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and variations of it have been studied by Stutt and Spafford [32], Spafford 
1331, and Rummler [34]. We suggest that the reader consult these refer- 
ences, because they provide an excellent demonstration of how the doubly- 
spread reverberation model of this section can be used to obtain effective 
practical systems. Various facets of the question are developed in the 
problems (e.g., Problems 13.2.17 and 13.2.18). 

This completes our discussion of the reverberation and clutter problem. 
We now turn to a different type of problem. 

13.3 DETECTION OF DOUBLY-SPREAD TARGETS AND 

COMMUNICATION OVER DOUBLY-SPREAD CHANNELS 

In this section we consider two closely related problems. The first 
problem arises in the radar and sonar area and consists of trying to detect 
the return from a doubly-spread target in the presence of additive noise. 
The second problem consists of communicating digital data over a doubly- 
spread channel. 

The section is divided into four parts. In Section 13.3.1, we formulate 
the quantitative models for the two problems and derive expressions for 
the optimum receivers and their performance. The results contain integral 
equations or differential equations 
cases. In Section 13.3.2, we develop 

that cannot 
approximate 

be solved exactly in most 
target and channel models 

that enable us to obtain a complete solution for the optimum receivers 
and their performance. In Section 13.3.3, we calculate the performance of 
a particular binary communication scheme to illustrate the techniques 
involved. In Section 13.3.4, we discuss some related topics. 

13.3.1 Problem Formulation 

In this section we formulate the detection and bi nary communication 
problem quantitatively. 

13.3.1.A. Detection. The first problem of interest is the radar or sonar 
detection problem. We transmit a signal whose complex envelope is 

J&f(t). If d bl a ou y-spread target is present, the complex envelope of the 
returned signal is 

3(t) = 
s 

* JEtJ7(f - 1)&t, A) da, (142) 
-a3 

where a(t, A) is a sample function from a complex Gaussian process whose 
covariance function is given in (37). We are using the process defined in 
(36), but the subscript x is omitted. The covariance function of s”(t) is 
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given by (22) as 

&(t, u) = E, 
s 

*Jr(t - @R&t - u, 43*(u - ;I) dA. (143) 
-co 

In addition to the signal co mponent, the received waveform contains 
additive complex white noise G(t), whose covariance function is 

an 

E[iqt)E*(u)] = I&) s(t - u). (1~4) 

The received waveform is just the noise term, i+(t), if the target is not 
present. Thus, we have a binary hypothesis testing problem in which the 
received complex envelopes on the two hypotheses are 

r”(t) = g(t) + G(t), Ti < t < T,:H,, - - (145) 

r”(t) = G(t), Ti < t < T,:H,. - - (146) 

On both hypotheses, r”(t) is a sample function of a complex Gaussian 
random process. If we compare (145) and (146) with the equations 
specifying the detection problem in Chapter 11 E(11.30) and (11.31)], 
we see that the form is identical. The only difference is in the form of the 
covariance functions of the signal processes. Therefore all of the results in 
Chapter 11 that contain & (t, U) as an arbitrary covariance function are 
valid for the problem of current interest. Specifically, (11.33)-(11.40) and 
Figs. 11.7-l 1.9 are valid relations for the receiver structures, and (11.50)-- 
(11.54) are valid expressions for the performance. It is when we evaluate 
these various formulas that the doubly-spread model becomes important. 
Specifically, we shall find that the covariance function given in (143) is 
harder to work with than the covariance functions encountered in the 
singly-spread cases. 

Some of the pertinent results from Chapter 11 are listed for ease of 
reference. The likelihood ratio test is 

1 
1 T/ Wl 

R=- 
N s 

?*(t)h(t, u)F(u) dt du $ y, 
0 Ti HO 

(147) 

where h(t, u) satisfies the integral equation 

s T/ No&, u) + h( t, x)&z, u) dx = K&t, u), 
Ti 

Ti 2 t, u < Tf, (148) 

and &(t, u) is given in (143). The estimator-correlator realization is 
shown in Fig. 11.7. 

An alternative expression for the likelihood ratio test is 

1 R=- i ITT’{2 Re [F*(t)$t)] - &(t)l”} dt: y, 
0 i Ho 

(149) 
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where &(t) is the realizable MMSE estimate of i(t) when HI is true. An 
advantage of the implementation in (149) is that whenever s’(t) has a 
distributed state-variable representation we have a set of equations, 

(116)-(121), that specify i&). 
The approximate performance expressions that we derived earlier 

require knowledge of p(s), which can be written in three different forms 

ii(s) =z[(l - s)ln (1 + :) -In (1 + (1 - s)$)]. (150) 

/i(s) = (1 - s)ln &($) -In D,(y), (151) 

II) P(S) . (152) 

We evaluate one of these expressions to find the performance. Before 
discussing techniques for doing this, we formulate the communications 

13.3.1.B. Binary Communication. We consider a binary communica- 
tion system using orthogonal signals. We transmit one of two orthogonal 
signals, 

q(t) = Re [&!?&)ejU1”], 0 < t < T:H,, _ _ ( 153) 

40 = Re [Jww~“otl, 0 < t < T:H,, - - (W 

where f(t) has unit energy. Notice that both tran smitted signals h ave the 
same complex envelope but have different carrier frequencies. We discuss 
the choice of CC)~ and ml in a moment. The two hypotheses are equally 
likely. 

The received waveforms are 

r(t) = Re [,f? jl( t)ej*“] + w(t), Ti < t < Tf: HI, _ _ w5) 

where 
r(t) = Re [Jz &( t)eiwot] + w(t), Ti < t < Tf: H,, _ _ 

t - A)&( t, 1) dl, i = 0, 1. 

The reflection processes 6,(t, I), i = 0, 1, are sample functions from zero- 
mean complex Gaussian processes, which can be characterized by the 
same scattering function, &R(f) ;1}. 
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The channel has two effects on the transmitted signal. The first effect is 
a delay spread. If the scattering function has a length L, there would be a 
signal component in the received waveform over an interval of length 
T + L. The second effect is a frequency spread. If f(t) is approximately 
bandlimited to a bandwidth of FV cps and the scattering function is 
approximately bandlimited to B cps the signal portion of the received 
waveform is approximately bandlimited to FV + B cps. 

