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Parameter Estimation: 
Slowly Fluctuating Point Targets 

At the beginning of Chapter 9, we developed a model for the return 
from a slowly fluctuating point target that was located at a particular 
range and was moving at a particular velocity. The received signal in the 
absence of noise was 

s(t) = & Re [JE, 6f(t - r)eiwDt]. (0 
In the detection problem we assumed that 7 and ~r)~ were known, and made 
a decision on the presence or absence of a target. We now consider the 
problem in which 7 and wD are ~~k~~~~, ~~~r~~d~rn parameters that we 
want to estimate. 

Since the chapter is long, we briefly describe its organization. In Section 
10.1 we derive the optimum receiver and discuss signal design qualitatively. 
In Section 10.2 we analyze the performance of the optimum receiver. We 
find that a function called the ambiguity function plays a central role in the 
performance discussion. In Section 10.3 we develop a number of properties 
of this function, which serve as a foundation for the signal design problem. 
In Section 10.4 we investigate the performance of coded pulse sequences. 
In Section 10.5 we consider the situation in which there are interfering 
targets in addition to the desired target whose parameters we want to 
estimate. Finally, in Section 10.6, we summarize our results and discuss 
several related topics. 

10.1 RECEIVER DERIVATION AND SIGNAL DESIGN 

The target reflection model was discussed in Section 9.1, and the 
received signal in the absence of noise is given in (1). We assume that the 
additive noise is white bandpass Gaussian noise with spectral height 
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276 10. I Receiver Derivation and Signal Design 

N,/2. We shall assume that the observation interval is infinite. For nota- 
tional simplicity we drop the subscript D from the frequency shift. Thus, 
the complex envelope of the received waveform is 

The multiplier, 6, is a zero-mean complex Gaussian random variable, 

The complex signal envelope is normalized as in (A. X5), so that E, is the 
transmitted energy, The average received signal energy is 

& = 2ob2E,. (4) 

The complex white noise has a covariance function 

&(r, u) = No s(t - u), -oo<t,u<co. (9 

The parameters 7 and cc) are unknown 
values we shall estimate. 

nonrandom parameters whose 

The first step is to find the likelihood function. Recalling from Chapter 
I-4 the one-to-one correspondence between the likelihood function and the 
likelihood ratio, we may use (9.36), (9.38), and (9.39) to obtain the 
answer directly. The result is 

where 

L(7, 0) = s a F(t)f*(t - r)e"-+ dt. (7) 
--CO 

The coefficient in (6) is of importance only when we compute the 
Cramer-Rao bound, and we can suppress it in most of our discussion. 
Then we want to compute 

In A(7, m) = IZ(7, c0)j2 (8) 

as a function of T and ct). The values of 7 and ct) where this function has its 
maximum are +ml and &ml. Because we are considering only maximum 
likelihood estimates, we eliminate the subscript in subsequent expressions. 

We now must generate In A.(,, m) for the values of T and CO in the 
region of interest. For any particular TV), say col, we can generate In A(T, ct>%) 
as a function of time by using a bandpass matched filter and square-law 
envelope detector (recall Fig. 9.5). For different values of cr) we must use 
different filters. By choosing a set of coi that span the frequency range of 
interest, we can obtain a discrete approximation to In A(T, cu>. For the 
moment we shall not worry about how fine the frequency grid must be in 
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order to obtain a satisfactory approximation. The processing system is a 
bank of matched filters and square-law envelope detectors as shown in 
Fig. 10.1. We now want to investigate the properties of the output of the 
processor. For simplicity, we view it as a continuous function of 7 and cc). 

Let us assume that the actual delay and Doppler shift are 7, and w,, 
respectively. (Recall that 7 and cc) are the variables in the likelihood 
function.) Then we may write 

s Go 
2(7, co) = f(t)f*( t - 7)e-io’f dt 

-al 

- - 1 O” [JE, 5f(t - 7Jeiwaf + iC(t)][f*(t - 7)e-jO'] dt, (9) 
r-m 

or 

s 00 + qt)f*(t - 7) -jot dt. (10) 
-a 

To simplify this expression we define 

7’ = 7 - 7,, (11) 

and 
co’ = cc) - w,, 

s 

co 
ii(7> co) = Gft)f*(t - 7)e-jof dt. 

-co 

(12) 

(13) 

The effect of (11) and (12) is to shift the origin to the point in the 7, ct) 
plane where the target is located. This is shown in Fig. 10.2. Using (1 l)-(13) 
in (lo), we have 

(Is 

a3 
In 47, ~0) = E, 161” ? 

JO - 7)f*( t - 7 + 7’)eio’t dt 
-a3 

- 7)f(t - 7 + 7’ 

2 

II 
)e-io’t dt ii”(7, a) 

The first term in (14) is due entirely to the signal and is the only term that 
would be present in the absence of noise. By making the substitution 

7? 
z t = -7+-, 

2 
(1% 
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Fig. 10.2 Coordinate systems in the T, o plane. 

we see that it is not a function of 7 and (0. We denote the term in braces 
as et+, m’), 

e(7), d) h (16) 

It corresponds to a scaled (by E, lh12) version of the output of the receiver 
in the absence of noise. 

We define the function inside the magnitude signs as the timeaf~eq~e~cy 
u~t~currel~ti~~ f~~ctiu~ off(t) and denote it by +(T’, col),t 

(17) 

It is a measure of the degree of similarity between a complex envelope and 
a replica of it that is shifted in time and frequency. Clearly, 

I et7f, d) = I&‘, d)p. (18) 

The function 0( 7’, co’) was introduced originally by Ville [I] and is referred 
to as the ~rnb~g~~ty f~~ct~u~. Later we shall see why this is an appropriate 
name. It is sometimes referred to as Woodward’s ambiguity function 
because of his pioneering work with it [S], [60]. 

Because f(t) is normalized it follows that 

#O, 0) = 1. 

From the Schwarz inequality, 

ld(C w’)l L; de4 0) = 1 

(19) 

(20) 
t There is a certain degree of choice in defining the time-frequency autocorrelation 
function, and various definitions are used in the literature. 



and 
e(7’~ co’) < e(0, 0) = 1. (21) 

Thus, the output of the receiver is a surface in the 7, cr) plane that 
contains three components. The first is tf(7’, w’)~ which is a positive 
function whose maximum value is at that point in the plane where the 
target is located. The second and third terms are due to the additive noise. 
In a moment, we shall consider the effect of these two terms, but first we 
look at O(T’, CL)‘) in more detail. 

