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Range-Spread Targets 
and Channels 

In Chapters 9 and 10, we studied slowly fluctuating point targets. In 
Chapter 11, we studied point targets that could fluctuate at an arbitrary 
rate. In this chapter, we consider slowly fluctuating targets that are 
spread in range. 

A typical case is shown in Fig. 12.1. We transmit a short pulse as shown 
in Fig. 12.1~. The target configuration is shown in Fig. 12.16. The surface 
is rough, so that energy is reflected in the direction of the receiver. The 
target has length L (measured in seconds of travel time). To characterize 
the reflected signal, we divide the target in Al increments. The return 
from each increment is a superposition of a number of reflections, and so 
we can characterize it as a complex Gaussian random variable. Thus the 
return from the first increment is 

the return from the second increment is 

and so forth. The total return is 

s”(t) = &$ b(n,)f(t - &) AA. 
i=o 

We see that it consists of delayed v ,ersions of the 
with complex Gaussian variables and summed. 

signal, which are weighted 
typical returned signal 

is shown in Fig. 12.1~. We see that the signal is sprea.d out in time (or 
range) , and so we refer to this type of target as a range-spread 
Other adjectives co mmonly used are delay-spreud and dispersive. 

target. 
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(a) Transmitted envelope 

Direction of 
propagation 

- - 

(b) Target geometry 

*t 
0 L+T 

(c) Received envelope (shifted time origin) 

Fig. 12.1 Range-spread model. 

414 



Model 415 

In this chapter we study detection and parameter estimation for range- 
spread targets. In Section 12.1 we develop a quantitative model for range- 
spread targets and channels and show how this type of target causes 
frequency-selectiue fading. In Section 12.2, we discuss optimum receiver 
configurations briefly. In Section 12.3, we develop the concept of time- 
frequency duality. This development enables us to translate all range- 
spread channels into equivalent Doppler-spread channels. We can then 
use all of the results in Chapter 11 directly. We also discuss a number of 
applications in Section 12.3. Finally, in Section 12.4, we summarize our 
results. 

12.1 MODEL AND INTUITIVE DISCUSSION 

We begin our model development with the relation in (3). The incre- 
ments are useful for explanatory purposes, but the reflections actually 
occur from a continuous range of A. s AA1 -+ 0, the sum in (3) becomes the 
integral 

Now g,(1) is a sample function from a zero-mean complex Gaussian 
process whose independent variable is the spatial variable 2. Notice that 
b,(L) is not a function of time. We see that a range-spread target behaves 
exactly as a linear time-invariant filter with a random complex impulse 
response 8,(L). To characterize 8,(A) completely, we need the two com- 
plex covariance functions 

where the result in (6) is a restriction we impose. 
We shall assume that the returns from different ranges are statistically 

independent. To justify this assumption, we return to the incremental 
model in Fig. 12.1. The value of 6,&) will be determined by the relative 
phases and strengths of the component reflections in the ith interval. 
Assuming that the surface is rough compared to the carrier wavelength, 
the values of 8&J in different intervals will not be related. In the con- 
tinuous model this implies that 

&(il’ Al) = w  - Wh3(412~* (7) 

Notice that the relation in (‘7) is an idealization analogous to white noise 
in the time domain. The reflected signal is given by the convolution in (4). 
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As long as the correlation distance of 6,(L) is much shorter than the 
reciprocal of the bandwidth off”(t), then (7) will be a good approximation. 

Physically, the expectation in (7) is related to the expected value of 
energy returned (or scattered) from an incremental element located at ;k. 
We define 

,TX(n) 2 m412L -oo<il<oo (8) 

and refer to it as the range-scattering function. For convenience, we shall 
always define &(3L) for an infinite range. The finite target length will be 
incorporated in the functional definition. 

The covariance of the received signal in the absence of additive noise is 

&t, u) = EC&( t)i+)] 

Using (7) and (8) in (9) gives 

The relation in (10) completely characterizes the signal returned from a 
range-spread target. 

Notice that the total received energy is 

s 
co ET = &(t, t) dt 

-cn 
= &E&(i) dlJ;Jf(t - A),” dt = Et/~&(l) dil. 

(11) 
We see that 

&(A) dl = 
expected value of the energy returned from (A, L + dA) . c (12) 

The result in (12) is a quantitative statement of the idea expressed in (8) 
In order to be consistent with the point target model, we assume that 

J &(A) d3L = 2~5”. 
-00 

This completes our specification of the reflection model. Before begin- 
ning our optimum receiver development, it is useful to spend some time 
on an intuitive discussion. In Chapter 11 we saw that a Doppler-spread 
target causes time-selective fading. Now we want to demonstrate that a 
range-spread target causes frequency-selective fading. 
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The Fourier transform of s’(t) is a well-defined quantity when the target 
length is finite. Thus, 

sI( f } A la S(t)e-i2nf1f dt 

=fe-j2rf1’ dtJly(t - A&(A) dA. (14) 

Notice that g{f} is a sample function of a complex Gaussian process. 
We want to compute the cross-correlation between ${f} at two different 

frequencies. 

