
Appendix : 
Complex Representation of Bandpass 
Signals, Systems, and Processes 

In this appendix we develop complex representations for narrow-band 
signals, systems, and random processes. The idea of representing an actual 
signal as the real part of a complex signal is familiar to most electrical 
engineers. Specifically, the signal, 

cos qt = Re [ejwlt], (A4 

and the associated phasor diagram in Fig. A.1 are encountered in most 
introductory circuit courses. The actual signal is just the projection 
of the complex signal on the horizontal axis. The ideas in this appendix 
are generalizations of this familiar notation. 

In Section A.1, we consider bandpass deterministic signals. In Section 
A.2, we consider bandpass linear systems. In Section A.3, we study 
bandpass random processes. In Section A.4, we summarize the major 
results. Section A.5 contains some problems to demonstrate the applica- 
tion of the ideas discussed. 

Im 

Phasor rotates with 
frequency fl = 

Fig. A.1 Phasor diagram. 
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566 A. I Deterministic Signals 

The treatment through Section A.3.1 is reasonably standard (e.g., 
[I]-[S]), and readers who are familiar with complex representation can skim 
these sections in order to learn our notation. The material in Section 
A.3.2 is less well known but. not new. The material in Section A.3.3 is 
original [9], and is probably not familiar to most readers. With the 
exception of Sections A.2.3 and A.3.3, the results are needed in order to 
understand Chapters 9-14. 

A.1 DETERMINISTIC SIGNALS 

In this section we consider deterministic finite-energy signals. We 
denote the signal by f(t), and its Fourier transform by F(jm). 

For simplicity, we assume that f(t) has unit energy. A typical signal of 
interest might have the Fourier transform shown in Fig. A.2. We see that 

R+‘(f)1 

Fig. A.2 Fourier transform of a bandpass signal. 

s 00 
t We also use the transform F(f) = f(t)e-jznft dt. The braces (0) imply this 
definition. -aI 
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the transform is bandlimited to frequencies within 5 UI’cps of the carrier 
fC. In practice, very few signals are strictly bandlimited. If the energy 
outside the band is negligible, it is convenient to neglect it. We refer to a 
signal that is essentially bandlimited around a carrier as a bandpass 
signal. Normally the bandwidth around the carrier is small compared to 

w3 and so we also refer to the signal as a narrow-band signal. A precise 
statement about how small the bandwidth must be in order for the signal 
to be considered narrow-band is not necessary for our present discussion. 

It is convenient to represent the signal in terms of two low-pass quad- 
rature components, *f,(t) and fs(t), 

The symbol [elLP denotes the operation of passing the argument through 
an ideal low-pass filter with unity gain. The low-pass waveforms fc(t) and 
f,(t) can be generated physically, as shown in the left of Fig. A.3. The 
transfer function of the ideal low-pass filters is shown in Fig. A.4. Given 

..a0 and f,(t), we could reconstructf(t) by multiplying cos CLQ and sin CU,~ 
and adding the result as shown in the right side of Fig. A.3. Thus, 

f(t) = Jz [f,(t) cos (qt) +f,(t) sill @@)I. W) 

One method of verifying that the representation in (AS) is valid is to 
follow the Fourier transforms through the various operations. A much 
easier procedure is to verify that the entire system in Fig. A.3 is identical 

. 
- &LP (7) . 

f&l I 
I 

I 
I 

fW 1 ecos o,t 
I 
I 
I 
I 

1 x 

9 

I! 

fi sin w,t 

Quadrature decomposition 

I P 
1 3E sin w,t 
I Reconstruction 

Fig. A.3 Generation of quadrature components and reconstruction of bandpass signal. 
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GIL, (fl 

Fig. A.4 Transfer function of ideal low-pass filter. 

with the ideal bandpass filter whose transfer function is shown in Fig. 
A.5.t To do this we put an impulse into the system and calculate its 
output. We denote the output due to an impulse at time t = 7 as g,(t). 

s 
Go g,(t) = JZ cos (cq) W - *)$ cos (WcU1)g~Lp(t - 24,) du, -co al 

+ JZ sin (q$) s a(t - 7)JZ sin (w2uZ)gILp(t - u2) du, -a3 
= %JP(t - T)[COs (qt) cos (cop) + sin (qt) sin (COJ)] 

= %IJFo - 7) cos [coc(t - T)]. (A4 

The transfer function is the Fourier transform of the impulse response, 

n co 
s 2g,,,(a) cos (cocb)e~iOO da 

--oo 

The right side of (A.7) is just the transfer function shown in Fig. AS, 
which. is the desired result. Therefore the system in Fig. A.3 is just an 
ideal bandpass filter and any bandlimited input will pass through it un- 
distorted. This verifies that our representation is valid. Notice that the 

GIBP rf 

Fig. A.5 Transfer function of overall system in Fig. A.3. 

-f This procedure is due to [lo, page 4971. 



assumption that f(t) has unit energy implies 
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f 
m(f2(t) + j’;(t)) dt = 

-0Q s 
mf2(t) dt = 1. 

-co 
(A.8) 

We can represent the low pass waveforms more compactly by defining 
a complex signal, 

Equivalently, 

where 

(A-9) 

(A.10) 

and 
ml = JfC2(t> +f,“(t) (A. 11) 

$f(t) = tan-l Jj$ . 
( 1 c 

(A.12) 

Notice that we can also write 

(A.13) 

(A.14) 

f(t) = [f(t)& e-j°CtlLp. 

The actual bandpass signal is 

f(t) = dzt Re [f(t)e’oct] 

= J2E, If(t)1 ei(wct+4j(t))e 

Some typical signals are shown in Fig. A.6. Notice that the signals in 
Fig. A.6u-c are not strictly bandlimited but do have negligible energy 
outside a certain frequency band. We see that If(t)\ is the actual envelope 
of the narrow-band signal and +f( t) + w,t is the instantaneous phase. 
The function f(t) is commonly referred to as the complex envelope. 

The utility of the complex representation for a bandpass signal will 
become more apparent as we proceed. We shall find that the results of 
interest, can be derived and evaluated more easily in terms of the complex 
envelope. 

There are several properties and definitions that we shall find 
the sequel. All of the properties are straightforward to verify. 

useful in 

Property 1. Since the transmitted energy is unity, it follows from (AX) 
that 

s 

Go 
If(t dt = 1. (A.15) 

-Go 
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AL- 
(U) Rectangular 

It 
envelope, constant phase 

(b) Rectangular envelope, binary phase-modulation 

(c) Gaussian envelope, linear frequency sweep 

Fig. A.6 Typical signals. 

Property 2. The mean frequency of the envelope is defined as the first 
moment of the energy spectrum of the complex envelope, 

62 a0 
s 

aal 

-Go 
al IF(jaJ)l” 2, = 

s 

00 dcl> 
0$(4 Frn 9 

-00 

where &jo) is the Fourier transform of f(f), 

(A. 16) 

F(jw) = mjyt)e-+t dt. s (A. 17) 
-m 

In our model the actual signal is f(t) and is fixed. The complex envelope 
f(t) depends on what frequency we denote as the carrier. Since the carrier 
frequency is at our disposal, we may always choose it so that 

G=O (A.18) 

(see Problem A.l.l). Later we shall see that other considerations enter into 
the choice of the carrier frequency, so that (A. 18) may not apply in all 
cases. 
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Property 3. The mean time of the envelope is defined as the first moment 
of the squared magnitude of the complex envelope, 

s 00 fA - t If(t)I” dt = 0. (A. 19) 
-co 

Since the time origin is arbitrary, we may always choose it so that 

s 
co t’= t IJl(t)l” dt = 0. (A.20) 

-00 

The assumptions in (A. 18) and (A.20) will lead to algebraic simplifications 
in some cases. 

