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Fig. 10.23. We can approximate the volume of the central peak by I/UK 
Thus, the height of the flat region must satisfy the equation 

h*4WT+-Ll 
WT 

(153) 
or 

For large Z”W products, 

h-s- 
1 P-d- 

4WT’ 
iW 

This result gives us a general indication of the type of behavior we may 
be able to obtain. From the radar uncertainty principle, we know that this 
is the lowest ~~if~~rn height we can obtain. Depressing certain areas 
further would require peaks in other areas. 

With these four observations as background, we now try to find a 
waveform that leads to the ambiguity function in Fig. 10.23. In the absence 
of any obvious design procedure, a logical approach is to use the intuition 
we have gained from the few examples we have studied and the properties 
we have derived. 

Bwker Codes. A plausible first approach is to let IV equal a small 
number and investigate all possible sequences of a,. For example, if 

Fig. 10.23 A desirable ambiguity function. 
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N = 3, there are 23 arrangements. We can indicate the sequence by the 
amplitudes. Thus, 

++- (156) 
denotes 

A ) t = -J= [Q(t) + Qt) - U&)1* 
J 3 

W) 

We can compute the correlation function #(T, 0) easily. Since we are 
shifting rectangular pulses, we just compute 

$(nT,, 0, n = L2, 3 (158) 

and connect these values with straight lines. The resulting correlation 
function is shown in Fig. 10.24. We see that the correlation function has 
the property that 

Notice that the complement of this sequence, - - +, the reverse, 
- + +, and the complement of the reverse, + - -, all have the same 
property. We can verify that none of the other sequences of length 3 has 
this property. Barker [ 171 developed sequences that satisfy the condition 
in (159) for various IV < 13. These sequences, which are referred to as 
Barker codes, are tabulated in Table 10.1. Unfortunately, Barker codes 
with lengths greater than 13 have not been found. It can be proved that no 
odd sequences greater than 13 exist and no even seauences with N between I 

0) 

1 

Fig. 10.24 Correlation function of three-element Barker code. 
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Table 10.1 Barker Sequences 

N Sequences 

2 ++,-+ 
3 ++- 
4 ++- +,+++- 
5 +++-+ 
7 +++--+- 

11 +++---+--+- 
13 +++++--++-+-+ 

4 and 6084 have been found [18]. The magnitude of the time-frequency 
correlation function for a Barker code of length 13 is shown in Fig. 10.25. 
We see that there are two ridges of non-negligible height. 

Shift-Register Sequences. A second approach to signal design is suggested 
by an example that is usually encountered in random-process courses. 
Consider the experiment of flipping a fair coin. If the outcome is a head, 
we let a, = 1. If the outcome is a tail, we let a, = - 1. The nth toss 
determines the value of a,. The result is a sample function, the familiar 
Bernoulli process. As N -+ 00, we have the property that 

+wIs, 0) = 0, I2 # 0. (160) 

Thus, for large N, we would expect that the waveform would have a 
satisfactory correlation function. One possible disadvantage of this 
procedure is the storage requirement. From our results in Section 10.1, 
we know that the receiver must have available a replica of the signal in 
order to construct the matched filter. Thus, if N = 1000, we would need to 
store a sequence of 1000 amplitudes. 



Fig. 10.26 Feedback shift register. 

Fortunately~ there exists a class of deterministic sequences that have 
many of the characteristics of Bernoulli sequences and can be generated 
easily. The device used to generate the sequence is called a feedback 
dift register. A typical three-stage configuration is shown in Fig. 10.26. 
Each stage has a binary digit stored in it. Every T, seconds a clock pulse 
excites the system. Two operations then take place: 

1. The contents shift one stage to the right. The digit in the last stage 
becomes the system output. 

2. The output of various stages are combined using mod 2 addition. 
The output of these mod 2 additions is the new content of the first stage. 
In the system shown, the contents of sta es 2 and 3 are added to form the 
input. 

3. Since all of the operations are linear, we refer to this as a ~i~e~~ s~z~ 
register. 

The operation of this shift register is shown in detail in Table 10.2. 
We see that after the seventh clock pulse the contents are identical with 

Table 10.2 

Contents Output sequence 

Initial 1 1 1 
1 011 1 
2 001 11 
3 1 0 0 1 1 1 
4 0 1 n\Q 0 1 1 1 
5 1 0 1 00111 
6 1 1 0 100111 
7 1 1 1 0100111 
8 
9 i !I 

10 Repeats Repeats 
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the initial contents. Since the output is determined completely from the 
contents, the sequence will repeat itself. The period of this sequence is 

It is clear that we cannot obtain a sequence with a longer period, because 
there are only 2* = 8 possible states, and we must exclude the state 000. 
(If the shift register is in the 000 state, it continues to generate zeros.) 
Notice that we have chosen a parti~u~ar feedback connection to obtain the 
period of 7. Other feedback conn~t~ons can result in a shorter period. 

TO obtain the desired waveform, we map 

l- +L (162) 
o- -1. 

If we assume that the periodic sequence is ~~~~~~e in extent, the correla- 
tion function can be computed easily. For convenience we normalize the 
energy per period to unity instead of normalizing the total energy. The 
correlation function of the resulting waveform is shown in Fig. 10.27. 
We see that 

&)(raT,, 0) = lT 
-3, (163) , * t * . 

All our comments up to this point pertain to the three-stage shift 
register in Fig. 10.26. In the general case we have an N-stage shift register 

Fig. 10.27 ~orr~lati~n function of a perio~i~ ps~u~oran~~m sequence. 
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states, we cannot generate a sequence whose period is 
1. However, it is not clear that there exists a feedback 
will generate a sequence of this period. To prove the 
sequence and find the configuration that produces one 

requires mathematical background that we have not developed. The 
properties of shift-register sequences have been studied extensively by 
Golomb, [20], Huffman 1211, Zierler [22], Peterson [23], and Elspas [24]. 
Very readable tutorial discussions are given by Ristenblatt [25], [26] and 
Golomb [27, Chapters 1 and 21. The result of interest to us is that for all 
IV there exists at least one feedback connection such that the output 
sequence will have a period 

L = 2” - 1. (164) 

These sequences are called maximal-length shift-register sequences. 
Notice that the length is an exponential function of the number of stages. 
A list of connections for N < 31 is given by Peterson [23]. A partial list 
for IV < 6 is given in Problems 10.4.5 and 10.4.6. These sequences are also - 
referred to as p~e~d~-r~~d~rn (PR) sequences. The “random” comes from 
the fact that they have many of the characteristics of a Bernoulli sequence, 
speci~cally the following : 

1. Xn a Bernoulli sequence, the number of ones and zeros is approxi- 
mately equal. In a PR sequence, the number of ones per period is one 
more than the number of zeros per period. 