To get some feeling for the behavior of O(7, co) and #+, O) for some 
typical signals, we consider several examples, 

Example 1. Single R~tangu~ar Pulse. Let f(t) be k real rectangular pulse, 

The magnitude of the time-frequency autocorrelation function is shown in Fig. 10.3. 
(Actually we show some cuts through the surface along constant ?= and constant cc) lines.) 
Notice that the function is symmetric about both axes. 

Fig. 10.3 Magnitude of the time-frequency correlation function for a rectangular puke. 
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Fig. 10.4 E~ua~gheight contours of ambiguity function of rectangular pulse, 

A convenient method of representing the ambiguity function is shown in Fig. 10.4. 
The curves are equal-height contours of 8(~, w). Notice that the T-axis and co-axis 
are scaled by factors of T-l and T, respectively. Notice also that the ambiguity function 
has a single peak whose width along the r-axis is directZy proportional to T and whose 
width along the m-axis is inversely proportional to T. 

Before considering a second example it is worthwhile discussing qua& 
tatiuely how the other two terms in (14) affect the estimate of 7 and cc) in a 
typical realization of the experiment. In order to see this, we first consider 
a vertical cut along the T-axis of In A(7, LC)) as shown in Fig. 10.5~~ From 
(14) we see that the function consists of E, 1812 0(7,0) plus the contribu- 
tions due to noise indicated by the second and third terms. In Fig. lOSb, 
we show a top view of In A@, w). The shaded surface is the E, lbi2 0(~, m) 
from Fig. 10.4. The contour lines are the equal-height loci of In A(7, co). 
The values of 7 and cc) where the surface has its maximum are ernl and hmz. 
We see that in the absence of noise we always choose the correct values. 
There wil 1 be an error if the noi se con tributi ons at some T’ # 0 and m’ #O 
are large en0 ugh to move the peak of the total function away from the 
origin. Therefore, in order to minimize 
an 3w whose ambiguity function is one 

the errors, we should 
at the origin and zero 

try to find 
elsewhere. 

An ideal 0(~, w) function might be the one shown in Fig. 10.6a. We 
expect that it will be difficult to find anJr(t) that has such a discontinuous 
ambiguity function. However, a close approximation such as is shown in 
Fig. 10.6b fight be practical. 

Thus, it appears that we want to choosef(t) so that 0(7, U) is a narrow 
spike. From (24) or Fig. 10.3, it is clear that, with a rectangular pulse, 
we can make the peak arbitrarily narrow in either direction (but not both) 
by varying T. 

Since the rectangular pulse does not lead to the ambiguity function in 
Fig. 10.6b, we shall try some other signals. 
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Fig. lK7 Gaussian pulse. 

Example 2. Simple Gaussian Pulse. A pulse that frequently serves as a useful analytic 
idealization is the Gaussian pulse of Fig. 10.7. 

The effective duration is proportional to I: The ti~ufrequency a~tocorre~ation function 
is 

(fib, 4 = 
(t - 7/2)2 (d + 7/2)2 

=P --II- 
2T2 2T2 +jot . 1 (26) 

completing the square and inte~ating, we obtain 

NT, 4 = exp [ -$t2 + T2~2)]. 

The ambiguity function is 

O(7,w) = exp -t($ + T2~2)]* (28) 

The equal-height contours of @(T, a) are ellipses, as shown in Fig. 10.8, Just as in 
Example I, a single parameter, the pulse duration, controls both the range and Doppler 
accuracy. 

These two examples suggest that if we are going to improve our range 
and Doppler estimates ~~~~l~~~eu~~zy, we must try a more complicated 
signal. Apparently, we need a signal that contains several parameters 
which we can vary to optimize the performance. We shall consider two 
broad classes of signals. 

Cuded P~f~e ~e~~e~ce~. This class of signals is constructed by operations 
on single subpulse, ~(~). A commonly used subpulse is the rectangular 
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Fig. 10.8 Equal-height contours for the ambiguity function of a Gaussian pulse with 
T -: = 1/2 
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Fig, 10.8 Equal-height contours for ambiguity function of Gaussian pulse (normakd 
axes). 
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pulse in Example 1, 
1 

c(t) = 

t 

J T ’ 
-%t<T, 

2- -2 

0, elsewhere. 

(29) 

The subpulses are delayed, amplitude-weighted, frequency-shifted, phase- 
shifted, and then summed. Thus, 

!V ? 
f(t) = c 2 n”,ii(t - nT) exp [j(q.J + Q]. (30) 

The constant c normalizesf(t). We discuss a simple example of this class 
of signal in Example 3. In Section 10.4, we study the class in detail. 

Modulated Analog Waveforms. This class is obtained by modulating 
the signal in amplitude and/or frequency to achieve the desired properties. 
A simple example of this class of signals is given in Examples 4 and 5. 

We now derive the ambiguity function for several useful signals. These 
examples give us some feeling for the general properties that we might 
expect. 

Example 3. Pulse Train with Constant Repetition Rate. Consider the sequence of rec- 
tangular pulses shown in Fig. 10.9. It is characterized by the pulse duration T, the 
interpulse spacing TV, and the total number of pulses (2n + 1). This sequence is fre- 
quently used in radar and sonar systems for the following reasons: 

1. It is easy to generate. 
2. The optimum receiver is easy to implement. 
3. The parameters can be varied to match different operating conditions. 

We assume that T << Tp. The interpulse spacing is not necessarily a multiple of T. The 
duration of the entire sequence is Td, 

Denoting the pulse as i(t) [see (29)1, we can write the complex envelope of the trans- 
mitted signal as 

1 
‘@’ = (2n + 1)TN,=-, 

‘En u”(t - kT,). (32) 

Notice that our model assumes that the target does not fluctuate in the Tci seconds 
during which the signal illuminates it. 

We now derive (6(~, m) and &, w). First, we consider values of 1~1 < T. Using (32) 
in (17) gives 

dh Qo = (hT),zn “T’+‘~-‘r”~((t - kTP - I) ii*(t - kT,, + ;) 

kT,--)i(T---ITI) 

x ej*t dt 171 L; ITI* (33) 
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Fig. 10.9 Sequence of pulses. 