Property 4. There are several quadratic quantities that are useful in 
describing the signal. The first two are 

and 

(A.21a) 

o 2 A 2 - (6)” 
W- (A.21b) 

The latter quantity is called the mean-square bandwidth. It is an approxi- 
mate measure of the frequency spread of the signal. 

Similarly, we define 

-i t = 
s 

00 
t2 ml” dt (A.22a) 

--al 
and 

6t2 A P - (f)2. (A.22b) 

The latter quantity is called the mean-square duration and is an approxi- 
mate measure of the time spread of the signal. 

The definitions of the final quantities are 

s 

00 

cot 
df*(t) dr =Im - ?.fw 

--al dt 
(A.23a) 

and 
z - iijf Pot = - . (A.23b) 

%Pt 
These definitions are less obvious. Later we shall see that Pot is a measure 
of the frequency modulation in *f(t). 

The relations in (21)-(23) can be expressed in alternative ways using 
Fourier transform properties (see Problem A. 1.2). Other useful interpreta- 
tions are also developed in the problems. 
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Property 5. Consider two unit-energy bandpass signals fi(t) and fi(t). 
The correlation between the two signals is 

P- 
s 

m~md9 dt* (A.24) 
--al 

We now represent the two signals in terms of complex envelopes and the 
same carrier, u,. 

x(t) = rJZf,c t)esiwC2]Lp, i = 1, 2. (A.23 

The complex correlation p” is defined to be 

Then 

(A.26a) 

P = Re p. (A.26b) 

To verify this, we write p in terms of complex envelopes, perform the 
integration, and observe that the double frequency terms can be neglected. 

This concludes our discussion of the complex envelope of a deterministic 
bandpass signal. We now consider bandpass systems. 

A.2 BANDPASS LINEAR SYSTEMS 

We now develop a complex representation for bandpass linear systems. 
We first consider time-invariant systems and define a bandpass system in 
that context. 

A.2.1 Time-Invariant Systems 

Consider a time-invariant linear system with impulse response h(a) 
and transfer function H(&o). 

s 00 H(jai) = h(o)e-jwo da. 
-al 

(A.27) 

A typical transform of interest has the magnitude shown in Fig. A.7. 
We see that it is bandlimited to a region about the carrier cr),. We want to 
represent the bandpass impulse response in terms of two quadrature 
components. Because h(o) is deterministic, we may use the results of 
Section A. 1 directly. We define two low-pass functions, 

and 
h,(o) A [h(a) sin cu,61LP. (A.29) 
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Fig. A.7 Magnitude of the transfer function of a bandpass linear system. 

Then 
h(o) = 2&(a) cos (~,a) + 2&(a) sin (~0~0). (A.30) 

Defining a complex impulse response as 

we have the complex representation 

h(a) A Re [2&r)e30”“]. (A.32) 

The introduction of the factor & is for convenience only. 
We now derive an expression for the output of a bandpass linear system 

h(t) when the input to the system is a bandpass waveformf(t), 

f(t) = &Re [fl(t)ei”““]. (A.33) 

Notice that the carrier frequencies of the input signal and the system are 
identical. This common carrier frequency is implied in all our subsequent 
discussions. The output y(t) is obtained by convolvingf(t) and h(t). 

s 00 
Y(t) = W - a>m> da 

-00 

- - s 
00 Y vo - a)e3’co”[t-“’ + i;*Q - a)e-hoc(t-d] --oo 

Now we define 

i°C@ + J*(a)eejO”o 

1 
da . I- 

Al2 
(A.34) 

W - - a)f(a) dc 9 -oo<t<oo. (A.39 

Because h(t) and f(t) are low-pass, the two terms in (A.34) containing 
e*2icuca integrate to approximately zero and can be neglected. Using 
(A.35) in the other two terms, we have 

y(t) = J2 Re [y”(t)ei”“t]. (A.36) 
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This result shows that the complex envelope of the output of a bandpass 
system is obtained by convolving the complex envelope of the input with I- 
the complex impulse response. [The d2 was introduced in (A-21) so that 
(A.35) would have a familiar form.1 

J 

A.2.2 Time-Varying Systems 

For 
i;(t, 7) 

time-varying bandpass systems, the complex impulse response is 
and 

ho9 u) = Re [2h(t, zl)eiwc(t--u)]. (A.37) 

The complex envelope of the output is 

N 
y(t) = 

s 
O” h(t, u)y(u) du. (A.38) 

-00 
The actual bandpass output is given by (A.36). 

A.2.3 State-Variable Systems 

In our work in Chapters I-6,11-2, and 11-3, we encountered a number of 
problems in which a state-variable characterization of the system led to an 
efficient solution procedure. This is also true in the radar-sonar area. We 
now develop a procedure for characterizing bandpass systems using 
complex state variables.7 The complex input is f(t). The complex state 
equation is 

!y = F(t)Z(t) + 6(t)&), Ti < t, - 

with initial condition jz(T,). The observation equation is 

(A.39) 

g(t) = C(t)n(t). (A.40) 

The matrices F(t)? c(t), and C(t) are complex matrices. The complex 
state vector Z(t) and complex output y”(t) are low-pass compared to cc),. 
The complex block diagram is shown in Fig. A.8. 

We define a complex state transition matrix &(r, 7) such that 

(A.41) 

&t, t) = I. (A.42) 

t This discussion is based on our work, which originally appeared in [9]. It is worth- 
while emphasizing that most of the complex state-variable results are logical extensions 
of the real state-variable results. 
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Fig. A.8 State-variable model for a complex linear system. 

Then it is readily verified that 

g(t) = C(t) &t, T,)Z(Q + s t &(t, 7)G(T)f(T) dT 
Ti 1 . (A.43) 

The first term is the output due to the initial conditions, and the second 
term is the output due to f(l). The complex impulse response is obtained 
by letting the initial condition Z(TJ equal zero and TI = - 00. Then 

Recall from (A.38) that 

Thus, 

N 
Y(t) 

- - 
s 

cx3 44 Mb) d7, -Go<<. (A.49 
-0Q 

h(t, 7) = 
w$jk #(7), -a<<<<, 

(A.46) 
0, elsewhere. 

Notice that this is a realizable impulse response. Using (A.46) in (A.37) 
gives the actual bandpass impulse response, 

h(4 7) = Re [2h(t, r)e’wc(t-5)] 

Re [2e(t)&(t, ~)k(~)ej~~(~+)], - (;o < 7 < t, - - 
0, elsewhere. 

(A.47) 

There are two alternative procedures that we can use actually to implement 
the system shown in Fig. A.8. The first procedure is to construct a circuit 
that is essentially a bandpass analog computer. The second procedure is 
to perform the operations digitally using complex arithmetic. 

