w X | 4 z
——{DMC 1 +{ DMC 2 -+1DMC 3 p——
Encoder Channel Signal prdcessor

Figure 2,7.7 Cascade of discrete channels.
I1(X;Y)or I(Y: Z). To show this, we prove the former: /(X; Z) - I(X;Y) <0

P(Zkl-xr)
I(X:Z)—I(XsY)=ZZP“‘“"‘“O [ P(zx) ]

- ZZP():, ¥j log[ (If‘é ! ;’)]
) ] (2.7.25)

_ . Pz | x)P(y)
= EZ}ZZ’(:P(-X:! Yiv k) log[P(zk)P(y, | x;)

[P(znx.-)my!) _ IJ

Pzp) P(y; xi)
EZZ;P(M.)’LZH' log, 2
! J C

where the last step is by the information theory inequality. Use of Bayes’s rule and
subsequent summation yield that the final summation is zero. Thus,

IX;Z2)-I(X;Y) =<0 (2.7.26)

A similar development shows /(X; Z) < I(Y; Z) in Figure 2.7.7.

We have just demonstrated what is sometimes known as the data-processing
lemma, which in essence says that average mutual information cannot be increased by
further processing, either deterministic or stochastic. This is somewhat paradoxical, given
that communication systems are replete with processors such as quantizers, samplers, and
encoders and decoders. The theorem should not imply that these are necessarily harmful,
for they often simply manipulate data into another form that preserves information. On
the other hand, we must not see such additional processing (or additional channels in
cascade) as a way 1o increase information transfer.

We have developed several results from basic definitions of entropy, channel capac-
ity, and the like. We will now see their special importance to the commun’cation problem.
We begin by proving a converse to a coding theorem, to the effect that if message en-
tropy, per channel use, exceeds channel capacity, that no system is capable of achieving
arbitrarily small error probability. In Section 2.8, we consider the problem of efficiently
encoding a discrete memoryless source, where entropy again plays a central role.

2.7.6 Converse to the Noisy Channel Coding Theorem

In Chapter 4, we shall prove the positive side of a coding theorem that guarantees that,
if the attempted transmission rate is less than channel capacity, in equal units, then we
can, with sufficient effort. make the reliability of transmission arbitrarily good. This
proof requires some effort for general channels. It is easy, however, 10 demonstrate the
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converse to the theorem. Qur development closely parallels that of Gallager [12], in turn
drawn from Fano [14].

Consider the general communication system depicted in Figure 2.7.8, where a dis-
crete memoryless source produces an L-tuple U = (U, Uy, ..., Uy) of symbols selected
from an alphabet of size K. We allow a completely general encoder to map these
strings into codewords for the channel. The channel input vector will be designated as

X = (Xy,..., Xy), while the output vector will be denoted ¥ = (Y,,.... ¥n). The
respective alphabet sizes are M and Q as before. The decoder observes Y and attempts
to infer what message sequence was transmitted, and we let V = (V,, ..., V; ) denote its

choice, taken from the same aiphabet as that of the source. Maximum likelihood rules
would be appropriate for the decoder, as discussed in Section 2.6, but we do not rely on
a specific decoding algorithm here.

Capacity C
K-ary »{ Encoder > Cha:mel - Decoder +1  Sink
Scurce T f T
(U, U ..., U (X, ... Xo (Yie ooy Yo (Vi .o V1)

Figure 2.7.8 Biock diagram of general information transmission system,

We say a symbol error occurs in the mth position of the message if U, # V.. The
probability of etror in position m could be expressed as

Pem =3 P ) 8ui, vj), (2.7.27)
[
where §(u, v) is the Kronecker deita function,
)L ifu#v,
8(u, vy = {0, ifu = (2.7.28)

and Pc(z”:') is the joint distribution for the pair (U,, V,,). The average error probability
over L symbols is

I L
<P.> = 7 ;Pf,m. (2.7.29)

Our aim is to show that, for any L, <P,> is bounded away from zero whenever the
entropy of the source, per channel use, exceeds the channel capacity C.

First, we consider the case L = 1. We suppose the channel is employed N times
to communicate each source symbol. The decoder employs imperfect channel outputs to
infer which source symbol was sent, and this variable is denoted V. We first relate the
symbol error probability to the conditional entropy H(U | V):

Lemma (Fano). The conditional entropy of the source symbol U, given the
decoder output symbol V, is bounded by
HWU 1 V)-< P log(K = 1) + hy(P,). (2.7.30)

where hy(x) = —xlogx — (1 —x) log(l — x) is the binary entropy function introduced
in (2.7.5) and P, is the error probability for a single message symbol.

Sec. 2.7  Concepts of Information Theory for Discrete Alphabets 101



- Proof. The proof relies on a simple application of the grouping axiom for entropy.
We consider the uncertainty remaining about I/, once V has been observed. We can
break the joint ensemble (U, V) into two classes: a no-error class in which u and v are
identical, and an error class in which the input and output do not match. By definition,
the latter class, or event, has probability P,. By the grouping property,

H(U | V) = H(class specification | V')
+ P{(no error class)H (U | no error class, V) (2.7.31)
+ P(error class)H(U | error class, V).

The entropy of class specification is that of a binary experiment with parameter P,. Also,
if we are informed that no error occurred, V = v specifies U perfectly, so the second
term in {2.7.31) vanishes. On the other hand, if we are informed that an error exists, the
remaining uncertainty is, at worst, that of an equiprobable selection among the K — 1
symbols not equaling v, namely log(K ~ 1). Thus, substitution in (2.7.31) proves the
lemma, (2.7.30).

To tie this to source entropy and channel capacity, we note that H(U/ | V) =
"HWU)-1U;V)aid that I(U; V) < I(X;Y) < NC, by the data-processing lemma and
by the definition of C. Thus, we have that

Pelog(K — 1)+ ha(P,) = HWU) - NC. (2.7.32)

Graphical interpretation of this result is found in Figure 2.7.9, where the solid curve is a
plot of the left-hand side of (2.7.32) for some specific K. The right-hand side of (2.7.32)
is the difference between entropy and the available capacity, per source syibal. If this
is positive, then the smallest achievable P, is specified by the graphical solution shown.
If the right-hand side is negative, the result we obtained does not say perfect communi-
cation is possible, only that it might be. This positive version of the coding theorem is
yet to come.

We now proceed to show that, when source entropy exceeds available capacity per
unit source time, encoding L > 1 symbols together is no help on a DMC. We retumn to

log{(K-1)
H{U/V)
Lower bound
7777777 on F, i,
o///////, ] ‘; Figure 2.7.9 Interpretation of Fano
L]

inequality.
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the general L-tuple case and consider the conditional entropy, of U, given V. By the
chain rule for entropy, ‘

HUIVY=HWU |VY+HWU | U, V) + -+ HUL | Uy, ...2UL 4, V). (2.7.33)

Term-wise application of the conditioning inequality for entropy, H(X | ¥Y) > H(X |
¥, Z), in (2.7.33) gives the inequality

~

HU|V) E W, | V). (2.7.34)
}:
Now, if we use the Fano lemma (2.7.30) on each term in the sum, we have

L
HU V) <Y [P, jlog(K — 1) + ha(P, )] (2.7.35)
i=l
or, normalizing by the block length L,

] 1 &
LUV s <Pe>logK — D+ - ;hz(f’e,,). (2.7.36)

Finally, we invoke the fact that the entropy function is convex N over the space of
probability assignment vectors [12], illustrated in Figure 2.7.3:

1 <& 1<
T Y m(P)<h (va 3 Pe,,) = ha(<P,>). (2.7.37)
j:l J=1
Thus, we have
i
EH(U | V) <hy(<P,>)+ <P.>l0gK, (2.7.38)

which is similar in form to the result for L = 1. 7

To connect this result to source entropy and channel capacity, we assume that the
channel is used N times for every L-tuple from the source. The data-processing lemma
proved earlier holds that

IO, V)< I(X;Y) (2.7.39)
for any conceivable encoder and decoder. Also,
HU} V)= H(U) - I(U; V). (2.7.40)

Finally, for a memoryless source, H(U) = LH (U). Substituting in the left-hand side of
(2.7.38) yields

%H(U | V)= H({U) - %I(U; V)
| (2.7.41)
2 HU) - 71X Y).

