Chapter

Mathematical Review

Electronic signals are complicated phenomena, and their exact behavior is
impossible to describe completely. However, simple mathematical models can
describe the signals well enough to yield some very useful results that can be
applied in a variety of practical situations. Furthermore, linear systems and
digital filters are inherently mathematical beasts. This chapter is devoted to
a concise review of the mathematical techniques that are used throughout
the rest of the book.

1.1 Exponentials and Logarithms

Exponentials

There is an irrational number, usually denoted as e, that 1s of great impor-
tance in virtually all fields of science and engineering. This number is defined

by

e2 lim (1 +l> ~ 271828 - - - (1.1)
x - + 00 X

Unfortunately, this constant remains unnamed, and writers are forced to
settle for calling it “the number e” or perhaps “the base of natural loga-
rithms.” The letter e was first used to denote the ifrational in (1.1) by
Leonhard Euler (1707-1783), so it would seem reasonjable to refer to the
number under discussion as “Euler’s constant.” Such is not the case, how-
ever, as the term Euler’s constant is attached to the copstant y defined by

y1
7y = lim (Z = —log, N>z0.577215664-~~ (1.2)
N—oow \n=1

The number e is most often encountered in situations where it raised to some
real or complex power. The notation exp(x) is often used in place of e*, since
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the former can be written more clearly and typeset more easily than the
latter—especially in cases where the exponent is a complicated expression
rather just a single variable. The value for e raised to a complex power z can
be expanded in an infinite series as

2"

exp(2) = io - (1.3)

The series in (1.3) converges for all complex z having finite magnitude.

Logarithms

The common logarithm, or base-10 logarithm, of a number x is equal to the
power to which 10 must be raised in order to equal x:

y=log,x < x =10 (1.4)

The natural logarithm, or base-e logarithm, of a number x is equal to the
power to which e must be raised in order to equal x:

y=log,x < x =exp(y) =e” (1.5)

Natural logarithms are also called napierian logarithms in honor of John
Napier (1550-1617), a Scottish amateur mathematician who in 1614 published
the first account of logarithms in Mirifici logarithmorum canonis descripto
(“A Description of the Marvelous Rule of Logarithms”) (see Boyer 1968). The
concept of logarithms can be extended to any positive base b, with the base-b
logarithm of a number x equaling the power to which the base must be raised
in order to equal x:

y=log,x < x="5" (1.6)

The notation log without a base explicitly indicated usually denotes a
common logarithm, although sometimes this notation is used to denote
natural logarithms (especially in some of the older literature). More often,
the notation In is used to denote a natural logarithm. Logarithms exhibit a
number of properties that are listed in Table 1.1. Entry 1 is sometimes offered
as the definition of natural logarithms. The multiplication property in entry
3 is the theoretical basis upon which the design of the slide rule is based.

Decibels

Consider a system that has an output power of P, and an output voltage of
V.. given an input power of P, and an input voltage of V,,. The gain G, in
decibels (dB), of the system is given by

Pou Vgu Zou
G =10 Iog10< B t) =10 1ogw<v—;5-z—_—f> (1.7
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TABLE 1.1 Properties of Logarithms

*1
1. Inx =J —dy x>0
1Y
d 1
2. —(lnx) =- x>0
dx x
3. log,(xy) =log, x + log, ¥

1
4. log, (—) = —log, x
x

5. log,(y*)=xlog,y

)]
6. log, x = (log, x)(log, b) = 0 X
log, ¢

1. ln(1+z)=2(——1)"'1% o <1
n=1

If the input and output impedances are equal, (1.7) reduces to
V%\l VOU
G;g =10 logw<—‘?:) =20 logl(,(—#) (1.8

Example 1.1 An amplifier has a gain of 17.0dB. For a 3-mW input, what will the output
power be? Substituting the given data into (1.7) yields

17.0dB =10 logw<§%>

Solving for P, then produces

P,..=(3x1073)10970 =15 x 10~! = 150 mW

Example 1.2 What is the range in decibels of the values that can be represented by an
8-bit unsigned integer?

solution The smallest value is 1, and the largest value is 28 — 1 = 255. Thus

20 logw<2?—5) =48.13dB

The abbreviation dBm is used to designate power levels relative to 1 milli-
watt (mW). For example:

P

P=(10"3(10°) =10°=1.0W
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1.2 Complex Numbers

A complex number z has the form a + bj, where a and b are real and
J =</ —1. The real part of z is a, and the imaginary part of z is b. Mathemati-
cians use i to denote ./ —1, but electrical engineers use j to avoid confusion
with the traditional use of i for denoting current. For convenience, a + bj is
sometimes represented by the ordered pair (a, b). The modulus, or absolute
value, of z is denoted as |z| and is defined by

lz| = |a + bj| = \/a®+ b? (1.9
The complex conjugate of z is denoted as z* and is defined by
(z=a+bj) < *=a—bj) (1.10)

Conjugation distributes over addition, multiplication, and division:

(21 +29)* =2+ 2% (1.11)
(2125)* = 2T 2% (1.12)

2 \* z¥
<;1> -4 (1.13)

2 2

Operations on complex numbers in rectangular form

Consider two complex numbers:
z;=a + bj 2z, =c +dj

The four basic arithmetic operations are then defined as

z+2z,=(@+c)+jb+d) (1.14)
21—2,=(@—c)+jb—-d) (1.15)
2,2, = (ac — bd) + j(ad + bc) (1.16)

2y _ac+bd .bc—ad

z crdr I Era (117

Polar form of complex numbers

A complex number of the form a + bj can be represented by a point in a
coordinate plane as shown in Fig. 1.1. Such a representation is called an
Argand diagram (Spiegel 1965) in honor of Jean Robert Argand (1768-1822),
who published a description of this graphical representation of complex num-
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Im(z)
S 220 +bj

]
1

' 1
! Figure 1.1 Argand diagram rep-
: resentation of a complex num-

I} ' ber.

