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Doppler-Spread Targets and Channels 

In Chapters 9 and 10 we confined our attention to slowly fluctuating 
point targets. They were characterized by a “perfect” reflection of the 
envelope of the incident signal. The returned signal differed from the 
transmitted signal in four ways: 

1. Random amplitude. 
2. Random phase angle. 
3. Doppler shift. 
4. Delay. 

The amplitude and phase were due to the reflective characteristics of the 
target and could be modeled as random variables. The Doppler shift and 
delay were due to the velocity and range of the target and were modeled 
as unknown nonrandom variables. 

In this chapter we consider point targets that cannot be modeled as 
slowly fluctuating targets. We begin our development with a qualitative 
discussion of the target model. 

A simple example is shown in Fig. 11.1. The geometry could represent 
the reflective structure of an airplane, a satellite, or a submarine. The 
direction of signal propagation is along the x-axis. The target orientation 
changes as a function of time. Three positions are shown in Fig. 11 .lu-c. 
As the orientation changes, the reflective characteristics change. 

NOW assume that we illuminate the target with a long pulse whose 
complex envelope is shown in Fig. 11.2~. A typical returned signal envelope 
is shown in Fig. 11.2b. We see that the effect of the changing orientation 
of the target is a time-varying attenuation of the envelope, which is 
usually referred to as time-selective fading. 

Notice that if we transmit a short pulse as shown in Fig. 11.2c, the 
received signal envelope is undistorted (Fig. 11.2d) and the target can be 
modeled as a slowly fluctuating target. Later we shall see that all of our 
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Fig. 11.1 Target orientations. 
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(c) Short pulse (CE) Return from short pulse 

Fig. 11.2 Signals illustrating time-selective fading. 
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Doppler-spread Targets and Channels 359 

results in Chapters 9 and 10 can be viewed as limiting cases of the results 
from the more general model in this chapter. 

The energy spectrum of the long transmitted pulse is shown in Fig. 
11.3~2. Since the time-varying attenuation is an amplitude modulation, 
the spectrum of the returned signal is spread in frequency, as shown in 
Fig. 11.3b. The amount of spreading depends on the rate at which the 
target’s reflective characteristics are changing. We refer to this type of 
target as a frequency-spread or Doppler-spread target. (Notice that fre- 
quency spreading and time-selective fading are just two different ways of 
describing the same phenomenon.) 

Our simple example dealt with a radar problem. We have exactly the 
same mathematical problem when we communicate over a channel whose 
reflective characteristics change during the signaling interval. We refer 
to such channels as Doppler-spread channels, and most of our basic 
results will be applicable to both the radar/sonar and communications 
problems. 

At this point we have an intuitive understanding of how a fluctuating 
target causes Doppler spreading. In Section 11.1 we develop a mathematical 
model for a fluctuating target. In Section 11.2 we derive the optimum 
receiver to detect a Doppler-spread target and evaluate its performance. 
In Section 11.3 we study the problem of digital communication systems 

b’. 
(a) Transmitted energy spectrum 

(b) Energy spectrum of Doppler-spread return 

Fig. 11.3 Energy spectra of transmitted and returned signals. 
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operating over Doppler-spread channels. In Section 11.4 we consider the 
problem of estimating the parameters of a Doppler-spread target. Finally, 
in Section 11 S, we summarize our results. 

11.1 MODEL FOR DOPPLER-SPREAD TARGET (OR CHANNEL) 

The model for the point target with arbitrary fluctuations is a straight- 
forward generalization of the slow-fluctuation model.? Tnitially we shall 
discuss the model in the context of an active radar or sonar system. If a 
sinusoidal signal 

J 2 cos co,t = Jz Re [ej”C’] (1) 

is transmitted, the return from a target located at a point A (measured in 
units of round-trip travel time) is 

b(t) = $2 [b, (t - i) COS [w,(t - A)] + b,( t - i) sin [~,(t - A)]]. (2) 

The A/2 arises because the signal arriving at the receiver at time t left the 
transmitter at t - A and was reflected from the target at t - A/2. We 
assume that b,(t) and b,(t) are sample functions from low-pass, zero-mean, 
stationary, Gaussian random processes and that b(t) is a stationary 
bandpass process. 

Defining 

(4) 

where 6,(t) is a sample function from a complex Gaussian process. (The 
subscript D denotes Doppler.) We assume that ho(t) varies slowly com- 
pared to the carrier frequency CO,. Because d,(t) has a uniform phase at 
any time, this assumption allows us to write (4) as 

b(t) = &Re [p,(, - i)eiact]. (5) 

t This model has been used by a number of researchers (e.g., Price and Green [l] 
and Bello [2]). 
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The random process &(I) is completely characterized by its complex 
covariance function, 

E[d,(t)B&)] A &(t - 24) = &T). (6) 

From our development in the Appendix, 

Ehw6,(41 = 0 for all t and u. 

In all of our discussion we assume that &,(7) is known. In Section 11.4 
we discuss the problem of measuring the parameters of &-JT). 

Notice that if we assume 

for all 7, (8) 

we would have the slowly fluctuating model of Chapter 9 (see page 242). 
,To be consistent with that model, we assume 

Because the target reflection process is assumed to be stationary, we 
can equally well characterize it by its spectrum:? 

We refer to &{f} as the Doppler scattering function. From (A.56) we 
know that gn{f} is a real function and that the spectrum of the actual 
bandpass signal is 

Some typical spectra are shown in Fig. 11.4. We assume that the 
transmitted signal is a long pulse with a rectangular envelope. It has a 
narrow energy spectrum, as shown in Fig. 11.4~2. In Fig. 11.4b, we show 
the energy spectrum of the returned signal when the target is fluctuating 
and has a zero average velocity. In Fig. 11.4c, we show the spectrum 
corresponding to a target that has a nonzero average velocity but is not 

-i- In most of the discussion in the next three chapters it is convenient to use f  as an 
argument in the spectrum and Fourier transform. The braces { } around the argument 
imply the f notation. The J‘notation is used throughout Chapters 11-13, so that the 
reader does not need to watch the {m}. Notice that for deterministic signals, 



(a) Transmitted energy spectrum 

(b) Returned energy spectrum: Doppler-spread target with zero average velocity 
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(c) Returned energy spectrum: target with nonzero average velocity and no Doppler spread 
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(d) Returned energy spectrum: Doppler-spread target with nonzero average velocity 

Fig. 11.4 Typical energy spectra. 
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Scattering Function Model 363 

fluctuating. This is the model of Chapter 9. In Fig. 11.4d, we show the 
spectrum for a fluctuating target with a nonzero average velocity. 

We introduce two quantities to describe the gross behavior of the 
target. The first is the mean DoppIer shift, which is defined as 

-7 A 
f 

1 O” 
D- 

s 2Gb2 -4 f2sDif) df* 

Combining (12) and (13) gives a quantity that we refer to as a mean- 
square Doppler spread, 

oD 
2A2 

- f D - mD2 = b2 Imf2%{f > df - mD2* 
b --a0 

We see that mD and CD2 are identical with the mean and variance of a 
random variable. 

Our discussion up to this point has a sinusoidal transmitted signal. 
However, because we assume that the reflection process is linear and 
frequency-independent, (2) characterizes the target behavior. Therefore, 
if we assume that the transmitted waveform is a known narrow-band 
signal, 

f(t) = & Re [&&)ejWCt], -m<t<q (1% 
the returned signal in the absence of noise is 

s(t) = & Re [&& - gg(, - $eimct]. (16) 

The complex envelope is 

IIo)a~~~(l-i)b(i-~), 1 
and the actual signal can be written as 

(17) 

s(t) = & Re [JE, ,(,)eiw”t]. (18) 
The complex covariance function of the signal process is 

or 
&(t, u) = E[qt)tf*(u)], (1% 
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Now (20) completely specifies the characteristics of the received signal. 
The total received waveform is s(t) plus an additive noise. Thus, 

r(t) = & Re [i(t)e’““‘] + J% Re [6( t)eioc’], c < t 5 T’, (21) 

or 
($t) = & Re [F(t) ejwct], (22) 

where 

r”(t) = s’(t) + C(t). (23) 

The complete model is shown in Fig. 11 S. 
We assume that the additive noise is a sample function from a zero- 

mean, stationary Gaussian process that is statistically independent of the 
reflection process and has a flat spectrum of height I&,/2 over a band wide 
compared to the signals of interest. Then 

E[iqt)M;*(u)] = N, d(t - u), (24) 

and the covariance function of r”(t) is 

&(t, u) = E&t - A)&-,(t - u)f*(u - I) 

+ x) d(t - u), 
(25) 

Ti < t, u < Tf. - - 

The covariance function in (25) completely characterizes the received 
waveform that we have available for processing. 

Whenever the reflection process &(t) has a rational spectrum, we may 
also characterize it using complex state variab1es.T The state equation is 

where 
&(t) = F%(t) + G(t), t > Ti, _ (26) 

and 
E[G(t)ii(~)] = Q s(t - 7) (27) 

E[%(T,)ji;+(T,)] = i?,. (28) 

6, * 
)A Delay : X/2 z Delay: X/2 l 

w 

\ 

Fig. 11.5 Model for Doppler-spread target problem. 

t Complex state variables are discussed in Section A.3.3. 
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J 

Generation of channel process _--------- --m--w- .- 

Transmitter 

Fig. 11.6 State-variable model for Doppler-spread target (or channel). 

The process &#) is obtained by the relation 

5 (9 D = C%(t), t > Ti. (29 

We shall find this representation useful in many problems of interest. This 
model is shown in Fig. 11.6 for the special case in which 1 = 0. 

This completes our formulation of the model for a Doppler-spread 
target. All of our work in the text deals with this model. There are two 
simple generalizations of the model that we should mention: 

1. Let 6,(t) be a non-zero-mean process. This corresponds to a fluctuat- 
ing Rician channel. 

2. Let 6,(t) be a nonstationary complex Gaussian process. 

Both these generalizations can be included in a straightforward manner 
and are discussed in the problems. There are targets and channels that do 
not fit the Rayleigh or Rician model (recall the discussion on page 243). 
The reader should consult the references cited earlier for a discussion of 
these models. We now turn our attention to the optimum detection 
problem. 