We assume that co1 - CC)~ is large enough so that the signal components 
at the receiver are in disjoint frequency bands. We see that this separation 
must take into account both the transmitted signal bandwidth FV and the 
channel-scattering function bandwidth B. Thus, 

cc)1 - Cc)0 

27r 
>W$-B* (158) 

The observation interval is [Ti, T,], and includes the entire interval 
in which there is a signal output. This implies 

T - Ti > T+ L. f - (159) 

The receiver must decide between two orthogonal bandpass Gaussian 
processes in the presence of additive white Gaussian noise. The criterion 
is minimum probability of error. This is a familiar problem (see Section 
11.3). The optimum receiver consists of two parallel branches containing 
filters centered at ml and CC)~. In the first branch we compute Tf 4 A - ss r”*(t)&, u)F(u) dt du, (160) Ti 
where the complex representation is with respect to c+. In the other branch 
we compute 

Ti 

where the complex representation is with respect to 
impulse response is specified by 

NJ@, u) + s Tfw 
h(t, z>&(z, u) dx = E&t, u), 

Ti 
Ti < - 

where 

&(t, u) = E, 
s 

O” f(t - A)&-& - u, n)f*(u 
--co 

co,. The complex 

4 u < Tf, - 

- I) da. 

(162~) 

(162b) 
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The optimum test is 

Ho 

as shown in Fig. 11.12. We see that (162a) is identical with (148). We can 
also write l1 and I, in a form identical with (149). Thus, the equations 
specifying the optimum receiver are the same for the radar detection 
problem and the communication problem. Notice that the actual scattering 
functions will be different in the two problems, because of the different 
physical environments. 

The performance calculation is appreciably simpler in the communica- 
tion problem, because of the symmetric hypotheses and the zero threshold. 
Just as for the Doppler-spread case discussed in Section 11.3, we have 
tight bounds on the error probability. From (11.75), 

&$$4) 

211 + Jw-9~ BSWI 
5 Pr (E) < 

&QM) < &J?4’ 
--- 

- 2[1 + JQji,,(~)] - 
- (164) 

’ 2 

where ,&&) can be expressed as 

FBS(d = ih3(~) + ,&IB(l - 8). (165) 

The subscript BS denotes binary symmetric, and the subscript SIB denotes 
simple binary. The formulas for ,G SIB(s) were given in (150)-(152). Sub- 
stituting (151) into (165) and simplifying gives 

riiB&) = In 

6,Kl I  
l 

(166) 

The exponent in (164) just involves 

~BS(!t) = In 
44ll~o~ 

fiF2WNO) 

= &(l +-$ -2zln(l +--$ (167) 
i=l 

We can also write ,&&) in terms of the realizable MMSE filtering error as 

1 
s 

Tr 
PBS(+) = F w&(4 w, NJ - Ep(t, i(t), 2N,)]. (168) 

0 i 
T  

The basic form of these expressions is familiar from Chapter 11. We must 
now develop a procedure for finding the required functions. 

13.3.1.C. Summary. In this section we have developed the model for the 
radar detection problem and the binary communication problem. The 
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equations specifying the optimum receivers and their performance were 
familiar. The new issue that we encountered is that of actually solving 
these equations when the covariance is given by (143). 

There are two cases in which we can solve the equations in a reasonably 
straightforward manner. We identify them at this point and return to them 
later in the section. The first case is the low-energy-coherence (LEC) 
condition that we originally encountered in Chapter 4. We study this case 
in Section 13.3.4. The second case is a degenerate one in which we choose 
the transmitted signal so that the target or channel appears to be singly- 
spread. We discussed this degeneracy in Property 4 (22)-(29) on page 452 
and shall study it again in Section 13.3.3. Although these two cases 
include many of the problems that we encounter in practice, we would like 
to be able to solve any doubly-spread target (or channel) problem. In the 
next two sections we develop techniaues to deal with the general problem. 

13.3.2 Approximate Models for 
Doubly-Spread Channels 

In Section 13.3.1 we developed 
spread target or channel: 

Doubly-Spread Targets and 

two methods of characterizi “g a doubly- 

1. The scattering function characterization. 
2. The partial differential equation characterization. 

These characterizations were easy to visualize and were taken as exact 
models of the actual physical phenomena. Unfortunately, except for a few 
special cases, we cannot solve the resulting equations specifying the 
optimum receiver and its performance. 

In this subsection we develop some approximate channel models that 
allow us to compute the functions needed to specify the optimum receiver 
and its performance. Our discussion considers three models: 

1. The tapped-delay line model. 
2. The 
3. The 

general orthogonal series model. 
approximate differential-equation model. 

The tapped-delay line model is intuitively satisfying and relatively easy 
to implement, and so we present it first. The general orthogonal series 
model is a logical extension of the tapped-delay line model and leads to 
simpler computational requirements in many situations. The approximate 
differential-equation model leads to the general orthogonal series model 
in a different manner. 
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In all three cases, the complex envelope of the signal component is 

00 
i(t) = & J 1 f( - t - n)g(t, I) d>b, --<t<q (169) 

---a3 
where we have assumed an infinite observation time for simplicity. The 
signal s”(t) is a sample function from a zero-mean Gaussian random process 
whose covariance function is given by (143). 

The technique that we use in developing our approximate models 
is straightforward. We expand either f<t - A) or @t, 1) using a complete 
set of orthonormal functions. This enables us to replace the integral in 
(169) by an infinite sum. We then truncate the infinite series to obtain an 
approximate model. The various models differ in their choice of orthog- 
onal functions. 

It is important to remember that the “exact” model that we have 
been working with and the approximate models that we shall develop are 
both approximations to some physical target or channel. In most cases 
we have to estimate the target characteristics, and this introduces errors 
into our model. Thus, in many cases, the approximate models in the next 
section may represent the physical target or channel as effectively the 
exact model we have been using. 

13.3.2.A. Tapped-delay Line Model. We assume that the transmitted 
signal f(t) is bandlimited around its carrier frequency. Thus, 

N 

F(f) = 0, Ifl q . (170) 

Since J’(t) is bandlimited and 
to expand f (t - A) using the 

the interval is infinite, a logical procedure is 
sampling theorem. We write 

f(t - A) = 2 
k=--00 

where W, > W. Notice that we could just let W, = FVfrom the standpoint - 
of the sampling theorem. Introducing W, gives an additional flexibility in 
the model, which we shall exploit later. 

Observe that we have put the 3L dependence in the coordinate functions 
and the t dependence in the coefficients. This separation is the key to the 
series expansion approach. The sin X/X functions are orthogonal but not 
normalized. This is for convenience in interpreting the coefficients in (171) 
as samples. Substituting (171) into (169), we have 
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If we define 

k A s 00 Y b it) &4 1) sin rrlV9(il - k/W,) dA 

--a3 nWs(A - k/ Ws) ’ 
then 

i(t) = 

(173) 

iw 

Two observations regarding (174) are useful: 

1. The functions f(t - k/W,) can be generated by passing f(t) through 
a tapped-delay line with taps spaced l/PV seconds apart. 