For N uses of a memoryless channel, we have that / (X;Y) < NC, and (2.7.41) together
with (2.7.38) vields

N
<Pe>log(K — 1)+ hyi<Pe>) > HWU) - Z-C. (2.7.42)
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The first term on the right in (2.7.42) is the source entropy per symbol, while the second
term is the amount of channel capacity available per source symbol. The implication
of (2.7.42) is clear with the aid of Figure 2.7.9. If the source entropy exceeds channel
capacity, per source symbol, then <P,> is bounded away from zero. As long as the
ratio NV /L is kept constant, increasing L does not help in this regard, and there is no
possibility of forcing < F.> to an arbitrarily small number, or <P, > is strictly bounded
away from zero.

Example 2.29 Application of Converse to the Coding Theorem

Suppose we are presented a binary memoryless source whose probabilities are 0.6 and 0.4.
Let the source produce 1000 symbols per second. Suppose we have at our disposal a binary
erasure channel, with erasure probability § = 0.1, that can also be utilized 1000 times per
second. -
The source entropy is
H({U)= —-0.6log0.6 — 0.4log 0.4

(2.7.43)
= 0.971bit/symbol.

The channel capacity can be easily computed from (2.7.19b) to be C = 0.9 bit per channel
use. Since N/L = 1 here, the right-hand side of (2.7.42) becomes 0.071. Thus, we seek
the solution to

<Pe>log2 — 1)+ h2{<Pe>) =0071 (2.7.44)
which is <P.> > 0.0085. The result is that no means of encoding and decoding that keeps
N/L =1 can achieve an average error probability <P, > smaller than 0.0085. (This might

be tolerable, of course.)

It is worthwhile considering what a naive transmission system would do. We send
0 or 1 through the BEC dependent on source output, with no coding at all. If an erasure
occurs, the decoder flips a fair coin to decide the input. It is obvious then that the symbol
error probability is <P.> = (0.1)(0.5) = 0.05. Any more sophisticated scheme cannot
attain more than a sixfold improvement in error probability.

As a variation, we might consider the same problem formulation, except allowing
the same channel to be used 1200 times per second. (Usually, we cannot increase the
‘transmission speed and maintain the same discrete channel quality without some engineering
changes, but let's ignore that issue here.) Now the available capacity per source symbol
exceeds the entropy, and (2.7.41) has no positive solutien for <P,>. This should not imply
that the etror probability can be exactly zero, nor should it imply that we can make the error
probability arbitrarily small (it tums out we can, but we have yet to show this). We should
simply conclude that the converse ta the coding theorem does not itself i lmpose a nonzero
lower limit on error probability.

2.8 CODING OF DISCRETE INFORMATION SOURCES

Although it will not be a principal topic of the remainder of the book, efficient coding of
discrete sources for digital transmission can now be easily appreciated, and the discussion
further illustrates the importance of entropy and information measures. This material
is variously known as discrete source coding, data compression, data compaction, or
noiseless source coding. We emphasize the encoding ofenemoryless sources and then
generalize to Markov sources, an important class of sources with memory.
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A discrete memoryless source (DMS) produces a sequence of output symbols that
are selected independently from a K -ary alphabet {0, 1, ..., K — 1} with probabilities
Po, ..., Px-1. The entropy of the source H (/) is, because of the memoryless property,

k-1
HU) =~ P,log P, bits/source symbol. (2.8.1)
i=0

Consider a message to be an L-tuple of consecutive outputs from such a source.
Such strings have entropy L i ({/} bits per L-tuple, again by the memoryless assumption.
Our interest 1s in encoding, or representing, the output string produced by the scurce in an
efficient manner, and we will consider both block and variable-length coding techniques
for so doing. The entropy H (U} places a fundamental limit on efficiency in either case.
We begin with block source codes.

2.8.1 Block Source Codes

A block source code is a relation between source L-tuples and codewords of fixed length
N from an D-ary aiphabet, typically with O = 2 so that we have a binary encoding
of the source. The D-ary sequences are transmitted (or stored) in lieu of sending the
source string directly, and in some sense, we would like to utilize as few code symbols
as possible to represent the message. The source decoder is assumed to know the code,
in the form of a dictionary or encoding algorithm, and uses the codewords to reproduce
the source vector. The entire operation is depicted in Figure 2.8.1. In studies of source
coding, it is normally thought that the channel is perfect at transmitting source codewords.

N-tuples
over D-ary Alphabet

DMS | Source / ,.| Discrete \7 Source | User
| u Encoder | Channel | y | Encoder U

K-ary Capacity

Source C

L-tuples over K-ary Alphabet

Figure 2.8.1 Block source coding diagram.

Under the assumption that we wish this encoding/decoding to be pertect, we must
have a one-to-one relation between source vectors and codewords, which requires Kt <
DY, or that the codeword lengths be governed by

N S log K
L T logD
Example 230 Binary-coded-decimal (BCD) Encoding of Numerical Data

Decimal digits (X = 10) are to be represented one at a time by binary strings. The required
code length by (2.8.2) is N > log, 10/log,2 = 3.32, so N = 4 binary digits suffices.
The code is formed by assigning the binary expansion of the source digit; for example, 9
corresponds with 1001, and so on. This binary-coded-decimal scheme has a fair degree of

(2.8.2)
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inefficiency since 16 source symbols couid be represented by 4-bit codewords; to eliminate
most of this inefficiency, since 10° < 2'° (but with near equality), we could encode L = 3
digits together and use binary codewords of length ¥ = 10.

This type of block-to-block source coding is only efficient when the source is
equiprobable or nearly so, that is, when H(U) = log K. If the probabilities are not
equiprobable or, more importantly, symbols are not independent, the entropy of the
source can be much less than log X, and in these cases more efficient coding procedures
exist. To see how, we proceed to develop the notion of typical sequences. For a
sequence Uy, Us, ..., UL produced by a DMS, we recall that the self-information of the
string w; = (u;,, ..., u;, ) is

) = . 2.83
1(u;) = log P ( )
By the memoryless property of the source, we have that
L :
P =[]Pw) (2.8.4a)
=1
and thus
L
1) = lo . (2.8.4b)
w gP( 5 =2l P(.,)

The self-information of the string is then the sum of self-informations of the respective
symbols. We expect this sum to converge to L times the mean of éach term in the
sum, which is /(U), by a law of large numbers. Indeed, the Chebyshev inequality of

Section 2.3 would hold that
2
o
P(I(w)—LH > , .85
(1 (u) (U)|__€)S—€5 2.8.5)

where o2 is the variance of the (random) self-information /(U,) of a single source
symbol, assumed finite.