11.2 DETECTION OF DOPPLER-SPREAD TARGETS 

In this section we consider the problem of detecting a Doppler-spread 
target. The complex envelope of the received waveform on the two 
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hypotheses is 

f(t) = ,/E,.j-(t - n)6, Ti 5 t < T,:H,, (30) 

and 

F(t) = C(t), Ti < t < Tf:Ho. - - (31) 

The signal process is a sample function from a zero-mean complex 
Gaussian process whose covariance function is 

&t, u) = E,f(t - l)&(t - u)f”*(u - A), Ti < t, u < Tf. - - (32) 

The additive noise G(t) is a sample function of a statistically independent, 
zero-mean complex white Gaussian process with spectral height NO. 
The range parameter 1 is known. 

We see that this problem is just the complex version of the Gaussian 
signal in Gaussian noise problem that we discussed in detail in Chapter 
2.t Because of this strong similarity, we state many of our results without 
proof. The four issues of interest are: 

1. The likelihood ratio test. 
2. The canonical receiver realizations to implement the likelihood 

ratio test. 
3. The performance of the optimum receiver. 
4. The classes of spectra for which complete solutions can be obtained. 

We discuss all of these issues briefly. 

11.2.1 Likelihood Ratio Test 

The likelihood ratio test can be derived by using series expansion as 
in (A. 1 M), or by starting with (2.31) and exploiting the bandpass character 
of the processes (e.g., Problems 11.2.1 and 11.2.2, respectively). The 
result is 

1 
1 HI 

-- - 
No ss 

r”*(t)h(t, u)qu) dt du i y, 
Ho 

Ti 

t As we pointed out in Chapter 2, the problem of detecting Gaussian signals in 
Gaussian noise has been studied extensively. References that deal with problems 
similar to that of current interest include Price [8]-[lo], Kailath [ll], [12], Turin [13], 
[ 141, and Bello [15]. The fundamental Gaussian signal detection problem is discussed 
by Middleton [ 16]-[ 181. Book references include Helstrom [19, Chapter 111 and 
Middleton [20, Part 41. 
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where h(t, U) satisfies the integral equation 

No&, u) + s Tf rc, 

h(t, z)&, u) dx = &t, u), 
Ti 

Ti < t, u < Tf - - (34) 

and 

&(t, u) = E,f(t - n)M - u)!T*(u - a, Ti < t, u < Tf. _ _ (3% 

The threshold y is determined by the costs and a-priori probabilities in a 
Bayes test and by the desired P, in a Neyman-Pearson test. In the next 
section we discuss various receiver realizations to generate 1. 

11.2.2 Canonical Receiver Realizations 

The four realizations of interest were developed for real processes in 
Chapter 2 (see pages 15-32). The extension to the complex case is straight- 
forward. We indicate the resulting structures for reference. 

Estimator-cowelator Receiuer. Realization No. 1 is shown in complex 
notation in Fig. 11.7~. The filter h(t, U) is the optimum unrealizable 
filter for estimating s’(t) and satisfies (34). The actual bandpass realization 
is shown in Fig. 11.7b. Notice that the integrator eliminates the high- 
frequency component of the multiplier output. 

Filter-~4ua~ev-integrator (F5’Z) Receiver. To obtain this realization, we 
factor h(t, U) as 

Then 
s Tr 

g’*(z, t)g’(x, u) dx = fi(t, u), Ti < t, u < Tf. - 
Ti 

1 Tr 

s Is 

Tf 2 

1 -- - dx 
No Ti 

f(x, t)?(t) dt l 

Ti 

(36) 

(37) 

The complex operations are indicated in Fig. 11.8a, and the actual 
receiver is shown in Fig. 11.8b. 

Optimum Realizable Filter Receiver. For this realization, we rewrite the 
LRT as 

WI 
1 = + sTTf{2 Re [r"*(t)&(t)] - &(t>l”} dt >< y, (38) 

0 i HO 



Conjugate 

, 
;-“cu 

’ 64 4 . 
%A t) 

(a) Complex operations 

Bandpass 
* filter 

h(t, U) = Re [2x@, u) eiwcct-‘~] 

(b) Actual operations 

Fig. 11.7 Estimator-correlator receiver (Canonical Realization No. 1). 
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(a) Complex operations 

. 

r(t) Hl 

* Rk t) ’ 
Square-law T f  z 

) envelope detector 4 
dt 

* 1; w 
HO 

g(z, t) = 2Reig(z, t)ej”@ - t J ] 

(b) Actual operations 

Fig. 11.8 Filter-squarer-integrator receiver (Canonical Realization No. 3). 
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where S:(t) is the realizable MMSE estimate of i(t) when HI is true (e.g., 
Problem 11.2.3). It is obtained by passing F(t) through a filter h,,(t) u), 
whose impulse response is specified by 

N,R,,( t, 24) + 
s 

t 
A,,( t, z)..&(z, Zf) dx = R&t, Zf), Ti < u < t (39) 

and 
Ti 

s 
t 5,(t) a i;,,(t) u)?(u) du. 

Ti 
(40) 

The complex receiver is shown in Fig. 11.9. 

State- Variable Realizatkmt When 6,(t) has a finite-dimensional 
complex state representation, it is usually more convenient to obtain 
$(t) through the use of state-variable techniques. Recall that we are 
considering a point target and 1 is assumed known. Therefore, for algebraic 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

simplicity, we can let 1 = 0 with no loss of generality. 
If we denote the state vector of 6D(t) as Z(t), then 

6 0) n = C%(t) 

and 
s(t) = f(t)&(t) A C,(t)qt). 

The state vector Z(t) satisfies the differential equation 

where 
i(t) = i?(t)Z(r) + G(t)ii(r), t > Ti, 

and 
E[ii(t)i?*(a)] = & d(t - 0) 

E[Z(Ti)] = 0, 

(see page 590). 

E[Z(Ti)gt(Ti)] = PO 

I I 

Fig. 11.9 Optimum receiver: optimum realizable filter realization (Canonical Realization 
No. 4). 

j- This section assumes familiarity with Section A.3.3. 
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The opti 
equations 

mum estimate is specified as a solution of the differential 

- C,(t)i(t)], t > Ti (474 i(t) = F(t)?(t) + &3(t)c,t(t) ; [F(t) 
0 

&t) = j@&(l) = C&t). W) 
The variance equation is 

and 
&(t, i(t), No) 2 E[lj(t) - ir(f)12] = Cs(t)&t)Csqt). we) 

Notice that the covariance matrix &(l) is a Hermitian matrix. Substituting 
(42) into (48a) gives 

. 
[,(r) = F( t)&>( t> + &a( t)F’(t) - &a( t>i5+ Ir’<t>l’ [ 1 N, C&t) + c(t)&+(t), 

t > T. (49) 

We see that the mean-square error is only affected by the enveZope of the 
transmitted signal. When we discuss performance we shall find that it can 
be expressed in terms of the mean-square error. Thus, performance is not 
affected by phase-modulating the signal. If the target has a mean Doppler 
shift, this is mathematically equivalent to a phase modulation of the 
signal. Thus, a mean Doppler shift does not affect the performance. 

It is important to observe that, even though the reflection process is 
stationary, the returned signal process will be nonstationary unless_fl(t) is 
a real pulse with constant height. This nonstationarity makes the state- 
variable realization quite important, because we can actually find the 
necessary functions to implement the optimum receiver. 

This completes our initial discussion of receiver configurations. We 
now consider the performance of the receiver. 

11.2.3 Performance of the Optimum Receiver 

To evaluate the performance, we follow the same procedure as in 
Chapter 2 (pages 32-42). The key function is p(s). First assume that 
there are K complex observables, which we denote by the vector Z. Then 
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Using (A. 116) and (A. 117), we have 

where Ai is the eigenvalue 

P+f&~ 

of the signal process i(t), and 

(52) 

Substituting (51) and (52) into (50), evaluating the integral (or comparing 
with 2. I3 I), and letting K --+ 00, we obtain 

F(S) =iz[(l - s)ln (1 + k) - ln (1-Y (~--L$J (53) 

O<s<l. - - 

Notice that p(s) is a real function and is identical with (2.134), except for 
factors of 2. This can be expressed in a closed form in several ways. As in 
(2.138), it is the integral of two mean-square realizable filtering errors. 

It can also be expressed by a formula like that in (2.195) if the signal process 
has a finite-dimensional state equation. For complex state-variable proces- 
ses the appropriate formulas are 

In D&z) = 5 In (1 + z&) = In det ?,<r,) + Re 
s 

T’Tr [F(t)3 dt, (.55) 
i=l Ti 

where ?z(t) is specified by 

; zc(t)@(t) &t) 
: ____________------_--- , I[ I . - - - - - - - _ 

&t)C(t) i -lqt) 2 “r (9 
W 

with initial conditions 

Notice that B,(z) is a real function. 
To evaluate the performance, we use (53) in (2.166) and (2.174) to 

obtain 
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As a final topic we discuss the classes of returned signal processes for 
which complete solutions for the optimum receiver and its performance 
can be obtained. 

11.2.4 Classes of Processes 

There are four cases in which complete results can be obtained. 

Case 1. Reflection Process with Finite State Representation. In this case 
&t) can be described by differential equations, as in (41)-(46). Because we 
have limited ourselves to stationary processes, this is equivalent to the 
requirement that the spectrum &(f} be rational. In this case, (38) and 
(47)-(49) apply directly, and the receiver can be realized with a feedback 
structure. The performance follows easily by using (54) in (59) and (60). 

Case 2. Stationary Signal Process: Long Observation Time. This case is 
the bandpass analog of the problem discussed in Section 4.1. Physically 
it could arise in several ways. Two of particular interest are the following: 

1. The complex envelope of the 
pulse whose length is apprecia blY 

transmitted signal is a real recta 
longer than the correlation time 

ngular 
of the 

reflection process. 
2. In the passive detection problem the signal is generated by the target, 

and if this process is stationary, the received envelope is a stationary 
process. 