2. The functions d,(t), - co < t < 00, are defined by (173). This 
weighted integration is sketched in Fig. 13.17. We see that if the scattering 
function has length L, d,(t) will be essentially zero for negative values of k 
and all positive values of k greater than LW,. 

These two observations lead us to the target (or channel) model shown in 
Fig. 13.18.9 

The tap gains are sample functions from complex zero-mean Gaussian 
processes. To specify the model completely, we need their cross-covariance 
functions 

=E bit, a)h*(u, al) 
sin VW,@ - k/ Ws) sin nW,(A, - 1/ Ws) dA da 

7w3i~ - WYJ ~ws(ill - VYS) 
I 

1' 

iw 

Bringing the expectation inside the integral, using (37), and 
the integration with respect to A,, we have 

performing 

00 
- sin nv9(A - k/W,) sin nW,(;1 - l/W,) - s I&.&t - t1, a) 1 dA 

’ 
(176) 

--co flW,o - VKJ 77w,(A - z/w,) 
This expression is true for any &,<t - u, A). 

The analysis is somewhat simpler if the tap gains are statistically 
independent. If &,<t - u, A) is essentially constant with respect to A 
over l/W, units, the integral in (176) is approximately zero for k # 1. 
If&&t - u, A) is a smooth function of A, we can improve the approxima- 
tion by increasing PV”. Unfortunately, the dimension of the model in- 
creases as W, increases. On page 500 we look at the effect of correlated 

t The model in Fig. 13.18 is due to Kailath [35]. 



(a) k = 0 

sin 7r W,(X + ks) 

(b) k = - 1 

(c) k=LW,+ 1 

Fig. 13.17 Location of sin x/x weighting function for various values of k. 

490 
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Fig. 13.18 Tapped-delay line model for doubly-spread target (or channel). 

coefficients. When the independent assumption is valid, we have 

k=l, (177) 

k # 1. 

Because they are stationary, the tap gain processes can also be char- 
acterized in terms of their spectra. Transforming (177) gives 

(W 

These spectra are just cross-sections of the scattering function at various 
values of I. 

We now have an approximate model for the target (or channel). 
Looking at (174), we see that we have replaced the doubly-spread channel 
by a set of (K + 1) singly-spread channels whose signal output is 

. (179 
This is a problem we can solve for a large class of channel processes. 

As indicated by (149), the optimum receiver will contain &--(t) as a 
waveform. Because f(t) is known, 

Thus the basic problem in implementing the optimum receiver is to gener- 
ate the tap gain estimates and weight them with f(t - k/W,). The tapped- 
delay model has the advantage that the required functions can be generated 
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in a reasonably straightforward manner. We now discuss the design of the 
optimum receiver using the tapped-delay model. 

If SD,{ f, A} is a rational function off, each of the tap-gain functions has 
a finite state representation. When this is true, the optimum receiver and 
its performance can be evaluated using the techniques that we have already 
developed. To illustrate this, we set up the state-variable mode1.t 

We assume that the scattering function is such that we need (K + 1) 
taps. Then 

) Ti < t < Tf, - - (181) 

where [ ri, Z’J is long enough so that essentially all the output signal energy 
is contained in the observation interval. The state vector for the kth tap 
gain is j&(t), where 

and 

kk(t)  = &f&(t) + @ik(t), 

w 

b (9 k = &%k( t ) ,  

E[&(t)&+] = & d(t  - a>, 

The dimension of the state vector is Nk. 
The over-all state vector has the dimension 

N=&, 
k-0 

and can be written as 

Then 

(186) 

(188) 

7 This model is due to Van Trees [36]. 
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The received signal process is just 

where c(t) is defined by (188) and (189) as 

1 

. 
0 

- 

. 

We have now reduced the problem to one that we have already solved 
[see (11.41-l 1.49)]. The complex receiver structure for the detection 
problem in (145) and (146) is shown in Fig. 13.19. (This is just the system 
in Fig. 11.9.) The optimum realizable filter is shown in Fig. 13.20. The A 
only problem is the complexity of this system to generate j&t). This com- 
plexity is related to the dimension of the variance equation, which is an 
N x N matrix equation in this case. As usual, the variance equation can be 
solved before any data have been received. 

To compute the performance, we evaluate /Z(s) by using (152). Recall 
that cp(t, i(t), 0) is the realizable mean-square error in estimating s”(t) 
and is obtained from the solution to the variance equation. 

It is important to emphasize that we have the problem in a form in which 
the optimum receiver and its performance can be calculated using straight- 
forward numerical procedures. Notice that the dimension of the system 
grows quickly. An analytic solution is not feasible, but this is not impor- 
tant. We defer carrying out the details of an actual example until we 
complete our development of the various channel models. 

';;'ct, 1 *r Hl 

)r Conjugate * 2Re[*] L 
* s 

- 
No Ti 

dt I=_ 
zr d 

HO 

* L44 4 
g-(t) 

=- I I . 2. 

J , 4 

Fig. 13.19 Optimum receiver for the detection of a doubly-spread target. 
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13.3.2.B. General Ortbgonal Series Model. The tapped-delay model has 
a great deal of intuitive appeal and is an adequate model for many physical 
situations. However, in many problems there are other orthogonal func- 
tions that provide a more efficient representation. In this section we 
develop a general model. 

Our starting point is the 
was introduced in Section 

aqt, 2) 

where 
at 

differential-equation model of the channel that 
13.1.2. The state equation is 

= F(il)Z(t, A) + qqqt, A), (191) 

E[u”(t, A)u”*(t’, A’)] = Q(l)s(t - t’) 6(A - A’). 

The initial condition of the state vector is 

(192) 

E[si(T,, A)%y&, A’)] = P,(l) a(1 - A’). (193) 

The channel process is 
B(t, 1) = C(l)z(t, A). (194) 

The signal component at the channel output is 

j(t) = Ft JS ( O” f’ t - q&t, 1) dA. -a3 (195) 

In the tapped-delay model we expanded the signal in an orthogonal 
series. In this case we represent the channel process and its state vector by 
a series expansion. We assume that the Ji(A), i = 1,2, . . . , form a 
complete orthonormal set with 

where the interval R, is the target (or channel) length. Notice that the 
&(A) are an arbitrary set of orthonormal functions of 1 only. We discuss 
methods of choosing the @&A) later. 