Accordingly, we define T, as the set of output sequences u for which the self-
information is e-close to the expected value; that is,

1
T.= {u:| ;log P LHWU) |< e]. (2.8.6)

By (2.8.5), this typical set of sequences holds probability at least 1 —a2/L 22, approach-
ing 1 as L increases. Furthermore, if we invoke the relation between self-information
and sequence probability, (2.8.4b), we have that for all sequences in 7,

2—LH(U)—€ < P(u) < 2—LH(U)+€ (2 8. 7)
This result says that all sequences in the typical set have virtually equal (and small)
probability, increasingly true for large L, and is referred to as the asymptotic equipartition

property.
Since the typical set has probability at most 1, we can upper-bound the number of
sequences in the typical set by

| T, |< 2¢HWe (2.8.8)
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If we are willing to allow a small probability ¢ of nonunique encoding, then for
block source coding we need only assign codewords to 247+ typical source sequences.
For D-ary coding of these sequences, this requires that DV > 2LHWIte] op thay

N, HD+e (2.8.9)

L~ logD
which is an improvement over the ratio in (2.8.2). We have thereby demonstrated a source
coding’ scheme whose number of code symbols per source symbol, N/L, is arbitrarily
close to H(U/)/log D, and which has a probability of ambiguous encoding arbitrarily
small. We might note the fundamental role of the law of large numbers here as well in
attaining efficient encoding. Similar arguments lead to a converse theorem, to the effect
that no block coding scheme can have N /L less than H(U) while achieving arbitrarily
small error probability.

Although clearly demonstrating the role of entropy in source coding, this block
coding scheme has little practical significance due to the (small) probability of nonunigue
encoding. (Even sharpening the bound beyond Chebyshev inequalities leaves us with this
nagging shortcoming.) Exercise 2.8.1 gives some numerical illustration of the problems
to be encountered here.

2.8.2 Block-to Variable-length Encoding

Techniques that are practically important, however, are obtained by allowing either the
source vector or.codeword vectors, or perhaps both, to be of variable length. That is, ei-
ther we collect a variable number of source symbols and associate with them fixed-length
codewords, or vice versa, or allow bath source and code strings to be of varying length,
We shall consider only the fixed length-to-variable length techniques here, and develop
a popular variable length-to-variable length scheme known as run-length encoding in the
exercises.

Qur aim previously was to minimize the (fixed) codeword length N. Now with
codewords of varying lengths, N;,i = 1,2,... K&, assigned to the possible source
L-tuples, we attempt to minimize the average or expected codeword length, denoted N.
For an ergodic source, this would minimize the time-averaged number of code symbols
expended per source symbol.

The additional difficulty that we encounter in this case is that of correctly parsing
the received code stream, which is an arbitrary concatenation of codewords. By requiring
the codewards to be prefix-free, that is, insisting that no codeword be a pretix of any
other, then the decoder can certainly parse the received string, for as soon as the decoder
discovers a valid codeword in the string, it may terminate that codeword, knowing that
the string is not the prefix of a longer codeword. {We will not discuss the practical issue
of start-up in the middle of a message and/or recovery from channel errors.)

In describing prefix-free codes, it is convenient to associate codewords with nodes
in a D-ary tree, where the actual codeword is given by the sequence of D-ary branching
decisions (o reach a given node. The prefix-free property requires simply that no node
in the tree that is assigned to be a codeword can have parent nodes at subsequent levels
that are also codewords. Figure 2.8.2a itlustrates a possible binary (D = 2) prefix-
free tree for four codewords, and Figure 2.8.2b shows another prefix-free assignment of
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four codewords. Figure 2.8.2c, however, does not represent a prefix-free code. (The
decoder for this code can nonetheless unambiguously decode, for the code symbol O is
a start-of-codeword symbol.)

(a) {b)

Figure 2.8.2 Binary variable lengih
code trees, 4 codewords in each case,
K=2L=2,D=2 (@K=2
prefix-free code tree; (b) K = 2 prefix
code tree; (c) uniquely decodable, but
{c) not prefix-free code tree.

We next argue that for a prefix code the set of possible codeword lengths N;,{ =
1,..., KL, must satisfy an inequality due to Kraft [15}:

K'L
d bM<l (2.8.10)
i=1
Conversely, we will see that when (2.8.10) is satisfied, we can construct a D -ary prefix-
free code for the source (McMillan [16]).

To prove these claims, we first consider any D-ary prefix-free code and order the
proposed codeword lengths in nondecreasing order, Ny < N < --- < Ng:. Pick any
node at depth N, in a D-ary tree as a codeword. This eliminates a fraction D~ of
nodes from an infinite tree. Assign another node at level N; in the remaining tree as the
second codeword, which removes another fraction D2 of the tree. When we encounter
the coding assignment for the KL -th codeword, we require at least one node remaining
in the tree, and thus the Krafi inequality is necessary for prefix-free codes.
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To prove sufficiency of the inequality (2.8.10), we observe that if a set of codeword
lengths meels the Kraft inequality, then we may choose as our first codeword any node
at depth N, the second codeword as any node not in the subtree of the first codeword
(so that the prefix property is maintained), and so on, allowing us to construct a code
with these lengths.

In addition to providing a test for the existence of prefix codes of specified lengths
(see Exercise 2.8.2), the Kraft inequality allows us to prove that no prefix-free source
coding scheme can have an average length N less that H(X)/ log D, as shown next.

We now prove the variable-length source coding theorem for discrete memoryless
sources and a converse, which firmly install entropy as the source parameter of interest
in coding of discrete sources.

Theorem. For a discrete memoryless source with entropy H (U), a prefix-free
code for source sequences of length L exists with expected number of code symbols per
source symbol, N, given by

LI
logD L
where D is the alphabet size of the codewords. Conversely, any prefix-free code must
have

(2.8.11)

(2.8.12)

Proof for L = 1 Case. The lower bound statement, (2.8.12), can be proved by
showing that H(X) — N log D < 0 for any prefix-free code:

— !
H(X)-NlogD :ZP,-logF ~Y PN;logD

DN (2.8.13)
= Z Pilog ( )
i P‘
Using the information theory inequality, logz < (z — 1)/ log, 2, we find
— DN _ ‘
H(X)~NiogD < 20 ZP‘. (2.8.14)

log, 2
However, the second sum is 1, and the Kraft inequality requires the first sum to be less
than or equal to 1, verifying the necessity of (2.8.12).
To demonstrate the positive side, (2.8.11), suppose we choose the codeword lengths
in accordance with the source output probabilities:

DM < P, < D~WiD), (2.8.15)
We can indeed create a prefix code having these lengths since 3" D% < 3" P, = 1, and

tl?e Kraft inequality is satisfied. Taking logarithms of the right-hand portion of (2.8.15)
.gives

log P, < ~(N; — lYlog D. (2.8.16)
Multiplying both sides of (2.8.16) by £; and summing yields
Y Pilogpi < —) NiPilogD+ ) PlogD. (28.17)
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Thus,

v< 2O (2.8.18)

“ logD
The proof may be easily extended to the case of encoding L source symbols at a
time by noting that, for a DMS, the entropy of such L-tuples is just L H(X), and then
~ computing a bound on the mean codeword length for L-tuples and normalizing by L to
obtain the average codeword length per source symbol.

