular pulse does not lead to the ambiguity function in
Fig. 10.6b, we shall try some other signals.
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Fig. 10.7 Gaussian pulse.

Example 2. Simple Gaussian Pulse. A pulse that frequently serves as a useful analytic
idealization is the Gaussian pulse of Fig. 10.7.

1\ 12
ft) = (;772) exp (— 2——7..2), -0 <t < o0, 25)

The effective duration is proportional to T. The time-frequency autocorrelation function

1S
® /1 U (t—7/22 @+7/22
¢(7, w) = f (17_7'2) exp [— V&) - Tore +]wt:|. (26)

Completing the square and integrating, we obtain

#(7, w) = exp [—i (’722 + Tzwz)]. (1))
The ambiguity function is
6(r, w) = exp [—%(% + Tzwz):]. (28)

The equal-height contours of 6(r, w) are ellipses, as shown in Fig. 10.8. Just as in

Example 1, a single parameter, the pulse duration, controls both the range and Doppler
accuracy.

These two examples suggest that if we are going to improve our range
and Doppler estimates simultaneously, we must try a more complicated
signal. Apparently, we need a signal that contains several parameters
which we can vary to optimize the performance. We shall consider two
broad classes of signals.

Coded Pulse Sequences. This class of signals is constructed by operations
on single subpulse, @(f). A commonly used subpulse is the rectangular
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Fig. 10.8 Equal-height contours for ambiguity function of Gaussian pulse (normalized
axes).
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pulse in Example 1,

1L T, T
a(t) = JT' 2 - 2 (29)
0, elsewhere.

The subpulses are delayed, amplitude-weighted, frequency-shifted, phase-
shifted, and then summed. Thus,

N
f(t) = ¢ > a,i(t —nT)exp [j(w,t + 0,)]. (30)
n=1
The constant ¢ normalizes f(¢). We discuss a simple example of this class
of signal in Example 3. In Section 10.4, we study the class in detail.

Modulated Analog Waveforms. This class is obtained by modulating
the signal in amplitude and/or frequency to achieve the desired properties.
A simple example of this class of signals is given in Examples 4 and 5.

We now derive the ambiguity function for several useful signals. These
examples give us some feeling for the general properties that we might
expect.

Example 3. Pulse Train with Constant Repetition Rate. Consider the sequence of rec-
tangular pulses shown in Fig. 10.9. It is characterized by the pulse duration 7, the
interpulse spacing T, and the total number of pulses (2n + 1). This sequence is fre-
quently used in radar and sonar systems for the following reasons:

1. It is easy to generate.
2. The optimum receiver is easy to implement.
3. The parameters can be varied to match different operating conditions.

We assume that T &< T. The interpulse spacing is not necessarily a multiple of 7. The
duration of the entire sequence is Ty,

T, A 2nT, + T. Gn

Denoting the pulse as u(¢) [see (29)], we can write the complex envelope of the trans-
mitted signal as

f) = m _Z_n it — KT,). (32)
Notice that our model assumes that the target does not fluctuate in the T, seconds
during which the signal illuminates it.
We now derive ¢(r, w) and 6(r, w). First, we consider values of || < T. Using (32)
in (17) gives
kT ,+3(T—|7])

1 k=n - 7\ . r
¢(r, w) = ((Z—n'_i_—l—ﬁ.)k___z_n J H((t - kTp - 5) u* (t - kTp + 5)

kT ~%(T~I])
X ejotdt 7 LI17]. (33)



286 10.1 Receiver Derivation and Signal Design

fit)
1 %
“'((2n+1)T)
—s T e
N
18 0T N \& N t
2 T ! !
| P 7
Tg=2nTp+ T

Fig. 10.9 Sequence of pulses.

Letting
z=1—kT, (34)
Tle—|1ll2
1 kin joh T u ) Tei d
= |- ok T ), —_—— — wz .
¢(r, w) @n+ T ), 2, e ulz 3 u*{z + 3 e 2 (35)
—Tl2+]rl/2

The term in the braces is ¢ ;(r, w). The sum is a finite geometric series. Thus, (35) reduces
to

b(r. ) 1 {sin [w(n + HT,]

= a(r, @), || <T. (36)
@n+1) | sin [0T,/2] }qs“ bl

We see that the subpulse characteristics only enter into the last term. The bracketed
term is a function of w only and is determined by T , the pulse repetition rate, and n,
the number of pulses. The bracketed term is shown in Fig. 10.10a. We see that the
first zero is at

27 2n
w=(—2n+l)T,’C¥Td, (373)
and the subsidiary peaks occur at
2
=7 (37b)

In Fig. 10.10b we show ¢;(0, w) for a rectangular pulse. The two plots indicate the effect
of the parameters T, T, and T,. Recalling that

T,>T,»T, (370)

we see that the shape of ¢(0, w) is controlled by the term in Fig. 10.10a. Thus, the
width of the main peak decreases as the over-all duration T} increases. Subsidary peaks
occur at intervals of 1/T, on the frequency axis. When w = 0, the bracketed term equals
(2n + 1), so that

$(r,0) = ¢5(r,0), |7|<T. (38

Next we consider values of 7 > T. There is no overlap until + = T, — T. At this
point, the situation is similar to that at = —T, except that there is one less pulse
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Fig. 10.106 Plot of | ;(0, w)| for rectangular pulse.

overlap. Then, for a rectangular pulse,

{ 3 e_]_ka’}{sin [(T/2)(1 = |r = T,)/T)]
k=-—n+1

$(r, @) = s

s - T, T.
2n + 1 } Iz ol <

(39)

On the r-axis we have the same expression as in (38) except for a scale factor and a
shift,

2n
$(7,0) = (271—1) pa(r — T, 0), [r—=T,| <T (40)
A similar result follows for larger 7. Every T, seconds there is a peak, but the magnitude
is reduced. A different representation of the ambiguity function 6(r, w) is shown in
Fig. 10.11. This type of plot was introduced by Siebert [9]. The dark shaded areas
indicate regions where the height of 6(r, w) is significant (usually, the border corresponds
to 6(r, w) = 3). In the light shaded areas 6(r, w) is small, but nonzero. In the unshaded
areas 0(r, w) is zero.