For this case, we can use asymptotic formulas and 
expression .s. We solve (34) using transforms. The res 

obtain much simpler 
ult is 

A common realization in this case is the filter-squarer realization [see 
(36) and (37)]. We can find a solution to (36) that is a realizable filter: 

afl 
&if 1 + - - 

[ Sg{f} + N, 1 ’ (62) 

Recall that the superscript “+” denotes the term containing the left- 
half-plane poles and zeros. 
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Case 3. Separable Kernels. In this case, the reflection process has a 
finite number of eigenvalues (say K). Looking at (20), we see that this 
means that the received signal process must also have K eigenvalues. In 
this case the problem is mathematically identical with a reflection from K 
slowly fluctuating targets. 

Case 4. Low-Energy-Coherence Case. In this case, the largest eigenvalue 
is much smaller than the white noise level. Then, as on pages 13 l-137, 
we can obtain a series solution to the integral equation specifying &t, u>. 
By an identical argument, the likelihood ratio test becomes 

Using (35), 

(634 

1 1 = sj-jb*(t)f(t - 1)&t - u)f*(u - ;l)F(u)dtdu. 

I Ti 

We can write RD(t - u) in a factored form as 

s Tf &(t - u) = g*(z, t)k(z, u) dx, 
Ti 

Ti < t, 11 < Tf. - - (644 

Using (64a) in (63b) gives 

w 

W) 

This realization is shown in Fig. 11 .lO. (The reader should verify that 
the receiver in Fig. 1 l.lOb generates the desired output. The bandpass 
filter at WA is assumed to be ideal.) 

For an arbitrary time interval, the factoring indicated in (64a) may be 
difficult to carry out. However, in many cases of interest the time interval 
is large and we can obtain an approximate solution to (64a) by using 
Fourier transforms. 

In this case we obtain the receiver structure shown in Fig. 11 .ll. Notice 
that we do not require f(t) to be a constant, and so the result is more 
general than the SPLOT condition in Case 2. 
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)&,t)r )1*1*- 
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(a) Complex operations 

Bandpass 
fi,ter at we > Re [2z(z, t) @‘A(~-~)] 

Filter 

square-law Et T f  Hl 
* envelope * 2 

detector S NO Tl 
dz. ’ >& 

HO 

(b) Actual implementation 

Fig. 11.10 Optimum LEC receiver. 

The performance in the LEC case is obtained. from (53). Expanding the 
logarithm in a series and neglecting the higher-order terms, we have 

s(1 - s) (X M 

liiw = - 2N 02 c (4) 
2 

i=l 
co s(1 - s) - --- 

2N,’ 
I&t, ujl’ dt du. (65) 

-a3 
Using (20) in (65) gives 

CL 
P(S) - -- lf(t - aj1” IiQt - u)12 lf(w - aj1” dt dtr, (664 

which may also be written as 

Thus the performance can be obtained by performing a double integration. 
We use p(s) in (59) and (60) to find ,PF and Pnl. 

,I I . 2, Et I, 
2-z s lfdt, 1 > 

NO Ti 

HI 
27 

HO 

Fig. 11.11 Optimum LEC receiver: long observation time. 
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11.2.5 Summary 

In this section we have discussed the detection of Doppler-spread 
targets. The four important issues were the derivation of the likelihood 
ratio test, canonical realizations of the optimum receiver, performance 
of the optimum receiver, and the classes of spectra that permit complete 
solutions. All the results are the complex versions of the results in Chapters 
2-4. 

Throughout our discussion we have tried to emphasize the similarities 
between the current problem and our earlier work. The reader should 
realize that these similarities arise because we have introduced complex 
notation. It is difficult to solve the bandpass problem without complex 
notation unless the quadrature components of the signal process are 
statistically independent (recall Problem 3.4.9). Using (20) in (A.67), 
we see that 

Tm [E#, 24)] = Im [fl(&(t - @*($I = 0 . (67) 

must be satisfied in order for the quadrature components to be statistically 
independent. The restriction in (67) would severely limit the class of 
targets and signals that we could study [e.g., a linear FM signal would 
violate (67)]. 

A second observation is that we are almost always dealing with non- 
stationary signal processes in the current problem. This means that the 
complex state-variable approach will prove most effective in many 
problems. 

The problem that we have studied is a simple binary problem. All of the 
results can be extended to the bandpass version of the general binary 
problem of Chapter 3. Some of these extensions are carried out in the 
problems at the end of this chapter. 

We next consider the problem of digital com_rl?unication over Doppler- 
spread channels. This application illustrates the use of the formulas in 
this section in the context of an important problem. 

11.3 COMMUNICATION OVER DOPPLER-SPREAD CHANNELS 

In this section we consider the problem of digital communication over a 
Doppler-spread channel. 1 In the first three subsections, we consider binary 
systems. In Section 11.3.1 we derive the optimum receiver for a binary 
system and evaluate its performance. In Section 11.3.2 we derive a bound 
on the performance of any binary system, and in Section 11.3.3 we study 
suboptimum receivers. In Section 11.3.4 we consider M-ary systems, and 
in Section 11.3.5 we summarize our results. 
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11.3.1 Binary Communications Systems: Optimum Receiver and 
Performance 

We consider a binary system in which the transmitted signals on the 
two hypotheses are 

&, Re [.r( t)ejwot] : Ho 

J%, Re [f( t)ej”“] : HI. 
(68) 

We assume that o1 - CC)~ is large enough so that the output signal proces- 
ses on the two hypotheses are in disjoint frequency bands. The received 
waveforms are 

r(t) = 
&&Re [&t)f’(t)ei”o”] + w(t), Ti < t < T,:H,, - _ 

d%, Re [6(t)f(t)ei”1t] + w(t), 
(69 

Ti < t < T’.:H,. - _ 

The hypotheses are equally likely, and the criterion is minimum proba- 
bility of error. The optimum receiver consists of two parallel 
centered at CI)~ and coo. The first branch computes 

branches 

Tf 

1 
1 

1=- 
NO ss 

r‘*(t)& t, t@(u) dt du, (70) 

Ti 

where the complex envelopes are referenced to ml. The second branch 
computes 

Tr 

1 
1 

0=- 
NO 

Y”*(t)h(t, u)?(u) dt du, 

where the complex envelopes are referenced to CC)~. In both cases h(t, U) 
is specified by 

NJ@, 10 + s Tfw 
lz(t, z)&(z, u) dx = i?&t, u), Ti < t, u < Tf _ _ (72) 

Ti 
where 

&(t, u) = E&t - A)&(t - u)f*(u - A), Ti < t, u < Tf. - - (73) 

The receiver performs the test 

11 z1 lo. (74) 
11, 

The receiver configuration is shown in Fig. 11.12. Notice that each 
branch is just the simple binary receiver of Fig. 11.7. This simple structure 
arises because the signal processes on the two hypotheses are in disjoint 

bands. 
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h(t, u) = Re [2z(t, u)&(~‘~)] 

1 T f  
=-7q Tdt s 

l 

i ZO 

h(t, U) = Re [2?E’(t, u)&o(~-~~)] 

Fig. 11.12 Optimum receiver: binary FSK system operating over a Doppler-spread 
channel (Canonical Realization No. 1). 

An alternative configuration is obtained by factoring @t, IX) as indicated 
in (36). This configuration is shown in Fig. 11.13. 

Because this is a binary symmetric bandpass problem,S; we may use 
the bounds on the probability of error that we derived in (3.111). 

@BS%) #BS(‘%) 

< 
s Pr @) s 211 + ((&)j&))I/f;] - 

ePBS(l%) 

2 ’ 
(7% 

where 
Pus(s) = Psrlm + liisrdl - 4 

==$[ln (I + k) - ln (I + :) - ln (1 +(y)] (‘76) 

and 

The Ii are the eigenvalues of the output signal process S(t), whose co- 
variance is given by (73). We can also write ,i&&) in various closed-form 
expressions such as (54) and (55). 

t Notice that “binary symmetric” refers to the hypotheses. The processes are not 
necessarily symmetric about their respective carriers. 
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gl(z, t) = 2 Re [&, t),~“l(z’t~] . 

. \ 
b g1WI ' 

1 T f  
r Square-law - 

envelope detector ’ s NO Ti 
dt 

4 
. 

n I 
I  

’ go(z, t) 
* Square-law 

envelope detector 
t 

Fig. 11.13 Optimum receiver for binary communication over a Doppler-spread channel: 
filter squarer-integrator realization. 

There are three questions of interest with respect to the binary commun- 
ication problem : 

1. What is the performance of the optimum system when the signal 
&f(l), the channel covariance function RD(7), and the noise level N,, 
are fixed? 

2. If we use a suboptimum receiver, how does its performance compare 
with that of the optimum receiver for a particular&), E,, &(T), and NO? 

3. If the channel covariance function j&(7), the noise level NO, and the 
transmitted energy E, are fixed, how can we choose&) to minimize the 
probability of error? 

We can answer the first question for a large class of problems by 
evaluating ,&&) and using (75). Specific solution techniques were dis- 
cussed on pages 35-44. We can answer the second question by using the 
techniques of Section 5.1.2. We shall discuss this question in Section 11.3.3. 
We now consider the third question. 

11.3.2 Performance Bounds for Optimized Binary Systems 

We assume that the channel covariance function i&&r), the noise level 
NO, and the transmitted energy E, are fixed. We would like to choose&t) 
to minimize the probability of error. In practice it is much simpler to 
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minimize ,&&). This minimizes the exponent in the bound in (75). 
Our procedure consists of two steps: 

1. We consider the covariance function of the output signal process 
&t, U) and its associated eigenvalues xi. We find the set of & that will 
minimize ,L&&). In this step we do not consider whether a transmitted 
signal exists that would generate the optimum set of xi through the relation 
in (73). The result of this step is a bound on the performance of any 
binary system. 