Huffman coding
The preceding proof provides a construction of efficient source codes, referred to as
Shannon-Fano coding, but this construction does not directly minimize the average code-
word length. Huffman [17] developed an algorithm for the design of optimum block-
to variable-length codes. We shall not prove the algorithm’s optimality, but will merely
discuss the procedure, beginning with the D = 2 case (coding with binary codewords).

We shall assume the task of encoding L-tuples obtained from a discrete source
having K symbols in the alphabet and commence the construction by arranging the K-
source vectors, which we can regard as supersymbols, in descending order according to
their probability. The two least probable are merged into a pseudosymbol having prob-
ability equal to the sum of the merged symbol probabilities. (These two codewords will
ultimately differ in only the last position of the codeword.) Among the remaining K - 1
symbols, we combine the two least probable, adding their probabilities, and so on, until
we have combined all symbols into one supersymbol (holding probability 1). This com-
bining process is easily associated with a binary tree, and the codeword labeling corre-
sponds to the sequence of combining decisions. An example will illustrate the algorithm.

Example 2.31 Huffman Coding for 8-ary Source, L = 1

Recali the earlier Example 2.10 pertaining to quantizing a Gaussian random variable. The
optimal eight-level uniform quantizer may be shown to have zone probabilities of Gaussian
p.d.f. between thresholds specified by Max [6]. Assuming the Gaussian sequence is an inde-
pendent sequence, the quantizer output is an 8-ary DMS. We wish to encode this quantized
source with binary codewords.

The Huffman code tree is shown in Figure 2.8.3, where the remaining two least
probable symbols are combined at each stage. Binary codewords are obtained by reading
backward in the tree from the root node. The expected codeword length for this code is,
referring to Figure 2.8.3,

N = 2(0.23+ 0.23) + 3(0.17 + 0.17 + 0.08) + 4(0.08) + 5(0.02 +0.02)
(2.8.19)
= 2.70 bits per source symbol,

The source ¢ntropy H (U) may be computed to be 2.65 bits/source symbol, so further gains in
coding efficiency, which are available by coding multiple (L > 1) source symbols together,
are small. Also, the gain over a standard fixed- -length source code with 3 bits per codeword
is a modest 12%, but the data compression can be much larger when either source symbol
correlations exist or when the probabilities are more skewed.

For D-ary coding, with D > 2, the general procedure is quite similar: we usually
group D symbols at each iteration, but wish to combine D at the last stage of the
reduction process rather than the first. One way o ensure that this occurs is to add
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Figure 2.8.3 Huffman code tree for Exampie 2.31.

dummy symbols to the original set until j(D — 1) + 1 equals or exceeds the number of
symbols. for some integer j. Let the probabilities of these additional symbols be zero,
and form the tree as usual. Obviously, these zero-probability symbols are never used,
and they may be pruned from the code tree upon completion. Exercise 2.8.7 presents an
application related to Example 2.31.

Huffman coding will achieve the lower bound of (2.8.12) in situations where the
symbol probabilities are all inverse powers of D, for example, in a 4-ary source with
symbol probabilities 0.5, 0.25, 0.125, and 0.125, a binary code is maximally efficient.
Also, it is typical experience that the expected codeword length is much closer to the
lower bound (2.8.12) than the upper bound (2.8.11). However, for some highly skewed
sources, Huffman coding requires large values of L to achieve good efficiency, and pro-
cedures like run-length coding [18] are better suited (see Exercise 2.8.7). We note that
this does not contradict the claimed optimality of Huffman codes; the latter are block- to
variable-length codes, while run-length procedures are variable length-to-variable length
encodings.

As a retrospective on source coding, we should grasp the uncertainty-reducing
objective or, equivalently, the information-passing objective. The entropy of the source
output is the same as that of the process of selecting a source codeword. After all, the two
strings are merely two labelings of the same set of objects. If we want codewords to have
short lengths on the average, then the amount of information conveyed, or uncertainty
reduction, provided by each code symbol should be maximized. This will occur when
the code tree is as nearly balanced as possible, meaning the routing in the tree is nearly
equiprobable, given that we reach a given level. In Exampie 2.31, the first symbol of
the codeword is a 0.57/0.43 binary random variable, with entropy near 1 bit. Given that
the first symbol is a 1, the next symbol is a 0.535/0.465 binary variable, and so on.

A related analogy is the game of Twenty (or whatever number you wish) Questions,
in which a friend thinks of an object in some predefined allowable set, such as household
objects. Using a sequence of questions answerable by yes or no, you attempt to name the
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object in 20 questions or less. If the allowable set included 1024 objects, but the friend
tended to select them with unequal probabilities so that the entropy of the choice was
only 7 bits, then a proper questioning strategy’! would enable you to name the object
in roughly 7 questions, on the average. Occasionally, you might require more than 10
questions, or you may be lucky and be successful on the first question. Of course, a
friend who knows information theory will choose the objects equiprobably, implying that
the best strategy will require 10 questions on average.

2.8.3 Extensionsto Discrete Markov Sources

We shall conclude this section with remarks on discrete Markov sources, which often pro-
vide realistic models of sources with dependence. To define entropy for stationary sources
with memory, we compute the entropy defined on L-tuples, that is, H(U_), and then nor-
malize by L to obtain the per-symbol entropy. For stationary sources, it may be shown
that this ratio is monotone decreasing in L, and we define the entropy of the source as
Hoo(U) = lim H(:J L) (2.8.20)

—X

For stationary Markov sources, this calculation is simplified as follows. Given that the
system state at time & is oy = j, the source entropy is

K
HWU loe =) ==} Plui| o = j)log P(u; | ot = j). (2.8.21)
i=1
This will in general differ from state to state. The entropy for an ergodic Markov source
is then given by the weighted sum of these conditional entropies:
$—1
HU)=) Plo=jHW |o=j), (2.8.22)
j=0
where P(0 = j) is the steady-state probability of occupying state j. This result is
intuitively expected, but is rigorously demonstrated in [12].

Example 2.32 Entropy of a Ternary Source with Memory

Suppose a temary source has the model shown in Figure 2.84a. The input sequence W
is an independent, equiprobable sequence drawn from {0, 1}, and this sequence drives a
first-order recursive system defined by

Up = Up_| + Wi, modulo 3, Uy =0, (2.823)
W, mod. 3
+ - Uk
€ {0, '” {
P
U ks Figure 2.8.4a Source model.

21 Assuming you knew the friend’s p.m.£. for selecting objects.
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We define the state at time & as oy = U}, which takes on values in {0, 1,2]. A state-
transition diagram is shown in Figure 2.84b, from which symmetry makes it clear that
the steady-state probabilities for ail states are a} Furthermore, the entropy of the source,
conditioned on any state, is 1 bit, because of the equiprobable chance of transiting to one
of two next states. Thus, the source entropy is H(L/) = 1 bit/symbol, somewhat less than
the value of log; 3 = 1.58 blts/symbol obtained for a memoryless model with the same
first-order statistics.

Figure 28.4b State transition
Wi=0 diagram for Examnple 2.3.20.

Efficient coding of Markov sources can be accomplished through the use of state-
dependent codes; that is, we develop a codebook for each state and track the state at
both the encoder and decoder to correctly encode and decode. In Example 232, such a
codebook is a trivial codebook with 1 bit per source symbol, conveying for each state
what the next state should be.