Several new features of the signal design problem are indicated by
Example 3:

1. We can decrease the width of the major peak in the frequency
(Doppler) direction by increasing T, (or n).
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Fig. 10.11 An approximate contour plot of 8(t, w) for pulse train
[from [9] and [9.12]].

2. We can decrease the width of the major peak in the time (range)
direction by decreasing T. (This corresponds to an increased bandwidth.)
Thus, by allowing more parameters in our signal design, we can obtain an
ambiguity function whose major peak is narrow in both the range and
Doppler direction.

3. This particular signal accomplishes this at the cost of including
subsidiary peaks. It is easy to see the effects of these subsidiary peaks. A
small noise contribution can cause the fotal value at a subsidiary peak to
exceed the value at the correct peak. The importance of these subsidiary
peaks depends on our a-priori knowledge of the area in the =,w plane in
which the target may be located. Two cases are shown in Fig. 10.12. In the
first case, the set of subsidiary peaks lies outside the area of interest for all
possible 7, w. Thus, they will not cause any trouble. In the second case,
they are inside the area of interest, and even in the presence of weak noise
we may choose the wrong peak.

This discussion illustrates two of the issues that we encounter in a
performance discussion. The first is local accuracy (i.e., given that we are
on the correct peak, how small will the error be?). The second is global
accuracy (i.e., how often will there be large errors?). This is, of course, the
same phenomenon that we encountered in the PFM and PPM problems of
Chapter I-4 and in the angle-modulation problems of Chapter II-2.
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Fig. 10.12 Regions in which target can be located.

Before studying these two issues quantitatively, it is interesting to look
at the ambiguity function for several other signals.

We next consider an example of a modulated analog waveform. All of our
signals up to this point were obtained by amplitude-modulating a constant
carrier. In order to introduce more freedom into the signal design, we now
consider the possibility of frequency-modulating the carrier. Specifically,
we consider a linear frequency sweep, i.e.,

$5 (1) = be*. (41)
[Recall that ¢7(?) is the phase of /(7).]
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Instead of computing the ambiguity function for a particular pulse
directly, we use an interesting property for arbitrary f(r).

Property 1. 1f
i) ~ ¢(7, w) ~ O(r, w), (42a)t
then
Folt) A Fi(t) e ~ (7, & — 2b7) ~ O(7, @ — 2b7).  (42b)

This result follows directly from the definitions in (17) and (18).
bir.o)=[" A1) 72(1+ Z)era
- 2 2
=["(=Da(+9)
X exp [jb( g) ( )+1th dt

= f:j; (t - g) e+ g-) exp [jtlw — 2br]] dt
= ¢\(r, 0 — 2b7). (43)

Thus, a linear frequency sweep shears the ambiguity diagram parallel to
the w-axis. We now apply this property to the Gaussian pulse in Example 2.

Example 4. Gaussian Pulse with Linear Frequency Modulation. Now

Ui
10= () oo |~ (s -2)*] (#42)

Then, from (28) and (42b), we obtain
0, ) = exp [ = 1 (5 + T2@ — 207
T, W) = exp 5\ 72 T . (44b)
The equal-height contour lines are the ellipses
1 1
E[Tzwz — 4bT%w7 + (4b2T2 + 7,—2) ‘rZJ =c2 45)

For convenience in plotting, we introduce F, w_t, and t—é: which are defined in the
Appendix. For the signal in (43),

eI (46)
2
=bT

)

t The symbol ~ means “‘corresponds to.”
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Fig. 10.13 Contour of 6(t, w) for Gaussian pulse with linear FM.

and

— 1

w? = et 262T2, (48)
Then (45) reduces to

120? — 2wtwr + w?r? = 2, 49)

In Fig. 10.13 we have plotted (49) for the case when ¢ = 1. The major axis is at an
angle «, defined by

o = }tan"1 46 = } tan?1 —2—(;1— la] < 7. (50)
1 — (1/4T% + b¥)[n? 12— 0¥ @n2)’ '

Along the r-axis,

6(0, 7) = exp [—w?2] = exp [— (i—lﬁ + 2b2T2)t2]. (51a)
Similarly,
2,,2
8(w, 0) = exp [—r2w?] = exp [— T2w :I (51b)

We see that the width on the r-axis is inversely proportional to the root-mean-square
signal bandwidth and the width on the w-axis is inversely proportional to the root-mean-
square signal duration. Thus, by increasing both b and 7, we decrease the width on both
the 7- and w-axes simultaneously. Therefore, we can accurately measure the range of
a target with known velocity, or we can accurately measure the velocity of a target with
known range. However, if both parameters are unknown there is an ambiguous region
in the 7, w plane. For positive values of b, the ambiguous region lies in the first and third
quadrants, as shown in Fig 10.13. Whether or not this ambiguity is important depends
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Fig. 10.14. Plot of |¢(t, 0)|: rectangular pulse with linear FM (bT2 = 100).
on the physical situation (i.e., can targets occur along this line inthe 7, @ plane?). One

way to resolve the ambiguity is to transmit a second pulse with the opposite frequency
sweep.

A similar result follows for the rectangular pulse with a linear frequency
modulation.

Example 5. Rectangular Pulse, Linear Frequency Modulation.

— eidt?, _Zgysz,
Jo={VvVT 2 2 (52)
0, elsewhere.