2. We discuss how to choose f(l) to obtain performance that is close to 
the bound derived in the first step. 

We first observe that a constraint on the input energy implies a constraint 
on the expected value of the output energy. From (73), the expected value 
of the total received signal energy is 

E[li(t)l”] = s Tf Y 

K&t, t) dt = 2E,ob2 = E,. (784 
Ti 

(Recall that 

s 

Tf 

If(t)l” dt = 1.) VW 
Ti 

Notice that this constraint is independent of the signal shape. In terms of 
eigenvalues of the output process, the constraint is 

(79) 

We now choose the xi, subject to the constraint in (79), to minimize 
,C&). Notice that it is not clear that we can find an f(t) that can 
generate a particular set of Xi. 

We first define normalized eigenvalues, 

We rewrite (77) asy 

where 
2 
- 

[ 
-&ln(l + 

YX 
and 

t This derivation is due to Kennedy [3]. 
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We refer to the term in braces in (81) as the eficiency factor. (Recall the 
discussion on page 118.) The function f(x) is plotted in Fig. 11.14. We see 
that g(2) is a positive function whose unique maximum occurs at x = 2, 
which is the solution to 

y%/4 -1 
(1 + $)(l + $/2) - 2 [ 

-*In (1 + yg) + In 1 + 
( 31 

. (84) 

The solution is yZ = 3.07. For all positive y, 

3.07 g=-----. (89 
Y 

We can use the result in (84) and (85) to bound ,Z&). From (81), 

Using (79) and (80), (86) reduces to 

(87) 

Thus we have a bound on how negative we can make ,&&). We can 
achieve this bound exactly by letting 

- i 

3 07 
a 

$=--, - i = 1,2,. . . , D,, 
in - Y 

where 

ww= 

This result says that we should choose the first D, normalized eigenvalues 
to be equal to 3.07/y and choose the others to be zero. Using (88) in (82) 
and the result in (87) gives 

j&(+) 2 -0.1488 (90) 

Substituting (90) into (75) gives an upper bound of the probability of 
error as 

Pr (E) < 9 exp 
E 

-0.1488 T 
NO 

(91) 

t This result assumes that &./No is a integer multiplier of 3.07. If  this is not true, (86) 
is still a bound and the actual performance is slightly worse. 
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.12 

f .09 
ax, 

.06 

I Illll I I Illllli 

Fig. 11.14 Plot of g(x) versus yx (from[3]). 

We have encountered this type of result in some of earlier examples. 
In Section 4.2.3, we studied a frequency diversity system in which the 
received energies in all channels were required to be equal. We found that 
we could minimize ,u BS,BP,sK(+) 
among the channels so that 

by dividing the available energy 

&I - = 3.07 
No 

(92) 

(see 4.116). In that case we achieved the optimum performance by an 
explicit diversity system. 

In the present case there is only one channel. In order to achieve the 
optimum performance, we must transmit a signal so that the covariance 
function 

has D, equal eigenvalues. We can think of this as an implicit diversity 
system. 

The result in (91) is quite important, because it gives us a performance 
bound that is independent of the shape of the Doppler scattering functions. 
It provides a standard against which we can compare any particular 
signaling scheme. Once again we should emphasize that there is no 
guarantee that we can achieve this bound for all channel-scattering 
functions. 

The next step in our development is to consider some specific Doppler 
scattering functions and see whether we can design a signal that achieves 
the bound in (90) with equality. We first review two examples that we 
studied in Section 4.1.2. 
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Example 1. This example is identical with Example 4 on page 116. The channel-scattering 
function is 

&{f} = Ifl 9% 
(94) 

Ifl >B* 
The transmitted signal is 

elsewhere. 
(95) 

We assume that BT is large enough that we may use the SPLOT formulas. We constrain 
ET and choose T to minimize ; Bs,&). From (4.76), the optimum value is T,, which 
is specified by 

GIN, - = 3.07. 
ZBT, (96) 

Then 

and we achieve the bound with equality. The result in (96) assumes the SPLOT condition 
If we require 

ST0 2 5 (98) 

to assure the validity of the SPLOT assumption, the result in (96) requires that 

ET jif- 2 30.7. 
0 

(99) 

When (99) is satisfied, the optimum binary system for a channel whose scattering 
function is given by (94) is one that transmits a rectangular pulse of duration T,. 
[Notice that the condition in (99) is conservative.] 

Example 2. This example is identical with Example 3 on page 111. The channel-scattering - 
function is 

${f} = 4kob2 
(2rf)2 + k2’ (100) 

and the transmitted signal is given in (95). Previously, we used the SPLOT assumption to 
evaluate p&s). In this example we use complex state variables. The channel state 
equations are 

&t) = -k, 

at) = C(t) = 1, 

r2; = 4kob2, 

wu 

(102) 
(103) 

N 

PO = za,‘. (W 

We evaluate ~ss(&) by using (48a), (48b), (54), and (76) and then minimize over T. 
The result is shown in Fig. 11.15. We see that if &./IV0 is small, we can transmit a very 
short pulse such that 

kr.3 = 0. (109 
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Fig. 11.15 Optimum error exponent and kT, product as a function of&./N, (first-order 
fading, rectangular pulse (from [4]). 

A short pulse causes a single eigenvalue at the channel output, because the channel 
does not fluctuate during the signaling interval. (This is the model in Chapter 9.) When 

ET - = 3.07, 
NO 

(106) 

the condition in (89) is satisfied and the bound in (90) is achieved. As long as 

a single eigenvalue is still optimum, but the system only achieves the bound in (90) when 
(106) is satisfied. As the available &./No increases, the optimum kT product increases. 
For 

ET y- > 13, (108) 
0 

the results coincide with the SPLOT results of Example 3 on page 111: 

WNO kT,=-- 
3.44 

(109) 

and 
E 

,&&) = -0.118 -?I . 
NO 

(110) 

The result in (110) indicates that a rectangular pulse cannot generate the equal eigen- 
value distribution required to satisfy the bound. 

In the next example we consider a more complicated signal in an effort 
to reach the bound in (90) for a channel whose scattering function is 
given in (100). 
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Example 3. The channel-scattering function is given in (100). To motivate our signal 
choice, we recall that a short pulse generates a single eigenvalue. By transmitting a 
sequence of pulses whose time separation is much greater than the channel correlation 
time, we can obtain the desired number of equal eigenvalues at the output. 

The signal of interest is shown in Fig. 11.16. It consists of a train of rectangular pulses 
with width T, and interpulse spacing Tp. The number of pulses is 

r&D 0 

The height of each pulse is chosen so that 

E,i = 3.07&, 
We can write 

DO 

&IN, 
=3,07- (111) 

the average received energy per pulse is 

i = 1,2, . . . , Do. (112) 

where 

f(t) = 2 c G(t - iT,), 
i=l 

(113a) 

1 
-9 

l/T 
O<t<T, 

i(t) = S (1136) 

0, elsewhere, 

and c normalizesf(t) to have unit energy. The covariance function of the output signal 
process is 

Do Do 
&(t, r) = 2 2 cZii(t - iTP,xD(t - $“(r - kT,). (114) 

We can evaluate 
interest is obtained 

and 

! 

i=l k=l 

the performance for any particular T, and TP. The case of current 
by letting 

T, ---, 0 (115 1 

T*+ol). (116) 

In this limit the covariance function becomes the separable function 

&(t, 7) = 2 c2&(o)ii(t - iT&?(T - kT,). (117) 
i=l 

Fig. 11.16 Transmitted signal in Example 3. 
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We now have D, equal eigenvalues whose magnitudes satisfy (88). Therefore the 
performance satisfies the upper bound in (90). 

The limiting case is not practical, but we can frequently obtain a good approximation 
to it. We need to make T, appreciably shorter than the correlation time of b”,(t). This 
will make the amplitude of each returned pulse approximately constant. We need to 

make Tp appreciably longer than the correlation time of b&t), so that the amplitude 
of different pulses will be statistically independent. The result approximates an optimum- 
diversity system. Notice that the optimum receiver reduces to two branches 
in Fig. 4.16 in the limiting ca se. There are no integral equations to solve. 

There mav be constraints that it impossible to use this solution: 

like that 

1. I f  there is a peak power limitation, we may not be able to get enough energy in 
each pulse. 

2. I f  there is a bandwidth limitation, we may not be able to make T, short enough to 
get a constant amplitude on each received pulse. 

3. I f  there is a time restriction on the signaling interval, we may not be able to make 
Tp long enough to get statistically independent amplitudes. 

These issues are investigated in Problems 11.3.6 and 11.3.7. If  any of the above con- 
straints makes it impossible to achieve the bound with this type of signal, we can return 
to the signal design problem and try a different strategy. 

Before leaving this example, we should point out that a digital system using the signal 
in Fig. 11.16 would probably work in a time-division multiplex mode (see Section 
II-91 1) and interleave signals from other message sources in the space between pulses. 

We should also observe that the result does not depend on the detailed shape of 
so-m 

In this section we have studied the problem of digital communication 
over a channel that exhibits time-selective fading by using binary ortho- 
gonal signals. The basic receiver derivation and performance analysis were 
straightforward extensions of t .he results in Section 11.2. 

The first important resul t of the sectio n was the bound in (90). For any 
scattering function, 

In order to achieve this bound, the transmitted signal must generate a 
certain number of equal eigenvalues in the output signal process. 

The second result of interest was the demonstration that we could 
essentially achieve the bound for various channel-scattering functions by 
the use of simple signals. 

There are two topics remaining to complete our digital communication 
discussion. In Section 11.3.3, we study the design of suboptimum receivers. 
In Section 11.3.4, we discuss Wary communication briefly. 

11.3.3 Suboptimum Receivers 

For a large number of physical situations we can find the optimum 
receiver and evaluate its performance. Frequently, the optimum receiver is 
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complicated to implement, and we wish to study suboptimum receiver 
designs. In this section we develop two logical suboptimum receiver 
configurations and analyze their performance. 

To obtain the first configuration, we consider a typical sample function 
of &t) as shown in Fig. 11.17~2. For discussion purposes we assume 
that 6,(t) is bandlimited to &B/2 cps. We could approximate 8,(t) by the 
piecewise constant function shown in Fig. 11.17b. In this approximation 
we have used segments equal to the reciprocal of the bandwidth. A more 
general approximation is shown in Fig. 11.17~. Here we have left the 

0 
*t 

T 

(4 

Fig. 11.17 Channel process and approximations. 
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length of the subintervals as a parameter. We would expect T, to be less 
than the reciprocal of the fading bandwidth in order for the approximation 
to be valid. 