¢ Re(z)

bers in 1806 (Boyer 1968). The point representing a + bj can also be located
using an angle 0 and radius r as shown. From the definitions of sine and
cosine given in (1.25) and (1.26) of Sec. 1.3, it follows that

a=rcosf b=rsinf

Therefore, z=rcosf +jrsinf =r(cos 8 +j sinf) (1.18)

The quantity (cos 8 +j sin §) is sometimes denoted as cis 6. Making use of
(1.58) from Sec. 1.3, we can rewrite (1.18) as

z=rcis 0 =r exp( jO) (1.19)
The form in (1.19) is called the polar form of the complex number 2.
Operations on complex numbers in polar form
Consider three complex numbers:

z =r(cos 0 +j sin 0) = r exp( j6)
2, =r;(cos 8, + j sin 8,) =r, exp( jb,)

2, = ry(cos 6, + j sin 0,) = r, exp( j6,)

Several operations can be conveniently performed directly upon complex
numbers that are in polar form, as follows.

Multiplication

212, = rirplcos(8, + 6,) + j sin(f, + 6,)]
=r,ry exp[j(6; + 6,)] (1.20)
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Division
2 D cos(8, — 60,) +J sin(@; — 6,)]
22 Tg
r .
= r—l expl j(0, — 6,)] (1.21)
2
Powers
z" = r*[cos(nf) + j sin(n)]
=r" exp( jnb) (1.22)
Roots

0 + 2kn . . {0+2kn
Jz =2 =r cos " +J sin| ——

i exp[f(e“%k”)] k=0,1,2,... (1.23)

Equation (1.22) is known as De Moivre’s theorem. In 1730, an equation simi-
lar to (1.23) was published by Abraham De Moivre (1667-1754) in his
Miscellanea analytica (Boyer 1968). In Eq. (1.23), for a fixed n as & increases,
the sinusoidal functions will take on only n distinct values. Thus there are n
different nth roots of any complex number.

Logarithms of complex numbers
For the complex number z = r exp( j6), the natural logarithm of z is given by

In z = In[r exp( j6)]
= In{r explj(6 + 2kn)]}
=(Inr) +j(O + 2kn) k=0,1,2,... (1.24)

The principal value is obtained when k = 0.

1.3 Trigonometry

For x, y, r, and 6 as shown in Fig. 1.2, the six trigonometric functions of the
angle 0 are defined as

Sine: sin 8 = % (1.25)

Cosine: cos f = —3’—6_ (1.26)



Mathematical Review 7

r Figure 1.2 An angle in the carte-
v sian plane.
8
X

. Yy
Tangent: tan § = p (1.27)

r
Cosecant: csc f =; (1.28)

r
Secant: sec 0 = p (1.29)
x

Cotangent: cot 8 = ; (1.30)

Phase shifting of sinusoids

A number of useful equivalences can be obtained by adding particular phase
angles to the arguments of sine and cosine functions:

cos(wt) = sin(wt + g) (1.31)
cos(wt) = cos(wt + 2nn) n = any integer (1.32)
sin(wt) = sin(wt + 2nn) n = any integer (1.33)

. T
sin(wt) = cos(wt — 5) (1.34)
cos(wt) = cos[wt + (2n + 1)n] n = any integer (1.35)
sin(wt) = —sin[wt + (2n + 1)x] n = any integer (1.36)

Trigonometric identities

The following trigonometric identities often prove useful in the design and
analysis of signal processing systems.

tan x = (1.37)
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sin(—x) = —sin x
cos(—x) =cosx
tan(—x) = —tanx
cos’x +sin*x =1
cos? x = ¥,[1 + cos(2x)]
sin(x + y) = sin x)(cos ¥) * (cos y)(sin y)
cos(x + y) = (cos x)(cos y) F (sin x)(sin y)

(tan x) + (tan y)
1 — (tan x)(tan y)

tan(x +y) =

sin(2x) = 2(sin x)(cos x)
cos(2x) = cos? x — sin? x

2(tan x)
tan() =T tan?x

(sin x)(sin y) = %[ —cos(x + y) + cos(x — ¥)]
(cos x)(cos y) = Y% [cos(x + y) + cos(x — ¥)]
(sin x)(cos y) = %[sin(x + y) + sin(x — )]

(sin x) + (sin y) =2sinx ;ycosx —Z_y

(sin x) — (sin y) =2sinx _ycosx;-y

(cos x) + (cos y) =2cosx+ycosx ;y
(cos x) — (cos y) = —2sinx ;_ysinx—;—y

A cos(wt + ¥) + B cos(wt + ¢) = C cos(wt + 6)

where C = [A%+ B2 — 2AB cos(¢ — ¥)]

A siny + Bsin ¢
A cosy + Bcos¢

A cos(wt + ¥) + B sin(wt + ¢) = C cos(wt + 0)
where C=[A2 + B%2— 2AB sin(¢ — ¢)] /2

A siny — Bcos ¢
— -1
6= tan (A cos ¥ + B sin d))

0=tan‘1(

(1.38)
(1.39)
(1.40)
(1.41)
(1.42)
(1.43)
(1.44)

(1.45)

(1.46)
(1.47)

(1.48)

(1.49)
(1.50)
(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

(1.57)
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Euler’s identities

The following four equations, called Euler’s identities, relate sinusoids and
complex exponentials.

e’*=cosx +jsinx (1.58)
e *=cosx —jsinx (1.59)
Jjx e —jx
cosx =1 " (1.60)
2
Jjx __ o —Jx
sing=0—° (1.61)
2j

Series and product expansions

Listed below are infinite series expansions for the various trigonometric
functions (Abramowitz and Stegun 1966).