E[~(f,}~*{f,}] = E{ Ia e--i21rf1t1 dt,Im f(tl - jll)hB(Al) dA, 

t/lej2Tf2t2 diJlf*(t2 - A2)6g(,A2) dl,). (15) 

Bringing the expectation inside the integrals, using (7) and (8), we obtain 

E[S{ fi)$*{ f2}] = F{ fi}i’*{ f2}Im e-j2n’(f1-f2)&(A) dA, (16) 
-00 

where F{fl} is the Fourier transform of .f( t). To interpret (16), we define 

Using (17) in (16), we obtain 

mfi>s”*cfi>1 = 4L>F*{fi>Gt(fi - t-i> 9 
or 

(18) 

Gdfi - f2) = 
m{fI~~*{fi)l 

E’{fi)~*{f2} l 

(1% 

The function &{v} is called the two-frequency correlation function. It 
measures the correlation between the fading at different frequencies. Notice 
that it is the Fourier transform of the range-scattering function. Therefore, 

I s &(a) = O” ej28A2,&{u) dv, 
-w 

(20) 

and we can use either &{v} or &(A) to characterize the target. 
To illustrate the implication of the result in (18), we consider the 

scattering function in Fig. 12.2a, 

1 
2db2 

&(a) = L ’ 
&<a<& 

- 2 - - 2 ’ (21) 

\O 9 elsewhere. 
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(a) Scattering function 

(b) Two-frequency correlation function 

Fig. 12.2 Functions for a uniform range-spread target. 

Thus, 

as shown in Fig. 12.2b. We see that frequency components separated by 
more than l/L cps will be essentially uncorrelated (and statistically inde- 
pendent, because they are jointly Gaussian). 

Now assume that we transmit a signal whose Fourier transform is 

Ftf) 1 1 - 
J 

-7 
w 

W<f<-w - - -2- 2’ 

LO 9 elsewhere. 

In Fig. 12.3a, we show the case in which 

1 w>>;. 

(23) 

(24) 

In Fig. 12.3b, we show the transform of a typical sample function of 
J(t). The amplitudes at frequencies separated by more than l/L cps are 
essentially statistically independent, and so we refer to this behavior as 
frequency-selective fading. 
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(a) Transform of transmitted envelope 

(b) Transform of a typical received signal 

Fig. 12.3 Functions to illustrate frequency-selective fading. 

The function in Fig. 12.36 is very similar to that in Fig. 11.2b, except 
that the axis is frequency instead of time. We shall exploit this similarity 
(or duality) in detail in Section 12.3. 

Notice that if the signal bandwidth is such that 

1 w<<-, 
L 

(25) 

the returned signal will be undistorted. This is, of course, the slowly 
fluctuating point target model of Chapters 9 and 10. The relation in (25) 
tells us when we can model the target as a point target. 

We now have a quantitative model for range-spread targets and an 
intuitive understanding of how they affect the transmitted signal. The next 
step is to consider the problem of optimum receiver design. 

12.2 DETECTION OF RANGE-SPREAD TARGETS 

In this section we consider the binary detection problem, in which the 
complex envelopes of the received waveforms on the two hypotheses are 

F(t) = a(t) + K(t), -m < t < m:& (261 
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and 
r”(t) = i?(t), -GO < t < KM?,. (27) 

The signal is a sample function from a zero-mean complex Gaussian 
process, 

i(t) = (28) 

whose covariance function is 

&(t, u) = E, 
s 

O” f(t - l)&(A)f*(u - A) d1. (29) 
-m 

The additive noise, G(t), is a sample function from a statistically inde- 
pendent, zero-mean, complex white Gaussian process with spectral height 
A$. We have assumed an infinite observation interval for simplicity. 

The expression for the optimum test follows directly from (11.33) as 

1 
1 ao Hl 

=- 

No ss 
r”*(t)h(t, u)?(u) dt du z y, 

HO -cn 

where h(t, u) satisfies the equation 

N(&t, u) + s O” h(t, z)&, u) dz = K&t, u), -Go < t < m. (31) 
--oo 

The difficulty arises in solving (31). There are two cases in which the 
solution is straightforward, the separable kernel case and the low-energy- 
coherence case. The separable kernel analysis is obvious, and so we 
relegate it to the problems. The LEC condition leads to an interesting 
receiver configuration, however, and so we discuss it briefly. 

When the LEC condition is valid, the solution to (31) may be written as 

K(t, u) = 
1 

- E&t, u). (32) 
No 

Using (29) in (32) and the result in (30) gives 00 Et Hl 
1 -w - 

No2 
F*(t)f(t - A)&(A)f*(u - A)?(u) dt du dA 3 7. (33) 

HI 

This can be rewritten as 

s 
co Hl 1 1= S;,(A) IW)I" da 2 J-59 

-cQ HO 
(344 
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Filter matched 
Yr 

dt 11 
Hl 

to F(t) 
&Yl 

-00 A HO 
. 

&ih) 
Fig. 12.4 Two-filter radiometer: optimum detector under the LEC condition. 

where 

and we have absorbed the constant in the threshold. The operation in 
(34a) may be realized as shown in Fig. 12.4. This receiver is called a two- 
filter radiometer and is due to Price [l]. 