Using (23) and (42b), we have

(1 _ lj) sin (((w — 2b7)2)(T — |7]))
|¢(r, w)| = T

(0 — 2b7)20(T — |7]) |’ T<h (53)
0, elsewhere.
Along the r-axis,
: I7]\ sin [br(T — |7])] I < T
-\, T s
l(r, O)] = T) br@=lrh 9
0, elsewhere.
Along the w-axis,
i T/2
[$(0, w)| = s———-—mw(;f/z/ )I (55)

In Fig. 10.14, we have plotted |¢(r, 0)| for the case when bT? = 100. We see that the
first zero is near the point

T 4\l 2 1
= — — —— O e 5 (56
K 2[‘ (1 bﬂ” T W, )

20Wy A 26T (57

where
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is the range of the frequency sweep. Thus, as we would expect from our discussion of the
Gaussian pulse, the range estimation accuracy for a known velocity target is proportional
to the signal bandwidth. Once again there is a region of ambiguity in the first and third
quadrants for positive b.

The performance of the receiver for Example 5 has an interesting
interpretation. The input is the “long” pulse shown in Fig. 10.15a. Its
instantaneous frequency increases with time, as shown in Fig. 10.15b.
Now, the transfer function of the matched filter has a phase characteristic
that is quadratic with respect to frequency. The delay of the envelope of a
bandpass signal through any filter is proportional to the derivative of the

fin(®
t
Z 0 %
a4 (a) Input pulse ~
Instantaneous
frequency T
We +5-
|
|
|
i
-T We | ¢
[ T
|
!
|
|

(b) Frequency characteristic

four ()

=T L
T gy T
(c) Compressed output pulse

Fig. 10.15 Pulse compression.
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phase characteristic of the filter with respect to frequency (e.g., [2]. For
the linear FM pulse, the derivative of the phase of the matched filter
decreases linearly with increasing frequency. Thus, the low-frequency
components, which occur at the beginning, are delayed more than the
high-frequency-components at the end of the pulse. The result is the
“short” pulse shown in Fig. 10.15¢. The effect of the receiver is to compress
the long pulse at the input to the receiver into a short pulse at the output
of the processor, with an accompanying increase in range measurement
accuracy. This type of system is commonly referred to as a “pulse-
compression” radar. Its obvious advantage is that if the system is peak-
power-limited, one can increase the transmitted energy by transmitting a
longer pulse without losing range accuracy. The idea of pulse compression
through the use of frequency modulation was derived independently in the
United States (Dicke [3] and Darlington [4]) and in Germany (Huttman
[5] and Cauer [6]). An interesting discussion is given by Cook [7].

This series of examples illustrates the fundamental role that the ambiguity
function plays in the range-Doppler estimation problem. We now return
to the general case and derive some quantitative performance results.
In Section 10.2, we derive expressions for the estimation accuracies in
terms of the ambiguity function. In Section 10.3, we develop some general
properties of the ambiguity function. Then, in Section 10.4, we return to
signal design problems.

10.2 PERFORMANCE OF THE OPTIMUM ESTIMATOR

In this section, we discuss the accuracy of our estimates of = and w.
We first consider the case in which the energy-to-noise ratio is high and the
errors are small. We refer to this as the local accuracy problem.

The accuracy problem for range measurement was studied by Wood-
ward [60]. The accuracy problem for range and velocity measurement has
been studied by Manasse [76] and by Kelly, Reed, and Root [77].

10.2.1 Local Accuracy

We approach the local accuracy problem in two steps. First, we derive
the Cramér-Rao bound on the accuracy of any unbiased estimates. We
then argue that the errors using maximum likelihood estimates approach
these bounds under certain conditions. We discuss these conditions in
detail in Section 10.2.2.

The derivation of the Cramér-Rao bound is a straightforward applica-
tion of the techniques in Sections I-4.2.3 and I-4.6. We recall that the first



Local Accuracy 295

step was to derive an information matrix J whose elements are
2
1= —e[Tn Y (55)
0A;04;

(see page I-372). In this case the parameters of interest, 7 and w, are
nonrandom, so that the expectation is over r(t) [or n(t)]. Here the informa-
tion matrix is two-dimensional:

Ju J
5o [ 1 12]. (59)
21 J22
We identify the subscript 1 with = and the subscript 2 with w. From (6),
(58), and (59),
2
Jy = — E[EMM] (60)
or’
2
Jy = _E{a In Ay(r, w)]’ 61)
00?
2
Jip = Jpy = _E[a__l.‘_‘_/}l_(_’l"l:l (62)
0t 0w

The evaluation of these three quantities is a straightforward manipula-
tion. We shall state the results first and then carry out the derivation. The
elements of the information matrix are

Ju = Clw* — (@)*] = Co,?2, (63)
and J;, = C[(ut — 0f] = Cpyy, (64)
Jas = C[t? — (/)] = Cop, (65)

where
a2E( E 66
€= N, (E + N) (66)

and

w? = f w? | F( ]w)|2 do (67)
ot A ImJ;iuf(u)a—fa—*s—u—) du, (68)
P = f "4 (W) du. (69)

We assume that the quantities in (67)—(69) are finite.
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We now carry out the derivation for a typical term and then return to
discuss the implications.