We now consider the problem of representing bandpass random 
processes. 
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A.3 BANDPASS RANDOM PROCESSES 

We would expect that an analogous complex representation could be 
obtained for bandpass random processes. In this section we discuss three 
classes of random processes : 

1. Stationary processes. 
2. Nonstationary processes. 
3. Finite state processes. 

Throughout our discussion we assume that the random processes have 
zero means. We begin our discussion with stationary processes. 

A.3.1 Stationary Processes 

A typical bandpass spectrum is shown in Fig. A.9. It is bandlimited to 
& UI’ cps about ct),. We want to represent n(t) as 

n(t) = 4&(t) cos (cu,t) + &z,(t) sin &t), (A.48) 

where nc(t) and n,(t) are low-pass functions that are generated as shown in 
the left side of Fig. A.lO. 

and 

72,(t) = [<A sin (@))n(t)lLp. (A.50) 

The over-all system, showing both the decomposition and reconstruction, 
is depicted in Fig. A.lO. In Section A.1 we showed that this system was 
just an ideal bandpass filter (see Fig. A.5). Thus, the representation is 
valid for all processes that are bandlimited to & JV cps around cc),. 

Alternatively, in complex notation, we define 

I w a %W -j4w 1 (A.51) 

Fig. A.9 Typical spectrum for bandpass process. 
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n(t) n(t) &cos w,t &cos w,t 
\ \ 

I I 
I I 

l l x x 

9 9 

1 6LP CT) 1 6LP CT) 

n,(t) 1 n,(t) 1 
I I : x : x 

c c 
I I 
I I 

&T sin w,t &T sin w,t 
P P 

q@ sin w,t q@ sin w,t 
Quadrature decomposition Quadrature decomposition Reconstruction Reconstruction 

Fig. A.10 10 Generation of quadrature components and reconstruction of bandpass Generation of quadrature components and reconstruction of bandpass Fig. A. process. 

or 

I ii(t) = EJ2 n( t)ewiwCt Lp 1 I (A.52) 

and write 

n(t) = & Re [C(t)eiUc’]. (A.53) 

We now derive the statistical properties of Z(t). 
The operation indicated in (A.52) corresponds to the block diagram in 

Fig. A.1 1. We first compute the covariance function of x”(t), 

R;(t ,  t  -  7) A E[Z(t)Z*(t -  7) ]  = E[Ji n(t)e-jwCt l Jz n( t  -  7)eioC’t-r’] 

The spectrum of Z(t) is 

= 2(E[n(t)n(t - 7)])e-j°Cr 

= 2Kn(7)e-jcucr. (A.54) 

s;,( ) co= s O” K$)&“’ & = 2 

= i4r4n(co + co&. s * Kn(7)eBj(w+oC)r & -a3 
(A.55) 

Now g(t) is related to Z(t) by an ideal low-pass filter. Thus, 

(A.56) 

& 
e -jW 

Fig. A.11 Generation of ii(t). 
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and 

s 

2nw 
E[n”(t)n”“(t - T)] a &) = 2 

do., 
S&B + coc)ejO’ - . (AZ) 

-2n FI’ 27r 

The next result of interest concerns the expectation without a conjugate 
on the second term. We shall prove that 

mwJw2)l = 0, for all t,, t2. (A.58) 

25 a n(xl)e-ioczlgIlp(tl - x,) dx, m n(x2)e-iWcz2gILp(t2 - 
s 

x2) dx2 
-co 

00 

= 2 K,(x, - xg)e-j”c’“1+“2)gILp( t1 - xl)gILP(t2 - x2) dx, dx, 

ca 

=2 
sss 

Uf >e isaf(zl-xz)--j5nfc(x1+22) 
hJP(h - XIkILP(f2 - x2) dx, dx2 df 

= 2J-:S,,( f) df/-~gILp(tl - xl)ei2az1(f-ft) dx, 

s 
al x gILp( t2 - x2)e-‘2rrz2(f+fc) dx, 

--oo 

= 2 
s 

O” S,( f ){ GILP( f - fc)GFLP( f + f,>> ej2nt1(f--fc)--j2xt2(f+fc’ df. (A.59) 
-aI 

Now the term in the braces is identically zero for all f iff, > W. Thus the 
integral is zero and (14.58) is valid. The property in (A.58) is important 
because it enables us to characterize the complex process in terms of a 
single covariance function. We can obtain the correlation function of the 
actual process from this single covariance function. 

K,(t, t - 7) = E[n(t)n(t - 7)] 

= E 42 fi( t)ejwct + Js c*(t)e-joct 
2 1 

x 

[ 

Js fi(t - T)eioc(t-T) + Ji fi*(t - 7)e-j%(t--r) 

2 I/ 
= Re [&(T)e30cr ] + Re {E[ii(t)ii(t - ~)]dwc(2t--r)Z. (A.60) 
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. 
k’,(7) = Re [K&)e3wc’ (A.61) 

In terms of spectra, 

or 

(A.62) 

S&) = %m - q) + $(-cl, - co,) 
9 

2 
(A.63) 

where we have used the fact that ,.!$(co) is a real function of CO. 
The relations in (A.61) and (A.63) enable us to obtain the statistics of 

the bandpass process from the complex process, and vice versa. In Fig. 
A. 12, we indicate this for some typical spectra. Notice that the spectrum 
of the complex process is even if and only if the bandpass process is 
symmetric about the carrier cr),. In Fig. A.13, we indicate the behavior for 
some typical pole-zero plots. We see that the pole-zero plots are always 
symmetric about the &-axis. This is because &(w) is real. The plots are 
not necessarily symmetric about the u-axis, because s;,(w) is not necessarily 
even. 

Although we shall normally work with the complex process, it is instruc- 
tive to discuss the statistics of the quadrature components briefly. These 
follow directly from (A.57) and (AS). 

E[fi(t)fi*(t - T)] = m%w + jn,(w%(r - 7) - jn,(t - T))] 

= E&T(T) (A.64) 
and 

E[Z(t)n”(t - T)] = m~,w + jn,W>(n,(t - 7) + jn,(t - T))] 
= &CT) - KS(T) +j[K,,(T) + &(T)] 

Therefore, 
= 0. (A.69 

4(7) = K(T) = *Re [&(T)] (A.66) 

and 

I Kc(T) = -&(T) = -K,,(---7) = Q Im [K&)1. (A.67) 



I -- No/2 1 
I 
I >w 

-WC a,-27rw +o, oc + 27rw 

I NO 

-27rw 2nw 
>w 

Fig. A.12 Representative spectra. 

580 
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X X 

)o 

X X 

(4 

Fig. A.13 Possible pole-zero plots for spectra of complex processes. 