When the LEC condition is valid, the performance is specified by 
(11.65). Using (10) in (11.65) and integrating gives 

00 

lw 

s(1 - s)Et2 =- 
NO2 I.1 

J7,(A,>O (A1 - 12, 03&,(A2) dA, dl,, (35) 

-aI 

which is the desired result. 
When the LEC condition is not valid, it is difficult to solve (31) directly. 

In the next section we develop a procedure for solving it by transforming 
it into an equivalent Doppler-spread target problem. 

12.3 TIME-FREQUENCY DUALITY 

The utility of the duality concept is well known in classical network 
theory. Bello [2] has developed the concept of time-frequency duality 
in a more general framework and applied it to communications problems. 
In Section 12.3.1, we develop the basic duality concepts. In Section 12.3.2, 
we consider the dual relations in range-spread and Doppler-spread 
channels. In Section 12.3.3, we apply the results to specific cases. 

One comment is worthwhile before beginning our development. We 
shall develop a number of properties and formal relationships. These are 
useful in solving specific problems. The reader who only learns these 
properties and applies them blindly will miss what we think is a major 
benefit of duality. This benefit is the guidance it offers in thinking about a 
particular problem. Often by just thinking about the duality, one can solve 
a problem directly without going through the formal manipulations. 
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12.3.1 Basic Duality Concepts 

Our discussion consists of a series of definitions and properties with some 
examples interspersed to illustrate the ideas. Notice that throughout the 
discussion all functions are defined over infinite intervals. 

Definition 1. Consider the two complex time functions &(t) and a,(t). If 

&(f) = F[&(t)] A yl{f} A mgl(t)e-j2”ftdt, (36) 

then g,(t) is the 

then a,(t) is the 

Example 1. Let 

dual of &(t). If 

yU2w = F-‘Kh(f >I 

inverse dual of &(t). 

s 
m 

A - ijl( f )ej2’* t df, (37) 
-m 

s1(t> = 
1, -T<t<T, 

0, elsewhere. 
(38) 

The dual of &(t) is 

i&&t > 
sin 2rTt 

=- 
7Tt ’ 

--oo<t<a (39) 

Definition 2. Dual Processes. The complex Gaussian process ij2(t) is the 
statistical dual of the complex Gaussian process &(t) if 

&7,(fi, f2) a m72~faaf2N 

= ~[&,(t,, h>! 
a2 

A - 

ss 

exp [-j27Tfitl + j2~f2f2]&(tl, t2) dt, dt,. 
--oo 

Note the sign convention in the direct Fourier transform. The complex 
Gaussian process g2(t) is the statistical inverse dual of the complex Gaus- 
sian process gl(t) if 

&z(tl9 t2) = ~-‘Kgl{fl, f,>] 
00 

A - 

u 
exp [ +jhflh - .i2~f2tzl&,{fI, fi) dfi df2. (41) 

-a3 

Property 2 [3]. Assume that ij2(t) is the statistical dual of&(t), which is a 
nonstationary process whose expected energy is finite. We expand both 
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processes over the infinite interval. The eigenvalues of &(t) are identical 
with those of&(t), and the eigenfunctions of&(t) are Fourier transforms of 
the eigenfunctions of &(I). This property follows by direct substitution. 

Example 2. Let 

The expansion of the dual process is 

At this point the reader should see why we are interested in dual 
processes. The performance of detection and estimation systems depends 
on eigenvalues, rtot eigenfunctions. Thus, systems in which the various 
processes are dual will perform in an identical manner. 

Property 3. White complex Gaussian noise is a statistically self-dual 
process. 

Property 4. If &(t) is the dual of &(t), where &(t) is any sample function 
from a zero-mean random process, then &{fi, fi} is the double Fourier . 
transform of K&( t,, &J. 

Definition 3. Consider the two deterministic functionals 

Assume that &(t) is the dual of g,(t). If this always implies that Z2(t) is 
the dual of Z1(t), then gz(*, l ) is the dual operation of g,(-, l ). 

To illustrate this idea, we consider a simple example of a dual operation. 

Example 3. Let g,(-, a) correspond to a delay line with a delay of a seconds. Thus, 

Qt) = &(t - a). (46) 

The dual operation is the frequency translation 

12(t) = &(t)e--j2aat. 

To verify this, we observe that 

(47) 

2 VI 1 = y If> 1 
,-j2afn . (48) 
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Property 5. The operations listed in Table 12.1 are duals (see Problems 
12.3.4-12.3.10). 

Table 12.1 

Operation Dual operation 

Delay line Frequency translation 
Time-varying gain Filter 
Gate Low-pass or bandpass filter 
Adder Adder 
Convolution Multiplier 
Aperiodic correlator Square-law envelope detector 

Thus, if 

then 

which is the required result. 

a&) = r,ct}, (49) 

&(t) = 21{t}, (50) 

Property 6. Assume that the input to g&(*), t) is a sample function of a 
complex Gaussian random process and that the input to g&,(), t) is a 
sample function of a dual process. If gl(*, 0) is the dual operation of 
gl( a, Q, then Z&) is the dual process of Zlft). 