2. A run of a length yt means that we have n consecutive outputs of the 
same type. Tn a Bernoulli sequence, approximately half the runs are of 
length 1, one-fourth of length 2, one-eighth of length 3, and so forth. 
The PR sequences have the same run characteristics. 

3. The autocorrelation functions are similar. 

The “pseudo” comes from the fact that the sequences are perfectly 
deterministic. The correlation function shown in Fig. 10.27 assumes that 
the sequence is periodic. This assumption would be valid in a continuous- 
wave (CW) radar. Applications of this type are discussed in [28] and [29]. 
Continuous PR sequences are also used extensively in digital communica- 
tions In many radar systems we transmit one period of the sequence. 
Since the above properties assumed a periodic waveform, we must evaluate 
the behavior for the truncated waveform. For small IV, the correlation 
function can be computed directly (e.g., Problem 10.4.3). We can show that 
for large Iv the sidelobe levels on the T-axis approaches fi (or J-). 
The time-frequency correlation function can be obtained experimentally. 



Fig. 10.28 I+{l;,f>/ for ~seud~ra~dom sequence of leugt~ N = 35 (From f353). 

A plot for N = 15 is shown in Fig. 10.28. In many applications, the 
detailed structure of +(~,f) is not critical. Therefore, in most of our discus- 
sion we shalt use the approximate function shown in Fig. 10.29. This func- 
tion has the characteristics hypothesized on page 316. Thus, it appears that 
the shiftaregister sequences provide a good solution to the combined ambi- 
guity and accuracy problem. 

Fjg. l&29 A~~roxjmatjon to the arn~~gujty fun~tjon of a ~seud~random s~uen~e. 
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10.4.3 Other Coded Sequences 

Before leaving our discussion of coded pulse sequences, we should point 
out that there are several alternatives that we have not discussed. The 
interested reader can consult [14, Chapter 81 and [30] for a tutorial 
discussion, or the original papers by Huffman [3 11, Golomb and Scholtz 
[32], Heimiller [33], and Frank [34]. 

We should emphasize that pulse sequences are frequently used in 
practice because they are relatively easy to generate, the optimum receiver 
is relatively easy to implement, and they offer a great deal of flexibility. 
Readers who are specializing in radar signal design should spend much 
more time on the study of these waveforms than our general development 
has permitted. 

Up to this point we have assumed that only a single target is present. 
In many cases, additional targets interfere with our observation of the 
desired target. This problem is commonly called the resolution problem. 
We discuss it in the next section. 

10.5 RESOLUTION 

The resolution problem in radar or sonar is the problem of detecting 
or estimating the parameters of a desired target in the presence of other 
targets or objects that act as reflectors. These reflectors may be part of 
the environment (e.g., other airplanes, missiles, ships, rain) or may be 
deliberately placed by an enemy to cause confusion (e.g., decoys, electronic 
countermeasures, or chaff). It is convenient to divide the resolution 

~nterferjng 
targets f Desired target 

-l 

Fig. 10.30 Target geometry for discrete resolution problem. 
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Distributed Desired 

Fig. 10.31 Geometry for contjnuo~~ resolution problem. 

problem into two categories: 

1. Resolution in a discrete environment. 
2. Resolution in a continuous (or dense) environment. 

We now discuss our model for these two categories. 
In Figure 10.30, we show the region of the r, cr) plane that we must 

investigate. The desired target is at coordinates Q, or),. A set of Kinterfering 
targets are at various points in the T, ct) plane. The desired and interfering 
targets are assumed to be slowly fluctuating Rayleigh targets. In general, 
the strengths of the various targets may be unequal. (Unfortunately, we 
occasionally encounter the problem in which the interfering target strengths 
are appreciably larger than the desired target strength.) We shall give a 
detailed model for the discrete resolution problem in the next section. 

In the continuous resolution problem, the interference is modeled as a 
continuum of small reflectors distributed over some area in the 7, cc) 
plane, as shown in Fig. 10.31. This model is appropriate to the reverbera- 
tion problem in sonar and the clutter problem in radar. We whall discuss 
it in more detail in Chapter 13 as part of our discussion of distributed 
targets. 

We now consider the discrete resolution problem in detail. 

1051 Resolution In a Discrete Environment: Model 

In this section, we consider a typical resolution problem. The particular 
example that we shall discuss i s a detection problem, but similar results 
can be obtained for estimation problems. 
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We want to decide whether or not a target is present at a particular point 
( Q, 60~) in the 7, RI plane. For algebraic simplicity, we let 

and 
7-d = 0 (~65) 

OJd = 0. (166) 

There are two sources of interference: 

1. Bandpass white noise with spectral height I&,/2. 
2. A set of K interfering targets located at &, cui), i = 1, 2, . . . , K. 

We model these targets as slowly fluctuating point targets whose location 
and average strength are known. The fact that exactly K interfering targets 
are present is also assumed to be known. 