In terms of spectra, 

S&o) = S,(w) = i jw(Re [&(T)])e-jm’ dr 
-w 

1 m -  
-  

&(w) + s&--Lo) 

2 [ 1 9 
2 

(A.68) 

or 

= Wn(~ + ~AJPIEV, (A.69) 

where [*lEv denotes the operation of taking the even part. Similarly, 

s&J) = - i 
s 

w  Im [&(~)]e‘-i”’ dT 
-W 

(A.70) 
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Notice that S,,(W) is imaginary. [This is obvious from the asymmetry in 
(A.67).] From (A.70) we see that the quadrature processes are correlated 
unless the spectrum is even around the carrier. Notice that, at any single 
time instant, n&J and nS(tl) are uncorrelated. This is because (A.67) 
implies that 

K,,(O) = 0. (A.7 1) 

Complex White Processes. Before leaving our discussion of the second- 
moment characterization of complex processes, we define a particular 
process of interest. Consider the process WY(~) whose spectrum is shown in 
Fig. A.14. The complex envelope is 

G(t) = %W - jw,w (A.72) 

Using (A.69) and (A.70) gives 

(A.73) 

and 
b elsewhere, 

s,,?Jf > = 0. (A.74) 

The covariance function of i?(t) is 

&(t 21) 2 K&T) = 2K&) w ’ 

= N,(sin (Ew”), --<T<<. (A.75) 

Now, if W is larger than the other bandwidths in the system of interest, we 
can approximate (A.75) with an impulse. Letting IV-, 00 in (A.75) gives 

Fig. A.14 Spectrum of bandpass white noise. 
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We refer to G(t) as a complex white noise process. We refer to the actual 
process w(t) as a bandpass white noise process. Notice that, just as in the 
case of white noise, they are convenient approximations to the actual 
physical process. 

Complex Gaussian Processes. In many cases of interest to us the processes 
are Gaussian random processes. If n(t) is a stationary Gaussian process, 
then n&) and n,(t) are stationary jointly Gaussian processes, because they 
are obtained by linear operations on n(t). The complex envelope is 

so that we might logically refer to it as a stationary complex Gaussian 
random process. Since we shall use this idea frequently, an exact definition 
is worthwhile. 

Definition. Let nC(t) and n,(t) be two zero-mean stationary jointly 
Gaussian random processes with identical covariance functions. The 
process ii(t) is defined by (A.77). The relation 

E[A(t)li(t - T)] = 0, for all t and 7, (A.78) 

is satisfied. The process C(t) is a zero-mean stationary complex Gaussian 
random process. 

The modification to include a mean value function is straightforward. 
Notice that a complex process whose real and imaginary parts are both 
Gaussian processes is not necessarily Gaussian. The condition in (A.78) 
must be satisfied. This implies that the real part and imaginary part are 
Gaussian processes with identical characteristics that are related by the 
covariance function in (A.6’7). They are statistically independent if and 
only ifthe original spectrum is symmetric around the carrier. We also note 
that a real Gaussian process is not a special case of a complex Gaussian 
process. 

If we sample the complex envelope at time tl, we get a complex random 
variable ii&). To specify the density of a complex random variable, we 
need the joint density of the real part, n,( tJ, and the imaginary part, 
n&J. Since n&) and n,(tJ are samples of a jointly Gaussian process, 
they are jointly Gaussian random variables. Since (A.71) implies that they 
are uncorrelated, we know that they are statistically independent. 
Therefore, 

--<&A&< 00, 

(A.79) 
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where 

Equivalently, 
c ii 2 = K,(O) = K,(O) = g&(O)* (A.80) 

-oo<Re[fl],Im[R]< 00. 

(A.81) 

We define a complex Gaussian random variable as a random variable whose 
probability density has the form in (A.81). Notice that 

E(lii,J2) = 2cTR2. (A.82) 

Properties analogous to those for real Gaussian random variables and 
real Gaussian random processes follow easily (see Problems A.3.1-A.3.7). 
One property that we need corresponds to the definitions on page I-183. 
Define 

ij= 
s 

TP 
g(#)qu) du, (A.83) 

Tl% 
where g(u) is a function such that E[ly”12] < 00. If 2(u) is a complex Gaus- 
sian process, then d is a complex Gaussian random variable. This result 
follows immediately from the above definitions. 

A particular complex Gaussian process that we shall use frequently is 
the complex Gaussian white noise process G(t). It is a complex Gaussian 
process whose covariance function is given by (A-76). 

Two other probability densities are of interest. We can write n”(t) in 
terms of a magnitude and phase angle. 

i?(t) = Iii(t)1 ei4fV (A. 84) 

The magnitude corresponds to the envelope of the actual random process. 
It is easy to demonstrate that it is a Rayleigh random variable at any 
given time. The phase angle corresponds to the instantaneous phase of 
the actual random process minus c~)J, and is a uniform random variable 
that is independent of the envelope variable. Notice that the envelope 
and phase processes are not independent processes. 

We now turn our attention to nonstationary processes. 

A.3.2 Nonstationary Processes 

A physical situation in which we encounter nonstationary processes is 
the reflection of a deterministic signal from a fluctuating point target. 
We shall see that an appropriate model for the complex envelope of the 
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return is 

where f(t> is a complex deterministic signal and g(,) is a zero-mean 
stationary complex Gaussian process. We see that s’(t) is a zero-mean 
nonstationary process whose second-moment characteristics are 

and 
E[s”(t)i*(u)] =jyt)&t - u)f*(u) (A.86) 

E[qt)qu)] = f(t)E@(t$(u))]f*(u) = 0. (A.87) 

The condition in (A-87) corresponds to the result for stationary processes 
in (A.58) and enables us to characterize the complex process in terms of a 
single covariance function. Without this condition, the complex notation 
is less useful, and so we include it as a condition on the nonstationary 
processes that we study. Specifically, we consider processes that can be 
represented as 

n(t) A x/2 Re [fi(t)ei”c’], (A.88) 

where n(t) is a complex low-pass process such that 

and 
E[2(t)fi*(7)] = Kfi(r, 7) 

E[fi(t)ii*(7)] = 0, for all t and 7. 

(A.89) 

WQt 

For a nonstationary process to be low-pass, all of its eigenfunctions with 
non-negligible eigenvalues must be low-pass compared to cc),. This require- 
ment is analogous to the spectrum requirement for stationary processes. 

The covariance of the actual bandpass process is 

= mmO>l 
= E ‘ctje jat + e*(t)e-j%t 

J2 I[ 
qujeiwcu + fi*(u)e-jwcu 

J2 Ii 
= Re {&(t, u)ejoc(‘-+)} + Re {E[fi(t)Z(u)]8wc(t+u)). (A.91) 

The second term on the right-hand side is zero because of the assumption 
in (A.90). Thus, we have the desired one-to-one correspondence between 
the second-moment characteristics of the two processes n(t) and A(t). 
The assumption in (A.90) is not particularly restrictive, because most of 
the processes that we encounter in practice satisfy it. 

As before, the eigenvalues and eigenfunctions of a random process play 
an important role in many of our discussions. All of our discussion in 

t It is worthwhile emphasizing that (A.90) has to be true for the complex envelope of a 
stationary bandpass process, For nonstationary processes it is an additional assumption. 
Examples of nonstationary processes that do not satisfy (A.90) are given in [l 11 and [12]. 



586 A.3 Bandpass Random Processes 

Chapter I-3 (page I-166) carries over to complex processes. The equation 
specifying the eigenvalues and eigenfunctions is 

We assume that the kernel is Hermitian, 

&<t, 4 = R;(u, t). (A.93) 

This is analogous to the symmetry requirement in the real case and is 
satisfied by all complex covariance functions. The eigenvalues of a Hermi- 
tian kernel are all real. We would expect this because the spectrum is real 
in the stationary case. We now look at the complex envelope process and 
the actual bandpass process and show how their eigenfunctions and 
eigenvalues are related. We first write the pertinent equations for the two 
processes and then show their relationship. 