This completes our introductory discussion. We now turn to the 
specific problem of interest. 

12.3.2 Dual Targets and Channels 

In this section we introduce the idea of a dual target or channel and 
demonstrate that a nonfluctuating dispersive target is the dual of a fluctuat- 
ing point target. 

To motivate the definition, we recall the relations for the Doppler- 
spread and range-spread targets. The reflected signal from a Doppler- 
spread target at zero range is a signal 

whose covariance function is 

The reflected signal from a range-spread target is a signal 
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whose covariance function is 

$,(t, u) = E, s mfR (t - A)~R(3L)f$i - A) dl, -0 < t, u< GQ. 
-al 

(54) 
We may now define dual targets and channels. 

Definition 4. Let &(t) denote the transmitted signal in system 1, and 
Z”Jt) the returned signal. Let&t) denote the transmitted signal in system 2, 
and Z2(t) the returned signal. 

If the condition thatf2(t) is the dual of fl( t) implies that Z2(t) is the sta- 
tistical dual of Z1( t), system 2 is the dual system of system 1. (Notice that 
“systems” have randomness in them whereas the “operations” in Defini- 
tion 3 were deterministic.) 

We now apply this definition to the targets of interest. 

Property 7. If 

or, equivalently, 

then the Doppler-spread target (or channel) is a dual system with respect 
to the range-spread target (or channel). 

Pro@ We must prove that 

al 

q$,(tp t2) a 
ss 

e-j2*[fltl-f2t21~~R(fl, t2) dt,dt, 

-al 
a3 

= 

sss 
e-j2n[fitl-f2t21ia(t1 - jl)&(A)&t, - 1) dt, dt, dA 

-00 

r 

a3 

s 

co 
= SR(&--j2r4f r-f23 dA i;z(tl - ;l),--j2nflW-4 dt, 

c -co --al 
al 

X 
s 

f( R t2 
- ~)ei2~fl(t2-4 dr,. 

-a3 
(58) 

Using (17), this reduces to 

~vG,Vl, $11 = xR{fi --.fdFR{f,>%cf2>* 
I f  

SD(‘) = &{*} 

(59 

(60) 
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(61) 

(62) 

which is the desired result. 

This result is of fundamental importance, because it implies that we can 
work with the most tractable target model. We formalize this idea with 
the following definition. 

Definition 5. Dual Detection Problems. The received waveforms on the 
two hypotheses in system A are 

The received waveforms on the two hypotheses in system B are 

and 
r”BJt), -oo < t < co:H, (65) 

~l&h -CQ < t < oo:H,. (66) 

All waveforms are sample functions of complex Gaussian processes. 
If i&(t) is the dual process to ?A1 (t) and FBO( t) is the dual process to 

FAo(t), problem B is the dual detection problem of problem A. 

The following properties are straightforward to verify. 

Property 8. If the a-priori probabilities and costs are the same in both 
systems, the Bayes risks in equal detection problems are identical. 

Property 9. We can always realize the optimum receiver for system A 
as shown in Fig. 12.5a. We can always realize the optimum receiver for 
system B as shown in Fig. 12%. 

Property 9 means that being able to construct the optimum receiver for 
either one of the two dual systems is adequate. Techniques for imple- 
menting the Fourier transformer are discussed in numerous references 
(e.g., [4-71). Th ere is some approximation involved in this operation, 
but we shall ignore it in our discussion. In Section 12.3.3 we shall discuss 
direct implementations by using dual operations. 
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L 
xt, Fourier k) = Optimum receiver 

transformer * for system B 
t 

(a) Optimum receiver for system A 

l f  

a) .  

inverse 

- Fourier f * 
Optimum receiver 

transformer 
for system A 

c 
(b) Optimum receiver for system B 

Fig. 12.5 Optimum receivers for dual detection problems. 

Property 10. Consider the problem of detecting a range-spread target. 
The received signals on the two hypotheses are 

and 
r”(t) = s,(t) + e(t), -oo < t < cn:H, (67) 

F(t) = l+(t), -co < t < oo:H,. (68) 

Consider the problem of detecting a Doppler-spread target. The received 
signals on the two hypotheses are 

and 
r”(t) = j&) + G(t), -a<t<oo:H, (69 

r”(t) = i?(t), -a < t < cn:H,. (70) 

In both cases i?(t) is a sample function from a complex Gaussian white 
noise process with spectral height NO. 

If the Doppler-spread target is a dual system to the range-spread 
target, the second detection problem is the dual of the first detection 
problem. 

This property follows by using Properties 3 and 7 in Definition 5. It 
is important because it enables us to apply all of the results in Chapter 11 
to the range-spread problem. 

The result in Definition 5 concerned binary detection. The extension to 
M-ary problems and estimation problems is straightforward. 

At this point in our discussion we have a number of general results 
available. In the next section we consider some specific cases. 