Design of source coders as described requires knowledge of the source probability
structure, something which is often unavailable in practice or which may be time varying
among several models. Consequently, there has been much attention given to universal
source encoding schemes that attempt to efficiently code any discrete source in a class
of sources. Perhaps the best-known scheme is due to Lempet and Ziv [19], and similar
methods are routinely implemented for compression of text files (see Exercise 2.8.8).
A compression factor of two seems readily achievable on text files, but graphical or

numerical files give greatly different compressibilities. A wealth of information on text
compression is found in [20].

2.9 INFORMATION THEORY FOR CONTINUOUS RANDOM VARIABLES
AND PROCESSES

Our development in Section 2.7 for discrete ensembles carries over to the continuous,
or mixed, random variable situation in rather straightforward fashion, with only minor
care required to interpret the various quantities. This in turn leads to generalizations for
sequences and to waveforms through the use of orthonormal series expansions.
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2.9.1 Scalar Variable Case

First, let us assume X and Y are continuous r.v.’s with joint p.d.f. given by f(x, y).
By a partitioning, or quantizing, of the-space, R?, of the random variables, we can
make the problem discrete, onc we have treated in Section 2.7. Specifically, imag-
ine a uniform rectangular tiling of the x—y plane, with tile size A by A, as depicted
in Figure 2.9.1. Following the definition of Section 2.7, the average mutual infor-
mation shared by the discretized random variables (X2, ¥2) is, assuming small tile
size,

T Y =Y 3 fx, y)Ax Ay 1og[M], (2.9.1)

i SONAy

where / and j index the partitions, Letting the partition size shrink toward zero, we
obtain in the limit the integral expression

z(x;r)=f f(x,y)log{f(fy(*)’”]dydx,

fix, y)]
f Raleh g[f( Y] Rt

both similar to expressions developed in the discrete case, except probability densities
replace probabilities and integrals replace sums.

(2.9.2,

i fXY(X' V’

Lt/ v

Volume~ f{x; y;} A?
= Pix, y;)

Figure 2.9.1 Discretization of continuous random variables, X, Y.
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This might suggest that we define the entropy for the random vai.able Y as

H{Y) = ~[ f(y)log f(y)dy (29.3)
and the conditional entropy for Y, given X, as
A 10 =~ [ [ re g st 1 ayax (29.4

which wouid allow us to write
HX:YYy=H{) - H({Y | X), (2.9.5

as in the discrete case. There is no conceptual difficulty with the definition of mutual
information as in (2.9.2), and the same properties hold for it as were previously obtained
for the discrete case. Entropies, however, require some care; in particular H(Y) and
H(Y | X) are not limits of entropy quantities for the discretized problem as the tile size
diminishes to zero, but are entropies relative 1o some common scale factor. Notice that
if we arbitrarily scale the random variable X by some constant ¢, obtaining X' = cX,
and adjust the p.d.f. for X* appropriately, we will find that A (X") given by (2.9.3) differs
from H(X) by an amount —log(1/c). This is at obvious odds with our earlier inter-
pretation of entropy as an uncertainty measure, for merely scaling the random variables
seemingly has not changed the basic problem. We simply must.forego the uncertainty
interpretation in the continuous case, at least in the absolute sense,?? noting that exact
specification of the value of a continuous random variable requires an infinite number of
yes/no questions anyway. Mutual information, however, as a dlﬁerence of differential
entropies, remains scale invariant.

The channel capacity for a continuous-input, continuous-output channel is de-
fined as

C=max{(X;V})
Fx(x)

(2.9.6)
f(y |l x)

= [

max [f fx0) (1 )log [f F G z)dz] dydx

again similar in form to our earlier definition of channel capacity. In (2.9.6) we have
written the mutual information of (2.9.2) in a form that explicitly shows the dependence
on the input probability density fy(x). The variational problem is then to adjust the input
probablllty density function fx(x) to maximize mutual information, perhaps subject to
other constraints. {Technically speaking, the maximum need not exist in (2.9.6), and
some treatments would therefore define C as the supremum, or least upper bound, on
I(X;Y). This need not concern us here, however.}

Example'2.33 Channel Capacity for Additive Gaussian Noise Channel

As an important case for our future study, consider the scalar Gaussian noise channel shown
in Figure 2.9.2. The additive Gaussian noise Z is zero mean with variance o2 and is assumed
independent of the input random variable X. To make the problem well posed, we place
an average-€nergy, or mean-square-value, constraint on the input to the channel; that is, we
insist that X2 < E. Next, we note that the conditional (differential) entropy H(Y | X) is

Z1n the continuous case, the entropies are usuaily termed differential entropies.
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Constraint: T Figure 2.9.2 Scalar additive
Gaussian noise channel with energy
Xi<E Z ~ 910, 52) constraint.
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just the differential entropy, H(Z). of the noise variable. This foliows from substituting
in (2.9.4) the fact that fyx (¥ | x) = fz(y — x) and integrating. Thus,

IX;YY=H({Y)- H(Z). 2.9.7)

By direct calculation (using natural logarithms),

H(Z) = —[f(Z) log, f(z)d:

1 292 1 22
= —e 2207 — e 2.9.
= -f (2x02)'/2e [log, PRIy 202] dz (2.9.8)

= log, [(2102)"12} + % = log, [(2?1’802)”2] ,

which is invariant to the choice of the input probability density fx(x). Thus, to maximize
mutual information, we must maximize H(Y) subject to an input-energy constraint. Con-
straining the input energy to be less than or equal to E constrains the mean-square value of
Y to be less than or equal to E + a2, so the problem becomes

o
mﬂ}(gn}ize HY)=- f f(y)log, f(y)dy (2.9.9a)
¥ —00
subject to
f v f(y)dy < E + o2, f F)dy=1. (2.9.9b)
—x oo

It is obvious that the maximum will be achieved when the input energy is the largest
allowable, so we apply the method of Lagrange multipliers (see for example {21]) with an
equality constraint. We form the objective function

G(fiy) = ~/ F()log, f(y)dy + 4y [fyzf(y)dy—E~az]
-00

+Az[ff()’)d}’-l]‘

where the A; are Lagrange multiplier constants. We are seeking to maximize G( f()) by
adjusting f(y) at all y. Differentiating with respect to f(y) and setting the derivative to
zero to obtain a local extremum, we determine after simplification that the optimizing p.d.f.
is a Gaussian form,

(2.9.10)

f(y) = e~ MV bl (2.9.11)

where the Lagrange multipliers are chosen to satisfy the constraints. This in turn produces
M = ~1/I2(E + o¥)] and A — | = log, [2%(E + 02)~12]. Thus, ¥ must be Gaussian
with zero mean and variance E + o2, which can only be true if the input X is Gaussian
with zero mean and variance E. Substituting the optimal outpul density into (2.9.9a) yields

H(Y) = log, [2ne(E + ¢?)'?] nats per channel use. (2.9.12)
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The associated channel capacity is, by (2.9.7) and (2.9.8),

i E
C= 3 log, (! + —2) nats per channel use. (2.9.13)
g

Two ancillary aspects of this example, which can be demonstrated using similar
methods, are as follows:

1. Under a variance constraint, the Gaussian distribution has the largest differential
entropy.

2. For an additive noise channel with fixed noise variance o2 and an input energy
constraint E, the Gaussian random variable is the worst-case choice for the noise
distribution in terms of channel capacity.