We first expand the state vector as 

qt, 4 = 1.i.m. EK(t, A) = 1.i.m. z &(t)&(h), -GQ<t<co,3LE~~, 
K-+00 K+cn i=l 

where 
(197) 

Z,(t) = s qt, q&4 dk -Go<t<oO. a (198) 
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We expand the channel process, using the same set of orthonormal 
functions, as 

6(t, A) = 1.i.m. 6,(t, A) = 1.i.m. z &(t)@(A), -cJo<t<m,aEQ~, 
K-00 .K'*oo i=l 

where the 6,(t) are determined by the requirement that 
(199) 

We refer to &(& 1) as the &term approximation to the channel. We 
now develop a state-variable representation for &(t, A). 

From (197), 
aqt, a) * d%j(t) - m - 

at 2 dt 
B (1) j 8 W) 

j=l 

Substituting (197) and (201) into (191) gives 

c O” 9 4j(A> = F(A)%Zj(,)Bj(A) + e(A)G(t, A). 
j-1 dt j=l 

(202) 

Multiplying both sides of (202) by $:(A) and integrating with respect to 
1 over R,, we obtain 

We now define 

and 

i&(t) = J G(A)u”(t, l)@(A) dA, 
RL 

i = 1, 2, . . . . (2W 

Truncating the series gives a K-term approximation to the channel state 
vector. The state equation is 

-4 

W) - ~2(0 
d . 
dt . 

. 

-K&L 

I  

F 
i 

I  F ‘F : 11 i 12 ; 13 i ----------: ----------,,----------I I I I I 
F :flc ’ 

I I 
21 ; 22 ; / ----------,----------I I , I 4 I I 

F ’ 
I I I I 

31 i 
I I I I I I I I I 

-q(t) - 

n,(t) 
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. 

. 

-g,(t)- 

+ 
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320) 
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. . 

. 
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If the original distributed state vector is N-dimensional, the state 
vector in (206) has AK dimensions. We can write (206) compactly as 

dn,( t) 
- = &@y?,(t) + ii&t). 

dt 
(207) 

The subscript M denotes model. The elements in the covariance function 
matrix of the driving function are 

E[“i(t)u;( t’)] = E (s ti(A)ii(t, A)#@) dA e’(X)ii*(t’, X)&(Z) dil’ 
QL s QL 

- - 

[S 

@&A)ii+(A)&?(A)~j(n> dl s(t - t’) 
QL 1 A Qijqt - t’). (208) 

The initial conditions are 

where &(A) is defined in (46). 
We must now find the observation matrix relating hi(t) to jiM( t)* 

Using (197), (199), and (200), we have 

$ g,(t)qj(l> = C(A) 5 a,(t>pj(a). WV 
j=l j=l 

Multiplying both sides by @F(A) and integrating over QL gives 

The signal component at the output of the channel is 

(211) 

(212) 

s’(t) = Et J (214) 
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The K-term approximation is 

SK(t) = 
i=l 

where 

@j3i(A) d3c. 

Using (213) in (215), we obtain 

We now have the K-term approximation to the problem completely 
characterized by a state-variable representation. Once we have this 
representation, all the results in Section 11.2.2 are immediately applicable. 
Notice that, although the formulas appear complicated, all the necessary 
quantities can be calculated in a straightforward manner. 

Two comments regarding the model are worthwhile. 

1. The tapped-delay line model is a special case of this model (see 
Problem 13.3.9). 

2. The proper choice of the orthogonal set will depend on the scattering 
function and the signal. A judicious choice will simplify both the structure 
of the state equation and the value of K required to get a good approxima- 
tion. It is this simplification in the state equation that has motivated the 
development of the general orthogonal series model. In the next section 
we illustrate the choice of the orthogonal set for a typical example. 

Up to this point in this section, we have considered various orthogonal 
series models for doubly-spread channels. The goal was to obtain a 
finite-dimensional approximation that we could analyze completely. We 
now consider a direct analysis of the differential-equation model. 

13.3.2.C. Approximate DzJkrential-equation Model. t The differential- 
equation model for the doubly-spread channel was described by (38)-(41), 
which are repeated here for convenience. The state equation is 

aqt, A) 
at = Q;l)ji(t, A) + k(n)ii(t, A), (218 ) 

T The results in this section are due to Kurth [7]. 
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where 
E[n(t, qii*(t’, A’)] = Q(A) d(t - t’) 6(1 - A’). (219) 

The initial covariance of the state vector is 

E[Z(T,, A)z+(Ti, A’)] = &)(A) d(l - A’). 

The channel process is 
6(t, 1) = C(R)%(t, A). 

The signal component at the channel output is 

i(t) = s O” f( t - q&t, A) da. (222) -0cJ 
The optimum test can be written in terms of the MMSE realizable 

estimate of S(t). From (149), 

T’{2 Re [?*(t&t)] - Gaul”} dt. (223) 

Notice that s’(t) is a function of time only, so that the derivation leading 
to (149) is applicable without any modification. 

To implement the test, we need an expression for &t). These equations 
were encountered previously in Section 13.2.2 (116)-(121). The estimator 
equation is 

%!a = F(A>a(t, A) + qt, A)[F(t) at 
- S(t:i(t, A))], 

and 
QT.., 1) = 0, hSQ,. 

The gain equation is 

t > Ti, 1 E Q,, - 

(224) 

(225) 

qt, A) = - ; [s, f<t : 1, n’)Ct(A’),/E,f*(t - A’) dl’] . (226) 
0 L 

The variance equation is 

aw9 I’) = F(A)&t: a, A’) + i$+(t :A’, A)l?+(;ll) + e(A)Q(n)c+(n’) 
at 

&t:l, o)C+(o)JE,j*(t - a) da 

a’)&r’)&t : d, I’) da’ , 
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with the initial condition 

((T$A, A’) = &)(TY, 1) &(A - A’), 

= ii,(l) s(n - A’). (228) 

The expressions in (224)-(228) characterize the channel estimator. Using 
these equations, (222) and (223) give the optimum receiver that was shown 
in Fig. 13.19. We are still faced with the problem of implementing (224). 
(228) in order to generate &). A block diagram of a system containing 
spatial operations that could be used to generate &(t) was shown in Fig. 
13.15 [replace i,(t) with $(t)]. In general we cannot implement this 
system and must be content with an approximate solution. We consider 
three procedures for obtaining an approximate solution. 