12.3.3 Applications 

In this section we apply the results of our duality theory discussion to 
some specific cases. 
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Case 1. Dual of a Finite-State Doppler-spread Target. The spectrum of 
the reflection process for a finite-state Doppler-spread target is the 
rational function 

&{f} = a;f;-iz-++ (71) 
l l l 

n 

l l l -Jbao . 
0 

Notice that it is a real, non-negative, not necessarily even function of 
freauencv. To obtain dual svstems, the range-scattering function must be 
theAratio6al function of 1, ’ 

If the transmitted signal for the 
spread target system which is its 
receiver is shown in Fig. 12.6. 

an(-q2n-2 + l l l + a, 

bn(-A)2n + l l l + bo l 

(72) 

dispersive target is f{t}, the Doppler- 
dual will transmit F{t}. The optimum 

Ro 
4 

Dispersive FR 0) 
* channel 

Qo 
(a) Actual channel 

4 

Optimum receiver 
from 

Fig. 11.9 

(b) Dual system and optimum receiver 

l 

Fi 0) - Fourier E* (a 

Optimum receiver 
from 

- transformer Fig. 11.9 
4 1 

(c) Optimum receiver for dispersive channel 

Fig. 12.6 Finite-state range-spread target. 
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To illustrate this case, .we consider an example. 

Example 1. Consider the range-spread target detection problem in which 

and 

elsewhere. 

The dual of this is the Doppler-spread problem in which 

--co<f<(Jo 

(73) 

(74) 

(75) 

(76) 

Combining the results in Fig. 12.6 and (11.38)-(11.49) (see also Prob. 11.2.4) gives the 
optimum receiver in Fig. 12.7. The performance is obtained from the result in Section 
11.2.3. 

We should observe that the dual of a finite-state Doppler-spread target 
is a range-spread target that is infinite in extent. This is never true in 
practice, but frequently we obtain an adequate approximation to &(A) 
with a rational function. 

Case 2. SPLOT Condition. In the Doppler-spread case we obtained 
simple results when 

T<t<_T 
-2- -2 (77) 
elsewhere 

and 2’ was large compared to the correlation time of d,(t) as measured by 
the covariance function En(~). The dual of this case arises when 

elsewhere 

and UI’ is large compared to the two-frequency correlation distance as 
measured by &{o}. 

A filter-squarer-integrator receiver for the Doppler-spread case is shown 
in Fig. 12.8. The gating operation is added to take into account the finite 
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Fig. 12.8 Optimum receiver for Doppler-spread target: SPLOT condition. 

observation time. We could implement the optimum receiver by using a 
Fourier transformer cascaded with the system in Fig. 12.8. In this parti- 
cular problem it is easier just to implement the inverse dual of Fig. 12.8 
Using the properties in Table 12-1, we obtain the system in Fig. 12.9. 
(We reversed the two zero-memory operations to avoid factoring the 
spectrum.) Notice that the transmitted signal is 

f(t, = Jws+$, -00<<<a. (79) 

This pulse will never be used exactly. However, if the transmitted pulse 
has a transform that is relatively flat over a frequency band, the receiver 
in Fig. 12.9 should be close to optimum. 

Case 3. LEC Condition. When the LEC condition is valid, we can solve 
the problem directly for either the range-spread or Doppler-spread target. 
In Fig. 12.10 we show the two receivers. It is easy to verify that they are 
duals. 

Case 4. Resolvable Multipath. The resolvable mukipath problem corre- 
sponds to a scattering function, 

SE{n> = z 6,d{Tl - ai}, (80) 
i=l 

where the Ai are sufficiently separated so that the output due to each path 
may be identified. This is the dual of the Doppler channel with the 
scattering function 

w-7 

Fig. 12.9 Optimum receiver for range-spread target: SPLOT condition. 
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a, ~ 
Filter matched 

T to 
P*(t) 

4 I 
. 2 lR 

> 

(a) Range spread 

(b) Doppler spread 

Fig. 12.10 Optimum receiver: LEC condition. 

Notice that (81) does not describe a frequency-diversity system. It corre- 
sponds to a set of slowly fluctuating point targets moving at different 
velocities. 

Case 5. Optimum Binary Communication. The model for a binary 
communication system operating over a range-spread channel is analogous 
to that in Section 11.3. The transmitted signals are given by (11.68). The 
receiver consists of two simple binary receivers referenced to o1 and CC)~. 
The actual implementation will depend on the physical situation, but it 
will correspond to one of the structures developed in this chapter. 

The point of current interest is the performance. The derivation in 
Section 11.3.1 did not rely on the channel characteristics. Thus, the bound 
in (11.91), 

is also valid for range-spread channels. We now consider two examples of 
signal design to show how we can approach the bound. 

Example 2. Let 
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This is the dual of the channel in (11.94). From the results of that example, we know 
that if &./IV0 is large we can achieve the bound by transmitting 

f(t) = d=$ , --co<t<q @4) 

with W chosen properly. From (11.96) the optimum value of W is 

Notice that results assume 

4-J 
WY)- =- 

3.07(2L) (85) 

W*L >> 1. (86) 

The signal in (84) is not practical. However, any signal whose transform 
constant over [- W,, WJ should approach the performance in (82). 