Letting 
z = t - kT,, (34) 

The term in the braces is +&, co). The sum is a finite geometric series. Thus, (35) reduces 
to 

1 
5&T, N = - 

sin [off2 + ii-)*J 

(28 + 1) sin [mT,f2] 
&CT, 4, 171 s =r, (36) 

We see that the subpulse characteristics only enter into the fast term, The bracketed 
term is a function of cr) only and is determined by Tp, the pulse repetition rate, and n, 
the number of pulses. The bracketed term is shown in Fig. 10,lOa. We see that the 
first zero is at 

2rr 27r 

and the subsidiary peaks occur at 
27T 

w i- 
*P * 

VW 

In Fig. lO.lOb we show +&O, w) for a rectangular pulse. The two plots indicate the effect 
of the parameters T, rP, and rd. Recalling that 

we see that the shape of +(O, CD) is controlled by the term in Fig. lO.lOa. Thus, the 
width of the main peak decreases as the over-all duration Td increases. Subsidary peaks 
occur at intervals of l/T, on the frequency axis. When cc) = 0, the bracketed term equals 
(2~2 + l), so that 

Next we consider values of 7 > T. There is no overlap until 7 = Tp - T. At this 
point, the situation is similar to that at 7 = -T, except that there is one less pulse 



Width of fundamental range -jf 
I 

Drawn for n = 5 

Fig. lO.lOa Bracketed term in (36), (After [45].) 
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Fig. 10.106 Plot of 1+&O, w)I for rectangular pulse. 

overlap. Then, for a rectangular pulse, 

On the ~-axis we have the same expression as in (38) except for a scale factor and a 
shift, 

A similar resuft follows for larger 7. Every Tp seconds there is a peak, but the magnitude 
is reduced. A different representation of the ambiguity function 0(~, W) is shown in 
Fig. 10.11. This type of plot was introduced by Siebert [9]. The dark shaded areas 
indicate regions where the height of &-, co) is significant (usually, the border corresponds 
to 0(~, cu) = +). In the light shaded areas O(T, U) is small, but nonzero. In the unshaded 
areas @(T, ~0) is zero. 

Several new features of the signal design problem are indicated by 
Example 3 : 

1. We can decrease the width of the major peak in the frequency 
(Doppler) direction by increasing Td (or yt). 
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t 

Fig. 10.11 An approximate contour plot of e(r, o) for pulse train 
[from [9] and [9.12]]. 

2, We can decrease the width of the major peak in the time (range) 
direction by decreasing 2”. (This corresponds to an increased bandwidth.) 
Thus, by allowing more parameters in our signal design, we can obtain an 
ambiguity function whose major peak is narrow in both the range and 
Doppler direction. 

3. This particular signal accomplishes this at the cost of including 
subsidiary peaks. It is easy to see the effects of these subsidiary peaks. A 
small noise contribution can cause the total value at a subsidiary peak to 
exceed the value at the correct peak. The importance of these subsidiary 
peaks depends on our a-priori knowledge of the area in the 7,~ plane in 
which the target may be located. Two cases are shown in Fig. 10.12. In the 
first case, the set of subsidiary peaks lies outside the area of interest for all 
possible 7, m. Thus, they will not cause any trouble. In the second case, 
they are inside the area of interest, and even in the presence of weak noise 
we may choose the wrong peak. 

This discussion illustrates two of the issues that we encounter in a 
performance discussion, The first is local accuracy (i.e., given that we are 
on the correct peak, how small will the error be?). The second is global 
accuracy (i.e., how often will there be large errors?). This is, of course, the 
same phenomenon that we encountered in the PFM and PPM problems of 
Chapter I-4 and in the angle-modulation problems of Chapter 11-2. 



\ Region of r, w plane 
in which target is 

located 

I x Region of 7, w plane 

Fig. 10.12 

in which target 
located 

Regions in which target can be located. 

Before studying these two issues quantitatively, it is interesting to look 
at the ambiguity function for several other signals. 

We next consider an example of a modulated analog waveform. All of our 
signals up to this point were obtained by amplitude~modulating a constant 
carrier. In order to introduce more freedom into the signal design, we now 
consider the possibility of frequency-modulating the carrier. Specifically, 
we consider a linear frequency sweep, i.e., 

q+(t) = bt2. (41) 

[Recall that c&(t) is the phase off(t).] 
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Instead of computing the ambiguity function for a particular pulse 
directly, we use an interesting property for arbitrary ~(?). 

Property 1” If 

then 

This result follows directly from the de~nitions in (17) and (18). 

=~~~(1--S)~~(~+~)exp[jf[w--2bi]ldt 

==: cb( 1 7, co - 267). (43) 

Thus, a linear frequency sweep ~he~~~ the ambiguity diagram parallel to 
the m-axis. We now apply this property to the Gaussian pulse in Example 2, 

Example 4. Gaussian Pulse with Linear ~r~~e~~y M~u~atjo~. Now 

ww 

Then, from (28) and (42b), we obtain 

WW 
The Edgar-height contour lines are the ellipses 

1 
i T2Cu2 

[ 
-4bPw7+ (4,.,..~),2] =c? 

For convenience in ptotting, we introduce 7, wt, and t? which are defined in the 
Appendix. For the signal in (43), 

F 
T2 

~---=. 
2 * (46) 

cut = bT2, (47) 

t The symbol - means “corresponds to.” 



Fig. X0.13 Contour of WC, o) for Gaussian pulse with linear FM* 

and 

Then (45) reduces to 

cu2 
1 

= E2 + 2b2T2. (48) 

i-G2 - zzr + 0272 = c2 * (4% 

In Fig. 10.13 we have plotted (49) for the case when c = 1. The major axis is at an 
angle cx, defined by 

dl = * tan-l 
( 1 4: 2 2)=~tan-l(~-~~~~2), - (1/4T + b )/rr I4 <n* (50) 

Along the r-axis, 

Similarly, 

6(0, T) = exp [-PP] - - exp [-(~ + 268TB)~2]. 

f&f4 0) = exp [-tZo2] = exp 
T2C02 [ 1 --• 

2 

(5W 

(SW 

We see that the width on the r-axis is inversely proportional to the root-mean-square 
signal bandwidth and the width on the o-axis is inversely proportional to the root-mean- 
square signal duration. Thus, by increasing both b and T, we decrease the width on both 
the T- and w-axes simultaneously. Therefore, we can accurately measure the range of 
a target with known velocity, or we can accurately measure the velocity of a target with 
known range. However, if both parameters are unknown there is an ambiguous region 
in the 7, w plane. For positive values of b, the ambiguous region lies in the first and third 
quadrants, as shown in Fig 10.13. Whether or not this ambiguity is important depends 



Fig. 10.14. Plot of I+@, O)j: rectangular pulse with linear 832 (IiT = 100). 

on the physical situation (Le., can targets occur along this line inthe 7, tr) plane?). One 
way to resolve the ambiguity is to transmit a second puke with the opposite frequency 
sweep. 

A similar result follows for the rectangular pulse with a linear frequency 
modulation. 