The transmitted signal is 

m = J2E, Re [f(t)ej”ct], (167) 

where .f?( t) i s the normalized complex envelope. 
The corn plex envelope of the received signal on HO is 

F(t) = JE, [ 2 &f( t - -r,)e’“i;i + G(t), ---co < t < m:H,. (168) 
i=l 

When the desired target is present, the complex envelope is 

The multipliers sd and 6, are zero-mean c 
are statistically independent with unequal 

E[c;,f$] = 2od2, 

omplex G aussian variables that 
variances 

E&&J = E[&] = E[b,b)] = E[~~~~] = 0, i = 1, . . . , K. (172) 

There are several 
two concern the 

issues of interes 
receiver design, 

t with respect 
and the next 

to this model. The first 
two concern the signal 

1. We might assume that the receiver is designed ~~~~~~~ knowledge of 
the interfering signals. The resulting receiver will be the bandpass matched 
filter that we derived previously. We can then compute the effect of the 



interfering targets on the receiver performance. We refer to this as the 
~~~~~~~~~~~~1 receiver problem. 

2. We can design the receiver using the assumed statistical properties 
of the interference* We shall see that this is a special case of the problem of 
detection in colored bandpass noise that we discussed in Section 9.3. We 
refer to this as the optimum receiver problem. 

3. We can require the receiver to be a matched filter (as in part 1) 
and then chooses to minimize the interference effects. 

4. We can use the optimum receiver (as in part 2) and choose the signal 
to minimize the interference effects. 

We now discuss these four issues. 

10.5.2 C~~v~nti~~a~ Receivers 

The performance of the eonve~tional receiver can be obtained in 
straightforward manner. If we use a bandpass filter matched tom, the 
optimum receiver performs the test 

is 

co 
s I 2 A wo - (173) “-a 

[see (9.36) and (9.39).] We use the subscript wo to indicate that the test 
would be ~p~~~~~~ if the noise were chide. Now, since I,, is a complex 
Gaussian variable under both hypotheses, the performance is completely 
determined by 

[see (9.49).] To evaluate the two expectations in (174), we substitute 
(168) and (169) into the definition in (173). The denominator in (174) is 

Using the independence of the 6, and the definition in (18), this reduces to 

where 

(l-9 
i--l. 

Jci h 2E~~~2 WV 



is the average energy received from the ith interfering target. Similarly, 

E[fL,l” 1 %I - ~V2ml” 1 &I = Jq.g (178) 
where 

4, h 2Epd2 w9 
is the average received energy from the desired target. Then 

The numerator corresponds 
present. The second term in 

to the performance when only white noise is 
the denominator represents the degradation 

in the performance due to the interfering targets. We see that the per- 
formance using the conventional matched filter is completely characterized 
by t~he average strength of the return from the interfering targets and the 
value of the ambiguity function at their delay and Doppler location. 

Conceptually, at least, this result provides the answer to the third issue. 
We design a signal whose ambiguity function equals zero at the K points 
in the 7, ~1) plane where the interfering signals lie. Even if we could carry 
out the design, several practical difficulties remain with the solution: 

1. The resulting waveform will undoubtedly be complicated. 
2. Each time the environment changes, the transmitted signal will have 

to change. 
3. The performance may be sensitive to the detailed assumptions of the 

model (i.e., the values of 7i and CL)~). 

On the other hand, there are a number of physical situations in which our 
solution gives a great deal of insight into how to design good signals. A 
simple example illustrates the application of the above results. 

Example. Consider the multiple-target environment shown in Fig. 10.32. We are 
interested in detecting zero-velocity targets. The interfering targets are moving at a 
velocity such that there is a ~i~i~~~ Doppler shift of mo. We want to design a signal 
such that 

O(r, 0) = 0, I4 > woe ww 

We could accomplish this exactly by transmitting 

(182) 

This result can be verified by looking at the ambiguity function of the r~tangular pulse 

in Exampie 1 (page 280) and using the duality result in Property 6 (pages 309-310). 



lnt~rferjng targets 
0 

I 

Fig. 10.32 Multip~e~ta~get geometry. 

Fig. 10.33 ~~~t~ur of ambiguity fu~~ti~~ of rectangular puke, 

1, 
* 

interfering targets 0 

Fig. 10.34 ~ig~a~mi~terfere~ce relation. 
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On the other hand, we can make 

$(T, w) N 0, I4 > 0 (183) 

by transmitting 

O<t<T, 

elsewhere, 
27T 

T>>--• 
“0 

This solution is more practical. A typical contour of the resulting ambiguity function is 
given in Fig. 10.33, and is shown superimposed on the interference plot in Fig. 10.34. 
The reason for this simple solution is that the interference and desired targets have some 
separation in the delay-Doppler plane. If we had ignored the resolution problem, we 
might have used some other signal, such as a short pulse or a PR waveform. In the 
target environment shown in Fig. 10.32, the interfering targets can cause an appreciable 
degradation in performance. 

The result of this example suggests the conclusion that we shall probably 
reach with respect to signal design. No single signal is optimum from the 
standpoints of accuracy, ambiguity, and resolution under all operating 
conditions. The choice of a suitable signal will depend on the anticipated 
target environment. 

Now we turn to the second issue. Assuming that we know the statistics 
of the interference, how do we design the optimum receiver? 

10.5.3 Optimum Receiver: Discrete Resolution Problem 

Looking at (168) and (169), we see that the sum of the returns from the 
interfering targets can be viewed as a sample function from complex 
Gaussian noise processes. If we denote the first term in (168) as n”,(r), then 

and we have the familiar problem of detection in nonwhite complex 
Gaussian noise (see Section 9.3). The covariance function of am is 

We have used an infinite observation for algebraic simplicity. Usually f ( t )  

has a finite duration, so that &(t, zf) will be zero outside some region in the 
(t, u) plane. From (9.69), the optimum receiver performs the operation F(t)g*(t) dt 2z y, WV 



Fig. 10.35 Optimum receiver. 

where g(t) satisfies (9.74). To finds, we substitute (188) into (9.74). The 
result is 

We see that this is an integral equation with a separable kernel (see pages 
1-322-I-325). It can be rewritten as 

f(t) = 2 I?,+& - ~~)e~~~~ 
i=l (s 

O” f*(u - ~~)e-~~~~~(~) du) + Nap, 
-Go 

-co<t< 00. (189) 
The solution to (189) is 

g(t) = &J(f) + 2 &f(t - TJeiwit, ---<r<cq (190) 
i=l 

where g’d and &, i= I,...) K, are constants that we must find. The 
optimum receiver is shown in Fig. 10.35. The calculation of the constants 
is a straightforward but tedious exercise in matrix manipulation. Since 
this type of manipulation arises in other situations, we shall carry out the 
details. The results are given in (201) and (202). 

Calculation of Filter Coefiicients, We first define four matrices. The coefficient 
matrix E is 

(191) 
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The interference matrix f+(t) is 

~ 

- 
f( t- rl)ejw t 

IT t- r2)eja2t 

Qt) Li ’ . 
s 

3c t- 7&?jmKt 

In addition, we define 
%2 

02 
2 

A ii E,[E@i;t]] = 2E, * . 

0 
. 

(192) 

(193) 
(194) 

Looking at (192) and (194), we see that all the elements in i can be written in terms of 
time-frequency correlation functions of the signal. The covariance function of the 
colored noise is 

Rewriting (190) in matrix notation gives 

where 

Substituting (195) and (196) into (188), we have 

(196) 

(197) 

3c 1 t = s * { p(t)iG**(*) + N($(t - u))(gJ(u) + f”Iqu)g} du. (198) -CXI 



This reduces to 

where 

SoIving (199), we have 

i;d = 
s 

co 
&*(u)f(u) du. 

-00 
mu 

This completely specifies the optimum receiver. 
Using (196), (201), and (202) in (9.771, we find that the performance is determined by 

(203) 

To illustrate these results, we consider a simple example. 

Example. Single Interfering Target. In this particular case, the complex envelope of the 
return from the desired signal is dq6df(t> and the complex envelope of the return from 
the single interfering target is 

i;(t) = 4% h&t - r&j@. (204) 

Thus, f;(t), g, A, FJ, and pa are scakm. Using (202), we obtain 

(205) 

observing that 

and 

;d = 
s 

m i; (u)~(u) du = 
s 

O” ~~u~3~~u - T&-& du (206) 
-a9 -co 

El = 2E&, (207) 

we can write the ~rforman~e expression in (203) as 

(20% 

The ratio of A, to J!$./N, is plotted in Fig. 10.36. This indicates the degradation in 
performance due to the interfering target. 
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Fig. 10.36 ~erf~rmau~e of ~~~irnurn receiver with single inte~eriu~ target. 

The improvement obtained by using optimum filtering instead of conventional entering 