For the bandpass random process, we have from Chapter I-3 that 

40 = 1.i.m. 5 n&(t), Ti < t < Tf, - - 

where the 4&t) satisfy 

and the coefficients are 

s 

Tf 
?2i = n(t)$i(t> dt* 

Ti 

This implies that 

and 

K,(t9 U) = 2 Ai+i(t)+i(U), Ti < t, u < Tfe - -. 
i=l 

Similarly, for the complex envelope random process, 

I< 
w = 1.i.m. 2 fii(Ji(t), Ti < t < Tf, - - 

I<+00 i=l 

(A.99) 

where the $i(t) satisfy the equation 

Ti < t < T,. - - (A. 100) 

(A.94) 

(A.95) 

(A.96) 

(A.97) 

(A.98) 
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The complex eigenfunctions are orthonormal, 

The coefficients are 
s 

T’$i(t)c&t) dt = t&j. 
Ti 

(A. 101) 

& = 
s 

0 
n”(t)@(t) dt. 

Ti 
(A. 102) 

We can then show that 

and 

E[iid ii,*] = XiSij, (A. 103) 

E[ninj] = 0, for all i and j, (A. 104) 

K<t~ u, = 2 XiJi(t)$T(u), Ti < t, U < Tfe - - 
i=l 

(A. 105) 

The processes are related by (A.88) and (A.91), 

n(t) = ,/z Re [G( t)eioct], 

K,(t, u) = Re [RJt, u)ejwc(t-u)]. 

To find how the eigenfunctions are related, we substitute 

+i(t) = JZ Re [$i(t)8’““t’e’], Ti < t < Tf - - 

into (A.95) and use (A.107). The result is 

;li[&t)ei’wt+e) + &ipje4(w”t+e)] 

(A. 106) 

(A. 107) 

(A. 108) 

Kg(t, u)$i(u) dtl + e-j(oct+e) 
s 

Tf.R;(t, u)&yu) nu 
Ti 

Equivalently, 
(A.109) 

Re &$i(t) - i s Tf N 
T KJt, U)$i(U) du (A.110) 

i 

If we require that CI a . a i’-- 
2a9 

(A. 1.11) 

then (A.109) will be satisfied for any 8. Because (A.109) is valid for any 8, 
each eigenvalue and eigenfunction of the complex process corresponds to 
an eigenvalue and a family of eigenfunctions of the bandpass process. 
Clearly, not more than two of these can be algebraically linearly inde- 
pendent. These can be chosen to be orthogonal by using 0 = 0 and 0 = 
-r/2. (Any two values of 8 that differ by 90’ are also satisfactory.) Thus, 
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Table A.1 

Complex process Actual bandpass process 

&<t > 

&d*(t) 

4 jl 
= 2 b1(t) = d2 Re [&(t)ej*ctl 

il 
n, = - 

d*(t) = 2/T Re [$l(t)ej(wct-n/2)] 

2 = 1/Z Im [&(t)eW] 

$3(t) = d2 Re [$2(t)ej%t] 

i 
A4 = 2 

2 
+J t ) = 42 Im [&(t)eiwct] 

we can index the eigenvalues and eigenfunctions as shown in Table A. 1. 
The result that the eigenvalues of the actual process occur in pairs is 
important in our succeeding work. It leads to a significant simplification 
in our analyses. 

The relationship between the coefficients in the Karhunen-Lo&e 
expansion follows by direct substitution : 

% = Re [&I, 

n2 = Im [&I, 

n3 = Re [521, (A.1 12) 

and so forth. 
n4 = Im [E2], 

From (A.89) and (A.90) we know that n,(t) and n,(t) have identical 
covariance functions. When they are uncorrelated processes, the eigen- 
values of E(t) are just twice the eigenvalues of n,(t). In the general case, 
there is no simple relationship between the eigenvalues of the complex 
envelope process and the eigenvalues of the quadrature process. 

Up to this point we have considered only second-moment characteristics. 
We frequently are interested in Gaussian processes. If n(t) is a non- 
stationary Gaussian process and (A.88)-(A.90) are true, we could define 
ii(t) to be a complex Gaussian random process. It is easier to define a 
complex Gaussian process directly. 

Definition. Let Z(t) be a random process defined over some interval 
[T,, T,] with a mean value 6&) and covariance function 

E[(qt) - ti&))(n”*(u) - fi;(u))l = 13,(4 49 (A. 113) 
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which has the property that 

E@(t) - @z&))@(U) - @z&l))] = 0, for all t and U. (A.1 14) 

If every complex linear functional of Z(t) is a complex Gaussian random 
variable, E(t) is a complex Gaussian random process. In other words, 
assume that 

s 

TP 
fj= g(w(u> du 9 (A.115) 

Ta 

where g’(u) is any function such that E[lg12] < 00. Then, in order for Z(U) 
to be a complex Gaussian random process, g must be a complex Gaussian 
random variable for every g’(u) in the above class. 

Notice that this definition is exactly parallel to the definition of a 
real Gaussian process on page I-183. Various properties of nonstationary 
Gaussian processes are derived in the problems. Since stationary com- 
plex Gaussian processes are a special case, they must satisfy the above 
definition. It is straightforward to show that the definition on page 
583 is equivalent to the above definition when the processes are stationary. 

Returning to the Karhunen-Loeve expansion, we observe that if Z(t) 
is a complex Gaussian random process, Ci is a complex Gaussian random 
variable whose density is given by (AH), with on2 = &/2, 

1 
-a < Re [&I, Im [&I < 00. 

(A.116) 

The complex Gaussian white noise process has the property that a 
series expansion using any set of orthonormal functions has statistically 
independent coefficients. Denoting the ith coefficient as @, we have 

- co < Re [wi], Im [F&l < 00. 

(A. 117) 

This completes our general discussion of nonstationary processes. 
We now consider complex processes with a finite state representation. 

A.3.3 Complex Finite-State Processest 

In our previous work we found that an important class of random 
processes consists of those which can be generated by exciting a finite- 
dimensional linear dynamic system with a white noise process. Instead of 

p This section is based on [9]. 
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working with the bandpass process, we shall work with the complex 
envelope process. We want to develop a class of complex processes that 
we can generate by exciting a finite-dimensional complex system with 
complex white noise. We define it in such a manner that its properties will 
be consistent with the properties of stationary processes when appro- 
priate. The complex state equation of interest is 

k(t) = IT( + G(t)ii(t). (,4.118) 

This is just a generalization of (A.39) to include a vector-driving function 
ii(t). The observation equation is 

YiO - = C(t)Z(t). (A.119) 

A block diagram of the system is shown in Fig. A.15. We assume that 
ii(t) is a complex vector white noise process with zero mean and covariance 
matrix 

E[qt)ii+(a)] = iqt, a) = ij sit - a), (A. 120) 
where 

ii+(t) L\ [a(t)*]T. (A. 121) 
We further assume that 

E[ii(t)iiT(o)] = 0, for all t and 0. (A. 122) 

This is just the vector analog to the assumption in (A.90). In terms of the 
quadrature components, 

ki4 4 = mucio - jw>>i%T(4 + ~u34~1 
= Ku (4 4 + Ku (4 4 + jIc, u (4 4 - jK, u (4 4 
= 0 b(t 

S c s s c 
- 4. (A. 123) 

The requirement in (A.122) implies that 

Ku,iG a) = Kus(t, 0) = 8 Re [G] d(t - o), (A. 124) 

K,,,,(t, 0) = -KUsuC(t, a) = 8 Im [o] s(t - a). (A. 125) 



Complex Finite-State Processes 591 

The covariance matrices for the two quadrature components are identical 
non-negative-definite matrices, and the cross-covariance matrix is a skew 
symmetric matrix (i.e., ctij = -ai,). This implies that Q is a Hermitian 
matrix with a non-negative-definite real part. 