Derivation of the terms in J. We consider J,, first. From (6),

2In Ay (r, ~ oL*(r, oL(r, w) ~
L c'[L(T, w00 T w):l
or or or
o aL*
= 2C" Re [L(T, ) _.Q} 0)
T
where
1 E
cCA——T 1)
Ny N, + E,.
Differentiating again, we obtain
2In A [oL(+, oL o 2L *
08y, @) e [ @) x| o SR O] g
o2 L o or 072
Similarly,
9%1In A (r, ) [0L(r, w) OL*(r,®) = - 2L*(r, w)
— L T . L —_— (73)
77 0w 20 Re | —55 T =g
and
321n Ay(r, ®) [3L(r, w) AL*(r, w) . ~ EL*r, )|
it iRl gy ol 1 — 2 4 L(r, 0) —— a4
ow? | Ow ow ow?
Now recall from (7) that
L(r,0) = f FE)f*( — 1) eI0tdr. (75)
—00

Differentiating (75) twice with respect to = and using the results in (70) and (72), we have

221n A (7, w)
Ju= —E{—a,z——=

—2C’ J:f 3]*(1 —7) af(ua :w(t—u)E[F(t);*(u)] dt du

+ f J F*e—7) gﬁ'a‘—;l)ewa—u)E[?(t);*(u)x dt du). (76)
T

The correlation function of 7(¢) is

EF(1)F*W)] = 26,2E,f(t — 7) f*(u — m)eiwlt=w) 4+ N,y 6(t — u). an
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Substituting (77) into (76), we obtain

E, _ro af(t ]*(’ T)dt

=00

2 |t =
A=

© 0 2 £ % —_
+Re|:l?,f lf(t-—-r)]zdtf é—f’l—;l:—z—2j"(u—'r)du}

0 2f*(t —
+ Re [No f fa— r)-f—a%——f) dt]} (78)

(Recall that E, A 20,2E;.) We now simplify this expression by demonstrating that the
first term is (®)2 and that the sum of the second and fourth terms is zero. To do this,
we first observe that

Jp= —zc'{

Jw | f(t — D|2dt =1 79

for all 7. In other words, the energy does not depend on the delay. Differentiating both
sides of (79) with respect to 7, we have

R R

Differentiating again gives

© (9%t — 7 —7) of*(t — 7
Re{f (z—ig———-)f*(t—rwaﬂ’ ) g ))dt}=0. (81)

or2 or or

Re”w ——azf*(’ L P dt] fw

Thus, the second term in (78) cancels the fourth term in (78).

Comparing the first term in (78) and the definition of @ in the Appendix (A.16), and
using Parseval’s theorem, we see that the first term is E,()

To simplify the third term, we use (79) and then observe that

f‘” o — 7

or
Using the above results in (78) gives

Thus,
-1

or ®2)

dt =fw w? U"v‘(a))lzfi2 = . (83)
o 27

i = 2CE [0 — (@)?], 84)
which is (63). As pointed out in the Appendix, we usually choose the carrier so that
@ =0. (85)
The derivation of J,, and J, is similar. (See Problem 10.2.1.)
The information matrix is specified by (63)-(66) as

2E E wE wt
J="—" — | 86
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The information matrix is useful in two ways. If we denote the error
covariance matrix for some pair of unbiased estimates as A,,

J—- AP 87
is non-negative definite.

We now interpret this statement in relation to the maximum-likelihood-
estimation procedure. When the joint probability density of the errors
using ML estimation is Gaussian, this result has a simple interpretation.
Denote the errors by the vector

Tt — T T,
a, & Al (88)
By — @ o,
' If a, has a Gaussian density, then

1 ATA'A
A)=——F¢exp|— —‘—‘-9) 89
Pa(A0) YNE p( 5 (89)
The equal-height contours are ellipses that are given by the equation
ANANTA = k2 i=12,... (90)

and are shown in Fig. 10.16. The result in (87) says that if we construct
the bound ellipses,

ASJAe = kiz’ (91)

they will lie wholly inside the actual ellipses. Since the probability of lying
in the region outside an ellipse is e*" (see page I-77), we can bound the
actual probabilities.

In general, the errors do not have a Gaussian density. However, we
shall show that under certain conditions, the ML estimates are unbiased
and the probability density of the errors approaches a joint Gaussian
density. (As we would expect, the Gaussian approximation is best near the
mean of the density.)

The second way in which the information matrix is useful is to bound the
variance of the individual errors. The variance of any unbiased estimate is
bounded by the diagonal elements in J=*. Thus

Var [ — 1] > [% ( 3 i No)]_l(m f(w_t)z) ©92)

and

W[ E N\ o
Var [é — === ==
ar[é — ol 2 [No (E.,+No)] [W— (W]' ¢3)
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Fig. 10.16 Error ellipses.

Looking at (68), we see that a sufficient condition for the bounds on the
estimation errors to be uncoupled is that the complex envelope be real. In

this case,
Varlf =rl 2 [No (E + No)] [o?] 69
and
2E, E -r1
V. D — = — = 95
arié — o] 2 [N,, (E + No):l [t‘J 9

for all unbiased estimates with wt = 0. [Notice that (94) and (95) are
bounds even with w 5 0, but they are not as tight as (92) and (93).]
The first terms in (92)—(95) are functions of the ratio of the average
received signal energy to the white noise level. The second terms indicate
the effect of the signal shape. Looking at (94), we see that the bound on the
delay estimation accuracy is determined by effective bandwidth. This is
logical because, as we increase the signal bandwidth, we can design a
signal with a faster rise time. From (95), we see that the bound on the
Doppler estimation accuracy is determined by the effective pulse length.
Recalling the definition of the elements in the information matrix
(60)-(62) and that of the ambiguity function, we would expect that the
elements of J could be expressed directly in terms of the ambiguity function.
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Property 2.t The elements in the matrix in (86) can be expressed as

; - 1 2%0(r,

_t —Of = — lm 97
2 81- aw w.r=0’ ( )

> ) 1 9%(r,

U b e ©o8)

These results follow from (17), (18) and (67)—(69) (see Problem 10.2.2).

Thus the information matrix can be expressed in terms of the behavior
of the ambiguity function at the origin. Property 2 substantiates our
intuitive observation on page 281 regarding desirable ambiguity functions.

The final step in our local accuracy discussion is to investigate when the
actual estimation error variances approach the bounds given in (92) and
(93). To motivate our discussion, we recall some results from our earlier
work.