can be found by comparing (208) and (180). The ratio of A, to A,, (the performance 
using a conventional matched filter) is 

This reduces to 

The ratio is piotted in Fig. 10.37 for various values of ~~/N~ and I?(Q, q). We see that 
the function is symmetric about I?(,,, ~01) 
explained as follows. 

= 0.5. The behavior at the endpoints can be 



1. As O(rl, w,) -+ 1, the interference becomes hi~hIy correlated with the signal. This 
means that 

so that 
(210 

f(t) = cm 

Thus, the optimum and conventional receivers only differ by a gain. Notice that the 
performance of both receivers become worse as 6(q,, ox) approaches unity. 

2. As @(,,, q) - 0, the interference becomes essentiaiIy uncorre~ated with the 
signal, so that the optimum and conventional receivers are the same. Thus, if we have 
complete freedom to choose the signal, we design it to make 6(Tl, q) small and the 
conventional matched filter will be essentia~Iy optimum. 
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Fig. 10.37 Relative performance of optimum and conventional receivers: single inter- 
fering target. 
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The conclusions of this simple example carry over to the general 
problem. If possible, we would like to make O(,,, ~0~) zero for all other 
interfering targets. If we can accomplish this, the optimum and conven- 
tional receiver will be the same. When O(T+ COG) and E&V0 are large for 
some values of i, appreciable improvement can be obtained by using the 
optimum receiver. Notice that our design of the optimum receiver assumes 
that we know the range and velocity of the interfering targets. In many 
physical situations this is not a realistic assumption. In these cases we 
would first have to estimate the parameters of the interfering targets and 
use these estimates to design the optimum receiver. This procedure is 
complex, but would be feasible when the interference environment is 
constant over several target encounters. 

This completes our discussion of the discrete resolution problem, and 
we may now s~~mmarize our results. 

10.54 Summery of Resolution Results 

In our study of the discrete resolution problem, we have found that there 
are two important issues. The first issue is the effect of signal design. 
Signals that may be very good from the standpoint of accuracy and 
ambiguity may be very poor in a particular interference environment. 
Thus, one must match the signal to the expected environment whenever 
possible. 

The second issue is the effect of optimum receiver design. Simple ex- 
amples indicate that this is fruitful only when the correlation between the 
interference and the desired signal is moderate. For either small or large 
correlations, the improvement over conventional matched filtering 
becomes small. If one can design the signal so that the target return is 
uncorrelated ‘with the interference, the optimum receiver reduces to the 
conventional matched filter. In cases when this is not practical, the optimum 
receiver should be used to improve performances. 

We have chosen a particular model of the resolution problem in order 
to illustrate some of the important issues. Various modifications in the 
model can be made to accommodate particular physical situations. Two 
typical problems are the following: 

1. The location and number of the interfering targets are not known. 
We design a receiver that estimates the environment and uses this estimate 
to detect the target. 

2. The targets are known to be located in a certain region (say Q1) 
of the 7, CL) plane. The signal is fixed. We design a receiver that reduces the 
subsidiary peaks (sidelobes) in Sz, without reducing the value at the correct 
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target location too 

and Related Topics 

much. This problem is usually referred to as the “mis- 
matched filter” or “sidelobe reduction” problem. 

A great deal of research has been done on the reso 11 ution problem, because 
it is the critical issue in many radar/sonar systems. There are a number of 
good referenees that the interested reader can consult (e.g., [47]-f593). 
There is also a great deal of literature on the intersymbol interference 
problem in digital communication which is of interest (e.g., [61]-[64]). 

We have confined our discussion in this section to the discrete resolution 
problem. After we have developed a model for singly~spread and doubly- 
spread targets, we shall return to the continuous resolution problem.? 

We 
some 

SUMMARY AND RELATED TOPICS 

first su 
related 

mmarize 
topics. 

the results that we have obtained, and then discuss 

10.6.1 Summary 

In this section we have studied the problem of estimating the range and 
velocity of a slowly fluctuating point target. The model of interest is 
characterized by several features : 

1. The signals and random proGesses of interest are bandlimited around 
some carrier frequency. This property enabled us to represent the signals 
and processes either by two real low-pass waveforms or by one complex 
waveform. Choosing the latter, we reformulated our earlier results in 
terms of complex quantities. Other than factors of 2 and conjugates in 
various -places, the resulting equations and structures are familiar. 

2. The effect of the slowly fluctuating target is to multiply the signal by a 
complex Gaussian variable. physically, this corresponds to a random 
amplitude and phase being introduced into the reflected signal. By 
assuming that the signal is narrow-band, we can model the effect of the 
target velocity as a Doppler shift. Thus, the received signal is 

s(t) = Jzt Re [ 6f( t - ~)e~(“~-~*) t]. (213) 

Using this model, we looked at the problem of estimating range and 
velocity. The likelihood function led us directly to the optimum 
receiver. 

t The reader who is only interested in the resolution can read pages 459-482 at this point. 



In evaIuating the performance of the receiver, we encountered the 
ambiguity function of the signal. Three separate problems were found to 
be important: 

Accuracy. If we can be certain that the error is small (i.e., we are looking 
at the correct region of the 7, cr) plane), the shape of the ambiguity function 
near the origin completely determines the accuracy. The quantitative 
accuracy results are obtained by use of the Cramer-Rao inequality. 

A?~~~g~~~~. The volume-invariance property of the ambiguity function 
shows that as the volume in the central peak is reduced to improve accur- 
acy, the function has to increase somewhere else in the 7, tt) plane. Periodic 
pulse trains, linear FM signals, and pseudo-random sequences were 
investigated from the standpoint of accuracy and ambiguity. 

&-solution. The possible presence of additional interfering targets gives 
rise to the discrete resolution problem. The principal result of our discus- 
sion is the conclusion that the signal should, if possible, be matched to the 
environment. Tf we can make the value of the ambiguity function, O(T, CO), 
small at those points in the 7, cc) plane where interfering targets are 
expected, a conventional matched filter receiver is close to optimum. 

We now mention some related topics. 

MM.2 Related Topics 

Generalized Parameter Sets. We have emphasized the problems of 
range and Doppler estimation. In many systems, there are other param- 
eters of interest. Typical quantities might be azimuth angle or elevation 
angle. Because the extension of the results to an arbitrary parameter set is 
straightforward, we can merely state the results. 

We assume that the received signal is r(t), where 

Here A is a nonrandom vector parameter that we 
G(t) is a complex white Gaussian process. We also 

want to estimate, and 
assume 

s 
co 

If’ct, A)\’ & = 1 for all A E xa. (214b) 
--ccl 

The complex function generated by the optimum receiver is 

c;o u W - - s ,l(t)f*(r, A) c/t, (21% 
- m 



and the log likelihood function is 

[by analogy with (6)]. The function in (216) is calculated as a function of 
M parameters; A1, Az, . . . . , A,. The value of A where In A(A) has its 
maximum is Gmz. Just as on page 277, we investigate the characteristics of 
In A(A) by assuming that the actual signal is f(t, A,). This procedure 
leads us to a generalized correlation function, 

and a generalized ambiguity function, 

VA, A,) .h M.A, A,)T. (218) 

We should also observe that the specific properties derived in Section IO.3 
apply only to the time~frequen~y functions. The problems of accuracy, 
ambiguity, and resolution in a general parameter space can all be studied 
in terms of this generalized ambiguity function. 

The accuracy formulas follow easily. Specifically, one can show that 
the elements in the information matrix are 

J (219) 
Some interesting examples to illustrate these relations are contained in the 
problems and in Array ~~~c~~~~~g (see [36] also). 