The first procedure is to expand the state vector in an orthonormal 
expansion and truncate the expansion at K terms. This procedure takes 
us back to the model on pages 495-498. A second procedure is to sample 
in A. The resulting model would be similar to the tapped-delay line model 
derived in Section 13.3.2.A, but the tap gains would be correlated. This 
procedure is generally inefficient from the computational standpoint. 

We now develop a third procedure that seems to offer some computa- 
tional advantages. The first step is to divide the covariance matrix into an 
impulsive term and bounded term as 

&<t : A, I’) = f,(T, I) d(il - A’) + “p(t : A, al), A, A’ E S&, t 2 & (229) 

Substituting (229) into (227), we find that @(CA, X) must satisfy the 
differential equation 

+ s &nt - a))e(a’)ii;( t : d, A’) da’ , 
nc 
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with the zero initial condition 

p(t:a, a’) = 0. (231) 

We then expand i(t : 1,X) in a series expansion as 

where the &(A) are an arbitrary set of orthonormal functions and 

ii,(t) * . . - s s da dqi( t : a, a’)$& @)$&j*(X)* 
RL RL 

(233) 

This procedure is referred to as a modal expansion technique. 
We truncate the series at i = j = K to obtain an approximate solution. 

Proceeding as before, we can derive a set of differential equations specify- 
ing the $ij(t) (see Problem 13.3.12). The advantage of separating out the 
impulse in (229) is that the convergence of the series approximation is 
usually better. We shall apply this third procedure to a specific problem in 
Section 13.3.3. 

The final step is to compute the performance. We do this by evaluating 
,6(s) and using it in our approximate error expressions. We can express 
p(s) in terms of the realizable MMSE signal estimation error, &,(t, s’(t), l ), 
by (11.54). Finally, we express Fp(t, s’(t), N,) in terms of &,(t:n, 1’). 

&t, j(t), NJ A E[ls’(t) - 3(t)12]. (234) 
Using (221) and (222) in (234) gives 

EP(4 s(t), &I) = s s da da’EJ(t - a)C(&(t : 0, a’)e+(a’)f*(t - a’). 
RL RL 

(235) 

Notice that to find j#) we must solve the variance equation (227) for 
two values of the additive noise level, NO and 2N,. To find F(s), in general, 
we must solve the variance equation for three values of the additive noise 
level. 

13.3.2.0. Summary of Approximate Model Discussion. In this sub- 
section we have developed various models that we can use tc approximate 
a doubly-spread target (or channel). The advantage of all these models is 
that they enable us to obtain a complete solution for the optimum receiver 
and its performance. 

As we pointed out in the introduction to Section 13.3.3, the tapped- 
delay line model is the simplest to implement and is the only model that 
has been used in actual systems. At their present state of development, 
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the other two models are most useful in the study of performance limita- 
tions. 

There are many approximate channel models in addition to those that 
we have discussed. Suitable references are [35], [61], and [64]. 

13.3.3 Binary Communication over Doubly-Spread Channels 

In Section 13.3.1.B we formulated a model for a binary FSK system 
operating over a doubly-spread channel [see (153)-( 168)]. In this section 
we continue our discussion of the communication problem. 

Our discussion is divided into three parts. In Section 13.3.3.A we discuss 
the performance bounds on binary communication systems and demon- 
strate some simple signaling schemes that approach these bounds. In 
Section 13.3.3.B we carry out a detailed performance analysis of a specific 
system using one of the approximate channel models developed in Section 
13.3.2. In Section 13.3.3.C we discuss suboptimum receivers briefly. 

13.3.3.A. Performance Bounds and Eficient Systems. As we pointed 
out in Section 13.3.1 .B, the decision problem is that of detecting a complex 
Gaussian process in complex white Gaussian noise. The covariance 
function of the signal process, Z(t), is given by (5) as 

&(t, u) = E, s * f(t - A)&-&t - u, l)f*(u - I) d;l. (236) 
--oo 

The performance will depend on E,, No, f(t), and ED,< t - u, 1) and 
may be difficult to evaluate in the general case. However, 
we derived a bound on how well any binary system could perform for a 

in Section 11.3 

given E, and No. Since this bound only depended on the eigenvalues of 
s’(t), it is still valid in this problem. 

On page 380 we demonstrated that in order to achieve the bound we 
would like to design the signal so that the output process has D, equal 
eigenvalues, where 

GINO D, = - 
3.07 

For this optimum case, 

(237) 

(238) 

,i&(Q) = -0.1488 (239 
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Thus, the probability of error using any signal f(t) is bounded by 

Pr (E) < & exp 
( 

E 
-0.1488 T . 

No ) 

This gives us a simple bound on the probability of error for binary 
orthogonal signals. The difficulty is that there is no guarantee that a 
signal exists that enables us to achieve this performance. We now discuss 
two situations in which we can approach the bound with simple signals. 

UNDERSPREAD CHANNELS. In (32) we defined an underspread channel 
as one whose BL product was less than 1. We now discuss the problem of 
communicating over an underspread channel. (Notice that we allow 
B>> 1 orL>> l,aslongasBL<< 1.) 

In our discussion of communication over Doppler-spread channels in 
Section 11.3 (specifically pages 384385), we saw that we could achieve 
the bound in (240) for any scattering function if there were no peak-power 
or time-duration constraints. The required signal consisted of a sequence 
of short pulses, with the number of pulses chosen to achieve the optimum 
diversity specified in (237) [i.e., y1 = D,]. The length T of each pulse was 
much less than B-l (the reciprocal of the bandwidth of the Doppler 
spread), so that there was no time-selective fading. Here we achieved the 
desired eigenvalue distribution by reducing the channel to a set of non- 
fluctuating point channels. 

We now consider a similar system for signaling over a doubly-spread 
channel. The signal is shown in Fig. 13.21 e To avoid time-selective fading, 
we require that 

1 
T<<--• 

B (241) t 

To avoid frequency-selective fading, we require that 

1 w<<--• 
L (242) 

Combining (241) and (242), we see that the requirement for flat (nonselec- 
tive) fading is 

However, we know that for any signal 

WT> 1. - (244) 

t Our discussion uses B and W as imprecise 
is not needed in the current context. 

bandwidth measures. An exact definition 
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(Do identical pulses) 

Fig. 13.21 Signal for communication over an underspread channel. 

Therefore we require that 

in order for us to be able to satisfy (243). The condition in (245) can only 
be met by underspread channels [see (32)]. The condition in (245) is 
stronger than the underspread requirement of (32). If the condition in 
(245) is satisfied and there is no peak-power or time-duration constraint, 
we can achieve the bound in (240) by using the signal in Fig. 13.21 with 
its parameters chosen optimally. 

