Contents

Preface xv

1 An Overview 1

1.1 A Framework for Digital Communications 3
 1.1.1 Sources, Channels, and Limits to Communication 3
 1.1.2 Operations in the Digital Transmission Pathway 6
 1.1.3 Modulation and Coding 8

1.2 Historical Notes 12

1.3 Outline of Book 14

Bibliography 15

2 Fundamentals of Probability and Information Theory 18

2.1 Probability 19
 2.1.1 Conditional Probability 22
 2.1.2 Independence 24

2.2 Random Variables: Discrete and Continuous 24
 2.2.1 Discrete Random Variables 25
 2.2.2 Continuous Random Variables 27
2.2.3 Multidimensional Random Variables or Random Vectors 33
2.2.4 Conditional Distributions and Densities 35
2.2.5 Independence of Random Variables 37
2.2.6 Transformations of Random Variables 38

2.3 Expectations and Moments 42
 2.3.1 First and Second Moments 43
 2.3.2 Correlation and Covariance 44
 2.3.3 Characteristic Functions 47

2.4 Probability Bounds and Limit Theorems 49
 2.4.1 Bounds Based on First and Second Moments 49
 2.4.2 Chernoff Bounds 50
 2.4.3 Sequences, Sums, and Laws of Large Numbers 53
 2.4.4 Central Limit Theorem 55

2.5 Stochastic Processes 57
 2.5.1 Wide-sense Stationarity, Autocorrelation Function, and Power Spectral Density 60
 2.5.2 Stochastic Processes in Linear Systems 65
 2.5.3 Time Averages versus Ensemble Averages 67
 2.5.4 Karhunen–Loève Series Representation for Random Processes 69
 2.5.5 Markov Models 73

2.6 Statistical Decision Theory 76
 2.6.1 Minimum Probability of Error Policies 77
 2.6.2 Irrelevant Data and Sufficient Statistics 80

2.7 Concepts of Information Theory for Discrete Alphabets 88
 2.7.1 Entropy for Discrete Random Variables 89
 2.7.2 Joint and Conditional Entropy 93
 2.7.3 Mutual Information 93
 2.7.4 Discrete Channels and Channel Capacity 95
 2.7.5 Sequence Transmission 98
 2.7.6 Converse to the Noisy Channel Coding Theorem 100

2.8 Coding of Discrete Information Sources 104
 2.8.1 Block Source Codes 105
 2.8.2 Block- to Variable-length Encoding 107
 2.8.3 Extensions to Discrete Markov Sources 112

2.9 Information Theory for Continuous Random Variables and Processes 113
 2.9.1 Scalar Variable Case 114
 2.9.2 Vector Gaussian Channel Case 117
 2.9.3 Waveform Channel Case 119

Bibliography 123
Exercises 125
3 Modulation and Detection

3.1 A Transmission Model
3.1.1 Digital Modulation
3.1.2 Channel Filtering
3.1.3 Channel Gain and Fading
3.1.4 Noise Model
3.1.5 Model Limitations

3.2 Signal Spaces
3.2.1 Orthonormal Basis Sets
3.2.2 M-ary Signal Constellations

3.3 Single-symbol Detection of Known Signals in AWGN
3.3.1 Error Performance for General Binary Signals in AWGN
3.3.2 Performance Bounds for M-ary Signaling
3.3.3 Detection of M-ary Orthogonal, Biorthogonal, and Simplex Modulation
3.3.4 Detection of M-ary Phase Shift Keying (M-PSK)
3.3.5 M-ary Amplitude Modulation and Quadrature Amplitude Modulation
3.3.6 Multidimensional Lattice-based Constellations for the AWGN Channel
3.3.7 Summary of Energy and Spectrum Efficiency of Modulation Techniques
3.3.8 Extension to Single-symbol Transmission on Nonideal Channels

3.4 Noncoherent Demodulation of Carrier-modulated Signals
3.4.1 Structure of Optimal Noncoherent Demodulator
3.4.2 Performance Analysis for Noncoherent Demodulation of Binary Orthogonal Signals
3.4.3 Performance Analysis of Noncoherent Detection of M-ary Orthogonal Signals

3.5 Phase Comparison or Differentially Coherent Demodulation of PSK
3.5.1 Structure of Optimal Demodulator
3.5.2 Performance Evaluation for M-DPSK

3.6 Performance on the Slow, Nonselective Rayleigh Fading Channel
3.6.1 Binary Signaling with Rayleigh Fading
3.6.2 M-ary Orthogonal Signaling with Noncoherent Detection
3.6.3 M-ary PSK and DPSK

3.7 Power Spectra of Digitally Modulated Signals
3.7.1 Overview on Power Spectrum and Some Cautions
3.7.2 Power Spectrum for General Memoryless Modulation
3.7.3 Baseband Pulse-amplitude Signaling
3.7.4 Spectra for M-PSK and M-QAM Modulation
3.7.5 Asymptotic Behavior of Power Spectrum: Role of Dimensionality
3.7.6 Power Spectrum for Markov-input Modulation

3.8 Spread-spectrum Modulation
3.8.1 Direct Sequence Spread Spectrum
4.7 Further Studies on Coding Potential 370
 4.7.1 Photon Counting (or Direct Detection) Optical Communication 370
 4.7.2 Block Interference Channels 376

Appendix 4A1: Decoding on Channels with Memory 379
 No Side Information 380
 Perfect Side Information 381