In order to design the first suboptimum receiver, we assume that the 
function in Fig. 11.17~ is exact and that the values in each subinterval are 
statistically independent. Notice that the two assumptions are somewhat 
contradictory. As T, decreases, the approximation is more exact, but the 
values are more statistically dependent. As TS increases, the opposite 
behavior occurs. The fact that the assumptions are not valid is the reason 
why the resulting receiver is suboptimum. 

We write 

6,,(t) = $ h&t - m, (119) 
i=l 

where C(t) is the unit pulse defined in (113b). Using (119) in (20) gives 

A’ 2ob2E, - 
E&t, u) = 2 --f(r)n(t - i~*)p*(u)ii*(u - iT,). (120) 

i=l 

The covariance function in (120) is separable, and so the receiver structure 
is quite simple. 

The branch of the resulting receiver that generates I, is shown in Fig. 
11.18. A similar branch generates ZJ The different weightings arise because 

s iT* 

Ei = (121) ( . 
2- 

is usually a function of i, so that the eigenvalues are unequal. From 
Problem 11.2.1, 

g 
2cb2Ei 

i= 
2Gb2Ei + No ’ 

(122) 

The receiver in Fig. 11.18 is easy to understand but is more complicated 
than necessary. Each path is gating out a Ts segment of r”(t) and operating 
on it. Thus we need only one path if we include a gating operation. This 
version is shown in Fig. 11.19. A particularly simple version of the receiver 
arises when&) is constant over the entire interval. Then the weightings are 
unnecessary and we have the configuration in Fig. 11.20. We have replaced 
the correlation 
cha .ngeabili ty . 

operati on with a matched filter to emphasize the inter- 

‘f In Figs. 11.18 to 11.22, we use complex notation to show one branch of various 
receivers. The complex envelopes in the indicated branch are referenced to q so that 
the output is I,. As discussed at the beginning of Section 11.3.1, we compute I, by using 
the same complex operations referenced to cog. 
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=s 
NT, YN 

dt 
(N- UT, 

Fig. 11.18 Suboptimum receiver No. 1 (one branch). 

Fig. 11.19 Alternative version of suboptimum receiver No. 1 (one branch). 

. 
Sample at Sample at 

1 1 t = iT, and t = iT, and 
discharge filter discharge filter 

v v 

%?I %?I 
l l 

Matched Matched Sum Ii Sum Ii 
’ filter ’ filter > 142 > 142 samples samples 

> > 

Fig. 11.20 Fig. 11.20 Suboptimum receiver No. 1 for constant?(t) (one branch). Suboptimum receiver No. 1 for constant?(t) (one branch). 

388 
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This completes our development of our first suboptimum receiver 
structure. We refer to it as a GFSS (gate-filter-square-sum) receiver. 
Before analyzing its performance, we develop a second suboptimum 
receiver configuration. 

In our development of the second suboptimum receiver, we restrict our 
attention to channel processes with finite-dimensional state representations. 
The second suboptimum receiver configuration is suggested by the 
optimum receiver that we obtain when both the LEC condition and the 
long observation time assumption are valid. This receiver is shown in 
Fig. 11.21. (This is the receiver of Fig. 11.11 redrawn in state-variable 
notation with 3L = 0.) Notice that the state-variable portion corresponds 
exactly to the system used to generate b&). 

We retain the basic structure in Fig. 11.21. To obtain more design 
flexibility, we do not require the filter matrices to be capable of generating 
B,(t), but we do require them to be time-invariant. The resulting receiver 
is shown in Fig. 11.22. (This type of receiver was suggested in [4].) The 
receiver equations are 

a,(t) = Q,(t) + e,f*(qr”(t), (123) 

I,(0 = l@,<t>12, (124) 

m,m~r+ml = s,, (125) 
and 

ii, = 0. (126) 

This specifies the structure of the second suboptimum receiver [we refer 
to it as an FSI (filter-squarer-integrator) receiver]. We must specify 
f;;, 6,., C,., and pr to maximize its performance. 

r ----------em- --d-d 1 

I 

I 
& 4 

I 
I I 
I I 
L ----------- -- --m-v -I 

State-variable realization of [& if)]+ 

Fig. 11.21 Optimum LEC receiver: long observation time (one branch). 
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r ----------w--e--- 
1 

l- - - - - - - m - - - - m - - - -  - I  

Fig. 11.22 Suboptimum receiver No. 2 (one branch). 

We now proceed as follows. 

1. We derive a bound on the performance of the suboptimum receivers. 
This is a straightforward extension of the bound in Section 5.1.2 to include 
complex processes. This bound is valid for both receiver configurations. 

2. We develop expressions for the quantities in the bound for the two 
receivers. 

3. We optimize each receiver and compare its performance with that of 
the optimum receiver. 

All the steps are straightforward, but complicated. Many readers will 
prefer to look at the results in Figs. 11.24 and 11.25 and the accompanying 
conclusions. 

Performance Bounds for Suboptimum Receivers. Because we have a 
binary symmetric system with orthogonal signals, we need to modify the 
results of Problem 5.1.16. (These bounds were originally derived in [5].) 
The result is 

where 
pr (6) < i@BS(‘), 

(127) 

and 
ji,,(s) A In E[eSI1 1 H,], (129) 

,&(s) A In E[eszO 1 HI]. (130) 

The next step is to evaluate ,i&(s) for the two receivers. , 
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Evaluation of j&(s) for Suboptimum Receiver No. 1. In this case, I, and 1, are finite 
quadratic forms and the evaluation is straightforward (see Problem 11.3.9; the original 
result was given in [4]). 

f&(s) = --In det (I - &[& + &,I) (131) 
and 

p&) = --In det (I - &&), 

Sl 
- 

82 0 

g3 

0 l 

I CW- 

11, = No 

0 . 

(132) 

(133) 

(134) 

13(t) I 2&(t - u) 13(a) I2 dt du. (135) 
J (i-1)T8 J (i-l)T, 

Notice that we include the statistical dependence between the various subintervals in 
the performance analysis. Using (13 l)-(135) in (127) gives the performance bound for 
any particuIar system. 

Evaluation of PBS(S) for Suboptimum Receiver 
p11w and p(&) as Fredholm determinants, 

Here the 
the input 

No. 2. In this case, we can write 

Fll(s) = -2 In (1 - &J 
i=1 

= &J--s), s < 0. (136) 

ll,i are the ordered eigenvalues 
to the squarer in the ith branch. 

of jjl(t) when 
Similarly, 

Hl is true. Notice that &(t) is 

fiol(s) = -s In (1 + s&~,~) 
i=l 

= &Fol(s), 
1 

- r < s 5 0, 
01,i 

(137) 



392 
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where the A,,ti are the ordered eigenvalues of f&-,(t) when HI is true. We now illustrate 

how to evaluate 0s Js) using state-variable techniques. 

Evaluation ofDsI1( -s). To do this we must write &(t)given HI as the output of a linear 
dynamic sytesm excited by a white noise process. We assume the relations 

k,(t) = F,(t)&(t) + ~&L(t), t 2 Ti, (138) 

%IU) = ~&)~,W, (139) 

E[iQt)u,+(,)1 = 6,, (140) 

E[~,(Ti)~,+(Ti)l = PC- (141) 

We must specify F,(r), G,(t), o,, &(t>, and 6,. 
On H,, &(t) is generated as shown in Fig. 11.23. We must express this system in the 

form of (127)-(130). We do this by adjoining the state vectors Z(t) and Sk,(t) to obtain 

Z,(t) = (142) 

The resulting system matrices are 

5 F,(t) = 
j 0 

-_________________.; ___---. f*ct>ii& ’ 1 j 6, ’ 

e,(t) = q 0 [ 1 - - - - - , - - - - - - . 
0 j g, ' 

Cc(t) = [O 1 c,l, 

(143) 

(144) 

(145) 

) (146) 

and 

P, = F; 0 [I - - - - - _ I - - - - - - - / 5, . 
0 

(147) 

Once we have represented &(t) in this manner, we know that 

where 

6+&-s) = In det f;,(r,> + Re 
s 

Tf 
Tr &WI & 

Ti 

WO 

(149) 
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(see pages 42-44). 
T,(T,) = I (151) 

The results in (143)-(151) completely specify the first Fredholm determinant. We can 
carry out the actual evaluation numerically. The second Fredholm determinant can be 
calculated in a similar manner. Thus, we have formulated the problem so that we can 
investigate any set of filter matrices. 

Example [4]. We consider a first-order Butterworth fading 
signal with a constant envelope. The scattering function is 

3;,(f) = 4k*b2 
(277-f j2 + k2 

spectrum and a transmitted 

(152) 

(153) 

The average received energy in the signal component is 

E, = 2ab2EI. (154) 

To evaluate the performance of Receiver No. 1, we calculate &&) by using (128) and 
(131)-(135). We then minimize over s to obtain the tightest bound in (127). Finally we 
minimize over T,, the subinterval length, to obtain the best suboptimum receiver. The 
result is a function 

which is a measure of performance for Receiver No. 
In Recei ver No. 2 we use a first-order filter. Thus, 

1 , 
1. 

(155) 

ij(t) = -k,W) + r*(t)@). (156) 

We also assume that 

F, = 0 
for simplicity. 

We evaluate fi BS(~) as a function of k,T. For each value of k,T we find 

(157) 

min [&&)I (158) 
S 

to use in the exponent of (127). We then choose the value of k,T that minimizes (158). 
The resulting value of 

min min [j$Js)] (159) 
k,T s 

is a measure of performance of Receiver No. 2. In Figs. 11.24 and 11.25, we have 
plotted the quantities in (155) and (159) for the cases in which E,./& equals 5 and 20, 
respectively. We also show ji RS(&) for the optimum receiver. The horizontal axis is kT, 
and the number in parentheses on the Receiver No. 1 curve is T/T,, the number of 
subintervals used. In both cases, the performance of Receiver No. 1 approaches that of 
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the optimum receiver as kT approaches zero, and the performance of Receiver No. 2 
approaches that of the optimum receiver as kT becomes large. This behavior is just what 
we would expect. We also see that one of the receivers is within .Ol of the optimum 
over the entire range of kT. Thus, for this particular example, the simplicity afforded 
by the suboptimum receivers is probably worth the slight decrease in performance. 