We should observe that the requirement in (245) is usually too strict. 
In many cases we can come close to the performance in (240) with the 
signal in Fig. 13.21 for BL products approaching unity. 

We next consider the case in which BL exceeds unity. 

OVERSPREAD CHANNELS. If BL > 1, we cannot have fading that is 
flat in both time and frequency. However, we can choose the signal so that 
we have either time-selective fading or frequency-selective fading, but 
not both. We demonstrate this with a simple example. 

Example. We consider an idealized channel whose scattering function is shown in Fig 
13.22. We assume that 

BL = 5. (246) 
We transmit a long rectangular pulse 

fc 1 
O<t<T, t = (247) 

0, elsewhere, 
We also require that 

T 2 1OL. (248) 

Comparing (248) and (242), we see that we can treat the channel as a Doppler-spread 
channel. From the results in Example 1 of Chapter 11 ., we know that if 

u% 2BT=- 
3.07 ’ 

(24% 
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Fig. 13.22 An idealized scattering function. 

we shall achieve the bound in (240). Using (246) and (248) in (249), we obtain the 
requirement 

T ; 2 307 9 (250) 
0 

which is unrealistic [the Pr (E) (v 10-21]. 
We can obtain a more realistic solution by relaxing some of the requirements. For 

example, if we require that 
T  > &!?sL - 3 (251) 

1 Jwo 2BT=-- 
2 3.07 ’ 

A?? 
2 2 60 
NO 

(252) 

(253 

is adequate. The system in (251)-(253) is realistic and will perform close to the bound. 

This example illustrates one procedure for signaling efficiently over an 
overspread channel. The basic principle involved is straightforward. The 
doubly-spread channel provides a certain amount of implicit diversity 
in the output signal. If the value of &/No is large enough to make this 
amount of diversity close to optimum, the system will work close to the 
bound. On the other hand, if &/No is too small, the performance may be 
relatively poor. 

SUMMARY. In this section we have discussed the performance bounds 
that apply to any binary system. In addition, we have studied possible 
signaling schemes for underspread and overspread channels. In the 
underspread case we could use a signal that reduced the channel to a set 
of nonfluctuating point channels. By selecting the correct num.ber of 
subpulses, we could achieve the bound. In the overspread case we could 
use a signal that reduced the channel to a singly-spread channel. In this 
case we could approach the bound if the available &/No was large enough. 
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In both cases we were able to use signals that eliminated the double 
spreading in the channel. This has several advantages: 

1. The optimum receiver is simpler. 
2. The performance analysis is simpler. 
3. The performance is close enough to the bound that using the channel 

in a doubly-spread mode could not provide a significant decrease in the 
error probability. 

It appears that in a large number of physical situations we can achieve 
this simplification, so that the above discussion is relevant. On the other 
hand, there are at least two reasons why we want to be able to analyze 
the doubly-spread model directly : 

1. There are cases in which we cannot simplify the channel, because of 
limitations on the signal duration or bandwidth. 

2. There is a transitional region between the singly- and doubly-spread 
cases in which we must check our intuitive arguments; in this region the 
gross signal and channel characterizations (W, T, B, and L) are not 
adequate. 

In Section 13.3.2 we developed the necessary models to carry out this 
analysis. In the next section we use these models to analyze the binary 
communication problem. 

13.3.3.B. Performance Analysis for a Specific System.t In Section 
13.3.2 we developed approximate channel models with which we could 
design the optimum receiver and analyze its performance. We now con- 
sider a specific system to illustrate the details of the technique. The 
discussion has two distinct purposes. The first purpose is to demonstrate 
with an example the actual steps that one must go through to analyze the 
system performance. This detailed discussion illustrates the ideas of 
Section 13.3.2 and enables the reader to analyze any system of interest. 
The second purpose is to provide an understanding of the important 
issues in a communication system operating over a doubly-spread channel. 
The relationship between the signal parameters and the scattering function 
is explored. The quantitative results apply only to this specific system, but 
the approach can be used in other problems. This discussion will augment 
the results in Section 13.3.3.A. 

The binary communication problem is described in (153)-( 168). The 
channel-scattering process is described by (38)-(51). We consider a scattering 
function that is a special case of the scattering function in the example on 

t The material in Subsection 13.3.3.B is due to Kurth [7]. 



Binary Communication over Doubly-Spread Channels 507 

page 456. The functions specifying it are 

&(A) = F[l - cos (Y)]m,(A), 

where mL(A) is a gate function defined as 

-)/j-d4 = 1, o<a<Id, - - 
0, elsewhere. 

In addition, 

and 
k(A) = k 

C(A) = 1. 

Notice that in this simple problem 

&t, A) = qt, A). W8) 
The scattering function is 

To use (230), we need &(A). Recalling from (46)-(49) that 

we have 

&;l> = ;(l - cos (Y))r,cg. (261) 

We assume that the transmitted signal is a rectangular pulse. Thus, 

elsewhere, 

We assume that the propagation time is zero for notational simplicity. 
(This is equivalent to redefining the time origin.) The endpoints of the 
observation interval are 

T$ = 0 (263) 
and 

Tf = T+ Lo (264) 
We now have the system completely specified and want to determine its 
performance. To evaluate ,ZBs($) we must evaluate fP( t, s”(t), 0) for two 
noise levels. The function &(t, j(t), s) is related to &:A, A’) by (235). 
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Using (262) in (235) gives 

m,<t - ;3-)r,(t - A’& t : A, 2) da d?, (265) 

where &: A, A’) is specified by (227) and (228). To find &: A, A’), we divide 
it into two terms as in (229) and solve for jj(t: il, A’). Using (254)-(257) and 
(261) and (262) in (230) gives 

ap<t : a, a’) 
- -2kp”(t:A, 1’) - E, ’ 

- cos (2&/L) - 
at NJ L 

m,<t - 4 

+ “m,ct s - a’)jj( t : a, a’) da’ ’ - ‘OS (2rra”L) m,c t - a’) -00 L 

+ 
s 

m~,(t-~)~(t:A,~‘)dl *, O<A,A’<L,t>O, (266) I) - - - -aI 
with initial conditions 

jqO:ilJ) =o, - - 0 < a, a’ < L. (267) 
We now demonstrate how to obtain an approximate solution to (266) 

by using the modal expansion technique suggested on page 501. We 
expand p(t:A, A’), using (232), as 

p(t :  4 A') = 2 ~pij(t,~i(~)~~(~~), 0 < a, a’ < L, -  -  O<t<T+L, 
i=l j=l 

(268) 
where the +&A) are an arbitrary set of orthonormal functions. Proceeding 
as suggested below (233), we can derive an equation specifying pii( We 
include the details to guarantee that the actual manipulations are clear. 