Bibliography 381
Exercises 383

5 Block Coding 393
 5.0 The (7, 4) Binary Hamming Code 395
 5.1 Algebra of Finite Fields 397
 5.1.1 Polynomials over Fields and Extension Fields 399
 5.1.2 Computation in Finite Fields 405
 5.1.3 Discrete Fourier Transforms over Finite Fields 407
 5.2 Linear Block Codes 411
 5.2.1 Structure of Linear Codes over GF(q) 411
 5.2.2 Distance Properties of Linear Codes and Error Protection Properties 416
 5.2.3 Decoding of Linear Block Codes (Maximum Likelihood and Algebraic) 421
 5.2.4 Performance Measures for Algebraic Decoding 425
 5.2.5 Hamming Codes over GF(q) 428
 5.2.6 Reed–Muller Codes 429
 5.3 Bounds on Minimum Hamming Distance for Block Codes 432
 5.3.1 Hamming (Sphere-packing) Bound 432
 5.3.2 Singleton Bound 435
 5.3.3 Plotkin Bound 436
 5.3.4 Gilbert Bound 437
 5.3.5 Varshamov Bound 439
 5.3.6 Asymptotic Forms of the Varshamov–Gilbert and Hamming Bounds 440
 5.3.7 Channel Capacity and the Coding Theorem Revisited 441
 5.4 Cyclic Codes 442
 5.4.1 Structure of Cyclic Codes 442
 5.4.2 Encoding of Cyclic Codes 450
 5.4.3 BCH Codes 455
 5.4.4 Cyclic Hamming Codes 462
 5.4.5 Reed–Solomon Codes 463
 5.5 Decoding of Cyclic Codes 465
 5.5.1 General-purpose Decoding of Cyclic Codes over GF(q) 466
 5.5.2 Algebraic (Errors Only) Decoding of BCH Codes and RS Codes 470
5.5.3 Errors-and-Erasures Decoding 482
5.5.4 ML and Near-ML Decoding 486

5.6 Modifying Block Codes 489
5.6.1 Extending and Puncturing 490
5.6.2 Expurgation and Augmentation 491
5.6.3 Lengthening and Shortening 492

5.7 Error Detection with Cyclic Codes 494

5.8 Layered Codes: Product Codes and Concatenated Codes 497
5.8.1 Product Codes 497
5.8.2 Concatenated Codes 500

5.9 Interleaving for Channels with Memory 502
5.9.1 Block Interleaving 505
5.9.2 Convolutional Interleaving 507

5.10 Performance Evaluation for Block Codes 510
5.10.1 AWGN Channel, Hard-decision Decoding 510
5.10.2 Soft-decision (ML) Decoding, AWGN Channel 518
5.10.3 Hard-decision Decoding, Rayleigh Channel 522
5.10.4 Soft-decision Decoding, Rayleigh Channel 524

5.11 Power Spectrum of Conventional Block Coded Modulation 526

5.12 Block Coding for Band-limited Channels 528
5.12.1 Multilevel Coding 529
5.12.2 Simple LSB Coding and Hard-decision Decoding 531
5.12.3 Multilevel Codes for Fading Channels 532

Appendix 5A1: Data Scramblers 532

Bibliography 534

Exercises 538

6 Trellis Codes 550

6.1 Description of Convolutional Codes 552
6.1.1 Binary Convolutional Codes 552
6.1.2 Nonbinary Convolutional Codes 561
6.1.3 Parity Check Matrices 562
6.1.4 Inverse Circuits 563
6.1.5 State Diagrams and Trellises 564

6.2 Hamming Distance Measures for Convolutional Codes; Various Good Codes 570
6.2.1 Distance Definitions 570
Chapter 6

6.2.2 Bounds on Free Distance 575
6.2.3 Optimal Free Distance Codes 576
6.2.4 Punctured Convolutional Codes 580
6.2.5 Optimal Distance Profile Codes 584

6.3 Maximum Likelihood Decoding of Convolutional Codes 584

6.3.1 Maximum Likelihood Sequence Decoding (Viterbi Algorithm) 585
6.3.2 Implementation Issues 591

6.4 Error Probability with Maximum Likelihood Decoding of Convolutional Codes 595

6.4.1 Performance of Binary Convolutional Codes on Nonfading Channels 601
6.4.2 Generalization to Bhattacharyya Expression 608
6.4.3 Nonbinary Convolutional Codes and Noncoherent Detection 608
6.4.4 Fading Channel Performance 610

6.5 Other Decoding Procedures: Sequential Decoding and Feedback Decoding 611

6.5.1 Sequential Decoding 611
6.5.2 Feedback Decoding 616

6.6 Trellis Coding with Expanded Signal Sets for Band-limited Channels 619

6.6.1 Set Partitioning 620
6.6.2 Hand Design of Codes 624
6.6.3 Trellis Codes for Fading Channels 634

6.7 Continuous-phase Modulation 637

6.7.1 Signal Description 637
6.7.2 State Representation 641
6.7.3 Modular Implementations 645
6.7.4 Description of CPM as Memoryless Modulation Preceded by Coding 645
6.7.5 Power Spectra of CPM Modulation 647
6.7.6 Coherent Decoding of CPM 647
6.7.7 Related Topics in CPM 652

Appendix 6A1: Numerical Evaluation of Transfer Function Bounds 655

Bibliography 657
Exercises 662

Index 671