Example 5. Rectangular Pulse, Linear Frequency Modulation. 

(52) 

\ 0, elsewhere. 

Using (23) and (42b), we have 

- 2~T)/2)(T - 17/N 

- 2~T)/2)(T - 17-f) 7 < T, 
l$k 41 = (53) 

t 0, 
Along the T-axis, 

I+(? WI = 

Along the co-axis, 

sin [h(T - I$] 
h(T - 1~1) ’ 

elsewhere. 

14 < T;r; 
(54) 

elsewhere. 

(5% 

Ln Fig. 10.14, we have plotted I#+, O)l for the case when bT2 = 100. We see that the 
first zero is near the point 

where 
27~ W. .& 2bT 
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is the range of the frequency sweep. Thus, as we would expect from our discussion of the 
Gaussian pulse, the range estimation accuracy for a known velocity target is proportional 
to the signal bandwidth. Once again there is a region of ambiguity in the first and third 
quadrants for positive 6. 

The performance of the receiver for Example 5 has an interesting 
interpretation. The input is the “long” pulse shown in Fig. lOMa. Its 
instantaneous frequency increases with time, as shown in Fig. 10.15b. 
Now, the transfer function of the matched filter has a phase characteristic 
that is quadratic with respect to frequency. The delay of the envelope of a 
bandpass signal through any filter is proportional to the derivative of the 

(a) Input pulse 

Instantaneous 

(b) Frequency c~aracteristjc 

61 to 61 

(c) Compressed output pulse 

Fig, 10.15 Pulse compression. 



294 

phase characteristic of the filter with respect to frequency (e.g., [2]. For 
the linear &Y?V pulse, the derivative of the phase of the matched filter 
decreases linearly with increasing frequency. Thus, the low-frequency 
components, which occur at the beginning, are delayed more than the 
high-frequency-components at the end of the pulse. The result is the 
“short” pulse shown in Fig. 10.15~. The effect of the receiver is to compress 
the long pulse at the input to the receiver into a short pulse at the output 
of the processor, with an accompanying increase in range measurement 
accuracy. This type of system is commonly referred to as a ~‘p~lse~ 
compression” radar. Its obvious advantage is that if the system is peak- 
power-limited, one can increase the transmitted energy by transmitting a 
longer pulse without losing range accuracy. The idea of pulse compression 
through the use of frequency modulation was derived independently in the 
United States (Dicke [3] and Darlington [4]) and in Germany (Huttman 
[5] and Cauer [6]). A n interesting discussion is given by Cook [7]. 

This series of examples illustrates the fundamental role that the ambiguity 
function plays in the range-Doppler estimation problem. We now return 
to the general case and derive some quantitative performance results. 
In Section 10.2, we derive expressions for the estimation accuracies in 
terms of the ambiguity function. In Section 10.3, we develop some general 
properties of the ambiguity function. Then, in Section 10.4, we return to 
signal design problems. 

10.2 PERFORMANCE OF THE OPTrM~ ESTIMATOR 

In this section, we discuss the accuracy of our estimates of T and cc). 
We first consider the case in which the energy-to-noise ratio is high and the 
errors are small. We refer to this as the Zocal accuracy problem. 

The accuracy problem for range measurement was studied by Wood- 
ward [60]. The accuracy problem for range and velocity measurement has 
been studied by Manasse [76] and by Kelly, Reed, and Root [77]. 

10.2.1 Local Accufacy 

We approach the local accuracy problem in two steps. First, we derive 
the Cramer-Rao bound on the accuracy of any unbiased estimates. We 
then argue that the errors using maximum likelihood estimates approach 
these bounds under certain conditions. We discuss these conditions in 
detail in Section 10.2.2. 

The derivation of the Cramer-Rao bound is a straightforward applica- 
tion of the techniques in Sections I-4.2.3 and I-4.6. We recall that the first 



step was to derive an ~~f~rrn~t~~~ ~~~tr~~ J whose elements are 

(see page I-372). In this case the parameters of interest, 7 and CI), are 
nonrandom, so that the expectation is over r(t) [or n(t)]. Here the informa- 
tion matrix is two-dimensional : 

We identify the subscript I with T and the subscript 2 with CO. From (6), 
(5Q and (59), 

J 11 = 
-E a2 In M-9 4 

C is2 1 9 
J -E 

E 
a2 fn M, 4 

22 = 
ad 

1 ? 
(60) 

J J,,=-E a2 In A& CO) 
12 = 1 . a7 am (62) 

The evaluation of these three quantities is a straightforward manipufa- 
tion. We shall state the results first and then carry out the derivation. The 
elements of the information matrix are 

where 

and 

J 11 = CC 7 - (iq"] = ccrw2, 

and J12 = C[z - LUf] = Cpmt, 

J =C[F 22 - (i)"] = CQ, 

j tz =/;/2 If( du. 

We assume that the quantities in (67)-(69) are finite. 

(63) 

(64) 

(6% 



We now carry out the derivation for a typical term and then return to 
discuss the implications. 

Derivation of the terms in J. We consider J,, first. From (6), 

a In Rl(T, co) = CR 
[ 

aL*(T, 0) 
ar Z(T, CD) - a7 

+ QT, 4 - iI*(T, to) a7 1 

Differentiating again, we obtain 

Similarly, 

and 

d2 In R,(7, 0) _ 3-7 Re 
[ 

&T, co) ie(T, w) PP 
aco2 &!I au + Z(T, 4 

Now recall from (7) that 

s 

00 
E(T, lo) = F(t)f*(t - T) e-jut dt. 

-cx) 

Differentiating (75) twice with respect to T and using the results in (70) and (72), we have 

J ( a2 In A1(7, m) 
11 = -E 

aT2 1 

@J 

+ 
ss 

3( “t--T) 

~23(~ - 7) 

ar2 
ejw(t-u)E[~(t)^r*(u)] dt du . ml 

-co 

The correlation function of F(t) is 

E[F(t);*(u)] = 2ob2Etf(t - T)3*(ti - T)ejw(t-u) + N, 6(t - u). (77) 



Substituting (77) into (76); we obtain 

(Recall that I?,. h 2ab2Et.) We now simplify this expression by demonstrating that the 
first term is (~;i)~ and that the sum of the second and fourth terms is zero. To do this, 
we first observe that 

for all T. lcn other words, the energy does not depend on the delay. ~i~erentiating both 
sides of (79) with respect to T, we have 

~i~erentiating again gives 

Thus, 

Re (82) 