In our discussion of classical estimation theory on page 1-71, we quoted
some asymptotic properties of maximum likelihood estimates. They can
be restated in the context of the present problem. Assume that we have N
independent observations of the target. In other words, we receive

F(t) = BNE, f(t — Dei® 4+ w(1), —oo<t<o, (99)
i=1,2,...,N,

where the b, and w,(¢) are characterized as in (3)-(5) and are statistically-
independent. Physically this could be obtained by transmitting pulses at
different times (the time-shift is suppressed in f(t — 7). Then, as N — oo,

1. The solution to the likelihood equation,

aﬂ_A_M Tz;ml —_ 0’ (1003.)
ar w=(::mz
|
Ay @) , _o (100b)
aw O=Wmy
where
N
In Ay(r, 0) = X In A7, w), (100c)
=1
In Ar, @) = — —2— (LG, o)) (100d)
X W) = ——m—m— (7
AT NoNo+ E =7 ’

+ We shall derive a number of properties of the ambiguity function in this chapter,
and so we use a common numbering system for ease in reference.
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and

e}

Lr, w) Af PO ¥t — r)e @t dt, (100e)

converges in probability to the correct value 7,, w, as N — 0. Thus the
ML estimates are consistent.
2. The ML estimates are efficient; that is

Var ['f'ml — Ta]

lim - =1, (101)
I (G5 [
NLVCEIN £ ) \w? = (wi)?

and a similar relation for Var [d,,; — w,].
3. The ML estimates are asymptotically jointly Gaussian with co-
variance matrix J1.

These results relate to error behavior as the number of observations
increase.

In Chapter I-4 (pages I-273 to I-287), we saw that the error variances
approached the Cramér-Rao bound for large E/N,. This is a different type
of ““asymptotic’’ behavior (asymptotic as E/N,— o0, not as N — 00.) In
the present problem we would like to demonstrate that, using only one
pulse, the error variance approaches the Cramér-Rao bound as E,/N,
approaches infinity. Unfortunately, this does not seem to be true (see
Problem 10.2.3). Thus the ML estimates are asymptotically efficient in the
classical sense (N — oo) instead of in the high E/N, sense we encountered
in Chapter 4.

There are two other issues concerning asymptotic behavior that should
be mentioned:

1. Suppose that we use a fixed number of pulses, N (where N > 1) and
let E,[N, increase. Do the error variances approach the bound? We have
not been able to resolve this question to our satisfaction.

2. An alternative model that is sometimes used is

F(t) = BE, f(t — 1)’ + w(t), —o0 <t< 0, (102a)

where |b| is either a known amplitude or an unknown nonrandom ampli-
tude. The local accuracy results [(58) to (69)] are valid for this model if
we let

c a 2E: |

, 102b
N, (102b)

instead of using the value in (66). In this case we can show that the actual
error variances approach the bounds as C — oo (e.g., [77]).
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All of our discussion in this section assumes that the errors are small.
The next important question is the behavior of the errors when they are
not small. We refer to this as the global accuracy (or ambiguity) problem.

10.2.2 Global Accuracy (or Ambiguity)

In this section we study the performance of the system when the errors
are not necessarily small.

We can perform an approximate performance analysis by using the same
technique as as in the FM threshold analysis on pages I-278-1-286.1 The
basic idea is straightforward. We assume that the region of the 7, w plane
that we must consider is a rectangle with dimensions Q,, and T,,. We divide
this region into rectangular cells, as shown in Fig. 10.17. The dimensions
of the cell are proportional to the dimensions of the central peak of the
signal ambiguity function. We shall use a grid with dimensions

1
A =— (103a)
O-(D
and
1
A =—, 103b
[} O't ( )
where
o =1® — (i) (103c)
and
0,2 = — (@) (103d)
w
A
1 Ar 2.

T#
Fig. 10.17 Region in ©, w plane in which targets may be present.

T We suggest that the reader review these pages, because our analysis in this section
follows it closely.
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o a,—

Fig. 10.18 Range-Doppler cell.

The cell is shown in Fig. 10.18. Notice that if wt is significant (e.g., in a
linear FM signal) a parallelogram cell would be logical. We assume w?
equals zero for simplicity.

We process the received signal in two steps. We first decide which of the
cells the signal is in. We next perform a localization within the chosen cell.
Thus, there are two kinds of errors: decision errors, because of picking the
wrong cell, and local errors within the cell. The local errors were discussed
in the last section. We now analyze the decision errors.

To analyze the errors we assume that the signal lies at the center of one
of the cells. We denote the center point of the ith cell as (r;, w,). We
assume that the a-priori probability that a signal will lie in any cell is equal.
Thus we have an M-hypothesis problem where

M = Q,0,T,0,. (104a)
The LRT consists of computing |L,|2,

lzi|2 =

f ® HOF = m)e ot dt | (104b)

and choosing the largest. To analyze the performance, we must consider
two cases.

Case 1. The signal ambiguity function has a central peak and no sub-
sidiary peaks. The signal output in all incorrect cells is negligible.

Case 2. The signal ambiguity function has subsidiary peaks whose
amplitudes are non-negligible.

We now analyze the first of these cases. The analysis for the second
case is outlined briefly. The first case corresponds to transmitting one of
M-orthogonal signals over a Rayleigh channel. The Pr (¢) for this case was
derived in Problem I-4.4.24 (see also [I-80]).

For our purposes the approximate expression derived in Problem
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I-4.4.25 (see also [I-90]) is most useful. The result is

N 1
Pr (¢) ~ —_—°(ln M- — 0.577). 105
(@=7 it (105)

As in Example 2 on page I-282, we can compute a mean-square error,
given an interval error

2

E[z.? | interval error] < 200, = %" , (106a)
2
X

E[w, | interval error] < Zani = (106b)
In (106a) we have ignored the set of decision errors that cause no range
error (i.e., choosing a cell at the correct range, but the wrong Doppler).