© (___1)nx2n+1

sin x = ngo @n t D! (1.62)

cos x = '20 (—T(;)T';CZ): (1.63)

tan x = ni::l (=" 122”((2;;)_! DBy - |x] <g (1.64)
cotx = 20(_1)n2(2;r1?)2!"x2n_1 x| <m (1.65)

sec x =HOZ::0(—_—1%;TE;2!'£¢3 £9 <g (1.66)

csC X = 20 (Z)"" 12(2222—;)!_ DBapx™ " |x| <n (1.67)

Values for the Bernoulli number B,, and Euler number E,1 are listed in Tables
1.2 and 1.3, respectively. In some instances, the infinite 'product expansions
for sine and cosine may be more convenient than the series expansions.

] 2
sinx =x [] <1 —iz—z—> (1.68)

ne=1 n°n

0 4 2
COsS X = n l:l——an_—xl)—z;t‘z-] (169)

n=1
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TABLE 1.2 Bernoulli Numbers TABLE 1.3 Euler Numbers
B,=N/D B,=0 forn=3,51,... E, =0 forn=1,3,5,1,...
n N D n E,
0 1 1 0 1
1 -1 2 2 -1
2 1 6 4 5
4 -1 30 6 —61
6 1 42 8 1385
8 -1 30 10 —50521
10 5 66 12 2,702,765
12 —691 2730 14 —199,360,981
14 7 6 16 19,391,512,145
16 —3617 510 18 —2,404,879,675,441
18 43867 798 20 370,371,188,237,525
20 —174611 330

Orthonormality of sine and cosine

Two functions ¢,(f) and ¢,(t) are said to form an orthogonal set over the
interval [0, T'] if

j ’ ,(t) ¢,(H) dt =0 (1.70)

The functions ¢,(¢) and ¢,(¢) are said to form an orthonormal set over the
interval [0, T'] if in addition to satisfying (1.70) each function has unit energy
over the interval

T T
J (¢:(D)]? dt = f [¢(D]* dt =1 (1.71)
0 0

Consider the two signals given by
¢, (t) = A sin(w,?) (1.72)
$2(t) = A cos(w?) (1.73)

The signals ¢, and ¢, will form an orthogonal set over the interval {0, T'] if
woT is an integer multiple of n. The set will be orthonormal as well as
orthogonal if A?=2/T. The signals ¢, and ¢, will form an approximately
orthonormal set over the interval [0, Tl if w,T > 1 and A2=2/T. The or-
thonormality of sine and cosine can be derived as follows.
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Substitution of (1.72) and (1.73) into (1.70) yields

T rT
J ¢, (1) dt = A% | sin wgyt cos wyt dt
0 JO
A2 (T
=5 [sin(wet + wot) + sin{wet — wet)] dt
JO
A? [T A? [cos 2w, t\|T
=— in 2wt dt = — | ———=
2 )y sin 2w, 2 ( 20, >t=0
A2
= (1 —cos 2w,T) (1.74)
4w, T 0

Thus if w, T is an integer multiple of 7, then cos(2w,T) =1 and ¢, and ¢, will
be orthogonal. If w,T » 1, then (1.74) will be very small and reasonably
approximated by zero; thus ¢, and ¢, can be considered as approximately
orthogonal. The energy of ¢,(f) on the interval [0, T] is given by

T

E = J‘T[qbl(t)]2 dt = A2f sin wyt dt

0

_ a2 ¢ sin 2wt r
2 4wy /=0
_ A2 I_sin 2w, T (1.75)
2 4w,
For ¢, to have unit energy, A? must satisfy
T sin2w, T\ !
Az=(o TR0 (1.76)
2 4w,

When w,T = nn, then sin 2w, T = 0. Thus (1.76) reduces to

2
A= \[? (1.77)

Substituting (1.77) into (1.75) yields

sin 2w, T

E =1-
! 2w, T

(1.78)

When w,7T > 1, the second term of (1.78) will be very small and reasonably
approximated by zero, thus indicating that ¢, and ¢, are approximately
orthonormal. In a similar manner, the energy of ¢,(t) can be found to be

T
E,= Azf cos® wyt dt
0

- A"’(I 4 Sin 2o T T) (1.79)
2 4w,
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Thus E,=1 ifA=\/g, and w,T=nn

E,=1 ifA=\/—2;, and w,T»1

1.4 Derivatives

Listed below are some derivative forms that often prove useful in theoretical
analysis of communication systems.

I sin u = cos u Z—: (1.80)
% cosu = —sin u d_.: (1.81)
%tanu=sec2u£=&—)slz—;2—: (1.82)
%cotu=csc2uﬁ=$12u-% (1.83)
dx secu =secu tan u % = :'(i)rslzl; % (1.84)
acscu:—cscucotu%=—_sic—nozgg% (1.85)
&dI ot = g % (1.86)
Ed;lnuzég—z (1.87)
gd;logu =105e% (1.88)
£0)-30-2)
Derivatives of polynomial ratios

Consider a ratio of polynomials given by

C(s) = A@®) B(s) #0 (1.90)

B(s)
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The derivative of C(s) can be obtained using Eq. (1.89) to obtain

d 19 4 "y
7: €@ =[BOI™" 2 A(s) — AE)B©) - Bls) (1.91)

Equation (1.91) will be very useful in the application of the Heaviside
expansion, which is discussed in Sec. 2.6.