ModaLExpansion Equations. Substituting (268) into (266) gives 

-2k 5 E Fij(t)$i(A)$,*(“) 
i=lj=l Et 1 - cos (2721/L) 

- N,T L 
?[rT(t - 2) 

1 
X 

- cos (2&‘/L) 
L mT<, - 1’) 
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We now carry out the following steps: 

1. Multiply both sides of (269) by $#)$,(k’) and integrate over A and 2. 
2. Define 

to simplify the equation from step 1. 
3. Truncate the equation at K terms to obtain a finite-dimensional Riccati equation. 

In the present problem (270) and (271) reduce to 

and 

Qt) = 
b 1 SC - cos (24L) 

L 
##J> da (272) 

a 

where 

and 

l&(t) = 

s 

b 

+;@I dc, 
a 

b a min (L, t) 

a * min (b, max (0, t - T)). - 

(273) 

W) 

(275) 

Carrying out the first step and using the definitions in the second step gives the differen- 
tial equation 

d&&t> 

Et - = -2k&,(t) - ~~ zk 
dt 

[- (t) + 2 fikj(f)6j(f)l[z F(t) + 5 @it(t)67 (?)I* (276) 
0 j=l i=l 

Truncating the series at K, we can put (276) in matrix notation as 

di%O - = -2k$t) 
dt - CT G(t) + i(t&t>l~w + iu)i;olt, 

0 
(277) 

where the definition of S(t), i(t), and 6(t) is clear. The initial condition is 

i(t) = 0. (278) 

We now have reduced the proslem to a finite-dimensional Riccati equation, which we 
can solve numerically. 

The final issue is the choice of the orthogonal functions {&(A)}. We want to choose 
them so that the dimension of the approximating system will be small and so that the 
calculation of the quantities in (272) and (273) will be simple. As pointed out earlier, 
a judicious choice will reduce the computational problem significantly. In this case, the 
scattering function is a raised cosine function and the signal is rectangular, so that a 
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conventional Fourier series is a logical choice. We let 

and so forth. We now have all of the quantities necessary to evaLate the performance. 

The performance will depend on I?#,, k, L, and T. Before carrying 
out the calculations, we discuss the effect of these parameters. 

First, we fix the first three parameters and study the effect of T. The 
length of the input signal affects the number of degrees of freedom in the 
output waveform. We refer to this as the system “diversity.” A crude 
estimate of this diversity is obtained by multiplying the diversity due to 
Doppler spreading by the diversity due to range spreading to obtain 

Three comments regarding (280) are useful: 

1. The fading spectrum is a one-pole, and so the best bandwidth 
measure is not obvious; the equivalent rectangular bandwidth is k/2 cps 
(double-sided) (i.e., one might get a more accurate measure by including 
a constant before kT). 

2. More refined diversity measures are discussed by Kennedy [37]; 
the expression in (280) is adequate for our intuitive discussion. 

3. The expression in (280) is for a rectangular transmitted pulse and 
assumes that WT = 1. 

The diversity expression in (280) is plotted as a function of T’ ii TJkIL 
in Fig. 13.23. We see that the minimum diversity occurs when 

and its value is 
D min = (l + JkL)‘* (282) 

From our earlier work we know that there is an optimum diversity, which 
we would estimate as 

D 
1 E, h/-- opt - 
3 N, l 

(283) 
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Fig. 13.23 Diversity of a doubly spread channel (WI’ = 1). 

Comparing (282) and (283), we see that if 

D min > Dopty (284 

the optimum value of T will be given by (281) and the performance will 
decrease for either smaller or larger T, as shown in Fig. 13.24~. Intuitively, 
this means that the kL product is such that the channel causes more 
diversity than we want. On the other hand, if 

D min < Dopty (285) 

the performance curve will have the general behavior shown in Fig. 13.246. 
The performance will have a maximum for two different values of T. 

The minimum diversity increases monotonically with the kL product, 
while the optimum diversity increases monotonically with &/N,. There- 
fore, for a particular kL product, we would expect the behavior in Fig. 
13.24~~ for small &No and the behavior in Fig. 13.24b for large &/A!,. 
From our discussion in (247)-(253), we would expect that increasing the 
kL product will not decrease the performance significantly if &/No is 
large enough. 

This completes our intuitive discussion. Kurth f7] has carried out the 
analysis for the system described in (254)-(264), using the modal expansion 
in (265)-(279). In Figs. 13.25 to 13.27, we show several sets of performance 
curves. The vertical axis is the efficiency factor, 
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k 

(a) Excess diversity 

I I *T 

(b) Optimum diversity 

Fig. 13.24 Qualitative behavior characteristics as a function of the pulse length, T. 

The horizontal axis is T, the pulse length. In Fig. 13.25, kL = 0.25, in 
Fig. 13.26, kL = 1 .O, and in Fig. 13.27, kL = 6.25. In all cases k = L. 
The different curves correspond to various values of &/A& We see that 
the anticipated behavior occurs. For small E$V,, Dopt < Dmin, and there 
is a single peak. For larger J?#V& Dopt > Dmin, and there are two peaks, 
As kL increases, a larger value of &/A&-, is required to obtain the two-peak 
behavior. 

In Figure 13.28, we show the effect of the kL product. To construct 
these curves, we used the value of T that maximized IFss(+)I for the 
particular kL product and &/A&, (k = L for all curves). The vertical axis is 
-j&&), and the horizontal axis is &/iV,,. Each curve corresponds to a 
different kL product. As the kL product increases, the exponent decreases 
for a fixed &/N,, but the change is not drastic. 

This example illustrates the performance analysis of a typical system. 
The reader may be troubled by the seemingly abrupt transition between the 
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Fig. 13.25 Optimum receiver performance, binary orthogonal communication, first- 

order fading, underspread channel; k = 0.5, L = 0.5, constant?(t). (From [7].) 
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Fig 13.26 Optimum receiver performance, first-order fading, doubly-spread channel, 
k=l,L = 1, constantf(t). (From [7].) 
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Fig. 13.27 Optimum receiver performance, binary orthogonal communication, first-order 
fading, overspread channel; k = 2.5, L = 2.5, constant&. (From [7].) 

formulas on pages 508410 and the curves in Figs. 13.25-13.28. The 
intermediate steps consist of carrying out the calculations numerically. 
Efficient computational algorithms are important, but are not within the 
scope of our discussion. There is, however, one aspect of the calculation 
procedure that is of interest. We emphasized that a suitable choice of 
orthogonal functions reduces the complexity of the calculation. To generate 
the curves in Figs. 13.25-13.28, we kept increasing K until ,Gss(+) stabilized. 
In Table 13.1, we indicate the values of K required to achieve three-place 
accuracy in ,Zss(+) as a function of various parameters in the problem. 
When 

or 

wA<<l 
T I4 (286) 

1 
T << - 

k 
(287) 

and &/No is large, more terms are required. Notice that when (286) is 
satisfied we can model the channel as a Doppler-spread point channel, and 
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Fig. 13.28 Optimum receiver performance for optimum T, constant f<?), binary orthog- 
onal communication over a doubly-spread channel (k = L). (From [7].) 

