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Discussion 

In this chapter we discuss three topics briefly. In Section 14.1, we sum- 
marize some of the major results of our radar-sonar discussion. In Section 
14.2, we outline the contents of Array Processirtg, the final volume of this 
series. In Section 14.3, we make some concluding comments on the 
over-all sequence. 

14.1 SUMMARY: SIGNAL PROCESSING IN RADAR AND SONAR 

SYSTEMS 

In Chapter 8 we introduced 
hierarchy of target and channel 

the radar-sonar problem 
models of interest. We th 

and discussed the 
,en detoured to the 
for narrow-band Appendix and developed a complex representation 

signals, systems, and processes. For signals, 

f(t) = $ Re [f(t)ej”““], (11 

where f(t) is the complex envelope. For systems, 

w, u) = 2 Re [&(t, U)eiwct], (2) 

where h”(t, u) is the complex impulse response. For random processes, 

n(t) = $ Re [fi(t)ej”ct], (3) 

where 6(t) is the complex envelope process. By restricting our attention to 
processes where 

E[ii(t)fi(u)] = 0, (4) 

we have a one-to-one relationship between the covariance function of the 
complex envelope process &#, u) and the covariance function of the 
actual process, 
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K,(t, u) = ,/z Re [&t, U)ejUc(t-u)]. (5) 
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This class of processes includes all stationary processes and the non- 
stationary processes that we encounter in practice. We also introduced 
complex state variables and developed their properties. The complex 
notation enabled us to see the important features in the problems more 
clearly. In addition, it simplified all of the analyses, because we could work 
with one complex quantity instead of two real quantities. 

In Chapter 9, we studied the problem of detecting the return from a 
slowly fluctuating point target in the presence of noise. The likelihood 
ratio test was 

where g(t) satisfies the integral equation 

r J(t) = s 
TfL1 K-,(4 u>g~~> du, Ti < t < Tf. - - 

Ti 

The performance was completely characterized by the quantity 

(6) 

(7) 

(8) 

This quantity could be used in (9.50) to determine the error probabilities. 
In addition, we specified the receiver and its performance in terms of a 
set of differential equations that could be readily solved using numerical 
techniques. Although we formulated the optimal signal design problem, 
we did not study it is detail. 

In Chapter 10 we discussed the problem of estimating the range and 
velocity of a slowly fluctuating point target in the presence of additive 
white noise. We found that the time-frequency correlation function, 

and the ambiguity function, 

played a key part in most of our discussion. When the estimation errors 
were small, the accuracy was directly related to the shape of the ambiguity 
function at the origin. However, if the ambiguity function had subsidiary 
peaks whose heights were close to unity, the probability of making a large 
error was increased. These two issues were related by the radar uncertainty 
principle, which said that the total volume under the ambiguity function 
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was unity for cony transmitted signal, co 
ss e{T,f} dT df = 1. 
-00 

It is important to re-emphasize that the ambiguity function is important 
because the receiver has been designed to be optimum in the presence of 
additive white Gaussian noise. We found that, in some environments, we 
want to use a different filter [e.g., C*(t)]. This function, fi*( t), could corre- 
spond to the g*(t) specified by (7), or it could be a function chosen for 
ease in receiver implementation. Now the cross-ambiguity function 

played the central role in our analyses. 
A particularly important problem is the resolution problem. In Section 

10.5, we considered resolution in a discrete environment. A typical situa- 
tion in which this type of problem arises is when we try to detect a target 
in the presence of decoys. Although we could always find the optimum 
receiver, the conventional matched-filter receiver was frequently used 
because of its simplicity. In this case, the degradation due to the interfer- 
ence was 

pr = 5 f$ ecri - rd, cr)i - cr)d). 
i=l () 

(13) 

Thus, if we could make the ambiguity function zero at those points in the 
7, u plane where the interfering targets were located, there would be no 
degradation. In general, this was not a practical solution, but it did 
provide some insight into the selection of good signals. Whenever pr was 
appreciable, we could improve the performance by using an optimum 
receiver. If there were no white noise, the optimum receiver would simply 
tune out the interference (this eliminates some of the signal energy also). 
In the presence of white noise the optimum receiver cannot eliminate all 
of the interference without affecting the detectability, and so the resulting 
filter is a compromise that maximizes A in (8). 