1.5 Integration

Large integral tables fill entire volumes and contain thousands of entries.
However, a relatively small number of integral forms appear over and over
again in the study of communications, and these are listed below.

Jl dx=Inx (1.92)
x
1
'[e“" dx =—e* (1.93)
a
ax —1
fxe‘”‘ dx =——5—e*” (1.94)
a
. 1
jsm(ax) dx = 3 cos(ax) (1.95)
1 .
fcos(ax) dx = " sin(ax) (1.96)
jsin(ax +b)dx = —% cos(ax + b) (1.97)
Jcos(ax + b)dx =% sin(ax + b) (1.98)
. x 1 .
Ix sin(ax) dx = ~3 cos(ax) + p sin(ax) (1.99)
X . 1 ;
J‘x cos(ax) dx = p sin(ax) + py cos(ax) (1.100)
fsinz ax dx = ¥ _sin2ax | (1.101)
2 4a

2 x sin 2ax
coslaxdx =—+

1.102
2 4a ( )

. 1 .
Ixz sin ax dx = P (2ax sin ax + 2 cos ax — a®x? cos ax) (1.103)
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1 . .
fx2 cos ax dx = P (2ax cos ax — 2 sin ax + a®x? sin ax) (1.104)
fsin:‘l xdx = —¥% cos x(sin? x + 2) (1.105)
fcosa xdx =Y, sin x(cos® x + 2) (1.106)
Jsinx cosx dx =% sin®x (1.107)
f sin(mx) cos(nx) dx = —-czo(i(lm_—’;)n 2 _ cozs ((rrnn::))x (m? # n?

(1.108)
f sin? x cos? x dx = %[x — ¥, sin(4x))] (1.109)

_ m+1
fsinx cos™ x dx ——coe * (1.110)

m+1

I;ym+1
fsin"'x cos x dx . (1.111)

m+1

m—1 int+1 -1
Jcos”‘ xsintxde="08 *SIv X M Jco:s"“2 x sin” x dx (m#—n)
m+n m+n
(1.112)
- m+1 int—1 -1
Jcos"'x sin"xdx = cos’ xsin ¥ 71 fcos'"x sin""2xdx (m#—n)
m+n m+n

(1.113)
fu dv=uv—fvdu (1.114)

1.6 Dirac Delta Function

In all of electrical engineering, there is perhaps nothing that is responsible
for more hand-waving than is the so-called delta function, or impulse function,
which is denoted () and which is usually depicted as a vertical arrow at the
origin as shown in Fig. 1.3. This function is often called the Dirac delta
function in honor of Paul Dirac (1902-1984), an English physicist who used
delta functions extensively in his work on quantum mechanics. A number of
nonrigorous approaches for defining the impulse function can be found
throughout the literature. A unit impulse is often loosely described as having
a zero width and an infinite amplitude at the origin such that the total area
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3(1)

Figure 1.3 Graphical representa-
tion of the Dirac delta function.

under the impulse is equal to unity. How is it possible to claim that zero
times infinity equals 1? The trick involves defining a sequence of functions
f,.(t) such that

r O di=1 (1.115)

and lim f,(t) =0 fort #0 (1.116)

n-— oo

The delta function is then defined as
8(t) = lim £, (2) (1.117)
n— oc
Example 1.3 Let a sequence of pulse functions f, (¢} be defined as
1
t] < -
n

g
fu(t) =42
1.118
0 otherwise ( )

Equation (1.115) is satisfied since the area of pulse is equal to (2n) - (n/2) =1 for all n.
The pulse width decreases and the pulse amplitude increases as n approaches infinity.
Therefore, we intuitively sense that this sequence must also satisfy (1.116). Thus the
impulse function can be defined as the limit of (1.118) as n approaches infinity. Using
similar arguments, it can be shown that the impulse can also be defined as the limit of a
sequence of sinc functions or gaussian pulse functions.

A second approach entails simply defining () to be that function which
satisfies

J otydt=1 and o) =0 for't #0 (1.119)

— 0

In a third approach, &(f) is defined as that function which exhibits the
property

f "5 () dt = F(0) (1.120)

While any of these three approaches is adequate to introduce the delta
function into an engineer’s repertoire of analytical tools, none of the three is
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sufficiently rigorous to satisfy mathematicians or discerning theoreticians. In
particular, notice that none of the approaches presented deals with the
thorny issue of just what the value of 6(¢) is for ¢t = 0. The rigorous definition
of 4(¢) introduced in 1950 by Laurent Schwartz (Schwartz (1950) rejects the
notion that the impulse is an ordinary function and instead defines it as a

distribution.

Distributions

Let S be the set of functions f(x) for which the nth derivative f"I(x) exists for
any n and all x. Furthermore, each f(x) decreases sufficiently fast at infinity
such that

lim x"f(x) =0 for all n (1.121)

X — 20

A distribution, often denoted ¢(x), is defined as a continuous linear mapping
from the set S to the set of complex numbers. Notationally, this mapping is
represented as an inner product

f " b ) dx =2 (1.122)

or alternatively

(p(x), f(x)> =2 (1.123)

Notice that no claim is made that ¢ is a function capable of mapping values
of x into corresponding values ¢(x). In some texts (such as Papoulis 1962),
¢(x) is referred to as a functional or as a generalized function. The distribu-
tion ¢ is defined only through the impact that it has upon other functions.
The impulse function is a distribution defined by the following:

f © 80 ft) dt = £(0) (1.124)

The equation (1.124) looks exactly like (1.120), but defining 6(¢) as a distribu-
tion eliminates the need to tap dance around the issue of assigning a value
to 6(0). Furthermore, the impulse function is elevated to a more substantial
foundation from which several useful properties may be rigorously derived.
For a more in-depth discussion of distributions other than é(f), the interested
reader is referred to Chap. 4 of Weaver (1989).