We now restrict our attention to the range estimation error. We can
combine the various results to obtain an overall variance.

E(r,?) = E(7,2 ] no decision error) Pr (no decision error)
+ E(r 2 I decision error) Pr (decision error). (107a)

The only term that we have not evaluated is £(r,? | no decision error). We

can obtain a good approximation to this term, but it is too complicated

for our present purposes. It is adequate to observe that the first term is

nonnegative, so that the normalized error can be bounded by using only
the second term. The result is

E(r2 E(z* 12 . .

(r.) = (: ) > E(r,} ‘ decision error) Pr (decision error)

Var [T,] T,/12 ~ T,

2N
= 2(n (o701 -

T

1

Q,0,T,0,

+ 0.577). (107b)

From Section 10.2.1, we know that we also can bound the variance by
using the Cramér-Rao bound. For large E,/N,, the normalized Cramér-
Rao bound is approximately

E(r?) _ No 1
Var [T,] T 2, (Ty0,)*

Comparing (107b) and (107c), we see that the right sides of both ex-
pressions have the same dependence on E,/N,. However, for the parameter
values of interest, the right side of (107b) is always appreciably larger than
the right side of (107c). Thus, we conclude that, for a single transmitted
pulse and a Rayleigh target model, the probability of a decision error
dominates the error behavior, and we never achieve the variance indicated
by the Cramér-Rao bound. The reason for this behavior is that in the

(107¢)
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Rayleigh model we encounter targets with small |5[? regardless of how
large E,/N, is. The large estimation errors associated with these small
amplitude targets keep the average error from approaching the bound.

In Section 10.2.1, we indicated that the ML estimates were asymptotically
efficient as the number of observations (that is, the number of pulses
transmitted) approached infinity. We can now discuss the behavior as a
function of N. For N pulses the Pr (¢) is approximately

Pr(6) ~ (Q,0,T,0,). |- — L+ E/No"

'”N (E-r/NO)(l + ET/NO)zN_l

(108a)

[use (I-2.516) and (I-4.64)]. If we assume that E(r,> I no decision error)
can be approximated by the right side of (92) then

Exh) 1 6 1+ NEJN,
Var [T*] o (T*Uw)2 NEr/NO NET/NO

(1 — Pr(e)) + 2 Pr(e). (108b)

In Fig. 10.19, we have plotted the reciprocal of the normalized mean-square
error as a function of N for various E,/N,, Q,0,, and T o, values. As we
would expect, there is a definite threshold effect. Below threshold the
variance increases as (o ,,7T,)(0,2,) is increased. Increasing (c,7,)(c,£2,)
also moves the threshold point to a larger value of N. Notice that even
when E,[N, equals 10, it takes about 10 pulses to get above threshold.

In our discussion at the end of Section 10.2.1 we mentioned an alternative
target model in which |5| was modeled as a fixed quantity. It is interesting
to discuss the global accuracy for this model. By a power series approach
one can show that

Ny, 1
E(+,? | no decision error) = —~ — , 109a
| ) 2E, 0.} (109)
where
E, = E, |b]%, (109b)
(see for example [77]). Using Problem 4.4.7 and (I-4.64),
Pr(e) < 229w oy (-— E, ) (110)
2 2N,

Using (107a), (109), and (110), we obtain an expression for the normalized
mean-square error. The reciprocal of the normalized mean-square error
is plotted in Fig. 10.20 as a function of E,/2N, for various values of Q,a,
and T,o0,. Once again, we observe the threshold effect. Notice that if
(0,T4)(0,Q,) equals 104, then we need an E,/N, of about 40 to get above
threshold.
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104_ I i IIIIIII* T T 11, T_rl] TTIIII]_:
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Fig. 10.19 Reciprocal of normalized mean-square error versus number of pulses:
Rayleigh target model.

We should point out that in both Figs. 10.19 and 10.20, the location of
the threshold is a function of the grid size that we selected. An analysis
of the effect of grid size on the local and global errors could be carried out,
but we have not done so.

All of our discussion up to this point has considered a signal whose
ambiguity function had no subsidiary peaks. If the ambiguity function
has subsidiary peaks, then the decision problem corresponds to the M-ary
decision problem with nonorthogonal signals. For a particular signal
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E
2No Fig. 10.20 Reciprocal of normalized mean-

square error versus E,/2N,: nonfluctuating
target model.

ambiguity function an approximate answer can be obtained, but the exact
numerical results add little insight into the general case.

We should point out that there are other techniques available for
studying the global accuracy problem. The Barankin bound discussed on
pages I-71, I-147, and 1-286 is quite useful (see for example [78]-[81]).
Other references dealing with the global accuracy problem include
[82]-[83].

10.2.3 Summary

In this section we have studied the performance of the optimum receiver.
We have found that the local accuracy depends on the shape of the
ambiguity function, 6(r, w), near the origin. We also studied the global
accuracy (or ambiguity) problem. Here the performance depends on the
behavior of 6(r, w) in the entire 7, w plane.
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Thus, we have established that in both the accuracy and ambiguity
issues the functions ¢(r, w) and 6(7, w) play a fundamental role. In the
next section, we derive some useful properties of these functions.

10.3 PROPERTIES OF TIME-FREQUENCY AUTOCORRELATION
FUNCTIONS AND AMBIGUITY FUNCTIONS

The autocorrelation and ambiguity functions were first introduced by
Ville [1]. Their properties have been studied in detail by Woodward [8],
Siebert [9], [10], Lerner [11], and Price [12].

The first property that we shall derive in this section concerns the volume
under the ambiguity function. One implication of this property is that the
ideal ambiguity function of Fig. 10.6 cannot exist.