Thus, the second term in (78) cancels the fourth term in (78). 
Comparing the first term in (78) and the definition of c;ii in the Appendix (A.16), and 

using Parseval’s theorem, we see that the first term is &(Q)~. 
To simplify the third term, we use (79) and then observe that 

Using the above results in (78) gives 

Jr1 = 2C’E*[w2 - (fip], (84) 

which is (63). As pointed out in the Appendix, we usually choose the carrier so that 

co= - 0. (85) 

The derivation of J12 and J22 is similar. (See Problem 10.2.1 J 

The information matrix is specified by (63)-(66) as 

wt 
-i * t 1 @6) 
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The information matrix is useful in two ways. If we denote the error 
covariance matrix for some pair of unbiased estimates as R,, 

is non-negative definite. 
J - A;’ (87) 

We now interpret this statement in relation to the maximumalikelihood~ 
estimation procedure. When the joint probability density of the errors 
using ML estimation is Gaussian, this result has a simple interpretation. 
Denote the errors by the vector 

If aE has a Gaussian density, then 

AeTA,‘A, 

’ 2 (89) 

The equal-height contours are ellipses that are given by the equation 

A,R;lA, = ki2, i = 1,2, . . . (90) 

and are shown in Fig. 10.16. The result in (87) says that if we construct 
the bound ellipses, 

A,JA, = k:, (91) 

they will lie wholly inside the actual ellipses. Since the probability of lying 
in the region outside an ellipse is e-k2 (see page I-77), we can bound the 
actual probabilities. 

In general, the errors do not have a Gaussian density. However, we 
shall show that under certain conditions, the ML estimates are unbiased 
and the probability density of the errors approaches a joint Gaussian 
density. (As we would expect, the Gaussian approximation is best near the 
mean of the density.) 

The second way in which the information matrix is useful is to bound the 
variance of the individual errors. The variance of any unbiased estimate is 
bounded by the diagonal elements in J-l. Thus 

and 

Var [a - ~01 2 [~(~)]-l[~~ “,a)2 ’ 
I/ 

(93) 
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Fig. 10.16 Error ellipses. 

Looking at (68), we see that a sufficient condition for the bounds on the 
estimation errors to be uncoupled is that the complex envelope be real. In 
this case, 

Var[i!-r]> [~(~)]-l[~] 

and 

Var [cG - WI 2 [~(~)]-l[~] (95) 

for all mbiased estimates with z = 0. [Notice that (94) and (95) are 
bounds even with z # 0, but they are not as tight as (92) and (93).] 

The first terms in (92)-(95) are functions of the ratio of the average 
received signal energy to the white noise level. The second terms indicate 
the effect of the signal shape. Looking at (94), we see that the bound on the 
delay estimation accuracy is determined by effective bandwidth. This is 
logical because, as we increase the signal bandwidth, we can design a 
signal with a faster rise time. From (95), we see that the bound on the 
Doppler estimation accuracy is determined by the effective pulse length. 

Recalling the definition of the elements in the information matrix 
(60)-(62) and that of the ambiguity function, we would expect that the 
elements of J could be expressed directly in terms of the ambiguity function. 



yg - (q” = - - 1 a”&+, - W) 
2 i3r2 

9 
0,7=0 

iis 1 a”&-, 0) -~~=---.----- 
2 aT aa o,r=O 
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Property 2-T The elements in the matrix in (86) can be expressed as A 

(96) 

(97) 

(98) 

These results follow from (17), (18) and (67)-(69) (see Problem 10.2.2). 
Thus the information matrix can be expressed in terms of the behavior 

of the ambiguity function at the origin. Property 2 substantiates our 
intuitive obse~ation on page 28 1 regarding desirable ambiguity functions. 

The final step in our local accuracy discussion is to investigate when the 
actual estimation error variances approach the bounds given in (92) and 
(93). To motivate our discussion, we recall some results from our earlier 
work. 

In our discussion of classical estimation theory on page X-71, we quoted 
some asymptotic properties of maximum likelihood estimates. They can 
be restated in the context of the present problem. Assume that we have N 
independent observations of the target. In other words, we receive 

F$) = l&E&t - +?jwt + l&(t), -m<t<m, (99) 
i=1,2 ,..., N, 

where the & and ~~(~) are characterized as in (3)-(5) and are statistically~ 
independent. Physically this could be obtained by transmitting pulses at 
different times (the time-shift is suppressed inf(t - T)). Then, as W-+ 00, 

1. The solution to the likelihood equation, 

i? In R&T, 0) 
aT r=img = 0 9 

Ul=iB?Y&2 
ww 
(100b) 

where 

(1OOd) 

t We shall derive a number of properties of the ambiguity function in this chapter, 
and so we use a common numbering system for ease in reference. 
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s 
co &(T, ai) A ?Y(t)f”*(t - T)emiot dt, (1OOe) 
--co 

converges in probability to the correct value ra, ct), as N-+ a3. Thus the 
ML estimates are consistent. 

2. The ML estimates are efficient; that is 

. ltm 
Var [Gml - 7J - = I, (101) 

and a similar relation for Var @ml - CC)J 
3. The ML estimates are asymptotically jointly Gaussian with co- 

variance matrix J-l. 

These results relate to error behavior as the number of observations 
increase. 

In Chapter I-4 (pages I-273 to I-287), we saw that the error variances 
approached the Cramer-Rao bound for large ~/~*. This is a different type 
of “asymptotic” behavior (asymptotic as ~/~~ --+ CK), not as N-+ a.) In 
the present problem we would like to demonstrate that, using only one 
pulse, the error variance approaches the Cramer-Rae bound as ~~/~* 
approaches infinity. Unfortunately, this does not seem to be true (see 
Problem 10.2.3). Thus the ML estimates are asymptotically efficient in the 
classical sense (N -+ a) instead of in the high ~/~~ sense we encountered 
in Chapter 4. 

There are two other issues concerning asymptotic behavior that should 
be mentioned : 

1, Suppose that we use a fixed number of pulses, N (where N > 1) and 
let ~~/~~ increase. Do the error variances approach the bound? We have 
not been able to resolve this question to our satisfaction. 

2. An alternative model that is sometimes used is 

F(t) = ~~~~(~ - 7)eiot + ~(~), . -m<t<m, (102a) 

where 161 is either a known amplitude or an unknown ~~~~~nd~rn ampli- 
tude. The local accuracy results [(58) to (69)] are valid for this model if 
we let 

(102b) 

instead of using the value in (66). In this case we can show that the actual 
error variances approach the bounds as C + co (e.g., [77]). 
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All of our discussion in this section assumes that the errors are small. 
The next important question is the behavior of the errors when they are 
not small. We refer to this as the global accuracy (or ambiguity) problem. 