We continued our discussion of resolution in Section 13.2. The 
reverberation (or clutter) return was modeled as a dense, doubly-spread 
target. Once again we considered both conventional and optimum 
receivers. In the conventional matched-filter receiver the degradation due 
to the reverberation was given by the expression 

a3 
E, 

Pr = ; 
ss 

df dA LTDR{f, a>e(A - qj,fd -f )q 
f-l -00 
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Now the signal design problem consisted of minimizing the common 
volume 1 of the signal ambiguity function and target-scattering function. 
When pr was appreciable, some improvement was possible using an opti- 
mum receiver. In the general case we had to approximate the target by 
some orthogonal series model, such as the tapped-delay line of Fig. 13.18, 
in order actually to find the optimum receiver. Several suboptimum 
configurations for operation in a reverberation environment were developed 
in the problems. 

In Chapter 11 we discussed Doppler-spread point targets. The basic 
assumption in our model was that the reflection process was a stationary, 
zero-mean Gaussian process. The covariance function of the complex 
envelope of the received signal process was 

I?&, 24) = EJ(t - A)&(? - 24)f*(u - A), (15) 
where &(T) was the covariance function of the reflection process. Equi- 
valently, we could characterize the reflection process by the Doppler 
scattering function, 

&(f> = O” &r)eej2rfT dr. 
s -00 

(16) 

We saw that whenever the pulse length T was greater than the correlation 
time of the reflection process (E B-l), the target or channel caused time- 
selective fading. The optimum receiver problem was simply the bandpass 
version of the Gaussian signal in noise problem that we had studied in 
Chapters 2-4. Several classes of reflection processes allowed us to obtain 
complete solutions. In particular, whenever &{f} was rational or could 
be approximated by a rational function, we could obtain a complete 
solution for the optimum receiver and a good approximation to its per- 
formance. This rational-spectrum approximation includes most cases of 
interest. We also studied binary communication over Doppler-spread 
channels. We found that there is a bound on the probability of error, 

Pr (c) ,< i exp 
E 

-0.1488 z , 
No 

(17) 

that is independent of the shape of the scattering function. In addition, we 
were able to demonstrate systems using simple signals and receivers whose 
performance approached this bound. We found that the key to efficient 
performance was the use of either implicit or explicit diversity. In addition 
to being important in its own right, the communication problem gave us 
further insight into the general detection problem. 

In Chapter 12 we discussed dispersive (or range-spread) targets and 
channels. The basic assumptions in our model were that the return from 
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disjoint intervals in range were statistically independent and that the 
received signal was a sample function of a zero-mean Gaussian random 
process. The covariance function was 

s 

00 
&t, u) = E, f(t - a)S&)f*(u - a) da, (18) 

-cG 

where &(A) was the range-scattering function. Equivalently, we could 
characterize the target in terms of a two-frequency correlation function, 

(19) 

Whenever the bandwidth of the transmitted signal was greater than the 
reciprocal of the target length (L-l), we saw that the target caused fre- 
quency-selective fading. We next introduced the concept of time-frequency 
duality. Because the performance of a system is completely determined by 
the eigenvalues of the received process, we could analyze either a system or 
its dual. The duality theory enabled us to deal with a large class of range- 
spread targets that would be difficult to analyze directly. In addition, it 
offered new insights into the problem. The availability of efficient Fourier 
transform algorithms makes the synthesis of dual receivers practical. 

In Chapter 13 we discussed the final class of targets in our hierarchy, 
doubly-spread targets. Here we assumed that the reflection process from 
each incremental range element was a sample function from a stationary 
Gaussian process and that the reflections from disjoint intervals were 
statistically independent. The covariance function of the received signal 
was given by 

s al 
&t, u) = E, f(t Iy - Q&-&t - 24, 3L)f*(u - A) da, 

-03 
(20) 

where &(t - U, 1) is the covariance function of the received process as 
a function of 1. Equivalently, we could characterize the target by a range- 
Doppler scattering function, 

&{ f,  A} = 
s 

* R&T, jl)e-j2**’ dc 
--oo 

(21) 

If BL < 1, we could obtain flat fading by a suitable signal choice. On the 
other hand, for BL > 1, the target was overspread and the recei ved signal 
had to exhibit either time-selective or frequency-selective fading (or both). 