~~~~~e~e~ ~~~~e~~* There are several cases in which the filters in the 
receivers are not matched to the signal. One example is estimation in the 
presence of colored noise. Here the optimum filter is the solution to an 
integral equation whose kernel is the noise covariance function (e.g., 
pages 247-251, 329-334). A second example arises when we deliberately 
mismatch the filter to reduce the sidelobes. The local accuracy performance 
is no longer optimum, but it may still be satisfactory. 

If the filter is matched to g*(t), the receiver output is 

Is 
CR 2 

qt)g*( t )  nt l 

-  KJ 

v-?-l 

By analogy with (17) and (18), we define a time-frequency cross-correlation 
function, 

(221) 
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and a cross-ambiguity function, 

e,,(T Lo) a I+&9 412* (222) 

The properties of these functions have been studied by Stutt [37], [44] 
and Root [38]. (See also Problems 10.6.2-10.6.5 and [68], [74], and [75].) 

Detection of a Target with Unknown Parameters, A problem of frequent 
interest is the detection of targets whose range and velocity are unknown.. 
The model is 

i’(t) = ~2~~~(t - f)eiot + 17(t), -00 < t < m:H1, (223) 

r”(t) = G(t), -clo<t< m:H,,, (224) 

where 7 and co are unknown nonrandom parameters. Two approaches 
come to mind. 

The first approach is to use a generalized likelihood ratio test (see 
Section I-2.5). The test is 

max 
T*O (is O” 

2 Hl 
f(t)f*(t - 7)e-jot & 

--oo II 
2 7. (225) 

0 

The threshold y is adjusted to give the desired P,. The performance of this 
test is discussed in detail by Helstrom 2391. 

The second approach is to divide the region of the 7, tr) plane where 
targets are expected into M rectangular segments (see discussion on 
pages 302-303 on how to choose the segments).. We denote the T, QJ 
coordinates at the center of the ith cell as T$:, cl)<. We then consider the 
binary hypothesis problem 

1 with probability pi = - $ 
M 

i = 1,2, e l . ) M: HI (226) 

and 
f(t) = I, -cm < t < co:H,. (227) 

This is just the problem of detecting one of M signals that we discussed on 
page I-405. As we would expect, the performances of the two systems are 
similar. 

Large Tirne-~a~~wi~t~ Signals. In some sonar systems the bandwidth 
of the signal is large enough that the condition 

WT<<C 
20 

(228) 



given in (9.23) is not a valid assumption. In these cases we cannot model the 
time compression as a Doppler shift. Several references [69]-[73] treat this 
problem, and the interested reader should consult them. 

This completes our discussion of slowly fluctuating targets and channels. 
We now consider the next level of target in our hierarchy. 

10.7 PROBLEMS 

P.lO.1 Receiver Derivation and Signal Design 

Problem 10.1.1, The random variable fi(~, CO) is defined in (13). Prove that the probability 
density of I?( T, co) is not a function of T and do. 
Problem 10,1,2. Consider the Gaussian pulse with linear FM in (44a). 