10.2.2 Global Accuracy (or Ambiguity) 

In this section we study the performance of the system when the errors 
are not necessarily small. 

We can perform an approximate performance analysis by using the same 
technique as as in the F1M threshold analysis on pages I-278-I-286$ The 
basic idea is straightforward. We assume that the region of the 7, ct) plane 
that we must consider is a rectangle with dimensions Q, and T,. We divide 
this region into rectangular cells, as shown in Fig. 10.17. The dimensions 
of the cell are proportional to the dimensions of the central peak of the 
signal ambiguity function We shall use a grid with dimensions 

and 

A 
1 - r--- 

%I 
(103a) 

where 

and 

A 
1 -- o- Y 
G 

q2 = t - 2 -2 (0 

o2 L 0 3- 6” ( ) . 

0 

(103b) 

(1034 

(103d) 

’ Fig. 10,117 Region in T, o plane in which targets may be present. 

t We suggest that the reader review these pages, because our analysis in this 
follows it closely. 
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Fig. 10.18 Range-Doppler cell. 

The cell is shown in Fig. 10.18. Notice that if z is significant (e.g., in a 
linear F‘. signal) a parallelogram cell would be logical. We assume z 
equals zero for simplicity. 

We process the received signal in two steps. We first decide which of the 
cells the signal is in. We next perform a localization within the chosen cell. 
Thus, there are two kinds of errors: decision errors, because of picking the 
wrong cell, and local errors within the cell. The local errors were discussed 
in the last section. We now analyze the decision errors. 

To analyze the errors we assume that the signal lies at the center of one 
of the cells. We denote the center point of the ith cell as (+J-+ tr)$). We 
assume that the a-priori probability that a signal will lie in any cell is equal. 
Thus we have an M-hypothesis problem where 

AI= Sl,a,T,%* (104a) 

The LRT consists of computing &12, 

(104b) 

and choosing the largest. To analyze the performance, we must consider 
two cases. 

Case 1. The signal ambiguity function has a central peak and no sub- 
sidiary peaks. The signal output in all incorrect cells is negligible. 

Case 2. The signal ambiguity function has subsidiary peaks whose 
amplitudes are non-negligible. 

We now analyze the first of these cases. The analysis for the second 
case is outlined briefly. The first case corresponds to transmitting one of 
M-orthogonal signals over a Rayleigh channel. The Pr (E) for this case was 
derived in Problem I-4.4.24 (see also [I-80]). 

For our purposes the approximate expression derived in Problem 



1-4.4.25 (see also [I-~01) is most useful. The result is 

As in Example 2 on page I-282, we can compute a meanasquare error, 
given an interval error 

E[$I interval error] < 2~~: T2, =- - 
6 ) 

i-2 2 

E@oe2 1 interval error] < 2GQ2 * * X---- - * 6 

(106a) 

(l06b) 

In (106a) we have ignored the set of decision errors that cause no range 
error (i.e., choosing a cell at the correct range, but the wrong Doppler). 

We now restrict our attention to the range 
combine th e various results to obtai n an overa 

estimation 
1 variance. 

error, We can 

E(r,2) = E(T,2 1 no decision error) Pr (no decision error) 
+ E(7,2 1 decision error) Pr (deGision error). (107a) 

The only term that we have not evaluated is A+,2 1 no decision error). We 
can obtain a good approximation to this term, but it is too complicated 
for our present purposes. It is adequate to observe that the first term is 
nonnegative, so that the normalized error can be bounded by using only 
the second term. The result is 

~(~~) w3 > 12 -=- 
Var IT*1 

- E(T~~ 1 decision error) Pr (decision error) 
T312 - l-2, 
2N 

O 
1 -- - 

4 
In [Q,a,T,b,l - + 0.577 l 

2Q*o,T,%l 
(107b) 

From Section 10,2.1, we know that we also can bound the variance by 
using the Cramer-Rao bound. For large ~~~~o, the normalized Cramer- 
Rao bound is approximately 

(107c) 

Comparing (107b) and (107c), we see that the right sides of both ex- 
pressions have the same dependence on ~~/~o. However, for the parameter 
values of interest, the right side of (107b) is always appreciably larger than 
the right side of (107~). Thus, we conclude that, for a single transmitted 
pulse and a Rayleigh target model, the probability of a decision error 
dominates the error behavior, and we never achieve the variance indicated 
by the Cram~rmRao bound. The reason for this behavior is that in the 
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Rayleigh model we encounter targets with small 161” regardless of how 
large &/N, is. The large estimation errors associated with these small 
amplitude targets keep the average error from approaching the bound. 

In Section 10.2.1, we indicated that the ML estimates were asymptotically 
efficient as the number of observations (that is, the number of pulses 
transmitted) approached infinity. We can now discuss the behavior as a 
function of N. For N pulses the Pr (E) is approximately 

[use (I-2.5 16) and (~-4.64)]. If we assume that E(+T@~ 1 no derision error) 
can be approximated by the right side of (92) then 

E(T3 1 6 - w 
- - ’ ’ NE”No(l - Pr (E)) + 2 Pr (E), 

~=(T,(r,)2N&IN, Ni?JlV, 
(108b) 

In Fig. IO. 19, we have plotted the reciprocal of the normalized mean-square 
error as a function of N for various &./No, Q*cr,, and T,ao values. As we 
would expect, there is a definite threshold effect. Below threshold the 
variance increases as (~~*~*)(~~~ J is increased. Increasing (~~~*)(~~~*) 
also moves the threshold point to a larger value of N. Notice that even 
when -&/No equals 10, it takes about 10 pulses to get above threshold. 

In our discussion at the end of Section 10.2.1 we mentioned an alternative 
target model in which 181 was modeled as a fixed quantity. It is interesting 
to discuss the global accuracy for this model. By a power series approach 
one can show that 

No 1 E(T,~ 1 no decision error) = - -2 , 
2E,cr, 

(109a) 

where 
ET = E, PI23 (109b) 

(see for example [77]). Using Problem 4.4.7 and (I-4.64), 

pr (4 < Q*%T*% Er exp - - . 2 ( 1 2NO 

uw 

Using (107a), (109), and (1 lo), we obtain an expression for the normalized 
mean-square error. The reciprocal of the normalized mean~square error 
is plotted in Fig. 10.20 as a function of E~/2~o for various values of Q*a, 
and T,cr,, Once again, we observe the threshold effect. Notice that if 
(o,T,)(o,Q,) equals 104, then we need an E,./No of about 40 to get above 
threshold. 
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~h?2~ - [ 1 Var fT*l 

10 100 
N (buffer of pulses) --+ 

Fig. 10.19 Reciprocal of notarize mean-square error versus number of pulses: 
Rayleigh target model. 