Example 3. Let 

5,(A) = 
4kab2 

(27~1)~ + k2 ’ 
--<A< m. 

is reasonably 

(87) 

This is the dual of the channel in Examples 2 and 3 on pages 382 and 384. The dual of 
the signal in Fig. 11.16 is 

F(f) =%a?(f- iW,>, VW 
i=t 

where 

Olfl ws, 

elsewhere, 

and D, satisfies (11.111). 
I f  

and 

27T 
ws << k (90) 

277 
w* >> 7 9 (90 

then we approach the bound in (82). 
The signal in (88) corresponds to transmitting D, frequency-shifted pulses simultan- 

eously. An identical result can be obtained by transmitting them sequentially (see 
Problem 12.3.14). The shape in (89) is used to get an exact dual. Clearly, the shape is 
unimportant as long as (90) is satisfied. 

These results deal with binary communication. The results in Section 
11.3.4 on Wary systems carry over to range-spread channels in a similar 
manner. 

Case 6. Suboptimum Receiver No. 1. In Section 11.3.3 we developed a 
suboptimum receiver for the Doppler-spread channel by using a piecewise 



Gate: 

at, y T,Ltl2T, 
--+- - 

P(t) 
Fig. 12.11 Suboptimum receiver No. 1 for Doppler-spread channel. 

Fig. 12.12 Piecewise constant approximations to the transform of&(t). 
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constant approximation to the channel fading process. We have repeated 
Fig. 11.18 (redrawn slightly) in Fig. 12.11. In Fig. 12.12a and b, we show 
two types of piecewise approximations to the transform of the channel 
fading process. In the first approximation, we use segments of L-l and 
have a total of 

D, A WL (92) 

segments. In the second approximation, we let the segment length equal 
Ws and regard it as a design parameter. We also shift the origin for 
notational simplicity. The resulting receiver is shown in Fig. 12.13. This is 
the dual of the receiver in Fig. 12.11. The performance can be analyzed 
in exactly the same manner as in Section 11.3.3. 

Case 7. Suboptimum Receiver No. 2. The dual of the suboptimum 
FSI receiver in Fig. 11.20 is the two-filter radiometer in Fig. 12.14. The 
multiplier &A) is a function that we choose to optimize the performance. 
In the LEC case 

G(a) = &(a) 

(see Case 3), while in the SPLOT case 

N 
w  

%3(4 - - 
&(A) + Nj l 

This type of receiver is analyzed in [8]. 

Sample at T 

Ideal filter: 
+ 05f’LW~ 

Matched filter: 
F*(f) 

1 Matched filter: 1 

(93 

(94) 

5al filter: 
-l)w, - z- 

Matched filter: 
> Ial2 

‘A 

:’ I NW, &f, * 

Fig. 12.13 Suboptimum receiver No. 1 for range-spread channel. 
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I;;Xw 
, 

Filter matched 
to l;“(t) 

Fig. 12.14 Suboptimum two-filter radiometer. 

Case 8. Dual Estimation Problems. In Section 11.4, we introduced the 
problem of estimating the range and mean Doppler of a fluctuating point 
target. The dual problem is that of estimating the Doppler and mean range 
of a nonfluctuating range-spread target. 

We assume that the target is a nonfluctuating range-spread target whose 
mean range is 

mR i? 
1 O” 

s 20,” --oo 
agR(jb) dil. (9% 

It is moving at a constant velocity corresponding to a Doppler shiftf. The 
complex envelope of the returned waveform is 

F(t) = JEt ei2=f t 

s 
@)(t - @,(a> dA + i?(t), -m<t< co. (96) 

-co 
The covariance function of the first term is 

E[d(t)i*(u)] = Etej2nf[t-t’1 mf(t - A1 - m&!&,(&)f*(u - A1 - c m,) dal, 
J-KJ 

-co < t, I1 < m,  (97) 

where 
(98) 

This problem is the dual of that in Section 11.4. The various results of 
interest are developed in the problems. 

This completes our discussion of the applications of time-frequency 
duality. Our interesting examples are developed in the problems. Before 
leaving the subject, several observations are important: 

1. The discussion assumes infinite limits, so that there is an approxima- 
tion involved. 

2. If the system is implemented with a Fourier transformer, there is an 
approximation. 

3. The concept as a guide to thinking about problems is as useful as the 
formal manipulations. The result of the manipulations should always be 
checked to see whether they operate as intended. 
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If one remembers these points, duality theory provides a powerful 
tool for solving and understanding problems. We now summarize the 
results of the chapter. 