We should comment that the above example is not adequate to verify 
that these suboptimum receivers will be satisfactory in all cases. A more 
severe test of the suboptimum receiver structure would require a non- 
constant signal. Our problem formulation allows us to carry this analysis 
out for any desired f(t). Other references that deal with suboptimum 
receiver analysis include [2 1 ] and [22]. 

11.3.4 Wary Systems 

We consider an M-ary system in which the transmitted signal on the 
ith hypothesis is 

s,dt> = & Re [f( t)ejwLt] : Hi. (160) 
We assume that the CC)~ are chosen so that the output signal processes on the 
different hypotheses are in disjoint frequency bands. The received wave- 
form on the ith hypothesis is 

r(t) = && Re [&t)f(t)e’“it] + w(t), 0< t< T:Hi. - - W) 
The hypotheses are equally likely, and the criterion is minimum probability 
of error. 

The optimum receiver is an obvious generalization of the binary receiver 
in Figs. 11.12 and 11.13. To calculate the performance, we extend (5.22) 
to include nonstationary complex processes. The result is 

Pr (6) < epTR 
[&(l/N,))IP 

&(p/No(l + p))]‘+’ ’ 
05p51, (162) 

D&z) = fi (1 + Ji), 
i=l 

(163) 

and the & are the eigenvalues of (20). We then minimize over p as in 
(5.29-5.35) to obtain E(R). The next step is to find the distribution of 
eigenvalues that minimizes E(R). Kennedy has carried out this minimiza- 
tion, and the result is given in [3]. Once again, the minimum is obtained 
by using a certain number of equal eigenvalues. The optimum number 
depends on &/IV0 and the rate R. The final step is to try to find signals to 
give the appropriate eigenvalue distribution. The techniques of the binary 
case carry over directly to this problem. 
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This completes our discussion of the M-orthogonal signal problem. 
The interested reader should consult [3] for a complete discussion. 

11.3.5 Summary : Communication over Doppler-spread Channels 

In this section we have studied the problem of digital communication 
over Doppler-spread channels. There are several significant results that 
should be re-emphasized : 

1. The optimum receiver can be realized exactly when the channel 
process has a state-variable representation. 

2. Tight bounds on the probability of error are given by (75). These 
can be evaluated for any desired f(t) if &(t) has a state-variable repre- 
sentation. 

3. There exists an upper bound on the probability of error for LZ~.$@) 
that does not depend on &{j}. For any binary system, 

Pr (E) 2 8 exp 
( 

E 
-0.1488 T . 

No 1 
(164) 

4. In many cases we can choose signals that give performance close to 
the bound in (164). 

5. Two suboptimum receiver configurations were developed that are 
much simpler to implement than the optimum receiver. In many cases 
they will perform almost as well as the optimum receiver. 

6. The basic results can be extended to include systems using M- 
orthogonal signals. 

This completes our discussion of digital communication. 
The reader may wonder why we have included a detailed discussion 

of digital communication in the middle of a radar/sonar chapter. One 
obvious reason is that it is an important problem and this is the first 
place where we possess the necessary background to discuss it. This reason 
neglects an important point. The binary symmetric problem is one degree 
easier to analyze than the radar-detection problem, because the symmetry 
makes ,C(Q) the important quantity. In the radar problem we must work 
with /Z(S), 0 < s < 1, until a specific threshold (or Ps) is chosen. This 
means that all the signal-design ideas and optimum eigenvalue distribu- 
tions are harder to develop. Now that we have developed them for the 
symmetric communications case, we could extend them to the asymmetric 
problem. The quantitative results are different, but the basic concepts 
are the same. 
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11.4 PARAMETER ESTIMATION: DOPPLER-SPREAD TARGETS 

The model for the estimation problem is a straightforward modification 
of the detection model. Once again, 

F(t) = JEtf( t - A>d, T < t ,< Tf. (165) 

There are two cases of the parameter-estimation problem that we shall 
consider. In the first case, the only unknown parameters are the range to 
the target and its mean Doppler shift, ?nD. We assume that the scattering 
function of 6,(t) is completely known except for its mean. The covariance 
function of the signal returned from the target is 

&(t, u:& m,> = E&t - A)ej2”mDtRDo(t - u)e-jznmDuf*(u - A), (166) 

where i?D (t - U) iS the covariance function of d,(t) with its mean Doppler 
removed. “In other words, 

xD<t - u> c\ ej2”mutKDo(t _ tl)e-j2~m~~~e WV 

We observe r”(t) and want to estimate A and ?nD. Notice that the parameters 
of interest can be separated out of the covariance function. 

In the second case, the covariance function of 6,(t) depends on a 
parameter (either scalar or vector) that we want to estimate. Thus 

&(t, u: 1, A) = E,f(t - n>.&(t - u :A)f*(u - 1). (168) 

A typical parameter of interest might be the amplitude, or the root-mean- 
square Doppler spread. In this case the parameters cannot necessarily be 
separated out of the covariance function. Notice that the first case is 
included in the second case. 

Most of the necessary results for both cases can be obtained by suitably 
combining the results in Chapters 6, 7, and 10. To illustrate some of the 
ideas involved, we consider the problem outlined in (166) and (167). 

We assume that the target is a point target at range R, which corresponds 
to a round-trip travel time of 1. It is moving at a constant velocity corre- 
sponding to a Doppler shift of ?nD cps. In addition, it has a Doppler 
spread characterized by the scattering function SD,{ f}, where . 

sD,{fL} a gD{.fl - mD>* (16% 

The complex envelope of the received signal is 

-m < t < O”* (170) 

We assume an infinite observation interval for simplicity. 
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The covariance function of the returned signal process is given in (166). 
The likelihood function is given by 

1 O” 
&A m,) = jy 

ss 
?*(t)h”,,(t, u: A, m&F(u) dt du, 

0 --co 
(171) 

where &,,(t, u:L, mD) is specified by 

s 
03 NoK,,(t, u: a, r?zD) + h,,(t, x: A, m,)&, u : A, m,) dx 

--co 
= K&t, u :a, q)), -oo < t, u < 00. (172) 

(Notice that the bias term is not a function of 2 or MD, and so it has been 
omitted.) In order to construct the likelihood function, we must solve 
(172) for a set of Ai and ??zD. that span the region of the range-Doppler 
plane in which targets- may ‘be located. Notice that, unlike the slowly 
fluctuating case in Chapter 10, we must normally use a discrete approxima- 
tion in both range and Doppler. (There are other realizations for generating 
l(l, MD) that may be easier to evaluate, but (171) is adequate for discussion 
purposes.) The maximum likelihood estimates are obtained by finding the 
point in the 2, mD plane where I(& mD> has its maximum. 

To analyze the performance, we introduce a spread ambiguity function. 
As before, the ambiguity function corresponds to the output of the 
receiver when the additive noise G(t) is absent. In this case the signal is a 
sample function of a random process, so that the output changes each 
time the experiment is conducted. A useful characterization is the expecta- 
tion of this output. The input in the absence of noise is 

Y(t) = JKf(t - il,)ei2RmDat~Do t - 42 . i 1 2 
(173) 

We substitute (173) into (171) and take the expectation over 6, (t). The 
0 

result is 

&){&, a: m&, m> = j+- 
0 ss i;,,( t, u : 1, mD)R:(t, u : aa, mDa) dt du 

--co 
03 

Et- -- - 
N, cs 

h”,,(t, u : il, m.,)f*(t - 1,) 

L3 
Xe -j2amD&-u) u 

A - &)~;,(t - u) dt du, 



400 II .4 Parameter Estimation: Doppler-spread Targets 

which we define to be the Doppler-spread ambz’guity function. Notice that 
it is a function of four variables, A,, A, mDa, and MD. This function provides 
a basis for studying the accuracy, ambiguity, and resolution problems 
when the target is Doppler-spread. The local accuracy problem can be 
studied by means of Cramer-Rao bounds. The elements in the J matrix 
are of the form 

(see Problem 11.4.7). The other elements have a similar form. 
We do not discuss the ambiguity and resolution issues in the text. 

Several properties of the Doppler-spread ambiguity function are developed 
in the problems. Notice that 8,u{&, km, , m} may be written in several 
other forms that may be easier to evaluate: 

In general, the spread ambiguity function is difficult to use. When the 
LEC condition is valid, 

1 
h,,(t, u: A, m> 2 - K&t, u 3, nz) 

N, 

= &y(t - +pmt&&t - u)pn’y*(ld - A)* 
No 

(176) 

Using (176) in (174) gives 

Xe --i2;1( m-mcllu -* 
f( 11 - ;t>jy 11 - A,..) dt du. (177) 

(We suppressed the D subscript on m for notational simplicity.) This 
can be reduced to the two-variable function 

Some of the properties of O,, I FC{*, l } are developed in the problems. /,P 1 A ’ 
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A final comment concerning ambiguity functions is worthwhile. In the 
general parameter estimation problem, the likelihood function is 

r”*(t)h,,(t, u:A)r”(u) dt du + I,(A), A E ya, (179) 

where &u(t, u:A) satisfies 

Noh”o,(t, u : A) + 
s 

mh (t “ou , z : A)&, u : A) dx = i?&, u : A), 
-m 

-co < t, 21 < 00, A E ya, (W 

and I,,(A) is the bias. For this problem we define the generaked spread 
ambiguity function as 

u3 

&(A,, A) = L 
No u 

h”,,(t, u:A)&(t, u:A,) dt du, 
--co 

(W 

We shall encounter this function in Chapters 12 and 13. 
This completes our discussion of the estimation problem. Our discussion 

has been brief because most of the basic concepts can be obtained by 
modifying the results in Chapters 6 and 7 in a manner suggested by our 
work in Chapter 10. 