After discussing the reverberation problem, we considered the detection 
problem for doubly-spread targets. For the low-energy-coherence case 
the results were straightforward. For the general case we used an ortho- 
gonal series model for the channel. The most common model for this type 
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is the tapped-delay line model. In this case, if we could approximate the 
spectrum of the tap gain processes by rational functions, we could find a 
complex state-variable model for the entire system. This enabled us to 
specify the optimum receiver completely and obtain a good approximation 
to its performance. A second method of solving the doubly-spread channel 
problem relied on a differential-equation characterization of the channel. 
This method also led to a set of equations that could be solved numer- 
ically. Although the optimum receivers were complicated, we could 
obtain a good approximation to them in most situations. 

The final topic was the discussion of parameter estimation for doubly- 
spread targets. After deriving the likelihood function, we introduced the 
generalized spread ambiguity function in order to study the performance. 
Several specific estimation problems were studl’ed in detail. 

This concludes our discussion of signal processing in radar and sonar 
systems. In the next section we briefly discuss the contents of Array 
Processing. 

14.2 OPTIMUM ARRAY PROCESSING 

In the subsequent volume [l] we study the array-processing problem for 
sonar and seismic systems. The first topic is detection of known signals in 
noise. The basic derivation is just a special case of the results in Chapter 
I-4. The important problem is a study of the various issues that arise in a 
particular physical situation. To explore these issues, we first develop a 
model for spatially distributed noise fields. We then introduce the ideas 
of array gain, beam patterns, and distortionless filters, and demonstrate 
their utility in the signal-processing problem. 

The next topic is the detection of unknown signals in noise. This 
model is appropriate for the passive sonar and seismic problem. By 
exploiting the central role of the distortionless filter, we are able to 
develop a receiver whose basic structure does not depend on the detailed 
assumptions of the model. 

The final topic in [l] is the study of multivariable processes as en- 
countered in continuous receiving apertures. Although the basic results 
are a straightforward extension of the multidimensional results, we shall 
find that both new insight and simplified computational procedures can 
be obtained from this general approach. 

Just as in Parts II and III, we present a large number of new research 
results in the book. As in this volume, the result is a mixture of a research 
monograph and a graduate-level text. 
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14:3 EPILOGUE 

Because of the specialized nature of the material in Array Processing, 
many readers will stop at this point, and so a few comments about the 
over-all development are worthwhile. 

We hope that the reader appreciates the close relationships among the 
various problems that we have considered. A brief glance at the table of 
contents of the books indicates the wide range of physical situations that 
we have studied. By exploiting a few fundamental concepts, we were able 
to analyze them efficiently. An understanding of the relationships among 
the various areas is important, because it enables one to use results from 
other problems to solve the problem of current interest. 

A second point that the reader should appreciate is the utility of various 
techniques for solving problems. A standard course in communications 
theory is no longer adequate. One should understand the techniques and 
concepts used in control theory, information theory, and other disciplines 
in order to be an effective analyst. We may have “oversold” the use of 
state-variable techniques, because it is an item of current research interest 
to us. We do feel that it is certain to have an important influence on many 
sophisticated systems in the future. 

The reader should remember that we have been working with mathe- 
matical models of physical situations. More specifically, we have empha- 
sized Gaussian process models throughout our discussion. In many cases, 
they are adequate to describe the actual situation, and our predicted 
performance results can be confirmed experimentally. In other cases, more 
complicated models employing non-Gaussian processes must be used. 
There are still other cases in which experimental (or simulation) procedures 
provide the only feasible approach. These comments do not negate the 
value of a thorough study of the Gaussian problem, but serve to remind us 
of its limitations. 

Although it is not conventional, we feel that an appropriate final 
comment is to thank those readers who have followed us through this 
lengthy development. We hope that you have obtained an appreciation of 
Detection, Estimation, and Modulation Theory. 
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