1. Verify the results in (46)-(48) directly from the de~nitions in the Appendix. 
2. Verify the results in (46)-(4~) by using (96)-(98). 

Problem 10.1.3. Let 

f(t) 
27rf 

= c sin2 - , 
( ) T 

U<t<T, 

where c is a n~rnlalizin~ constant. Find O(7, to). 
Problem 10.1.4. Let 

Ill0 = i; (0 + &o, 
where 

and 

Assume that 

1. Find O(T, co). 
2. Plot for the case 



MO.2 Performance Analysis 
Probiem 10.2.1. Derive the expressions for J,, and Jzz that are given in (64) and (65). 

Problem 10.2.2. Derive the expressions in (96)-(98). 
Problem 10.2.3. Consider the expression in (6). Expand L(T, CO) in a power series in 
7 and CO around the point 

Assuming that the errors are small, find an expression for their variance. 

P.lO.3 Properties of +(T, w) and e(7, co) 

Problem 10.3.1. In Property 5 we derived an ahernative representation of +(T, w). 
Prove that another alternative representation is 

Problem 10.3.2. The transmitted waveform, f(t), has a Fourier transform, 

Problem 10.3.3. The transmitted waveform, f(t), has a Fourier transform which can 
be written as 

F{f} = c kz fi{f - kWJ, 
k Z---%1 

and c is a normalizing factor. 
1. Find +(T, f}. 
2. How would you synthesizer(t)? 

Problem 10.3.4. Partial Volume Invariances. Prove 



Notice that this is a partial volume invariance property. The total volume in a strip of 
width A7 at some value of T cannot be aftered by phase modulation of the waveform. 
Problem 10.3.5. 

I. Prove 

directly from the definition. 
2. Prove the relationship in (P.1) by inspection by using the result of Problem X0.3.4 

and the duality principle. 
Note: This is another partial volume invariance property. 
Problem 10.3.6. 

1. Expand the ambiguity function, o{~,f>, in a Taylor series around the origin. 

2. Express the coefficients of the quadratic terms as functions of ‘tz, z, and >* 
Problem 10.3.7 [40]. Derive the following generalization of Property 9. Assume 

then 
l&(T,f>l = (#+I17 + C12fi -+217 - c22f% 

Problem 10.3.8 [ 12). Derive the following “vofume” invariance property: 

wherep is an integer greater than or equal to 1. 
Problem 10.3.9 [41]-[43]. Assume that we expand f(t) using a CON set, 

Let 

denote the time-frequency cross-correlation function of &(I) and &(t). 



1. Prove 

2, Compare this result with Property 3. 
3. Prove 

and 

Probkm 10.3.10. The Hermite waveforms are 

fo 
2’/h 

?2t ~----e 
Y’n 

-“t2H,(247Tt), --co <t<cn>, ?2=1,2,..., (P*l) 

where HJt) is the nth-order Hermite polynomial, 

H%(f) = (-- l)net2/2 ;a e--t2/2, -a<t<m* P.2) 

1. Find p{f}. 
2. Prove that 

where L,(x) is the nth-order Laguerre poIynomia1 

1 x dn 

&.&(x) = 

i 

z e 
- (xneex), 
dxn 

x 2 0, 

0, x < 0. 