Usually we do not need a correlation between the components of 5(t) 
(i.e., we can let E[u,(t)~,~(t)] = 0), since any correlation between the 
components of the state vector may be represented in the coefficient 
matrices F(t> and e(t). In this case Q is a real non-negative-definite 
symmetric matrix. 

The next issue that we want to consider is the initial conditions. In 
order that we be consistent with the concept of state, whatever symmetry 
assumptions we make regarding the state vector at the initial time Ti 
should be satisfied at an arbitrary time t (t 2 Ti). 

First, we shall assume that fi(Ti) is a complex random vector (we assume 
zero mean for simplicity). The complex covariance matrix for this random 
vector is 

Pi A R,(Tiy TJ = E[Z(Ti)Zt(Ti>] 

We assume that 
E[Z(&)2*(Ti)] = 0. (A.127) 

Notice that (A.126) and (A.127) are consistent with our earlier ideas. 
They imply that 

Kxc(Ti, Ti) = K, (Ti, Ti) = 4 Re [Pi], s (A.128) 

K,,s(Ti9 Ti) = -Kx,x,(r, 9 Ti) = ii Irn Cpi)* (A.129) 

Consequently, the complex covariance matrix of the initial condition is a 
Hermitian matrix with a non-negative-definite real part. 

Let us now consider what these assumptions imply about the co- 
variance of the state vector Z(t) and the observed signal y(t). Since we can 
relate the covariance of y(t) directly to that of the state vector, we shall 
consider K,(t, u) first. 

For real state-variable random processes, we can determine K,(t, CT) 
in terms of the state equation matrices, the matrix Q associated with the 
covariance of the excitation noise u(t), and the covariance K,(T,, Ti) of 
the initial state vector, X(Ti). The results for complex state variables are 
parallel. The only change is that the transpose operation is replaced by a 
conjugate transpose operation. Because of the similarity of the derivations, 
we shall only state the results (see Problem A.3.19). 
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The matrix &(t, t) is a Hermitian matrix that satisfies the linear matrix 
differential equation 

niC,(t, = F(t)ii,(t, t) + i&(t, t)P’(t) + @t)@?(t), (A.130) 
dt 

where the initial condition &(Ti, T$) is given as part of the system 
description. [This result is analogous to (I-6.279).] i(,(t, cr) is given by 

+<t, &&, 4, t > u, 
%,(t, 0) = (A.131) 

&(t, o+%, t>, 21 > t, 

where &t, a) is the complex transition matrix associated with p(t). 
(This result is analogous to that in Problem I-6.3.16.) In addition, 

K,(t, a) = iQ(o, t) (A.132) 
and 

E[%(t)fF(a)] = 0, for all t and CL (A. 133) 

Therefore the assumptions that we have made on the covariance of the 
initial state vector %(TJ are satisfied by the covariance of the state vector 
Z(t) for all t > T.* - 

Usually we are not concerned directly with the state vector of a system. 
The vector of interest is the observed signal, y(t), which is related to the 
state vector by (A.1 19). We can simply indicate the properties of the 
covariance R; (t, a>, since it is related directly to the covariance of 
the state vector by 

R,(t, 0) = C(t)R;;(t, &ycT). (A.134) 

Consequently, it is clear that & (t, t) is Hermitian. Similarly, from (A.133) 
we have the result that E[f(t)jfT(a)] is zero. 

The properties of the quadrature components follow easily: 

and 
HYc~t)Y,T(41 = ~[Y,(oYsT(o)l = 4 Re [qt, 41 (A.135) 

In this section we have introduced the idea of generating a complex 
random process by exciting a linear system having a complex state variable 
description with a complex white noise. We then showed how we could 
describe the second-order statistics of this process in terms of a complex 
covariance function, and we discussed how we could determine this 
function from the state-variable description of the system. The only 
assumptions that we made were on the second-order statistics of ii(t) 
and a(Ti). Our results were independent of the form of the coefficient 
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matrices P(t), G(t), and C(t). Our methods were exactly parallel to those 
for real state variables. It is easy to verify that all of the results are con- 
sistent with those derived in Sections A.1 and A.2 for stationary and 
nonstationary random processes. 

We now consider a simple example to illustrate some of the manipula- 
tions involved. 

Example 1. In this 
find the covariance 
in 
th 

which the process 
is system are 

example 
function 

is 

we consider a first-order (scalar) state equation. We shall 
for the nonstationary case and then look at the specia 1 case 

stationary, and find the spectrum. The equations that describe 

dz(t) - = -k(t) + ii(t), Ti 5 t (A.137) 
dt 

and 
g(t) = Z(t). (A.138) 

The assumptions on “u(t) and Z(T$ are 

and 
E[G(t)G*(o)] = 2 Re[z]P s(t - 0) 

E[iZ(Ti)12] = P,. 

(A.139) 

(A.140) 

Because we have a scalar process, both P and Pi must be real. In addition, we have 
again assumed zero means. 

First, we shall find K,(t, t). The differential equation (A.130) that it satisfies is 

d&t, t) -= 
dt -@dt, t> - i*&(t, t) + 2 Re [c]p 

= -2 Re [&?z(t, t) + 2 Re [ku]P, t 2 Tie (A.141) 

The solution to (A.141) is 

&cc t> = p - (p - pi)e-2Re [K](t-Ti), t 2 Tie (A.142) 

In order to find &(t, cr> by using (A.131), we need to find &t, G), the transition 
matrix for this system. This is 

tJ(t, 0) = e-Z(t-a), t > 0. (A.143) 

By substituting (A.142) and (A.143) into (A.131), we can find &t, a), which is also 
&<t, a) for this particular example. 

Let us now consider the stationary problem in more detail. This case arises when we 
observe a segment of a stationary process. To make Z(t) stationary, we let 

Pi = P. 

If  we perform the indicated substitutions and define T = t - u, we obtain 

This may be written as 

(A.144) 

(A.145) 

(A.146) 
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Fig. A.16 Pole location for stationary process generated by first-order system. 

The spectrum of the complex process is 

s&o> = 3gct.l) = 
2 Re [k]P 

(CL) + Im [$]J2 + (Re [E])2 ’ 
(A.147) 

From (A.147), we see that in the stationary case, the net effect of the complex pole c 
is that the complex spectrum has a frequency shift equal to the imaginary part of E. 
In the actual bandpass process, this corresponds to shifting the carrier frequency. This 
is obvious if we look at the pole-zero plot of S&B) as shown in Fig. A.16. 