11.5 SUMMARY: DOPPLER-SPREAD TARGETS AND CHANNELS 

In this chapter we have studied detection and parameter estimation in 
situations in which the target (or channel) caused the transmitted signal to 
be spread in frequency. We modeled the complex envelope of the received 
signal as a sample function of a complex Gaussian random process whose 
covarrance 1s 

Kg(t, u) = E,f(t - ;Z)&)(t - u,p*<u - A). (179) 

The covariance function ED(t - U) completely characterized the target 
(or channel) reflection process. We saw that whenever the transmitted 
pulse was longer than the reciprocal of the reflection process, the target 
(or channel) caused time-selective fading. We then studied three problems. 

In Section 11.2, we formulated the optimum detection problem and 
gave the formulas that specify the optimum receiver and its performance. 
This problem was just the bandpass version of the Gaussian signal in noise 
problem that we had solved in Chapters 2-5. By exploiting our complex 
representation, all of the results carried over easily. We observed that 
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whenever the reflection process could be modeled as a complex finite-state 
process, we could find a complete solution for the optimum receiver and 
obtain a good approximation to the performance. This technique is 
particularly important in this problem, because the reflected signal process 
is usually nonstationary. Another special case that is important is the LEC 
case. Here the optimum receiver and its performance can be evaluated 
easily. The results for the LEC condition also suggest suboptimum 
receivers for other situations. 

In Section 11.3, we studied binary communication over Doppler-spread 
channels. The first important result was a bound on the probability of 
error that was independent of the channel-scattering function. We then 
demonstrated how to design signals that approached this bound. Tech- 
niques for designing and analyzing suboptimum receivers were developed. 
In the particular example studied, the performance of the suboptimum 
receivers was close to that of the optimum receiver. The extension of the 
results to M-ary systems was discussed briefly. 

The final topic was the parameter-estimation problem. In Section 11.4, 
we formulated the problem and indicated some of the basic results. We 
defined a new function, the spread-ambiguity function, which could be 
used to study the issues of accuracy, ambiguity, and resolution. A number 
of questions regarding estimation are discussed in the problems. We 
study parameter estimation in more detail in Section 13.4. 

We now turn to the other type of singly-spread target discussed in 
Chapter 8. This is the case in which the transmitted signal is spread in 
range. 

11.6 PROBLEMS 

P.ll.2 Detection of Doppler-spread Targets 

Problem 11.2.1. We want to derive the result in (33) Define 

(P.1) s Tf j$ = cr(t)@%(t) dt, Ti 
where pi is the ith eigenfunction of &(t, u). Observe from (A.116) that 

P?jjIfl(‘i 1 Hl) = ’ 
n<ii + N,) 

exp[-ZJ, -m<&<m. (P-2) 

Using (P.1) and (P.2) as a starting point, derive (33). 
Problem 11.2.2. Derive (33) directly from (2.31) by using bandpass characteristics 
developed in the Appendix. 
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Problem 11.2.3. Derive the result in (38) in two ways: 
1. Use (33) and (34) as a starting point. 
2. Use (2.86) as a starting point. 

Problem 11.2.4. Consider the detection problem specified below. 

30 = ~E$(t)bg(t) + G(t), Ti s t 5 Tt:H,, 

Y(t) = G(t), Ti < t I, Tf:H,,. 

The Doppler scattering function is 

4kub2 
Sdf) = &..)2 + k2 ’ 

The complex white noise has spectral height NO. 
1. Draw a block diagram of the optimum receiver. Write out explicitly the differential 

equations specifying the system. 
2. Write out the equations that specify F(s). Indicate how you would use F(s) to 

plot the receiver operating characteristic. 
Problem 11.2.5. Consider the same model as in Problem 11.2.4. Assume that 

elsewhere, 
where 

T= Tf- Tip 

and that T is large enough that the asymptotic formulas are valid. 
1. Draw the filter-squarer realization of the optimum receiver. Specify the transfer 

function of the filter. 
2. Draw the optimum realizable filter realization of the optimum receiver. Specify the 

transfer function of the filter. 
3. Compute b&s). 

Problem 11.2.6. Consider the same model as in Problem 11.2.4. Assume that f(t) is a 
piecewise constant signal, 

c - 0 5 t < Ts 3c 
t 
1 5 &L(t iTs), 

= i=l 

0, elsewhere, 

and 

The 
unit 

fi are complex 
energy. 

i(t 

weighting coefficients, and c is a constant 

1 
-9 0s t< T,, 

1 = 2/T s 

0, elsewhere, 

T 
Ts=-. 

K 

so that f(t) has 
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1. Draw a block diagram of the optimum receiver. Write out explicitly the differential 
equations specifying the system. 

2. Write out the equations specifying ,6(s). 
Problem 11.2.7. Repeat Problem 11.2.4 for the Doppler scattering function 

4kab2 
‘df’ = [2v(f - m&j2 + k2 ’ 

-- <,f’< m. 

Problem 11.2.8. Repeat Problem 11.2.4 for the case in which the target reflection 
process is characterized by the spectrum in (A.148). 
Problem 11.2.9. Consider the following detection problem: 

‘;‘(t) = 1/Etjyt)h,(t) + ii,(t) + G(t), 0 < t < T:H,, 

w = r-i,(t) + i?(t), 0 < t < T:H,. 

The colored noise is a zero-mean complex Gaussian process with covariance function 
&,(t, u). It is statistically independent of both h,(t) and ii;(t). 

1. Derive the equations specifying the optimum receiver. 
2. Derive a formula for F(S). 

Problem 11.2.10. Consider the model in Problem 11.2.9. Assume that r?,(t) has a complex 
finite state representation. 

1. Write out the differential equations specifying the optimum receiver. 
2. Write out the differential equations specifying j%(s). 

Problem 11.2.11. Consider the following detection problem. 

= vqfl(t - 3,2)ejd,2(t) + i;;(t), Ti < t ,< Tf:Ho. 

The quantities JU 1, A2, CC)~, and o,, are known. The two reflection processes are statistically 
independent, zero-mean complex Gaussian processes with covariance functions &(T) 
and RD2(7). Both processes have finite state representations. 

1. Find the optimum receiver. 
2. Find an expression for p(s). 

Problem 11.2.12. Consider the model in 
variable instead of a random process. 

Problem 11.2.11. Assume that hD2(t) is a random 

iiD2(f) = 60,. 

1. Find the optimum receiver. 
2. Find an expression for p(s). 

Problem 11.2.13. Consider the model in Problem 11.2.11. Assume that gDl(t)isarandom 
variable instead of a random process. 

Assume that JD2(t) has a finite state representation. 
1. Find the optimum receiver. Specify both a correlator realization and a realizable 

filter realization. 
2. Recall that 
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for this type of model (see page 251). Find an integral expression for A. Find the set of 
differential equations that specify A. 

3. Assume that 

Gl2-tf > = 
2kP, 

(2zf)2 + k2 ’ 

Write out the differential equations specifying the optimum 
Problem 1 1.2. 14. Consider the model in Problem 11.2.13. 

receiver and A. 

7(t) = 1/E, &-J(t - ll)ejmlt + ~~ &D2(t)f(t - i2)eja2t + i;;(t), Ti 5 t < Tf:H,, 

F(t) = 1/E, b,,(t)f(t - A2)ej*2t + S(t), Ti I, t < Tf:H,. 

We want to design the optimum signal subject to an energy and bandwidth constraint. 

s Tf 

1 r’<t)l*dt = 1, 
Ti 

s 
Tff2,F{f},2dt = B2. 

Ti 

1. Assume that we use an optimum receiver. Find the differential equations that 
specify the optimum signal (see Section 9.5). 

2. Assume that we use a conventional receiver (see Section 10.5). Find the differential 
equations that specify the optimum signal. 

3. What is the fundamental difference between the equations in parts 1 and 2 and the 
equations in Section 9.5 (9.133)-(9.139) ? 
Problem 11.2.15. Consider the following detection problem: 

The 6oi( t) are statistically independent, zero-mean complex Gaussian processes with 
covariance functions RDi(T). The Ai and ~t)~ are known. The target reflection & is a 
complex zero-mean Gaussian variable with mean-square value 2ab2. 

1. Find the optimum receiver and an expression for A. 
2. Assume that a conventional receiver is used (see Section 10.5). Find an expression 

for Awe. Write this expression in terms of 0{7, f  > and +{ f}. 
Problem 11.2.16. Consider the multiple hypothesis detection problem: 

w = G(t), Ti 5 t < T$:H,, 

F(t) = 2/g &J(t) + G(t), Ti < t < TfzHl, 

Y(t) = 1/E, b&t)jQ> + W), Ti < t 5 TftH2. 

We see that the three hypotheses correspond to noise only, noise plus a point-non- 
fluctuating target, and noise plus a fluctuating target. 
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Assume the following cost matrix: 

0 c*lf Gl’ 
C = c*1 0 CAT 

G KS O _ 

1. Find the optimum Bayes receiver. 

I . 
2. Consider the special case when CAY = 0. Draw the optimum receiver. Find an 

expression for /Z(s). 
3. Assume that the following criteria are used: 
a. Pp a {Pr [say HI or H, 1 HO is true]}. 
b. PO a {Pr [say HI or H, 1 HI or H, is true]}. 
c. Maximize PI, subject to constraint that PE’ 5 bc. 
d. I f  the receiver says that a target is present, we want to classify it further. Define 

and 
PF 

2 
h {Pr [say Hz 1 H, is true, target decision positive]} 

PD * { Pr [say H, 1 H, is true, target decision positive]}. 
2- 

Maximize PO2 subject to constraint ~~~ < 0~~. 
Explain how the over-all receiver operates. Can you write this in terms of a Bayes 

test? 
Problem 11.2.17. Consider the detection problem in (30) and (31). Assume that 

E&(t)] = ih, 

where ;I is itself a complex Gaussian random variable with mean-square value 20~. The 
rest of the model remains the same. Find the optimum receiver. 

P. 11.3 Digital Communication over Doppler-Spread Channels 

Problem 11.3.1. Consider the binary FSK system described in Section 11.3.1. Assume 
that 

1. Write out the differential equations specifying the receiver in detail. 
2. Write out the differential equations specifying ,6&). 