Property 3 (Volume Invariance). The total volume under the ambiguity
function is invariant to the choice of signal. Specifically,

@ o

f f 0(r, w) d-r@:: 1. (111
27

—00 — o0

Proof. The proof follows directly from the definitions in (17) and (18). We have

© o o

[ [ ] [enrty

—00 =00 00 —0

f'*(r + %)eiw‘f"‘(u - 5) f(u + ;)e—fwu. (112)

Integrating with respect to w gives 270(¢+ — u). Then integrating with respect to u
changes u to . This gives
=3

ff@(r w)d-r——j Jdrdt (t+%) .

ffe(r, w) dT — -—J‘dz |i‘(z)|2fdr |f(= + 2|2 (114)

—00 -0

(113)

Letz = t — (7/2). Then

The inner integral equals unity for all z, since the energy is invariant to a time shift.
The remaining integral equals unity, which is the desired result.
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The implication of this result, which is frequently called the radar
uncertainty principle, is clear. If we change the signal in order to narrow
the main peak and improve the accuracy, we then must check to see where
the displaced volume reappears in the =, w plane and check the effect on
system performance. The radar uncertainty principle is probably the most
important property of the ambiguity function. There are a number of
other properties that are less fundamental but are useful in signal analysis
and design.

The first group of properties deals principally with the time-frequency
autocorrelation function (most of these were indicated in [10]). The proofs
are all straightforward and many are left as exercises.

Property 4 (Symmetry).

$(1, 0) = $*(—7, —w) (115)
and

0(r, w) = 0(—7, —w). (116)

Property 5 (Alternative Representations). An alternative representation
of the time-frequency autocorrelation function is

Br, ) = L f F(jcx _ f—‘ﬂ) F*(joc + -’—“’) e de (117)
2m —0o0 2 2
At this point it is convenient to introduce a time-frequency autocorrela-
tion function whose second argument is in cycles per second. We denote
it by

sy =7 (=2 71+ ) e (118)

Similarly,
0{z. /} = |${m. F}]" (119)

The braces {-} indicate the definitions in (118) and (119), while the
parentheses (-) indicate the original definition.}

Property 6 (Duality). The result in Property 5 points out an interesting
duality that we shall exploit in detail later. Consider two signals, &(¢)
and g,(t), such that

& A f_ ) &(Ne 7 dt, (120)

T We apologize for this diabolical notation. In most cases, the definition being used is
obvious from the context and one can be careless. In duality problems one must be
careful, because the definition cannot be inferred from the argument.
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that is, g,{-} is the Fourier transform of £,(-). The result in (117) implies

that
$o{fs —7} = ulr. f}. (121)

Thus the effect of transmitting the Fourier transform of a signal is to
rotate the time-frequency diagram 90° in a clockwise direction.
Similarly,

0x{f, —7} = Oy{7,f}. (122)
Property 7 (Scaling). If
) ~ ¢(, w), (123)
then
\/;f(at) ~ qS(ow, Q) , o> 0. (124)
o

The ambiguity function is scaled in an identical manner.

Property 8. If

F(jo) ~ ¢(r, »), (125)
then

F(jw)e™ ~ ¢(r + 200, o). (126)

This is the frequency domain dual of Property 1 (page 290). The ambiguity
function is changed in an identical manner.

Property 9 (Rotation). A generalization of the duality relation in Property
6 is the rotation property. Assume that

fi(t) ~ $:(7, w). (127)

If we desire a new time-frequency function that is obtained by rotating
the given ¢,(-, -), that is,

¢y, w) = ¢(wsina + 7cosx, w cosa — 7sina), 0<a <§, (128)

we can obtain this by transmitting
2 © 2
7)) = 1 exp (jt tan oc)f F(jo) exp (j (w tana ot ))(_/i_ci) _
Jcos a 2 —o 2 cosa)/ 2mw

(129)

The ambiguity function is also rotated by « radians.
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Property 10. A question of interest is: Given some function of two
variables, ¢{r,f}, is it a time-frequency correlation function of some
signal ? We can answer this by taking the inverse transform of (118). Since

¢l{r. f} =f_2f (t - g) f *(z + g) e gy, (130)

[ smnermar=p(e=T)p(s+3). (131)
Thus, if the transform of ¢{r,f} can be written in the form shown in
(131), it is a legitimate time-frequency correlation function and f{(¢) is the
corresponding signal. By a change of variables (x =¢ — 7/2 and y =
t + 7/2), the relation in (131) can be rewritten as

J@7*w = [ dty = msyexn (~izms () ) 4. amy

By duality (Property 6), this-can be written as

Ry Pty = [ dlhe = wpexe (—i2nf (F2Y)) a1 (139
The relations in (132) and (133) enable us to determine the signal directly.
Notice that the signal is unique except for a constant phase angle. Thus,

. Jui®) & f(z)e™ (134)
also satisfies (132).

A similar relation has not been derived for the ambiguity function. Thus,
if we are given a function 6{r, f}, we do not have a test that is both
necessary and sufficient for 6{:, -} to be an ambiguity function. In addition,
we do not have any direct procedure for finding an f(f) that will produce
a desired ambiguity function.

Property 11 (Multiplication). If

A~ difr. [} (135)
and
fa(t) ~ daf7, [}, (136)
then
1070~ [ ditr, Yl s - ) de (137)
(i-e., convolution with respect to the frequency-variable), and
AR~ bl ibls = 5f ) ds (138)

(i.e., convolution with respect to the time variable).
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Property 12 (Axis-Intercept Functions). The time-frequency correlation
function evaluated at w = 0 is just the time-correlation function of the

complex envelope,
(r, 0) =.E, 7 (t - —27-) f‘*(: + é) dt. (139)

The time-frequency correlation evaluated at 7 = 0 has two interesting
interpretations. It is the Fourier transform of the squared magnitude of
the complex envelope,

(0, w) = f | F(D)|? e’ dt. (140)

From (117), it is the correlation function of the Fourier transform of the
complex envelope,

o =Ll o

The final property of interest applies only to the ambiguity function.