3, Verify that your answer reduces to Fig. 10,8 for n = 1, 
~~~~e~~~ Plots of these waveforms are given in [46]. 

4. Notice that the time-frequency autocorrelation function is rotationaliy symmetric. 
a. Use this fact to derive F( f } by inspection (except for a phase factor). 
b. What does Property 9 imply with respect to the Hermite waveforms? 

ProMem 10.3.11 [14]. Let 

S(t) _ ~~~exp [jAOsinT], Iti < 4, 

9 elsewhere. 
1. Find p(f). 
2. Find 1+{7=,f}[. 



Problem 10.3.12 [14]. Let 

A 1 2j34 ‘A t =- 
( 1 

e--(k2--jet)@, --cx,<t<m 
7T 

This is a pulse with a Gaussian envelope and parabolic frequency modulation. 
Find l+{?r)l* 

Problem 10.3.13. A waveform that is useful for analytic purposes is obtained from the 
r(t) in (32) by letting 

T-+0 
and 

n - a. 

whiie holding nT constant. 
We denote the resulting signal as r’&). 

1. Plot f${~,f)l for this limiting case. Discuss suitable normalizations. 
2. Define 

Express +r(~,f} in terms of &,(7, f). 
Problem 10.3.14. Consider the problem in which we transmit two disjoint pulses, 
j;(t) and&O. Th e complex envelope of received waveform on HI is 

T(t) = 4% b&t - T)ejot + 4% ~2~~(~ - T)ejwt + i+(t), - 00 < t C 00: HI 

The multipliers 6, and i;, are statistically independent, zero-mean complex Gaussian 
random variables, 

E[pq2] = 2cg. 
Qn Ho, only G(t) is present, 

1. Find the likelihood function and the optimum receiver. 
2. How is the signal component at the output of the optimum receiver related to 

+,Wl and #2(-f >? 

Problem 10.3.15. Consider a special. case of Problem 
rectangular pulse and f2(t) is a long rectangular pulse. 

10.3.14 in which Jf(t) is a short 

1. Sketch the signal component at the output of the optimum receiver, 
2. Discuss other receiver realizations that might improve the global accuracy. For 

example, consider a receiver whose signal output consists of 0,(7, f > times 0,(7-, f}. 

P. 10.4 Coded Pulse Sequences 

Problem 10.4.1. Consider the periodic pulse sequence in Fig. 10.21, Assume that 

where 
co, = (n - Km,, 

*A 1 
=-* 

2n Ts 



1. Find I+(T, @>I. 
2, Plot the result in part 1. 

Problem 10.4.2. Consider the signal in (145). Assume that 

a, = 1, 

a, = 1, with probabiI~ty +, for IZ = 2, . . S ,7, 

a, = 0, with probability 8, for n = 2, , . . ,7, 

a8 = 1. 

1. Find E{~#(T, w>l}. 
2. Discuss the sidelobe behavior in comparison with a periodic pulse train. 
3. How would you use these results to design a practical signal? 

Problem 10.4.3. Consider the three-stage shift register in Fig. 10.26. Compute +(T, w> 
for various initiaf states of the shift register. Assume that the output consists of one 
period. 

Problem 10.4.4. Consider the shift register system is Fig. P.10.1. 

Fig. P.lO.1 

1. Verify that this feedback connection gives a maximum length sequence. We use the 
notation [4,3] to indicate that the outputs of stages 3 and 4 are fedback. 

2. Does the shift register with connections [4, 21 generate a maximum length 
sequence ? 

Problem 10.4.5 

1. Consider a shift register with connections [S, 31. Verify that it generates a maximal 
length sequence. 

2. Does the shift register with connections [S, 4, 3, 21 generate a maxima1 length 
sequence ? 

3. Does the shift register with connections [S, 4, 3, l] generate a maxima] length 
sequence ? 

Problem 10.4.6, Verify that shift registers with connections [6,5], [6,5,4, I 1, and [6,5,3,2] 
generate maximal length sequences. 



P.lO.5 Resolution 

Problem 10.5.1. Consider the following three hypothesis problem. 

Y (t) = 1/E, b,Jl<t - Qei*it + d$ B,f(t - r2)ejwgt + i;(t), -- <t<aH2, 

T(t) = G$J(t =71)ejalf -j- i?(t), --<<twHl, 

a0 = G(t), --<<<axHo. 

The mu~tipIiers 6, and & are zero~mean complex Gaussian random variables with 
mean-square values 2cr,2 and 20~~. The parameters rl, T 2, @I, and 4~0~ are assumed known. 
The additive noise is a complex white Gaussian process with spectral height N,. 

Find the optimum Bayes test. Leave the costs as parameters. 

Problem 10.5.2. Consider the same model as in Problem 10.5.1. We design a test using 
the MAP estimates of id,1 and lh2j. 

1. Find 1~~1, given that HI is true. Find 1~1 and 1~1, given that H, is true, 
2. Design a test based on the above estimates. Compare it with the Bayes test in 

Problem 10.5.1. 
3. Define PF as 

pj? = Pr [say HI or H2 1 Ho]. 
Find p0, and pn . 

2 

Problem 10.5.3. Assume that a rectangle in the T, ~1) plane with dimension T* x Sz, is of 
interest. We use a grid so that there are M cells of interest (see discussion on pages 302- 
303). In each cell there is at most one target. We want to estimate the number of targets 
that are present and the cells which they occupy. 

Discuss various procedures for implementing this test. Consider both performance 
and complexity. 

Problem 10.5.4. An alternative way to approach the optimum receiver problem in 
Section 10.5.3 is to find the eigenfun~tions and eigenvalues of the interfering noise 
process. From (195), 

We want to write 

1, Find & and t&(t). How many eigenvalues are nonzero? 
2. Use the resuh in part 1 to find the optimum 
3. Find A@. 

receiver. 

Problem 10.5.5, We want to communicate over the resolvable multipath channel shown 
in Fig. P.10.2, To investigate the channel structure, we transn~it a ~~u~~ sounding 
signal with complex envelope f(t). The complex envelope of the received waveform is 



Transmitter Receiver 

Fig. P.10.2 

where the & are independent zero-mean complex Gaussian variables with variances 
2cri2 and c(t) is a zero-mean complex Gaussian process with spectral height IV& The 
signal outputs of the three channels are disjoint in time. The 7i are modeled as inde- 
pendent, uniformly distributed, random variables, U[-T, T], where T is large. 

Derive the optimum receiver for estimating 9i,may. 
Problem 10.5.6. Consider the following detection problem: 

‘F(t) = i?(t), Ti 5 t I; Tf:Ho, 

The deterministic signal f(t) has unit energy and is zero outside the interval (0, T). 
[This interval is included in (Ti, Tf).] The multiplier 6 is a zero-mean complex Gaussian 
random variable, 

E{lg/2) = 2Q. 

The additive noise, G(t), is a complex zero-mean Gaussian process with spectral height 
%* 

1. Find the optimum detector. Compute Ao, PO, and P,. 
2. Now assume that the received signal on HI is actually 

C(t) = d2xbf(t - 7)eimt + ii;(t), Ti 5 t 5 Tf:&, 

where T and o are small. We process ‘;ct) using the detector in part 1. Compute the 
change in A as a function of T and o. Express your answer in terms of @, CD), the 
ambiguity function of f(t). 

3. Design several signals that are insensitive to small changes in 7 and w. Explain 
your design procedure. 
Problem 10.5.7. Consider the resolution problem described in (173)~( 180). A conventional 
receiver is used. The degradation in performance is given by 
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Assume that the interfering targets all have zero Doppler relative to the desired target 