12.4 SUMMARY: RANGE-SPREAD TARGETS 

In this chapter we have considered range-spread targets. The returned 
signal is modeled as a sample function of a zero-mean complex Gaussian 
process that is described by the relation 

(99) 

The covariance function of the returned signal is 

s 03 
E&t, u) = E, j-yt - A)S&)f*(u - 1) da. (100) 

--co 

We observed that a range-spread target caused frequency-selective fading. 
The detection problem was once again that of detecting a sample func- 

tion of a Gaussian random process in the presence of additive noise. The 

Table 12.2 Singly spread target results 

Doppler-spread target Range-spread target 

r 4 
Reflected 

signal 
^s (t) = 1/E, 6D(t)f(t - 1) Y(t) = 1/E, 

J --co 

Covariance 
function E,fl(t - l)I&(t - u)jyu - A) Et 

s 
O” f(t - &#)jl*(u - 1) dA 

-co 

Scattering S;nif> functions * 

Correlation 
functions ~jyw 

LT,O) 

&w 
Two-frequency correlation 

function 

Type of 
fading 

Time-selective Frequency-selective 

Approximate 
diversity, (B+ W)T=BT+l (L+T)W=WL+l 
WTw 1 

Condition for 1 
flat fading T” 5 

1 
w << E 
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structure of the optimum receiver followed easily, but the integral equation 
of interest was difficult to solve. For the LEC case and the separable 
kernel case we could obtain a complete solution. 

In order to obtain solutions for the general case, we introduced the 
concept of time-frequency duality. This duality theory enabled us to 
apply all of our results for Doppler-spread targets to range-spread targets. 
In retrospect, we can think of Doppler-spread and range-spread targets as 
examples of single-spread targets (either time or frequency, but not both). 
In Chapter 13, we shall encounter other examples of singly-spread targets. 
In Table 12.2, we have collected some of the pertinent results for singly- 
spread targets. 

Our discussion has concentrated on the detection problem in the 
presence of white noise. Other interesting topics, such as parameter 
estimation, detection in the presence of colored noise, and the resolution 
problem, are developed in the problems of Section 12.5. We now turn our 
attention to targets and channels that are spread in both range and 
Doppler. 

12.5 PROBLEMS 

P.12.2 Detection of Range-Spread Targets 

Problem 12.2.1. Consider the covariance function in (10). Prove that &<t, u) can be 
written as 

a3 

&(t, U) = 
ss 

dfi dfi d~~fl~F{fi}&{fi - f2)F*{f2}e--j2sfzU. 

-co 

VW 

Problem 12.2.2. Assume that 

1. Find &(t, u). 
2. Find the optimum receiver. Specify all components completely. 

Problem 12.2.3. Assume that f(t) is bandlimited to & W/2 cps. We approximate &(;I) as 

where 
N=LW, 

which is assumed to be an integer. 
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1. Draw a block diagram of the optimum receiver. 
2. Justify the approximation in (P. 1) in the following way : 
a. Use finite limits on the expression in (P.l) in Problem 12.2.1. 
b. Expand &{a} using Mercer’s theorem. 
c. Use the asymptotic properties of the eigenfunctions that were derived in Section 

I-3.4.6 (page I-206). 
Problem 12.2.4. Assume that 

and that 

The LEC condition is valid. 

1. Evaluate F(s). 
2. What choice of T minimizes F(s)? Explain your result intuitively. 

Problem 12.2.5. 

1. Prove that the expression in (35) can also be written as 

2. Express &(“) in terms of RR{“}’ 
3. Combine parts 1 and 2 to obtain another expression for F(S). 

Problem 12.2.6. Assume that 
2a,2 

L 

14 < 
L 

-- 
3’,(A) = = 

9 
-2’ 

and 
0, elsewhere 

1 
-9 I I< 

T 
t 

fc t 1 dT -2 = 

0, elsewhere. 

The LEC condition is valid. Evaluate F(s). 

P. 12.3 Time-Frequency Duality 

Problem 12.3.1. The signal f(t) is 
K 

fc ) t = a 2 G(t - iT,), 
i=l 

where E(t) is defined in (10.29). Find the dual signal. 
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Problem 12.3.2. The signal f(t) is 

e-t212T2, -al<<<<. 

Find the dual signal. 
Problem 12.3.3. Find the duals of the Barker codes in Table 10.1. 
Problem 12.3.4. Time-Varying Gain. Let 

q*) = a”(l>aJ*>, 

where z(t) is a known function. Find the dual operation. 
Problem 12.3.5. Filter. Let 

s 

co 
qt> = hu(t - 7)iQd dr, 

-cQ 

where hc() is a known function. Find the dual operation. 
Problem 12.3.6. Gate. Let 

21(t) = 
sl(t), Tl I * S T,, 

0, elsewhere. 
Find the dual operation. 
Problem 12.3.7. Ideal Filters. Let 

where 
s 
Co qt) = i(t - d&(7) dr, --co 

A(f) = 
t 

1, F, 5.f I F,, 
0, elsewhere. 

Find the dual operation. 
Problem 12.3.8 Aperiodic Cross-Correlator. Let 

Find the dual operation. 
Problem 12.3.9. Let 21(t) = s * g; (t + &(T) d7. 

-03 
Find the dual operation. 
Problem 12.3.10. 

1. Let 

Find the dual operation. 
2. Let 

Find the dual operation. 
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Problem 12.3.11. Consider the detection problem specified in (67) and (68). 

and 

&(A) = 
242 P/k 

(2n-f,W4 + 1 ’ 
--<A<< 

II 1 t Olt<T. 