Properties of the delta distribution

It has been shown (Weaver 1989; Brigham 1974; Papoulis 1962; Schwartz and
Friedland 1965) that the delta distribution exhibits the following properties:

— o0

foo ét)ydt =1 (1.125)
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o) — ot — 1)

—5(t) = lim =50 (1.126)
j "5t — o) O dt = f(t) (1127)
1
dat) = — 6(t) (1.128)
|al
5(to)(E) = F(ta)S(t0) (1129)
5L(t — 1)) % gt — 1) = 81t — (&, + t)] (1.130)

In Eq. (1.129), f(¢) is an ordinary function that is continuous at ¢ =1, and in
Eq. (1.130) the asterisk denotes convolution.

1.7 Mathematical Modeling of Signals

The distinction between a signal and its mathematical representation is not
always rigidly observed in the signal processing literature. Mathematical
functions that only model signals are commonly referred to as “signals,” and
properties of these models are often taken as properties of the signals
themselves.

Mathematical models of signals are generally categorized as either steady-
state or transient models. The typical voltage output from an oscillator is
sketched in Fig. 1.4. This signal exhibits three different parts—a turn-on
transient at the beginning, an interval of steady-state operation in the middle,
and a turn-off transient at the end. It is possible to formulate a single
mathematical expression that describes all three parts, but for most uses,
such an expression would be unnecessarily complicated. In cases where the
primary concern is steady-state behavior, simplified mathematical expres-

NN A
AYAEAS

1
1

[ k/\/\J Turn-off
| .

|

| transient
1

C—J

Turn-on
transient

Steady- state

Figure 1.4 Typical output of an audio oscillator.
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sions that ignore the transients will often be adequate. The steady-state
portion of the oscillator output can be modeled as a sinusoid that theoreti-
cally exists for all time. This seems to be a contradiction to the obvious fact
that the oscillator output exists for some limited time interval between
turn-on and turn-off. However, this is not really a problem; over the interval
of steady-state operation that we are interested in, the mathematical sine
function accurately describes the behavior of the oscillator’s output voltage.
Allowing the mathematical model to assume that the steady-state signal
exists over all time greatly simplifies matters since the transients’ behavior
can be excluded from the model. In situations where the transients are
important, they can be modeled as exponentially saturating and decaying
sinusoids as shown in Figs. 1.5 and 1.6. In Fig. 1.5, the saturating exponential
envelope continues to increase, but it never quite reaches the steady-state
value. Likewise the decaying exponential envelope of Fig. 1.6 continues to
decrease, but it never quite reaches zero. In this context, the steady-state
value is sometimes called an assymptote, or the envelope can be said to
assymptotically approach the steady-state value. Steady-state and transient
models of signal behavior inherently contradict each other, and neither
constitutes a “true” description of a particular signal. The formulation of the
appropriate model requires an understanding of the signal to be modeled and
of the implications that a particular choice of model will have for the
intended application.

x(t)

1_Be—uf o - - - -

A ,
i

Figure 1.5 Exponentially saturating sinusoid.
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x(t)

Figure 1.6 Exponentially decaying sinusoid.

Steady-state signal models

Generally, steady-state signals are limited to just sinusoids or sums of
sinusoids. This will include virtually any periodic signals of practical interest
since such signals can be resolved into sums of weighted and shifted sinusoids
using the Fourier analysis techniques presented in Sec. 1.8.

Periodicity. Sines, cosines, and square waves are all periodic functions. The
characteristic that makes them periodic is the way in which each of the
complete waveforms can be formed by repeating a particular cycle of the
waveform over and over at a regular interval as shown in Fig. 1.7.

Definition. A function x(¢) is periodic with a period of T if and only if x(¢ + nT') = x(?) for
all integer values of n. ;

Functions that are not periodic are called aperiodic, and functions that are
“almost” periodic are called quasi-periodic.

Symmetry. A function can exhibit a certain symmetry regarding its position
relative to the origin.

Definition. A function x(¢) is said to be even, or to exhibit even symmetry, if for all
t, x(8) = x(—1).

Definition. A function x(f) is said to be odd, or to exhibit odd symmetry, if for all
t, x(t) = —x(—1).

An even function is shown in Fig. 1.8, and an odd function is shown in Fig. 1.9.
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Figure 1.7 Periodic functions.
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Figure 1.8 Even-symmetric function.
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Figure 1.9 Odd-symmetric function.
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Symmetry may appear at first to be something that is only “nice to know”
and not particularly useful in practical applications where the definition
of time zero is often somewhat arbitrary. This is far from the case, how-
ever, because symmetry considerations play an important role in Fourier
analysis—especially the discrete Fourier analysis that will be discussed in
Chap. 7. Some functions are neither odd nor even, but any periodic function
can be resolved into a sum of an even function and an odd function as given
by

x(t) = xeven(t) + Xodd (t)
Where xeven(t) = l/Z[x(t) + x( _t)]
Xoaa () = Y [x(t) — x(— )]

Addition and multiplication of symmetric functions will obey the following
rules:

Even + even = even
0dd + odd = odd
Odd x odd = even
Even x even = even

0Odd x even = odd

Energy signals versus power signals

It is a common practice to deal with mathematical functions representing
abstract signals as though they are either voltages across a 1-Q resistor or
currents through a 1-Q resistor. Since, in either case, the resistance has an
assumed value of unity, the voltage and current for any particular signal will
be numerically equal—thus obviating the need to select one viewpoint over
the other. Thus for a signal x(f), the instantaneous power p(?) dissipated in
the 1-Q resistor is simply the squared amplitude of the signal

p@®) = |x@®) | (1.131)

regardless of whether x(f) represents a voltage or a current. To emphasize the
fact that the power given by (1.131) is based upon unity resistance, it is often
referred to as the normalized power. The total energy of the signal x(¢) is then
obtained by integrating the right-hand side of (1.131) over all time:

E= j N |x@)|* dt (1.132)
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and the average power is given by

T/2
P= 11m 7,! lx(®)|* dt (1.133)

A few texts (for example, Haykin 1983) equivalently define the average power
as

1 T
P = lim ? :
71'anl>o 5T J;T lx(®)|? dt (1.134)

If the total energy is finite and nonzero, x(¢) is referred to as an energy signal.
If the average power is finite and nonzero, x(f) is referred to as a power signal.
Note that a power signal has infinite energy, and an energy signal has zero
average power; thus the two categories are mutually exclusive. Periodic
signals and most random signals are power signals, while most deterministic
aperiodic signals are energy signals.

1.8 Fourier Series

Trigonometric forms

Periodic signals can be resolved into linear combinations of phase-shifted
sinusoids using the Fourier series, which is given by

x(t) = —° Y [a, cos(nwyt) + b, sin(nw,y?)] (1.135)
n=1
2 rTI2
where q, = — x(t) dt (1.136)
T ) 1
2 r~T/2
a, =— x(t) cos(nwyt) dt (1.137)
T J-T/2
2 rT/2
b,=—= x(t) sin(nw,t) dt (1.138)
T ) 10

€,

T = period of x(t)

2
W= 77[ = 2nf, = fundamental radian frequency of x(z)

Upon application of the appropriate trigonometric identities, Eq. (1.135) can
be put into the following alternative form:

x(t) =co+ Y, ¢, cos(nwet —6,) (1.139)

n=1
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where the ¢, and 8, are obtained from a, and b, using

Qo

=— 1.
=7 (1.140)
c,=+/a + b2 (1.141)

b
8, =tan 1<—> (1.142)

Examination of (1.135) and (1.136) reveals that a periodic signal contains
only a dc component plus sinusoids whose frequencies are integer multiples
of the original signal’s fundamental frequency. (For a fundamental frequency
of f,, 2f, is the second harmonic, 3f, is the third harmonic, and so on.)
Theoretically, periodic signals will generally contain an infinite number of
harmonically related sinusoidal components. In the real world, however,
periodic signals will contain only a finite number of measurable harmonics.
Consequently, pure mathematical functions are only approximately equal to
the practical signals which they model.

Exponential form

The trigonometric form of the Fourier series given by (1.135) makes it easy to
visualize periodic signals as summations of sine and cosine waves, but
mathematical manipulations are often more convenient when the series is in
the exponential form given by

x(t)= Y e (1.143)

n= -—aoo

1 )
where ¢, = — J x(t) e /2ot dt (1.144)
T)r

The integral notation used in (1.144) indicates that the integral is to be
evaluated over one period of x(¢). In general, the values of k',, are complex; and
they are often presented in the form of a magnitude spectrum and phase
spectrum as shown in Fig. 1.10. The magnitude and phase values plotted in
such spectra are obtained from c, using

le, | = «/[Rec)1? + [Im(c,)]? (1.145)
_ _ Im(c,)
8, =tan |:Re(cn):| (1.146)

The complex ¢, of (1.144) can be obtained from the a, and b, of (1.137) and
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Figure 1.10 Magnitude and phase spectra.

(1.138) using

a,+jb,
—_— <0
7 n
c, = Qg n=0
a, —an
_— >0
2 n

Conditions of applicability

(1.147)

The Fourier series can be applied to almost all periodic signals of practical
interest. However, there are some functions for which the series will not
converge. The Fourier series coefficients are guaranteed to exist and the
series will converge uniformly if x(f) satisfies the following conditions:

1. The function x(t) is a single-valued function.

2. The function x(f) has at most a finite number of discontinuities within

each period.

3. The function x(t) has at most a finite number of extrema (that is, maxima

and minima) within each period.
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4. The function x(¢) is absolutely integrable over a period:
f |x(®)| dt < 00 (1.148)
T

These conditions are often called the Dirichlet conditions in honor of Peter
Gustav Lejeune Dirichlet (1805-1859) who first published them in the 1828
issue of Journal fiir die reine und angewandte Mathematik (commonly known
as Crelle’s Journal). In applications where it is sufficient for the Fourier
series coefficients to be convergent in the mean, rather than uniformly
convergent, it suffices for x(f) to be integrable square over a period:

J |x(®)|? dt < o0 (1.149)
T

For most engineering purposes, the Fourier series is usually assumed to be
identical to x(¢) if conditions 1 through 3 plus either (1.148) or (1.149) are
satisfied.

Properties of the Fourler series

A number of useful Fourier series properties are listed in Table 1.4. For ease
of notation, the coefficients ¢, corresponding to x(¢) are denoted as X(n), and
the ¢,, corresponding to y(t) are denoted as Y(n). In other words, the Fourier
series representations of x(t) and y(¢) are given by

W= 3 X exp(j 2;’”) (1.150)

¥t) = i Y(n) exp(jzgnt> (1.151)

n= —au

TABLE 1.4 Properties of the Fourler Series
[Note: x(t), y(t), X(n), and Y(n) are as given in Egs. (1.150) and (1.151).]