and that E,.$ = &. Then 

A, = # $ qq, 0). 
0 i=l 

Now assume that the targets are uniformly spaced 
targe t in each successive AT interval. Defining 

on th 3 T-axis such that there is a 

and letting K -+ 00 and AT --+ 0, we obtain the integral 

A, A _I..“-- s co 
No -cx, 

et,, 0) dr = N AAJp 
0 

Comment: The resoiution constant Alz was first introduced by Woodward [60]. 

Prove that 

AR = 
s 

00 IF{fN4 4: 
-co 

Notice that the signal f(t) is always normalized. 
Problem 1025.8. Extend the ideas of Problem 10.5.7 to find a Doppler resolution constant 

Prove that 

AD a - s O” e(o, f} dJ -al 

Problem 10.59. Compute A,, A,, and A,A, for the following: 
1. A simple Gaussian pulse (25). 
2. A rectangular pulse. 

Problem 10.5.10 f39, Chapter X]. Consider the following resolution problem. The 
received waveforms on the four hypotheses are 

r(t) = w(t), Ost<T:H,, 

r(t) = Af (0 + w(t), O<tgT:H,, 

r(t) = J&(t) + w(t), O<t<T:H,, 

r(t) = Af (0 + Bg(‘) -I- w(t), Ost<T:H,. 

The multipliers A and B are unknown nonrandom variables. The signals f(t) and g(t ) 
are known waveforms with unit energy, and 

f 
T  

f (t)g(t) dt = p- 
Jo 

The additive noise w(t) is a sample function of a white Gaussian random process with 
spectral height No/2. (Notice that the waveforms are not bandpass.) We want to derive 
a generalized likelihood ratio test (see Section I-2.5). 



Resolution 

1. Assume that H, is true. Prove that 
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2. Find A,,. 
3. Calculate 

hypotheses. 
Var 16, J, and Cov 16, 1, i, J under the four 

4. Assume that we use the test 

Calculate PJQ, PD@, PJQ, and Pnb. Verify that both pDLE and PDb decrease mono- 
tonically as p increases. 
Problem 10.5.11 f39, Chapter X]. Consider the bandpass version of the model in Problem 
10.5.10. Assume that the complex envelopes on the four hypotheses are 

Go = G(t), Of;tsT:N,, 
T(t) = Aejpaf(t) + i+(t), O~t<T:N,, 

7(t) = Bej~&~(t) + ii;(t), Ozft<T:H,, 

w = Aej~&~(t) + B&‘@+(t) -I- G(t), O<t<T:H,. 

The multipliers A and B are unknown nonrandom variables. The phases ~3~ and Q)~ are 
statistically independent, uniformly distributed random variables on (0,271). The 
complex envelopes f(t) and g(t) are known unit energy signals with 

s cQ ~(t)~*(t)~t = p,,. -a3 
The additive noise i?(t) is a sample function of a complex white Gaussian process with 
spectral height No. 

1. Find a”,, and ~~~ under the assumption that H, is true. 

2. Calculate E[&,], E&J, Var [h,,], Var [$,J, and Cov [;l,,, i,,] under the 
four hypotheses. 

3. The test in part 4 of Problem 10.5.10 is used. Calculate the performance. 
Problem 10.5.12 [39, Chapter X]. The model in Problem 10.5.11 can be extended to 
include an unknown arrival time. The complex envelope of the received waveform on 
H, is 

F(t) = Aej~~~(t - T) + Bej%g(t - T) + i?(t), 

The other hypotheses are modified accordingly. 

--CD <t < WH,. 

1. Find a receiver that generates 8,,, 6,,, and 9,,. 
2. Find the corresponding likelihood ratio test. 



10.7 Problems 

Problem 10.5.13. Consider the following model of the resolution 
envelopes of the received waveforms on the two hypotheses are 

problem. complex 

hT 
F(t) = &J(t) + 2 ~~ejQi~(t - 7i)ej%t + I; -- < t < WHl, 

i=1 
lv 

F(t) = 2 B,ejQiir(t - Ti)dmit + G(t), 
i=l 

The model is the same as that in Section 10.5.3 (page 329) except that the Bi are assumed 
to be unknown, nonrandom variables. The ~7~ are statistically independent, uniformly 
distributed random variables. The Q and oi are assumed known. 

1. Find the generalized likelihood ratio test for this model. (Hint: Review Section 
I-2.5.) 

2. Evaluate PF and PD. 
Comment: This problem is similar to that solved in [59]. 

P.lO.6 Summary and Related Topics 
Problem 10.6.1. Generalized Likelihood Ratio Tests. Consider the following composite 
hypothesis problem 

F(t) = d2E, hf(t - 7)ejmt + G(t), -- < t < wHIt 

w = G(t), -- < t < wHo. 

The multiplier 6 is a zero-mean complex Gaussian variable, 

E{lbl”} = 2q, 

and G(t) is a complex zero-mean Gaussian white noise process with spectra I height 
The quantities 7 and o are ~n~nu~n n~n~un~urn variables whose ranges are known: 

Find the generalized likelihood ratio test and draw a block diagram of the optimum 
receiver. 
Problem 10.6.2. The time-frequency cross-correlation function is defined by (221) as 

In addition, 

Assume that 

1. Prove 
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2. Does 8,,{0,0> always equal unity? Justify your answer. 
3. Is the equality 

true? Justify your answer. 
Probiem 
as 

10.6.3 [44]. As in (2213, we define the tome-frequency cross-correlation function 

Verify the following properties. 
1. 

2. 

3. 

4. 

Problem 10.6.4 [44]. Prove a, 
ss hhf ]#${r, f}ej2n[fx-rYJ dr df = &{x, Y}&{x, 

-03 

Problem 10.6.5 [44]. Prove 
ccl 
J &{T, f )ej2n(fz--ry) d7 df = &(x1 y)~~(~, y). 

--CL) 

Problem 10.6.6. Consider the following estimation problem. The comnlex envelope of 
the received signal is 

F(t) = d.g(t - 7)ejat + ii,(t) + G(t), 

The colored Gaussian noise has a spectrum 

s,p!> 
2aP, 

=- 
w2+a2’ 

--<t<m 

The complex white noise has spectral height IV& 
1. Find the optimum filter for estimating 7 and o. Express it as a set of paths con- 

sisting of a cascade of a realizable whitening filter, a matched filter, and a square-law 
envelope detector. 

2. Write an expression for the appropriate ambiguity function at the output of the 
square-law envelope detector. Denote this function as of&, cu). 

3, Denote the impulse response of the whitening filter as ~~*(~). Express the ambi~ity 
function of&, w) in terms of <pf(~, m), 0& co), and ~~~(~). (Recall Property 11 on 
page 311.) 
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Problem 10.6.7 (continuation). 
1. Derive an expression for the elements in the information matrix J [see (63)~(65)f. 

Tliese formulas give us a bound on the accuracy in estimating T and co. 
2. Is your answer a function of the actual value of T or the actual value of czl? 

Is your result intuitively logical ? 
Problem X0.6.8. Consider the special case of Problem 10.6.6 in which 

etsewhere. 
Evaluate Of&, co). 
Problem 10.6.9. generalize the results of Problem 10.6.6 so that they jncIude a colored 
noise with an arbitrary rational spectrum. 
Problem 10.6.10, Consider the model in (214a), but do not impose the constraint in 
(2146). 

1. Find the log livelihood function” 
2. Evaluate the Cramer-Rao bound. 

Problem 10.6.11. In this problem we consider the simultaneous estimation of range, 
velocity, and acceleration. 

Assume that the complex envelope of the received waveform is 

where 

The parameter T, u, and a are unknown nonrandom parameters. 

2. Compute the Cramer-Rao bound. 
See [65] or [66] for a comptete discussion of this probfem. 
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