Example 2.34 Capacity Calculation for a Gaussian Channel

Let o = 107%? in a communication receiver, and, at the same point in the system,
suppose we constrain the signal’s second moment to be £ < 10~3v?. The channel capacity,
assuming Gaussian additive noise, is from (2.9.13)

1
C= E‘OEe(l + 10) = 1.199 nats per channel use

= 1.730 bits per channel use.

We interprei this as the maximum amount of mutual information between input and output
variables under the preceding constraints. achievable if and only if the channel input is
zero-mean Gaussian with the prescribed variance. Exercise 2.9.3 considers the maximum
mutual information attainable when the input to this channel is four-level, meeting the energy
constraint on the input, and when the output variable Y is quantized to four levels as well.
This will give an idea of the sacrifice in capacity when a continuous-input, continuous-output
channel is used with finite alphabets at each end.

2.9.2 Vector Gaussian Channel Case

Next we consider vector channels, continuing with the Gaussian situation, as shown in
Figure 2.9.3. Such a model may be obtained from successive transmissions in time or
through the simultaneous use of several frequencies or antennas, and so on. We assume
each additive noise channel is zero mean Gaussian with variance 62, n =0, 1,..., N—1,
and that the noise variables are independent. A total emergy constraint on the input

vector is imposed, of the form ):X_f < ¥ E: < E, and we wish to find channel

capacity.
First,

) N—1
[X:V)=HY) - HY |X)=HY)- ¥ % log, (2rea?) (2.9.14)
=0

since the components of Y are independent, given the components of X. Again our task
is maximization of a differential entropy for a random vector subject to a second-maoment
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constraint. This differential entropy is largest when the components of Y are indepen-
dent and Gaussian, implying that the input components in X are independent Gaussian
variables as well. The task is then a resource allocation problem:

N-]
maximize ) _ log [2ne(E; + o})] (2.9.153)
i=0
subject to
N-1
Y E=E 2.9.15b)

i=0
Methods of variational calculus show that the optimal energy distribution is expressed
parametrically in terms of a parameter B by

E; +ur,-2 =B, wherever B > o2

it

2

i

(2.9.16)
E, =0, wherever B < o

and B is adjusted to satisfy the energy constraint. In other words, for those components
of the input vector that are allocated any energy, the sum of this energy together with the
noise variance must be constant. The optimal solution may be easily comprehended by
visualizing a reservoir, with N flat-bottomed segments, each o2 above some reference
level, as depicted in Figure 2.9.4. The reservoir bottom profile thus represents the noise
variance profite. We fill the reservoir with fluid until we have used £ units. The fluid
seeks a constant level>> and provides the optimal distribution of energy. More energy is
allocated to those channels where noise is small, and some channels may not be utilized
at all if the total energy allocation is insufficient.
The capacity resuiting from this optimal allocation is

N-1
l En
C= Z Elog, (l + ;3) nats/vector channe} use. (2.9.17)

a=0 "

We provide a means for fluid o flow from one valley to another.
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Figure 2.9.4 Reservoir analogy for optimal energy distribution on vector
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Example 2.35 Two Gaussian Channels in Parallel

Consider the communication channe| shown in Figure 2.9.5 on page 120, wherein we have
two channels, one with 10 times the noise variance of the other. If we allocate £ = 6 units
of energy, then we have from (2.9.16) that Eg + 1 = B and E,| + 10 = B, with B adjusted
such that Eg + E1 = 6. Since energy in each channel must be nonnegative, the solution is
to allocate all the energy to the less noisy channel. In contrast, if the total energy allocation
is raised to 15 units, then the solution is Ep = 12 and E; = 3. Note in particular that in the
latter case the optimal distribution of energy is neither “all in one channel” nor allocated in
the ratio of the noise variances for example. The joint density function for the optimizing
input random variables is a bivariate Gaussian density, with independence between the two
variables and with variances as given previously.

2.9.3 Wavetform Channel Case

Consider the situation wherein the channel input is a continuous-time stationary random
process X (f), and the channel output is the process ¥ (r) = X () + N(r), where N (1)
is a noise process, independent of X (r). We inquire about the channel capacity for this
situation, in units of bits per unit time,

The extension to the waveform channel case is provided through the concept of
orthogonal series expansions, as discussed in Section 2.5. In particular, we argue that a
T -second interval of a random process may be equated with a vector of expansion coef-
ficients and that with proper choice of basis functions (the K-L basis), these expansion
coefficients are uncorrelated random variables. When the process in question is Gaussian,
the expansion coefficients are Gaussian as well and independent. In this framework, the
parallel Gaussian channel just studied provides expressions for channel capacity.

To find capacity for the waveform channel case, we define Cr as the capacity in
bits per T-second interval. This we will find through the vector representations given
previously. The channel capacity in units per second is then defined as

c
€= lim &Tl bits/second. (2.9.18)

We illustrate this process with the classical case of an ideal band-limited Gaussian noise
channel.

Sec. 29 " Information Theory for Continucus Random Variables and Processes 119



No ~ O, 1)

Xo A YD
X ey %
X3+ X2<E Ny ~ U0, 10)
(a)
10
I
6
1
(b)
L
3
10
12—~
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Example 2.36 Capacity of Time-continuous Ideal Band-limited Gaussian Noise Channel

Consider the model of Figure 2.9.6a, where by including an ideal low-pass filter we force
the transmitted signal Z (1) to be strictly band-limited to B hertz. We place an average power
constraint on Z(t), that is, E[Z 2(r)] < P waitts. To this signal we add white Gaussian noise
N(r) with spectral density Np/2 wattshertz. We first consider calculating C7 by treating a
T-second interval for both processes. The power constraint means that the available energy
in the signal Z(1) is PT,

As discussed in Section 2.5, the Karhunen—Loeve expansion provides an association
between a Gaussian random process, say N (1), and a random vector of expansion coefficients
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whose components are independent, zero-mean, Gaussian random variables. As we have
discussed, to expand N(r), any orthonormal set of basis functions leaves noise variates that
are independent and Gaussian, with variance Np/2. For the ideal band-limited process Z(t),
however, special basis functions were necessary to produce independent, Gaussian expansion
coefficients. Thus, we adopt for the basis set the prolate spheroidal functions discussed in
Section 2.5 and thereby produce the infinite-dimensional parallel channel rendition shown
in Figure 2.9.6b. The expansion is energy preserving in the sense that 3 E[Z?] = ¥"); =
PT, and the profile shown in Figure 2.9.6c shows that adopting the K-L expansion has
inherently tailored the channel energy distribution automatically according to the eigenvalues

of the K-L expansion.
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Figure 2.9.6b Parallel channel model via K-L decomposition.
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Figure 2.9.6c Profiles of signal and noise energy versus channel aumber.
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Now recall the hardening that sets in for any given & as T grows: there are roughly
2BT + 1 eigenvalues that are significant, each with value approximately PT /(2BT + 1),
and the remaining eigenvalues are negligibly small. Thus, for T large, the parallel channel
capacity is

CTewf'-log[H—-——Nl‘ ] (2.9.19)
=1 2 ( 0/2

where A, ~ PT/(2BT + 1).
We now formulate the channel capacity for the ideal band-limited Gaussian channel
Cp according to (2.9.18) as

_Cr . 28T+ 2PT
= =T e e —
Co = T =TT °g[ T BT+ DN

(2.9.20)

P
= Blog, ( 1+ A_'OE) nats per second.