Problem 11.3.2. The performance of a binary FSK system operating over a Doppler- 
spread channel is given by 

--21n(l+&)]. W) 

For constant transmitted signals and large time-bandwidth products, we can use the 
SPLOT formulas. 

1. Write the SPLOT formula corresponding to (P.1). 
2. Evaluate PBS+ (9) for 

The transmitted signal has energy Et and duration T. 
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3. Find the optimum value of kT. Show that if the optimum value of kT is used, 
PBS, oo (8) will decrease monotonically with n. 
Problem 11.3.3. Consider the binary FSK system described in Section 11.3.1. Assume 
that 

e-t212T2 
9 --oo<t<co 

&{f} = g e-f 213c2, -a<f<a 
n c 

The observation interval is infinite. 
1. Find the output eigenvalues. (Hint: Use Mehler’s expansion [e.g., [6] or [7].) 
2. Evaluate ,!&S, &). 

Problem 11.3.4. Consider a binary communication system operating under LEC 
conditions. 

1. Show that p R&) can be expressed in terms of A [see (9.49)]. 
2. Use the results of part 1 in (75) to find a bound on the probability of error. 
3. Find an expression for A in terms of f(t) and so{ f }. 

Problem 11.3.5. Consider a K-channel frequency-diversity system using orthogonal 
FSK in each channel. The received waveform in the ith channel is 

(\i 
2E, 
K Re [&(t)f(t)ejWlit] + w(t), To 5 t 5 Tf:HI, 

40 = \ I- 24 y Re [6i(t)f(t)ejWOit] + w(t), T,<t<Tf:HO, i=l,2,...,K. 

The channel fading processes are statistically independent and have identical scattering 
functions. Assume that the SPLOT condition is valid. 

1. Evaluate PBS(&). 
2. Assume that 

4kab2 
‘D{f} = @f)2 + k2 l 

The single-channel system with this scattering function was discussed in Example 2 on 
page 382. How would you use the additional freedom of a frequency-diversity system to 
improve the performance over that of the system in Example 2? 
Problem 11.3.6. Consider the model in Example 3 on page 384. We want to investigate 
the probabilitv of error as a function of Ts. One of the two branches of the receiver is 

Fig. P.ll.1 
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shown in Fig. P.11.1. This branch is referenced to fi; the other branch, to Jo. Assume 
that TD is large enough that the outputs due to each pulse are statistically independent. 

1. Find an expression for Pr (E> as a function of E,, No, k, and T,. Assume that D, 
pulses are used. [Hint: Recall the results in (I-2.434) and (I-2.516).] 

2. Plot 
In Pr(E) 

-0.1488&/N, 
as a function of kT,. 

Problem 11.3.7. Consider the model in Example 3 on page 384. We want to investigate 
the probability of error as a function of TS and Tp. The receiver in Problem 11.3.6 is 
used. Derive an expression for ,&&). 
Problem 11.3.8. Consider the piecewise constant channel model in Fig. 11.17 and 
assume that f(t) is a rectangular pulse. We generate a set of random variables yi as 
shown in Fig. 11.18. However, instead of using a weighted sum of their squared magni- 
tudes, we operate on them in an optimum manner. 

1. Find the optimum test based on the observed vector F. 
2. Find an expression for &&) for this test. 
3. Prove that the receiver in part 1 approaches the optimum receiver of Section 

11.3.1 as TS approaches zero. 
Problem 11.3.9. The definitions of fill(s) and ,&l(s) are given in (129) and (130). 

1. Verify that the results in (131) and (132) are correct. 
2. Verify the result in (136). 

Problem 11.3.10. Consider the M-ary problem described in Section 11.3.4. Draw a 
block diagram of the optimum receiver. 

Problem 11.3.11. Consider a binary communication system operating over a discrete 
multipath channel. The complex envelopes of the received waveforms are 

r(t) = ‘Et I + i?(t), Ti < t I Tf:H,, 

where the complex representation is with reference to al, and 

T(t) = 4% + G(t), Ti < t 5 Tf:Ho, 

where the complex representation is with reference to co”. The iii are known and the 
fDi(t) are statistically independent, zero-mean complex Gaussian random processes 
with rational spectra. The signal components on the two hypotheses are in disjoint 
frequency bands. 

1. Find the optimum receiver. 
2. How is the receiver simplified if f(t) and iii are such that the path outputs are 

disjoint in time (resolvable multipath) ? 
Problem 11.3.12. Consider the detection problem described in (30)-(32). Assume that we 
use a gated correlator-squarer-summer-receiver of the type shown in Fig. 11.18. 

1. Modify the results of Chapter 5 to obtain formulas that can be used to evaluate 
suboptimum bandpass receivers. 

2. Use the results of part 1 to obtain performance expressions for the above receiver. 
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P.ll.4 Parameter Estimation 

ProbIem 11.4.1. Consider the estimation problem described in (168)-(175). Assume that 
the LEC condition is valid. 

1. Verify that the result in (178) is correct. 
2. Evaluate 8a LEC{O, 0). 
3. Prove D’ 

&-lD.LE& m) 5 ei2,,LEC{“~ Ob 

4. Is there a volume invariance relation for 8 Sl,,LE& m)? 

Problem 11.4.2. Assume 

and 

So,(f} = $5 e -f ?/2a02, --co<f<co. 
= aD 

Evaluate 8 il,.LEC& m>- 

Problem 11.4.3. Consider the LEC estimation problem discussed in Problem 11.4.1. 
1. Derive an expression for the elements of the J matrix in terms 
2. Evaluate the J matrix for the signal and scattering function in 

of ei2 LECh m>. 
Probl& 11.4.2. 

Problem 11.4.4. Go through the list of properties in Section 10.3 and see which ones 
can be generalized to the spread-ambiguity function, eaB,,EC(7, m}. 
Problem 11.4.5. Assume that we are trying to detect a Doppler-spread target in the 
presence of white noise and have designed the optimum LEC receiver. 

1. In addition to the desired target, there is a second Doppler-spread target with an 
identical scattering function. Evaluate the effect of the second target in terms of 
&-+Ec{& m}. (Notice that th e receiver is not changed from the original design.) 

2. Extend the result to K interfering targets with identical scattering functions. 
3. What modifications must be made if the Doppler scattering functions are not 

identical ? (This is the spread cross-ambiguity function.) 
4. In part 3, we encountered a spread cross-ambiguity function. A more general 

definition is 

x g*(u -;)f(u ‘2) dtdu. (P.1) 

Where would this function be encountered? How is it related to the ordinary cross- 
ambiguity function $B(il, f > ? 
Problem 11.4.6. Consider the degenerate case of Problem 11.4.5, in which we are trying 
to detect a slowly fluctuating point target in the presence of white noise and have 
designed the optimum receiver. 

What effect will the presence of a set of a set of Doppler-spread targets have on 
the performance of the above receiver.? 



1 I .6 Problems 

Problem 11.4.7. Derive the term in (175) and the other elements in the J matrix. 

Problem 
function. 

11.4.8. Consider the problem of estimating the amplitude of a scattering 

&(T: A) = A&,(T), P. 0 

and I?&) is assumed to be known. The complex envelope of the transmitted signal is 
dG&), The complex envelope of the returned waveform is 

;r(t) = 1/E, &t, A)?(t) + ii;(t), Ti I t Ls T’y 

where hD(t, A) is a complex Gaussian random 
(P. 1). Assume that the LEC condition is valid. 

process covariance is given in 

1. Find a receiver to generate 6,,. 
2. - Is 6,, unbiased ? 
3. Assume that the bias of 6,, is negligible. (How could you check this?) Calculate 

4. Calculate a bound 
5. Express the bound 
6. Assume that 

on the normalized variance of any unbiased 
in part 4 in terms of e(,,f} and &{f}. 

e-t2/2T2 

estimate of A. 

&{f} = -& e-f212B2 

7T 

Evaluate the bound in part 4 for this case. Discuss the behavior as a function of BT. 
Would this behavior be the same if the LEC condition were not satisfied? 

7. Express the largest eigenvalue in terms of A, B, and T. 

Problem 11.4.9. The complex envelope of the received waveform is 

7 (t) = Gi$(t)[ej@lt + ej@ot&(t) + i?(t), --co<t<co. 

We want to estimate the quantity COLJ, = co1 - oo. The process &D(t 
complex Gaussian process whose bandwidth is much less than cog. 

) is a zero-mean 

1. Find a receiver to generate the maximum likelihood estimate of a~. 
2. Find an expression for the Cramer-Rao bound. 

Problem 11.4.10. Assume that 

where ,!&{*} is known. We want to estimate A, the scale of the frequency axis. Assume 
that 

F(t) = Z/@&t, A) f(t) + ii;(t), --oo<t<a, 

and that the LEC condition is valid. 

1. Draw a block diagram of a receiver 
2. Evaluate the Cramer-Rao bound. 

generate 4n,. 
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Problem 11.4.11. Assume that the target consists of two reflectors at different ranges. 
The complex envelope of the returned waveform is 

%I = dE, i $if(t - li) + ii;(t), -a<t<q 
i=l 

where the bi are statistically independent complex Gaussian random variables (E Igil” = 
2ai2). We want to estimate the mean range, which we define as 

A, = 8@, + Q. 

1. Draw the block diagram of a receiver to generate a,,,,. 
2. Does 

A r,ml = 9(xl,m1 -I- &,nzp 

3. Evaluate the Cramer-Rao bound of the variance of the estimate. 

Problem 11.4.12. Consider the problem of estimating the range and mean Doppler 
when the amplitude of the scattering function is unknown. Thus, 

I?&, u: A) = AE, f(t - A)ej2nmtK&(t - u)e--isamuf*(u - A). 

Assume that the LEC condition is valid and that the bias on iiml can be ignored. 
1. Find I(ciml, 1, m). 
2. Draw a block diagram of the optimum receiver to generate AmE, A,,. 
3. Evaluate J. Does the fact that A is unknown increase the bounds on the variances 

of Am, and &rrnl? 
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