Property Time function Transform
1. Homogeneity ax(t) aX(n)
2. Additivity x(t) + ¥(t) X(n) + Y(n)

3. Linearity

ax(t) + by(t)

aX(n) + bY(n)

i X(n —m)Y(m)

. Multiplication x(t)y(@®
) r m= — oo
. Convolution T f x(t - )y(r) dr X(n)yY(n)
o
. Time shifting x(t — 1) exp( = ?M>X(n)
j2nmt
. Frequency shifting exp(j ;m )x(t) X(n—m)
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where T is the period of both x(¢) and y(¢). In addition to the properties listed
in Table 1.4, the Fourier series coefficients exhibit certain symmetries. If (and
only if) x(t) is real, the corresponding FS coefficients will exhibit even
symmetry in their real part and odd symmetry in their imaginary part:

Im[x(#)] =0 < Re[X(—n)] = Re[X(n)]

Im[X(—n)] = —Im[X(n)] (1.152)
Equation (1.152) can be rewritten in a more compact form as
Im[x(®)] =0 < X(—n)=X*n) (1.153)

where the superscript asterisk indicates complex conjugation. Likewise for
purely imaginary x(¢), the corresponding FS coeflicients will exhibit odd
symmetry in their real part and even symmetry in their imaginary part:

Re[x(t)] =0 = X(—n) = —[X*(n)] (1.154)

If and only if x(¢) is (in general) complex with even symmetry in the real part
and odd symmetry in the imaginary part, then the corresponding FS co-
efficients will be purely real:

x(—2t) =x*(1) < Im[X(n)] =0 (1.155)

If and only if x(¢) is (in general) complex with odd symmetry in the real part
and even symmetry in the imaginary part, then the corresponding FS co-
efficients will be purely imaginary:

x(—t) = —[x*({) <« Re[X(n)] =0 (1.156)

In terms of the amplitude and phase spectra, Eq. (1.153) means that for real
signals, the amplitude spectrum will have even symmetry and the phase
spectrum will have odd symmetry. If x(f) is both real and even, then both
(1.153) and (1.155) apply. In this special case, the FS coefficients will be both
real and even symmetric. At first glance, it may appear that real even-sym-
metric coefficients are in contradiction to the expected odd-symmetric phase
spectrum; but in fact there is no contradiction. For all the positive real
coefficients, the corresponding phase is of course zero. For each of the
negative real coeflicients, we can choose a phase value of either plus or minus
180°. By appropriate selection of positive and negative values, odd symmetry
in the phase spectrum can be maintained.

Fourier series of a square wave

Consider the square wave shown in Fig. 1.11. The Fourier series representa-
tion of this signal is given by

W= 3 e exp<j2;”t> (1157)

n= —au
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Figure 1.11 Square wave.
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here ¢, = — sinc| — 1.158
b =) -

Since the signal is both real and even symmetric, the FS coefficients are real
and even symmetric as shown in Fig. 1.12. The corresponding magnitude
spectrum will be even, as shown in Fig. 1.13a. Appropriate selection of + 180°
values for the phase of negative coefficients will allow an odd-symmetric
phase spectrum to be plotted as in Fig. 1.13b.
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Figure 1.12 Fourier series for a square wave.
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Figure 1.13 Fourier series (a) amplitude and (b) phase spectra for a square wave.

Parseval’s theorem

The average power (normalized for 1 Q) of a real-valued periodic function of
time can be obtained directly from the Fourier series coefficients by using

Parseval’s theorem:

1 2
== L |x())? dt

= Y Jef=ci+ ;‘/212% 2 (1.159)

n=—o0

1.9 Fourier Transform

The Fourier transform is defined as

X(f) = Jw x(2) e 72 dt (1.160)

— o0



Mathematical Review 29

or in terms of the radian frequency w = 2xaf:

X(w) = j x(t) e 7t dt (1.161)
The inverse transform is defined as
x(t) = J X(f) e”™ df (1.162a)
1 (* )
=— f X(w) e’ dw (1.162b)
2n |_ o

There are a number of different shorthand notations for indicating that x(t)
and X(f) are related via the Fourier transform. Some of the more common
notations include:

X(f) = F[x(D)] (1.163)

x(t) = F X(f)] (1.164)

x(t) e X(f) (1.165)

x(t) — X(f) (1.166)
IFT

x(t) < X(f) (1.167)

The notation used in (1.163) and (1.164) is easiest to typeset, while the
notation of (1.167) is probably the most difficult. However, the notation of
(1.167) is used in the classic work on fast Fourier transforms described by
Brigham (1974). The notations of (1.165) and (1.166), while more difficult to
typeset, offer the flexibility of changing the letters FT to FS, DFT, or DTFT
to indicate, respectively, “Fourier series,” “discrete Fourier transform,” or
“discrete-time Fourier transform” as is done in Roberts and Mullis (1987).
(The latter two transforms will be discussed in Chap. 6.) The form used in
(1.166) is perhaps best saved for tutorial situations (such as Rorabaugh 1986)
where the distinction between the transform and inverse transform needs to
be emphasized. Strictly speaking, the equality shown in (1.164) is incorrect,
since the inverse transform of X(f) is only guaranteed to ppproach x(¢) in the
sense of convergence in the mean. Nevertheless, the notation of Eq. (1.164)
appears often throughout the engineering literature. Often the frequency
domain function is written as X(jw) rather than X(w) id order to facilitate
comparison with the Laplace transform. We can write

= o]

X(jo) = f x(t) e 7@t dt (1.168)

and realize that this is identical to the two-sided Laplace transform defined

by Eq. (2.21) with jo substituted for s. A number of useful Fourier transform
properties are listed in Table 1.5.
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TABLE 1.5 Properties of the Fourier Transform