Example 2. Consider the pole-zero plot shown in Fig. A.17. The spectrum is 

(A.148) 

We can generate this spectrum by driving a two-state system with complex white noise. 
The eigenvalues of the I? matrix must equal -El and -z2. If  we use the state representa- 
tion 

Q) = q(t) 

then the equations are 

x ---- ----)( 

x--------- ---------x 

(A.149) 

(A.150) 

u(t), (A.1 51) 

Fig. A.17 Pole location for a particular second-order spectrum. 
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and 

where we assume that 

qo 
g(t) = [l O] [ 1 Z&t) ’ 

Re &I > 0, 

(A.152) 

(A.153a) 

and 
Re [&I > 0, (A.153b) 

i, # i*. (A.1 53~) 

We can carry out the same type of analysis as in Example 1 (see Problem A.3.14). 

Our two examples emphasized stationary processes. The use of complex 
state variables is even more important when we must deal with non- 
stationary processes. Just as with real state variables, they enable us to 
obtain complete solutions to a large number of important problems in the 
areas of detection, estimation, and filtering theory. Many of these applica- 
tions arise logically in Chapters 9-13. There is one application that is 
easy to formulate, and so we include it here. 

Optimal Linear Filtering Theory. In many communication problems, 
we want to estimate the complex envelope of a narrow-band process. The 
efficiency of real state-variable techniques in finding estimator structures 
suggests that we can use our complex state variables to find estimates of 
the complex envelopes of narrow-band processes. In this section we shall 
indicate the structure of the realizable complex filter for estimating the 
complex envelope of a narrow-band process. We shall only quote the 
results of our derivation, since the methods used are exactly parallel to 
those for real state variables. The major difference is that the transpose 
operations are replaced by conjugate transpose operations. 

We consider complex random processes that have a finite-dimensional 
state representation. In the state-variable formulation of an optimal linear 
filtering problem, we want to estimate the state vector Z(t) of a linear 
system when we observe its output y(t) corrupted by additive white noise, 
g(t). Therefore, our received signal F(t) is given by 

f(t) = y(t) + G(t) 

where 
= @)W) + f+(t), Ti < t < Tr, - (A.154) 

E[qt)tv(T)] = R(t) s(t - 7). (A.155) 

We assume that B(t) is a positive-definite Hermitian matrix. 
In the realizable filtering problem, we estimate the state vector at the 

endpoint time of the observation interval, i.e., at Tf. This endpoint time, 
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however, is usually a variable that increases as the data are received. 
Consequently, we want to have our estimate Z(t) evolve as a function of 
the endpoint time of the observation interval [Ti, t]. We choose the esti- 
mate i(t) to minimize the mean-square error, 

We assume that k(t) is obtained by a linear filter. For complex Gaussian 
processes, this gives the best MMSE estimate without a linearity assump- 
tion. 

We can characterize the optimum realizable 
response k&, T), so that the optimal estimate 

P(t) = 

filter in terms of its impulse 
is given by 

t > Ti. (A.157) 

It is easy to show that this impulse response &,(t, 7) is the solution of the 
complex Wiener-Hopf integral equation, 

ii,(t, 7)et(7) = J L h,(t, a)K;(a, 7) do, & < 7 < t (A.158) 
Ti 

(see Problem A.3.15). In the state-variable formulation we find i(t) 
directly without finding the optimum impulse response explicitly. By 
paralleling the development for real state variables, we can implicitly specify 
P(t) as the solution of the differential equation 

f&L!! = F(t)i(t) + Z(t)[F(t) 
dt 

- ww~l, - Ti < t, 

where 
Z(t) = ii&, t) = &3(t)cyt)ik1(t). 

The covariance matrix &(t) is given by the nonlinear equation 

= F(t)&(t) + &(t)F’(t) - q t)W( t>zy t) + q t)Qe+( t), 

(A.159) 

(A.160) 

which can also be written as 
T < t, (A.161) 

dfi = F( t)&( t> + %,( t)F’( t) - f,( t>C’( t)R-l(t)C( t)&(t) + &(t>oc( t), 
dt 

Ti < t. (A.162) 
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The initial conditions reflect our a-priori information about the initial 
state of the system. 

m = E[wJl, (A.163) 

UT) = 1p,. (A.164) 

$(Ti) is an a-priori estimate of the initial state. (Often it is assumed to be 
zero for zero-mean processes.) Pi is the covariance of this a-priori estimate. 

As in the case of real variables, the variance equation may be computed 
independently of the estimator equation. In order to obtain solutions, it 
may be integrated numerically or the solution may be computed in terms 
of the transition matrix of an associated set of linear equations. Several 
interesting examples are discussed in the problems. 

A particular case of interest corresponds to a scalar received waveform. 
Then we can write 

R(t) = A$). (A.169 

We also observe that e(t) is a 1 x n matrix. In Fig. A.18 we show two 
pole-zero plots for the spectrum of y(t). We denote the modulations 
matrix of the two systems as C&) and C,(t), respectively. Clearly, we can 

x -------- X 

X --------s----x 
A 

>cr 

(cc) Pole locations in system A 

(b) Pole locations in system B 

Fig. A.18 Effect of carrier frequency shift on pole location. 
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use the same state equations for the two systems and let 

c (0 b = emj*‘Z‘,( t). (A. 166) 

Using (A.165) and (A.166) in (A.162), we see that &p(t) is not a function of 
A. Since A corresponds to a carrier frequency shift in the actual bandpass 
problem, this result is just what we would expect. Notice that &(t> is also 
invariant to an arbitrary phase modulation on C,(t), 

c 0 n. 
= (p(qt). (A. 167) 

This result is less obvious intuitively, but follows easily from (A.162). 
The results in (A.157)-(A. 164) are valid for nonstationary processes and 

arbitrary observation intervals. For stationary processes and semi-infinite 
observation intervals, the problem is equivalent to the complex version 
of the Wiener filtering problem. All of the techniques carry over with 
obvious modifications (see Problem A.3.15). 

Our discussion has considered the MMSE estimate of a complex random 
process. As we would expect from our work in Chapters 2 and 3, we shall 
encounter the problem of estimating a complex Gaussian random process 
in the detection problem. 

A.4 SUMMARY 

In this appendix we have developed a complex representation for band- 
pass signals, systems, and processes. Several important ideas should be 
re-emphasized at this point. The first idea is that of a complex envelope, 
f(t>. It is a low-pass function whose magnitude is the actual envelope and 
whose phase is the phase modulation of the carrier. We shall find that the 
complex envelope plays the same role as the signal itself did in our earlier 
discussions. The second idea is that of a complex. Gaussian random process. 
It plays the same role in the bandpass problem that the real Gaussian 
random process played previously. The third idea is that of complex state 
variables. They play the same role as real state variables did earlier. 

We have spent a fair amount of time developing the complex notation. 
As we proceed through Chapters 9-14, we shall find that it was time well 
spent, because of the efficiency and insight it adds to the development. 

A.5 PROBLEMS 

P.A.1 Complex Signals 

Problem A.l.l. The mean frequency c~i is defined in (A.16). Prove that we can always 
choose the carrier frequency so that 

co = - 0. 
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Problem A.1.2. Derive the following expressions: 

-.i s 
O” d!W co= --oo 7 3W dt, 

s * dF(jw) ‘y* . dco 
f=j ----- 

dco F (‘“‘2x’ -~ 

cut s * dF(jc0) dcu 
= h-n w 7 F*(jd G. 