Draw a block diagram of the optimum receiver. 
Problem 12.3.12. Consider Case 2 and the signal in (78). Derive the receiver in Fig. 12.9 
directly from (29)-(31) without using duality theory. 
Problem 12.3.13. Consider the two systems in Fig. 12.10. Verify that the receiver in 
Fig. 12.10b is the dual of the receiver in Fig. 12.1Oa. 
Problem 12.3.14. Consider the example on page 433. Assume that we transmit 

f(t) = $a;(t - kT,)ej2~k~%, 
k=l 

where G (t) satisfies (11.113b). 
1. Describe f(t). 

2. Verify that this signal achieves the same performance as that in (88) when the 
parameters are chosen properly. 
Problem 12.3.15. Assume that L = 200 psec in (83). The available signal power-to- 
noise Ievel ratio at the channel output is 

The required Pr (E) is 10 -4. We use a binary FSK system. 
1. What is the maximum rate in bits per second that we can 

channel with a binary system satisfying the above constraints? 
communicate over this 

2. Design a signaling scheme to achieve the rate in part 1. 
Problem 12.3.16. Consider Case 6. Derive all of the expressions needed to analyze the 
performance of suboptimum receiver No. 1. 
Problem 12.3.17. Consider Case 7. Derive all of the 
performance of suboptimum receiver No. 2. 

expressions analyze 

Problem 12.3.18. In Case 8 (95)-(98), we formulated the problem of estimating the 
Doppler shift and mean range of a nonfluctuating range-spread target. 

1. Starting with the general definition in (11.181), show that the range-spread 
ambiguity function is 

00 

en,(mRa~ mR:fQI f 1 = 
Et 
jy 

0 sss 
h,,(t, u:mR, f)e-ierfJtwu)f*(t - A1 - mR,)S~O(ll) 

--oo 
x f(u - A, - mRa) dAl dt du. 

2. When the LEC condition is valid, the expression can be simplified. Show that 
one expression is 

Et2 

&&EC {m&f ‘1 = - 
s 

co 00 

No2 -a) 
dx e{lt: + mE, f ‘> 

s 
sRo(x + @$ 

0 
(A) dil, 

-06 
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where 

and 

3. Express ORR,LEC (0, l } in several different ways. 

Problem 12.3.19. Prove that 8 nD,~&,m&, is the dual of h2D,I,Ec{mR, f >* Specifically, 
if 

I&> = &-#I 
and 

&{;1> = 5,(-d), 
then 

Problem 12.3.20. Derive the elements in the information matrix J in terms of 
OQ,,~~~{*, l } and its derivatives. 

Problem 12.3.21. Assume that 

A 1 t = e-t2/2T2 9 --oo<t<m 

and 

1. Evaluate t&.&??&, f }. 
2. Calculate the J matrix. 

Problem 12.3.22. Consider the problem of estimating the amplitude of a scattering 
function. Thus, 

SR(A: A) = ASR(A) 

and &&(A) is assumed known. Assume that the LEC condition is valid. 

1. Find a receiver to generate 6,,. 
2. Is d,, unbiased? 
3. Assume that the bias on 6,, is negligible. Calculate 

EM,, - h21. 

4. Calculate a bound on the normalized variance of any unbiased estimate of A. 
Compare this bound with the result in part 3. 

5. Compare the results of this problem with those in Problem 11.4.8. 

Problem 12.3.23. Assume that 

where &,{*} is known. we 
the LEC condition is valid. 

want to estimate A, the scale of the range axis. Assume that 

1. Draw a block diagram of a receiver 
2. Evaluate the Cramer-Rao bound. 

to generate ci,,. 
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Problem 12.3.24. Assume that 

5,,(A) = 2a,2 s(a - AI) + 2a,2 s(n - I,). 

We want to estimate A1 and A,. 
1. Find a receiver to generate j’l,mr and &r. 
2. Evaluate the Cramer-Rao bound. 
3. How does this problem relate to the discrete resolution problem of Section 10.5? 

Problem 12.3.25. Assume that we design the optimum receiver to detect a slowly 
fluctuating point target located at T = 0, f  = 0, in the presence of white noise. We want 
to calculate the effect of various types of interfering targets. Recall from (9.49) that A 
characterizes the performance. Calculate the decrease in A due to the following: 

1. A slowly fluctuating point target located at (Q). 
2. A range-spread target with scattering function ,&(A) and Doppler shift off cps. 
3. A Doppler-spread target with scattering function $cf, and range il. 
4. Interpret the above results in terms of the ambiguity function. Discuss how you 

would design signals to minimize the interference. 
Problem 12.3.26. Assume that we design the optimum LEC receiver to detect a range- 
spread target in the presence of white noise. We want to calculate the effect of various 
types of interfering targets. For simplicity, assume that the desired target has zero 
velocity and zero mean range. Calculate the degradation due to the following: 

1. A slowly fluctuating point target at (Q). 
2. A range-spread target with scattering function ,&(A) and Doppler shift of fcps. 
3. A Doppler-spread target with scattering function &{f} and range 1. 
4. Can the results in parts 1, 2, and 3 be superimposed to give a general result? 
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