This is a classical expression due to Shannon for the capacity of the ideal band-limited
Gaussian noise channel and is ofien expressed in terms of available signal-to-noise ratio
S/N = P/NoB as

s
Cp = Blog, (1 + )7) nats per second. (2.9.21)

(This expression holds also for ideal bandpass Gaussian noise channels where B is the
channel bandwidth.)

An important special case of this result arises when the allowed bandwidth of the
channel becomes arbitrarily large, but we operate with fixed power P watts and noise spectral
density Ng/2 wans/hertz. Using (2.9.21) and the approximation that log, (1 + x) ~ x as x
becomes smali, we obtain

P P
Coc = — nats per second = (.693 | — | bits per second. (2.9.22)
Np Np

In practical terms, the infinite-bandwidth capacity is essentially obtained when we use band-
width B such that P/NgB < 0.2. Netice also that having smail signal-to-noise ratio
measured in the available bandwidth is not inherently to be avoided.

Another means of interpreting (2.9.21) is to ask, “What S/N is required for a system
to supply C bits/second of channe! capacity while operating within a bandwidih of B hertz?”
Solving for S/N in (2.9.21) requires that this critical S/N be

S_ P _em_
N NeB = 2 1, (29.23)
where we measure C in bits per second.

Important implications for digital communication follow from this capacity £Xpres-
sion. Suppose we wish to transmit binary information at a rate of R), bits per second, and
we model the bits as independent. Thus, the source has entropy H(U) = Ry bits/second.
We must perform the transmission within channel bandwidth B herz in the presence of
additive Gaussian noise with spectral density Ny,/2 watts/hertz. The available signal power
at the receiver is P walts,

A generalization of the earlier converse to the coding theorem, proved for DMCs,
would hold that for reliable transmission to be possible we must have Ry, < C, both in equal
units. Thus, from (2.9.20) we require that

P EnR
Ry < B log, (1 + m) = Blog, (1 + A;’OB”), (2.9.24)
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where the energy per bit E}, is just the received power £ multiplied by the bit duration Ty
and Ry = 1/T}.

We will see in Chapter 3 that E, /Ny is a standard figure of merit for digital com-
munication or the Gaussian noise channel. Solving in (2.9.24) for the minimum allowable
Ep/No, we have the requirement for reliable transmission on the band-limited Gaussian
noise channel that

Ep _B_ Rp/B _

% R (2 1). (2.9.25)
Thus, the critical E, /Ny figure of merit is related only to the available bandwidth expansion
ratio, B /Rp. Figure 2.9.7 presents this lower bound versus 8/R;, and reveals two important
features. First, if essentially unlimited bandwidth is available, we must supply at least
Ep/Ng = 0.693 = —1.6 decibels to have any hope of reliable communication. (We have
not yet demonstrated that in principle it is possible to communicate reliably with just slightly
larger signal-to-noise ratio.) Furthermore, when bandwidth is constrained, the required
energy-to-noise density ratio increases dramatically, essentially in exponential fashion, when
the ratio R /B exceeds unity. This topic will be furthes developed in Chapter 3, where we
compare typical modulation schemes against this standard, and in our later discussion of

coding methods.
25
20
_E_Q Ry/B _ E % 15 -
[Nolrnin [2% "Rb £
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Figure 2.9.7 Channel capacity limitation for digital communication on band-
limited additive Gaussian noise channel.
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22.1.

2.2.2,

EXERCISES

Let A and B be two events in a field. Verify that P{AUB)Y = P(A)+ P(B) - P(ANB) by
the use of simple set operations, the axioms of probability, and the possible aid of a Venn
diagram.

A certain experiment has events A, 8, and C with the following probabilities:

I

P(A)-.:-z-
A“'(B)--l
T3
.0""(C}-—l
T4

1

NB)= -
P(ANB) 3
1

1
P(A.ﬁBﬁC):l

(a} Are the events pairwise independent? Are the events jointly independent?
(b) Find P(A U B).

{¢) Find P(AUBUC).

(d) Determine P(B | C) and P(A | BN C) using Bayes’s rule.

In a binary communication system we have four messages 000, 110, 101, and 0t1. The

messages are selected with equal probability, and sent through the binary symmetric channel

of Example 2.3, which transmits each message symbol independently, with a probability

of error equal 10 0.1. Let r = (ry, r3. r3) denote the channel output vector, and let B; be

events denoting that the received symbol r; is 0.

(a) What is P(B,)?

{b) What is the probability that r == (110)?

{c) Given that we receive r = (110), what is the a posteriori probability that the message
110 was sent?

(d) Are the events B; jointly independent? pairwise independent?

Derive the binromial probability mass function (2.2.3) for k successes in n independent trials
of a binary experiment by determining the probability of a specific sequence of outcomes
and then arguing that there are C ¢ = nal/kln — k) (disjoint) arrangements of & successes
in n trials.

Suppose N is a Gaussnan random variable representing receiver noise, having zero mean
and variance 0.01 v2. A constant signal added to N has amplitude 0.20 volt. Show that the
probability that the sum is less than zero is Q(2) and evaluate using (1} Table 2.1 of the
Q-function and (2) the upper bounds on Q(x) discussed in the text.
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An approximation to Q(x) that is very accurate for all arguments x is2*

~ 1 ‘ C—xzﬂ
Qe ~ (Il —a)x +ax?+b)!12 | @n)i7

where @ = 0.344 and b = 5.334. Compare this approximation with the two preceding
résults.

2.2.3. Two random variables X and Y have the joint p.d.f. given by

B, eyt <t,

fxyr(x,y) = [0_ clse.

(a) Find B to properly scale the density function, and sketch the joint p.d.f.

{b) Find the marginal p.d.f.'s for either X orY.

(c) Determine and sketch the conditional p.d.f.’s frix(y{x =0) and fy|x(y | x = 0.9).
(d) Are X and Y independent?

2.24. For the three-dimensional p.d.f. of Example 2.8, determine the marginal p.d.f. for X; and

the conditional p.d.f. f(xz{x;). Show that both are of Gaussian form. (This is a general
property associated with multivariate Gaussian r.v.’s.)

2.25. Let X be a Gaussian random variable with 4 = 0, and let Y ={ X |.

(@) Use Fr(y) = P(Y < y) = P{ X |< y'2) to find an integral expression for Fy(y).
Then differentiate to find fy (7).
(b) Use the result of part (a) to find the mean of Y.

2.2.6. Uniform random variables are often provided as system subroutines on most computers. If

none is available, Leon-Garcia (4] suggests the following algorithm for producing uniformly
distributed random numbers on a computer: let Z; be defined recursively by

Zi=7Zi_yimod @ - 1)

with Zg being the “seed” of the sequence. The sequence of integers nas a period of 23! — 1.
To obtain values uniform on [0,(], simply normalize Z; after the recursion by 2*1. Write
a short program to generate 1000 variates, and compute 2 crude histogram by counting the
number in each decile of the range.

2.2.7. The Box-Muller method is a popular method of generating exactly Gaussian random vari-

ables on a computer, given the availability of a uniform random number generator. Let
U) and U; be uniformly distributed on [0,1] and independent. Then

X = (—2log, U1)'72 cos(2nUy),
Y = (~2log, U1)'/? sin(2nU3)

are independent, zero-mean, unity variance Gaussian random variables. (Showing this re-
sult is a superb exercise in the transformation of random variables [1, Chapter 6].} Write
a short program to generate 1000 such variables and test the sample mean, sample vari-
ance, and sample correlation between X and ¥ to support at least part of the preceding
claim. ‘

2.3.1. The geometric random variable has probability mass function given by (2.2.5). Show that

the mean of the waiting time W until, and including, the time when the next error occurs

#Pp. 0. Botjesson and C.-E. W. Sundberg, “Simple Approximations of the Error Function Qx) for

Communications Applications,” JEEE Transactions on Communications, vol. COM-27, pp. 639643, March
1979.
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.