-00 
Problem A.1.3 [18]. Write 

f(t) A A(t)ejpft), 
where 

is the signal envelope. Assume that 

1. Prove that 
co= - f=O. 

s 

co 
p= t2A2(t) dt,. 

--co 
(P.1) 

Notice that the first term in (P.2) is the frequency spread due to amplitude modulation 
and the second term is the frequency spread due to frequency modulation. 

2. Derive an expression for z in terms of A(t) and v(t). Interpret the result. 
Problem A.l.4 [2]. 

1. Prove that 

and therefore 

Re f(t) d’*(t) dt 1 ’ =- 
dt 2’ 

s 

a2 
t3w 7 

d3*(0 dt 1 

-a3 
=z+jGi. 

2. Use the Schwarz inequality on (P.2) to prove 
-- 
Cost2 - (rt)2 2 5, 

assuming 
cc)= - f-0. 

This can also be written as 

3. Prove that 

(P.1) 

(P-2) 

(P.3) 

(P.4) 

(P* 5) 
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An alternative way of stating (P.5) is to define 

The relation in (P.5) and (P.6) is called the uncertainty relation. 
Problem A-1.5. Assume that 

f(t)= (--$rexp [-(A-jb)t2]. 

Find 02 9 fi 9 and z 
Problem A.l.6. In Chapter 10 we define a function 

@(7,4 PCfit - f) f*(t + fje-““dt. 

Evaluate cU2, at2, and z - c~ji in terms of derivatives of +(7, CD) evaluated at 
7= co 0. = 

P.A.3 Complex Processes 

Problem A.3.1. Consider a complex Gaussian random variable whose density is given 
by (A.81 ). The characteristic function of a complex random variable is defined as 

1. Find i@g( j;) for a complex Gaussian random variable. 
2. How are the moments of Q related to mg(jv”) in general (i.e., g is not necessarily 

complex Gaussian) ? 
Problem A.32 Consider the N-dimensional complex random vector Z, where 

E[3] = 0, 

and 
E[SZt] a 2ii,, 

E[%$T] = 0. 

We define jz to be a complex Gaussian vector if 

1 m-l- 
pd3 = (2r)Nl~nl exp e-ma, Jo, 

--co<ReE]<co, --oo<Im-[k]<oo. 

We refer to the components of ji. as joint complex Gaussian random variables. 
The characteristic function of a complex random vector is defined as 
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Prove that 

for a complex Gaussian random vector. 
Problem A.3.3. A complex Gaussian random variable is defined in (A.81). Define 

If d is a complex Gaussian random variable for every finite g, we say 
Gaussian random vector. Prove that this definition is equivalent to 
A.3.2. 

that j3 is a complex 
the one in Problem 

Problem A.3.4. Assume that g is a complex Gaussian random variable. Prove that 

E[lg12”] = n! (E(lg12y. 

Problem A.35 Assume that d1 and g2 are joint complex Gaussian random variables. 
Prove that 

E[(ij,ij$)n] = n ! [E(81fi$l”. 

Problem A.3.6. Assume 
variables. Prove that 

that !7p 82, !73, and g4 are joint complex Gaussian random 

(This result is given in [ 161.) 
Problem A.3.7 [8]. Derive the “factoring-of-moments” property for complex Gaussian 
random processes. (Recall Problem I-3.3.12.) 
Problem A.3.8. Consider the problem outlined on pages 161-165 of [15]. Reformulate 
this problem using complex notation and solve it. Compare the efficiency of the two 
procedures. 
Problem A.3.9. In Problem I-6.2.1, we developed the properties of power density spectra 
of real random processes. 

Let n(t) be a stationary narrow-band process with a rational spectra S,(o). Denote 
the complex envelope process by h(t), and its spectrum by s-,(0>. 

1. Derive properties similar to those in Problem I-6.2.1. 
2. Sketch the pole-zero plots of some typical complex spectra. 

Problem A.3.10. The definition of a complex Gaussian process is given on page 588. 
Derive the complex versions of Properties 1 through 4 on pages I-183-1-185. 
Problem A.3.11. Prove that the eigenvalues of a complex envelope process are invariant 
to the choice of the carrier frequency. 
Problem A.3.12. Consider the results in (A.99)-(A.105). 

1. Verify that one gets identical results by working with a real vector process, 

n(t) = 
n,(t) [ 1 n , ( t )  l 

[Review Section 3.7 and observe that K,(t, u) has certain properties because of the 
assumption in (A.90).] 

2. What is the advantage of working with the complex process instead of n(t)? 
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Problem A.3.13 [14]. Consider the process described by (A.118)-(A.122) with 

G(t) = 1, 

jbt2 
i?(t) = a - y--- ) 

C(t) = 1. 

1. Find the covariance function of k(t). 
2. Demonstrate that g(t) has the same covariance as the output of a Doppler-spread 

channel with a one-pole fading spectrum and input signal given by (10.52). 
Problem A.3.14. Consider the process described by (A.148)-(A.153). 

1. Find the covariance function of g(t). 
2. Calculate E[ 17J12]. 

Problem A.3.15. Consider the linear filtering model in (A.1 54)-(A.156). 
1. Derive the Wiener-Hopf equation in (A.1 58). 
2. Derive the complex Kalman-Bucy equations in (A.1 59)-(A.164). 
3. Assume that Ti = - 00 and b(t) is stationary. Give an explicit solution to (A.158) 

by using spectrum factorization. 
4. Prove that, with a complex Gaussian assumption, a linear filter is the optimum 

MMSE processor. 
Problem A.3.16. The complex envelope of the received waveform is 

F(u) = rrs(u) + h4, --<l&t, 

where z(u) 
spectra 

and w(u) are statistically independent complex Gaussian processes with 

i7&0) = 
Re [k,]P k2P 

(~0 + Im [&])2 + Re [&])2 
+- 

co2 + kz2 ’ 

1. Find the minimum mean-square realizable estimate of i(t). 
2. Evaluate the minimum mean-square error. 

Problem A.3.17. The complex envelope of the received waveform is 

‘;(u) = i(u) + h,(u) + b(u), --co<u<t, 

where i(u), i?,(u), and G(u) are statistically independent Gaussian processes with 
spectra 

S&o) = 
2 Re [&]P, 

(cc, + Im [k*13)2 + (Re [k112) ’ 

s,- (cu) = 
2 Re [“k,]P, 

C co2 + (Re [&])2 ’ 

and 

s,(w) = No, 

respectively. 
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1. Find the minimum mean-square realizable estimate of g(t). 
2. Evaluate the minimum mean-square error. Do your results behave correctly as 

Im [i;l] --+ 00 ? 
Problem A.3.18. Consider the system shown in Fig. P.A.1. The input u(t) is a sample 
function of a real white Gaussian process. 

J 

Fig. P.A.1 

1. Compute &.(o), S+X), and SZ Z (w). 
2. Under what conditions is Z(t) ascomplex Gaussian process (according to our 

definition)? 
3. Let K&m) and K&m) be arbitrary transfer functions. We observe that 

at) = z(t) + C;(t), 

where G(t) is a sample function of a complex white Gaussian process with spectral 
height N,. Find the minimum mean-square unrealizable estimate of 2(t). 

(This type of problem is discussed in [12] and [17].) 
Problem A.3.19. Verify the results in (A.130)-(A.133). 
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