Property 13 (Self-Transform). An ambiguity function is its own two-
dimensional Fourier transform,

f f 8(r, £} exp [j2n(of — ur)] dr df = Bo, u). (142)

Observe the sign convention in the definition of the double transform
[minus on the time (first) variable and plus on the frequency (second)
variable]. This choice is arbitrary and is made to agree with current
radar/sonar literature. It is worth noting that the converse statement is
not true; the self-transform property does not guarantee that a particular
function is an ambiguity function.

In this section we have derived a number of useful properties of the
time-frequency autocorrelation function and the ambiguity function.
Several other properties are derived in the problems. In addition, the prop-
erties are applied to some typical examples.

Notice that we have not been able to find a necessary and sufficient
condition for a function to be an ambiguity function. Even if we know
(or assume) that some two-variable function is an ambiguity function, we
do not have an algorithm for finding the corresponding complex envelope.
Thus, we can not simply choose a desired ambiguity function and then
solve for the required signal. An alternative approach to the signal design
problem is to look at certain classes of waveforms, develop the resulting
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ambiguity function, and then choose the best waveform in the class. This
is the approach that we shall use.

In Section 10.2, we examined modulated analog waveforms. We now
look at a class of waveforms that we call coded pulse sequences.

10.4 CODED PULSE SEQUENCES

In this section we study complex envelopes consisting of a sequence of
pulses that are amplitude-, phase-, and frequency-modulated. Each pulse
in the sequence can be expressed as a delayed version of an elementary
signal, #(t), where

L. o<i<T,
w(t) A VT, (143)

0, elsewhere.

We denote the delayed version as #,(¢),

i,(t) A G(t — nT,). (144)
The complex envelope of interest is
N=2
J() = ¢ 3 ait (1) exp (jout + j6,). (145)
{i=1 n=9

We see that a, is a constant amplitude modulation on the nth pulse, w,
is a constant frequency modulation of the nth pulse, and 6, is the phase
modulation on the nth pulse. The constant ¢ is used to normalize the
envelope. The signal in (145) has 3N parameters that can be adjusted. We
shall investigate the effect of various parameters.

Our discussion is divided into three parts:

1. A brief investigation of on-off sequences.

2. A development of a class of signals whose ambiguity functions are
similar to the ideal ambiguity function of Fig. 10.6.

3. A brief commentary on other classes of signals that may be useful
for particular applications.

10.4.1 On-off Sequences

The simplest example of an on-off sequence is the periodic pulse sequence
in Example 3. Clearly, it can be written in the form of (145). To illustrate
this, we assume that we have a periodic pulse sequence with interpulse
spacing T, = 10T and a total of 10 pulses, as shown in Fig. 10.21. In the
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0]
% % %
0T, 10T, 20T, 30T,

Fig. 10.21 Periodic pulse train.

notation of (145),

4 =a) =ay ="""ay =1, (146)

and all other @, = 0. Both w, and 6, = 0 for all n.

The disadvantage of the periodic sequence was the presence of large
subsidiary peaks in the ambiguity function. Since the peaks are caused
by the periodic structure, we can try to eliminate them by using a non-
uniform pulse-repetition rate. One way to construct such a sequence
would be to have 100 possible pulse positions and insert 10 pulses randomly.
This type of procedure has been investigated in detail (e.g., Rihaczek [13],
Cook and Bernfeld [14, pages 232-240], Kaiteris and Rubin [15], and
Resnick [16]). It can be shown (the easiest way is experimentally) that
staggering the PRF causes a significant reduction in the sidelobe level.
(A sidelobe is a subsidiary peak in the 7, w plane.) The interested reader
can consult the above references for a detailed discussion.

10.4.2 Constant Power, Amplitude-modulated Waveforms

In this section, we consider the special case of (145) in which the
waveforms can be written as

J® = €3 0,0, (147)

where
a, = 1. (148)

To motivate the use of this class of waveforms, let us recall the properties
that an “ideal’” ambiguity function should have:

1. The central peak should be narrow along the 7-axis. The minimum
width of the central peak is governed by the signal bandwidth W. Here the
bandwidth is the reciprocal of the length of the elemental pulse, T,.
Outside the region of the central peak, the ambiguity function should be



Constant Power, Amplitude-modulated Waveforms 315

reasonably flat. From Property 12,

$(r, 0) = f: b (t — g) 7* (: + g) dt. (149)

Thus, we want a signal whose correlation function has the behavior shown
in Fig. 10.22.

2. The central peak should be narrow along the w-axis. From Property
12,

$(0, w) =f If()I e dt. (150)

By making |7 (f)| constant over the entire signal sequence, we make
#(0, w) a narrow function of w. This suggests choosing

a,=+1, n=12,...,N. (151)
Then
f)l=—-=, 0<t<NT,=T, (152)
JN

and the width on the f-axis is approximately 2/T.

3. The ambiguity function should be reasonably flat except for the
central peak. This requirement is harder to interpret in terms of a require-
ment on the signal. Therefore, we design signals using the first two require-
ments and check their behavior in the 7, w plane to see if it is satisfactory.

4. The volume-invariance property indicates that if the ambiguity
function is approximately flat away from the origin, its height must be
such that the total volume integrates to unity. To compute this height, we
observe that the total length of the ambiguity function is 2T if the duration
of the complex envelope is T (recall T = NT,). The ambiguity function
does not have a finite width on the f-axis for a finite duration signal.
However, we can approximate it by a width of 2W cycles per second,
where W is the effective signal bandwidth. (In this case, W = T';1.) With
these approximations we have the desired ambiguity function shown in

¢(7,0)

-Ts Ts

Fig. 10.22 A desirable signal correlation function.