We should point out that in both Figs. 10.19 and 10.20, the location of 
the threshold is a function of the grid size that we selected. An analysis 
of the effect of grid size on the local and global errors could be carried out, 
but we have not done so. 

All of our discussion up to this point has considered a signal whose 
ambiguity function had no subsidiary peaks. If the ambiguity function 
has subsidiary peaks, then the decision problem corresponds to the Mary 
decision problem with nonorthogonal signals, For a particular signal 
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Er 

2% - Fig. 10.20 Reciprocal of normalized mean- 
square error versus ~~/2~~ t nonfluctuating 

target model. 

ambiguity function an approximate answer can be obtained, but the exact 
numerical results add little insight into the general case. 

We should point out that there are other techniques available for 
studying the global accuracy problem. The Barankin bound discussed on 
pages I-71, I-147, and I-286 is quite useful (see for example [78]-[81]). 
Other references dealing with the global accuracy problem include 
[82]-[83]. 

10.2.3 Summary 

In this section we have studied the performance of the optimum receiver. 
We have found that the local accuracy depends on the shape of the 
ambiguity function, 0( T, cu), near the origin. We also studied the global 
accuracy (or ambiguity) problem. Here the performance depends on the 
behavior of 0(~, cc)) in the entire 7, cr) plane. 
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Thus, we have established that in both the accuracy and an~biguity 
issues the functions +(T, cu) and 0( 7, w) play a fundamental role. In the 
next section, we derive some useful properties of these functions. 

10.3 PROPERTIES OF TIMEaFREQ~ENCY AUTOCORRELATION 
FUNCTIONS AND AMBIGUXTY FUNCTIONS 

The autocorrelation and ambiguity functions were first introduced by 
Ville [I]. Their properties have been studied in detail by Woodward [8], 
Siebert [9], [lo], Lerner [ll], and Price [12]. 

The first property that we shall derive in this section concerns the volume 
under the ambiguity function. One implication of this property is that the 
ideal ambiguity function of Fig. 10.6 cannot exist. 

Property 3 (Volume Invariance). The total volume under the ambiguity 
function is invariant to the choice of signal. Specifically, 

Proof. The proof follows directly from the de~nitions in (17) and (18). We have 

integrating with respect to co gives 2A(r - u). Then 
changes u to t. This gives 

integrating with respect to u 

co 

JJ 

O(T, co) d?- (113) 

--Co -a0 -CKI 

Let 2 = I - (42). Then 

The inner integral equals unity for all x, since the energy is invariant to a time shift, 
The remaining integral equals unity, which is the desired result. 
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The implication of this result, which is frequently called the radar 
~~z~e~~~~~~~ ~~~~c~~~e, is clear. If we change the signal in order to narrow 
the main peak and improve the accuracy, we then must check to see where 
the displaced volume reappears in the 7, cc) plane and check the effect on 
system performance. The radar uncertainty principle is probably the most 
important property of the ambiguity function. There are a number of 
other properties that are less fundamental but are useful in signal analysis 
and design. 

The first group of properties deals principally with the time-frequency 
auto~orrelation function (most of these were indicated in [lol). The proofs 
are all straightforward and many are left as exercises. 

Property 4 (Symmetry). 

+(7, Q-4 = +*e--7, -4 (115) 
and 

q7, w) = e+, -co). (116) 

Property 5 (Alternative representations). An alternative representation 
of the time-frequency autocorrelation function is 

At this point it is convenient to introduce a time-frequency autocorrela- 
tion function whose second argument is in cycles per second. We denote 
it by 

The braces {a} indicate the definitions in (I 18) and (1 S9), while the 
parentheses () indicate the original de~nition.~ 

Property 6 (Duality). The res?llt in Property 5 points out an interesting 
duality that we shall exploit in detail later. Consider two signals, &(t) 
and &(t), such that 

fz(f} L/m &(t)e-j2rft dt, wo) 
-co 

t We apologize for this diabolical notation. In most cases, the de~n~t~on being used is 
obvious from the context and one can be careless. In duality problems one must be 
careful, because the definition cannot be inferred from the argument. 
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that is, &{*) is the Fourier transform of &(*)* The result in (117) implies 
that 

42{fY -4 = 4s,(~,f)* (120 

Thus the effect of transmitting the Fourier transform of a signal is to 
rotate the time-frequency diagram 90” in a c~~c~~~~e direction, 

Similarly, 
e {f 2 9 -7) = h-+9 f 1. (122) 