Table 13.1 Number of Terms 
Required to Achieve at Least Three- 
place Accuracy in the Calculation 
of (l~,~(1/2)I/~r/No) (From cm 

&/No k L T K 

5 0.5 0.5 0.1 17 

5 0.5 0.5 1 13 

5 0.5 0.5 10 20 
20 0.5 0.5 1 13 

5 1 1 1 13 

5 1 1 10 21 

20 1 1 1 17 

5 2.5 2.5 0.1 25 
5 2.5 2.5 1 17 

20 2.5 2.5 1 17 

20 2.5 2.5 10 25 

515 
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when (287) is satisfied we can model the channel as a nonfluctuating 
range- ‘spread channel. Thus, the cases that required the most calculation 
could be avoided. 

In this sub Isection we have actually carried out the performance analysis 
for a specific problem. The a .nalysis demonstrates the utility of the channel 
models developed in Section 13.3.2 for studying problems containing 
doubly-spread channels or doubly-spread targets. In addition, it demon- 
strates quantitatively how the various system parameters affect the system 
performance. 

13.3.3.C. Summary. In this section we have studied the problem of 
binary communication over doubly-spread channels. There are several 
important points that should be re-emphasized. 

1. When the BL product of the channel is small, we can reduce it to a 
set of nonfluctuating point channels by proper signal design. The resulting 
system achieves the performance bound. Because the receiver is straight- 
forward, this mode of operation should be used for underspread channels 
whenever possible. 

2. When the channel is overspread, we can reduce it to a singly-spread 
channel by proper signal design. The efficiency of the resulting system 
depends on the details of the scattering function and the available &/NO. 
Because the singly-spread receiver is simpler than the doubly-spread 
receiver, the above mode of operation should be used for overspread 
channels whenever possible. 

3. Most scattering functions can be adequately approximated by a 
distributed state-variable model. For this case, we can analyze the per- 
formance using the modal expansion techniques developed in this section. 
Although the analysis is complicated, it is feasible. The results provide 
quantitative confirmation of our intuitive arguments in simple cases and 
enable us to study more complicated systems in which the intuitive argu- 
ments would be difficult. 

This completes our discussion of binary communication. In Section 
13.3.5, we shall discuss briefly the extensions to M-ary systems. 

13.3.4 Detection under LEC Conditions 

The model for the detection problem and the binary communication 
problem were formulated in Section 13.3.1. In the succeeding sections we 
studied various facets of the general case in detail. There is one special case 
in which the results are appreciably simpler. This is the lower-energy- 
coherence (LEC) case that we have encountered several times previously. 

In Section 13.3.4.A we study the LEC problem. The discussion suggests 
suboptimum receivers for the general case, which we discuss briefly in 
Section 13.3.4.B. 
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13.3.4.A. m LEC Receivers. If we denote the largest eigenvalue of s’(t) by 
a max, the LEC condition is 

m 
a max 

<< 1 
N, l 

(288) 

Paralleling the derivation in Section 11.2.4, we can see that the likelihood 
ratio test for the simple binary detection problem reduces to 

Tr 

1 
1 HI 

R 
= No2 

r”*(t)&t, u)?(u) dt du 2 y. (289 
Ho 

Ti 

Substituting (143) into (289) gives 
Tr 

E 
= -J- 

HI 
1 R 

No2 
* dl r”*(t)f(t - &,(t - u, l)f*(u - a)?(u) >< ye 

HO 
Ti 

A particularly simple realization can be obtained when Ti = - co and 
Tf = 00 by factoring && - u, 2) along the time axis as 

KDR(t - u, A) = 00 -M* s KoR -I%1 (X - t, A)K,R(z - U, A) dx. 
---co 

(291) 

Using (291) in (290) gives 

The receiver specified by (292) is shown in Fig. 13.29 (due originally to 
Price [5]). Because the receiver requires a continuous operation in R, 
it cannot be realized exactly. An approximation to the optimum receiver 
is obtained by sampling in 1 and replacing the il integration by a finite 
sum. This realization is shown in Fig. 13.30. This receiver is also due to 
Price [5] and is essentially optimum under LEC conditions. 

When the LEC condition is valid, (11.65) gives 

LI 
P(S) - -- 

s(1 - s) 
2N,2 

I&t, u)12 dt du. 

Using (143) in (293) gives 
Ti 

(293) 

x s w dA,f*(t - &)E&(t - u, &)r”<u - &) . (294) -w I 
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Fig. 13.29 Optimum LEC receiver for doubly-spread channel. 

This can be written more compactly as 

u 
P(S) e(,, u> I&&, u}l” dT dzJ 9 (295) 

-a3 

where 6{~, v> is the signal ambiguity function, and &{T, u> is the two- 
frequency correlation function defined in (21). (See Problem 13.3.21) 

Our discussion of the LEC problem has been brief, but the reader 
should not underestimate its importance. In many cases the system is 
forced to operate under LEC conditions. Then the results in (292) and 
(295) are directly applicable. In other cases the LEC condition is not 
present, but the LEC receiver suggests a suboptimum receiver structure. 
We explore this problem briefly in the next subsection. 
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Fig. 13.30 Approximation to optimum LEC receiver for doubly-spread channel. 

13.3.4.B. Suboptimum Receiuevs. The first suboptimum receiver follows 
directly from Fig. 13.30. We retain the structure but allow an arbitrary 
time-invariant filter in each path. Thus, 

The performance of this receiver can be analyzed by combining the 
techniques of Sections 11.3 and 13.3.3. By varying the h”(*, A,), we can 
optimize the performance within the structural limitations. The actual 
calculations are complicated but feasible. 

The second suboptimum receiver is a generalization of the receivers in 
Figs. 11.19 and 12.11. This receiver is shown in Fig. 13.31. Notice that 
there are NR branches and each branch contains ND correlation operations. 