Time function Transform
Property x(t) XN
1. Homogeneity ax(t) aX(f)
2. Additivity x(t) + y(t) X(f) +Y(f)
3. Linearity ax(t) + by(t) aX(f) +bY(f)
4. Differentiation % x(t) (j2nf)"X(f)
5. Integration j x(1) dr Z(SQ + L X(0) 5(f)
e j2nf 2
6. Frequency shifting e ~/2mfoix(t) X(f+1f)
7. Sine modulation x(2) sin(2xnfyt) Yol X(f —fo) + X(f + f)]
8. Cosine modulation x(t) cos(2nfyt) VI X(f —fo) — X(Uf + f )l
9. Time shifting x(t —1) e 7 X(f)
10. Time convolution jw h(t — 1) x(7) dt H(HX(f)
11. Multiplication x()y@) J% XA)Y(f—1)dA
12. Time and frequency scaling x(é) a>0 aX(af)
13. Duality X x(—f)
14. Conjugation x*(8) X*(=f)
15. Real part Re[x(#)] YIX(f) + X*(—/)]
16. Imaginary part Im[x(2)] 2—1] [X(f) — X*(=]

Fourier transforms of periodic signals

Often there is a requirement to analyze systems that include both periodic
power signals and aperiodic energy signals. The mixing of Fourier transform
results and Fourier series results implied by such an analysis may be quite
cumbersome. For the sake of convenience, the spectra of most periodic
signals can be obtained as Fourier transforms that involve the Dirac delta
function. When the spectrum of a periodic signal is determined via the
Fourier series, the spectrum will consist of lines located at the fundamental
frequency and its harmonics. When the spectrum of this same signal is
obtained as a Fourier transform, the spectrum will consist of Dirac delta
functions located at the fundamental frequency and its harmonics. Obvi-
ously, these two different mathematical representations must be equivalent
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in their physical significance. Specifically, consider a periodic signal x,(¢)
having a period of 7. The Fourier series representation of x,(¢) is obtained
from Eq. (1.143) as

x,(t) = i C, exp(jZ;nt> (1.169)

n—= —aoc

We can then define a generating function x(t) that is equal to a single period
of x,(8):

T
x, () |t] < 3

= 1.17
*®) 0 elsewhere ( 0)

The periodic signal x,(tf) can be expressed as an infinite summation of
time-shifted copies of x(t):
e}

x,(O = > x@t—nT) (1.171)

The Fourier series coefficients ¢, appearing in (1.169) can be obtained as

1 n
c, = ?X<_7_1> (1.172)

where X(f) is the Fourier transform of x(¢). Thus, the Fourier transform of
%,(t) can be obtained as

Flx,(0)) = % i X(%) 5<f _ %) (1.173)

Common Fourier transform pairs

A number of frequently encountered Fourier transform pairs are listed in
Table 1.6. Several of these pairs are actually obtained as Fourier transforms-
in-the-limit.

1.10 Spectral Density

Energy spectral density

The energy spectral density of an energy signal is defined as the squared
magnitude of the signal’s Fourier transform:

S.(f) =|X(H? (1.174)

Analogous to the way in which Parseval’s theorem relates the Fourier series
coefficients to the average power of a power signal, Rayleigh’s energy theorem



32 Chapter One

TABLE 1.6 Some Common Fourier Transform Pairs

Pair
No. x(2) X(w) X(f)
1 1 2n &(w) of)
1 1 1
2 u,(t) j-w*-f-né(w) 2_7'Ef+§5(f)
3 o(t) 1 1
4 tn 27[]" 5(")((,/)) <L> 5(n)(f)
2n
5 sin wot Jaldlw + 00) = 3@ —wo)l IO+ o) = 3f ~ )
6 cos wyt 7[5 + wg) + 5@ —wo)] IO +fo) +(F — fo)l
7 e %y, (1) 1 !
! Jjo+a J2nf +a
: Wo 2nfy
8 t)ye t —_—
“(t) e sin o (@ +jw) + b (@ +j21f)% + (2nfy)?
a+jo a +j2rf
9 tye 4 —_—
t(t) e cos g @ +jo) + wl (@ +j21f)? + (2nf,)?
1 |t<% .o .
10 o
{O elsewhere SInd 2n sinc f
1 sinctésmnt 1 |w|<= 1 |flsY
nt 0 elsewhere 0 elsewhere
12 at exp(—at) t>0 a a
0 elsewhere (a + jw)? (a +j2nf)?
2a 2a
18 exp(—alt) P a7 an?f
1 t>0
. 2 1
14 signumt £<{ 0 t=0 — —
{_ jo inf

1 t<0

relates the Fourier transform to the total energy of an energy signal as

follows:

E- f [x(0)? dt = f S.(f) df = f X(P)? df

(1.175)

In many texts where x(¢) is assumed to be real valued, the absolute-value
signs are omitted from the first integrand in (1.175). In some texts (such as
Kanefsky 1985), Eq. (1.175) is loosely referred to as “Parseval’s theorem.”
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Power spectral density of a periodic signal
The power spectral density (PSD) of a periodic signal is defined as the squared

magnitude of the signal’s line spectrum obtained via either a Fourier series
or a Fourier transform with impulses. Using the Dirac delta notational
conventions of the latter, the PSD is defined as

o= 5 -

’ (1.176)

= -0

where T is the period of the signal x(¢). Parseval’s theorem as given by Eq.
(1.159) of Sec. 1.8 can be restated in the notation of Fourier transform spectra

. .

1 =] 2

P== %

n=—aoo

(1.177)