Property 7 (Scaling). If 

.&> - t6(7,4, (123) 
then 

~~~(~~) - +(m-, ;), a > 0. VW II 

The ambiguity function is scaled in an identical manner. 

Property 8. If 

then 
(125) 

(126) 

This is the frequency domain dual of Property 1 (page 290). The ambiguity 
function is changed in an identical manner. 

Property 9 (Rotation). A generalization of the duality relation in Property 
6 is the rotation property. Assume that 

If we desire a new time-frequency function that is obtained by rotating 
the given +,(*, ), that is, 

#&, W) = ~~(~ sin a + 7 cos a, cI) cos a - 7 sin cx), o<a<~ 2 9 wf9 

we can obtain this by transmitting 

(129) 
The ambiguity function is also rotated by a radians. 
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Property 10. A question of interest is: Given some function of two 
variables, +{~,f}, is it a time-frequency correlation function of some 
signal? We can answer this by taking the inverse transform of (118). Since ${T,f} =S_mmf(f - ;$*(t + $e’l”“df, (130) 

s O” +{7, f}e--i2Ut -a2 df=+$*(t+;). (131) 

Thus, if the transform of 4{7,f} can be written in the form shown in 
(131), it is a legitimate time-frequency correlation function andf(t) is the 
corresponding signal. By a change of variables (x = t - r/2 and y = 
t + 7/2), the relation in (131) can be rewritten as 

PWf*W =Ia +{w - X,f } ev (-jbf (y)) df. (132) 
-m 

By duality (Property 6), this-can be written as 

F{x}F*{y} =Ja ${f, x - y} exp (-j2nf (y)) df. (133) 
-cn 

The relations in (132) and (133) enable us to determine the signal directly. 
Notice that the signal is unique except for a constant phase angle. Thus, 

also satisfies (132). 
jl,( x) A f(x)eia (W 

A similar relation has not been derived for the ambiguity function. Thus, 
if we are 
necessary 
we do no t have any direct 

.esired ambiguity functi ad 

given a function 0{7,f}, we do not have a test that is both 
and sufficient for O{*, l } to be an ambiguity fu nction. In addition, 

procedure for finding any(t) that will produce 
on. 

Property 11 (Multiplication). If 

and 

then 

m&o - 
s 

m A{? Xhb2hf - x> dx (137) 
-co 

(i.e., convolution with respect to the frequency-variable), and 

(i.e., convolution with respect to the time variable). 
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Property 12 (Axis-intercept Functions). The time-frequency correlation 
function evaluated at ~1) = 0 is just the time-correlation function of the 
complex envelope, 

The time-frequency correlation evaluated at 7 = 0 has two interesting 
interpretations. It is the Fourier transform of the squared magnitude of 
the complex envelope, 

From (117), it is the correlation function of the Fourier transform of the 
complex envelope $ 

uw 

The final property of interest applies only to the ambiguity function. 

Property 13 (Serf-transform), An ambiguity function is its own two- 
dimensional Fourier transform, 

W) 

Observe the sign convention in the definition of the double transform 
[minus on the time (first) variable and plus on the frequency (second) 
variable]. This choice is arbitrary and is made to agree with current 
radar/sonar literature. It is worth noting that the converse statement is 
not true; the self-transform property does not guarantee that a particular 
function is an ambiguity function. 

In this section we have derived a number of useful properties of the 
time~frequen~y auto~orrelation function and the ambiguity function. 
Several other properties are derived in the problems. In addition, the prop: 
erties are applied to some typical examples. 

Notice that we have not been able to find a necessary and sufficient 
condition for a function to be an ambiguity function. Even if we know 
(or assume) that some two-variable function is an ambiguity function, we 
do not have an algorithm for finding the corresponding complex envelope. 
Thus, we can not simply choose a desired ambiguity function and then 
solve for the required signal. An alternative approach to the signal design 
problem is to look at certain classes of waveforms, develop the resulting 



ambiguity function, and then choose the best waveform in the class. This 
is the approach that we shall use. 

In Section 10.2, we examined modulated analog waveforms. We now 
look at a class of waveforms that we call coded pulse sequences. 

10.4 CODED PULSE SEQUENCES 

In this section we study complex envelopes consisting of a sequence of 
pulses that are amplitude-, phase-, and frequency-modulated. Each pulse 
in the sequence can be expressed as a delayed version of an elementary 
signal, G(t), where 

i 

1 
ii(t) d J T,) 

o<t<r,, 
(143) 

0, elsewhere. 

We denote the delayed version as ii,(t), 

The complex envelope of interest is 

N-3 
fl) t = c ~~~~(t) exp (jo,t + ~~~). 

5 
(145) 

c =.l t4 = 0 
We see that a, is a constant amplitude modulation on the nth pulse, a, 
is a constant frequency modulation of the nth pulse, and 8, is the phase 
modulation on the nth pulse. The constant c is used to normalize the 
envelope. The signal in (145) has 3N parameters that can be adjusted. We 
shall investigate the effect of various parameters. 

Our discussion is divided into three parts: 

1. A brief investigation of on-off sequences. 
2. A development of a class of signals whose ambiguity functions are 

similar to the ideal ambiguity function of Fig. 10.6. 
3. A brief commentary on other classes of signals that may be useful 

for particular applications. 

10.4.1 On-off Sequences 

The simplest example of an on-off sequence is the periodic pulse sequence 
in Example 3. Clearly, it can be written in the form of (145). To illustrate 
this, we assume that we have a periodic pulse sequence with interpulse 
spacing Tp = 10Ts and a total of 10 pulses, as shown in Fig. 10.21. In the 
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t 
lOT, 20Ts 3OT, 

Fig. 10.21 Periodic puke train. 

notation of (149, 

a, = alI = a,, = 9 l l a,, = 1, uw 

and all other ara = 0. Both ct), and 8, = 0 for all n. 
The disadvantage of the periodic sequence was the presence of large 

subsidiary peaks in the ambiguity function. Since the peaks are caused 
by the periodic structure, we can try to eliminate them by using a non- 
uniform pulse-repetition rate. One way to construct such a sequence 
would be to have 100 possible pulse positions and insert 10 pulses randomly. 
This type of procedure has been investigated in detail (e.g., Rihaczek [ 131, 
Cook and Bernfeld f 14, pages 232-2401, Kaiteris and Rubin [15], and 
Resnick [16]). It can be shown (the easiest way is experimentally) that 
staggering the PRF causes a significant reduction in the sidelobe level. 
(A sidelobe is a subsidiary peak in the T, ct) plane.) The interested 
can consult the above references for a detailed discussion. 

reader 

10.4.2 Constant Power, Amplitude-modulated Waveforms 

In this section, we consider the special case of (145) in which the 
waveforms can be written as 

where 

To motivate the use of this class of waveforms, let us recall the properties 
that an “ideal” ambiguity function should have: 

1. The central peak should be narrow al .ong the -r-axis. The minim urn 
width of the central peak is go verned by the signal bandwid th IV. Here the 
bandwidth is the reciprocal of the length of the elemental pulse, T,. 
Outside the region of the central peak, the ambiguity function should be 



reasonably flat. From Property 12, 

(14% 

Thus, we want a signal whose correlation function has the behavior shown 
in Fig. 10.22. 

2. The central peak should be narrow along the m-axis. From Property 
12, 

By making If”(t)1 constant over the entire signal sequence, we make 
#(O, w) a narrow function of cc). This suggests choosing 

Then 
an= &l, n=1,2 ,..., N. uw 

IJ;c )I 
1 t=--, - 

J 
O<t<NT,=T, (152) 

N 

and the width on the f-axis is approximately 2/T. 
3. The ambiguity function should be reasonably flat except for the 

central peak. This requirement is harder to interpret in terms of a require- 
ment on the signal. Therefore, we design signals using the first two require- 
ments and check their behavior in the 7, u plane to see if it is satisfactory. 

4. The volume-invariance property indicates that if the ambiguity 
function is approximately flat away from the origin, its height must be 
such that the total volume integrates to unity. To compute this height, we 
observe that the total length of the ambiguity function is 2Tif the duration 
of the complex envelope is T (recall T = NT,). The ambiguity function 
does not have a finite width on the f-axis for a finite duration signal. 
However, we can approximate it by a width of 2w cycles per second, 
where JV is the effective signal bandwidth. (In this case, UI’ = T;?) With 
these approximations we have the desired ambiguity function shown in 

Fig. 10.22 A desirable signal correlation function. 