2.3.3.

2.34.

2.3.5.

2.3.6.

2.3.7

-

in a sequence of independent transmissions, each with error probability ¢, is

-

EWl=) kG-¢ef'=

20
Jj=

Thus, the mean waiting time until the next error is simply the inverse of the error probability.

Trick: Realize the expression for the mean is the infinite sum Zi’o___ﬂ pld/dg)(g*), where

p =€ and ¢ = | — p. Exchange differentiation and summation, which is permissible since

the infinite series is convergent.

Verify by direct integration that the standard deviations of the uniform and Gaussian random

variables of Examples 2.5 and 2.6 are (b —a)/ 12172 and o, respectively. A table of definite
integrals may be useful in the Gaussian case.

For the random variables X and Y described in Exercise 2.2.3:

(a) Show that X and Y are uncorrelated.

(b) Show that X and ¥ are not independent, thus refuting a possible claim that uncorrelat-
edness implies independence.

If © is uniformly distributed on the interval [0, 27}, show by definition of the expectation
operator that

(a) Elcos®@] =0

(b) Efcos’ ®) = 5

(c) Elcos@sin®] =10

Let X be an n-dimensional Gaussian vector of r.v.’s with mean vector m, and covariance
matrix K. Let Y = AX + b be a linear transformation of the original vector, where A is
an xn matrix and b is | x n vector.

(a) Show from the definitions that the mean vector and covariance matrix of Y are m, =
Am, +b and K, = AK;AT, respectively, where T denotes the matrix transpose
operation.

(b) Show, furthermore, that the p.d.f. for Y is of Gaussian form by solving for X in terms
of Y (assume A is invertible) and substituting into the general Gaussian form.

The Cauchy random variable has p.d.f. described by
1

r(l + 1Y)’

(a) Determine the characteristic function by computing the Fourier transform of this pd.f.

(b) Use this resukt to show that the sum of N independent Cauchy r.v.’s is also Cauchy dis-
tributed, but with a different scale parameter. Thus, like the Gaussian random variable,
the €Cauchy variable is “reproducing” under surmation.

(¢} Does the mean, or any moment for that matter, of this random variable exist? By
symmeltry, we are tempted to say the mean is zero, but check the definition of mean.

fxlx) = —0 < X < 00

Jensen’s inequality holds that if f{x) is a " function of a random variable X, then
E[f(XD] < fIELX]) (n

or, in words, the function evaluated at the mean of X is at least as large as the expected
value of the r.v. defined by ¥ = f(X). If the function is U, then the inequality is reversed,

Proof. We sketch the proof for the case of a discrete r.v, having N values. Extension
to countably infinite discrete cases, or continuous r.v. cases, follows the same argument.
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First consider the case N = 2; that is, X is binary r.v. taking on values x| and x;,
with probabilities p; and p;, summing to 1. The left-hand side of Jensen’s inequality
is py f(x(} + pa f(x2), which can be interpreted as a point on the line joining {x, f(x))}
and [x3, f{x2)], as shown in Figure P2.3.7. But if f(x) is convex N, this value is never
larger than f(p,x|+ p2x;), which is the right-hand side in (1). Thus, we have demonstrated
that the inequality holds for the binary r.v. case.

4

HELX]) = f(p1x; +poxa) s £x)

P10} + pofixg) = E[f(X)]
P+ pa=1

Figure P2.3.7 Interpretation of convexity and Jensen’s inequality for binary
I.v.

Now we use induction, assuming that if the ineguality holds for r.v.’s with N — 1
outcomes it then holds for r.v.’s with N outcomes. So, assume the former, and let the N
outcomes be xy, x2...., xn, with probabilities p; p2. ..., px. The left-hand side in (1) is

- Z ij( i)
pifixi) = =L Ty on Fxw)
Z ; Z_[N:]I pf

-]
= Pi f () + puflxw),

i=]

(2

z

i

where 7 = Z =1 p,x, / Z = p,, that is, the mean value of the first N — 1 outcomes, renor--
malized in pro()abﬂny The inequality follows because of the assumption that Jensen's inequality
holds for the N — I r.v.’s. Now we apply the inequality for the two-point r.v. having outcomes 7
and xy. with probabilities 37 iy "' p; and py:

N-1

N-1
Zp;f(n)+p~f(x~)s f(z: p.q+p~.t~). 3
i=1 i=1

Combining (2) and (3), we obtain

N N
Z piflxy=sf Z Pfxi) ,
i=] i=]
which is the desired inequality (1). Since the inequality holds for N outcome variables if it holds

for N — 1, and it also holds for N = 2, by induction the inequality holds for any r.v. with a finite
number of outcomes.
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2.38.

24.1.

24.2,

2.4.3.

2.4.4.

2.4.5.

2.4.6.

2.4.7.

Applications of Jensen's inequality

(a) Let X ~ UU[0, 1], and suppose that f(x) = x'2. Use Jensen's inequality to show that
E[X'?) < (1/2)!2 = (.707. Find the actual p.d.f. for the r.v. ¥ = X'/2 in this case;
then determine the exact mean and compare.

(b) Suppose X ~ U{0.1) and that g(x) = log, x. Use Jensen’s inequality to bound
Eflog, |X}]). Hint: Firsi find the p.d.f. for the absolute value of X, which is always
positive.

Let X be an exponential random variable: that is,

1
fx{nj = XP_I/A. x =0
{a) Find the cumulative distribution function Fy (x).
(b} Determine the mean and variance of the r.v. X.
(¢) Calculate the probability that X exceeds 3A.
{d) Use the Markov inequality to bound the probability that X exceeds 3A.

(e) Repeat, using the Chernoff bound, and compare.

Repeat the steps of Problem 2.4.1 for the Rayleigh random variable; that is,

X . 2
flx) = A—ze""lm' ) x =0,

Apply the Chebyshev inequality to the probability that four or more errors occur in the
setting of Example 2.14.

Consider Example 2.14-and repeat the analysis for the eveat “8 errors in 200 trials” so that
the relative success frequency is the same. Do you confirm a law of large numbers?

Give a precise statement of the weak law of large numbers applied to the transmission
of N bits through a binary symmetric channel with error probability p, where successive
uses of the channel are independent. In particular, how many errors n, are expected with
high confidence as N becomes large? Use the Chebyshev inequality to find N so that our
empirical estimate of p, 5 = n./N, is within 10% of the true p. This requires knowledge
that the variance of the random variable p is p(l — p)/N.

In evaluation of digital communication systems, simulation using random number generators
is the usual procedure to measure empirically the system ¢rror rate. (This is particularly
useful when the analysis becomes too intractable.) We can measure the time-averaged error
probability by counting errors and dividing by the number of symbols processed through
the system. Discuss the conceptual issues involved in equating such measurements with
“probability of error” defined in the ensemble sense. Discuss how we should view the
results of such measurements, that is, as a random variable itself that may (or may not)
converge to the correct answer.

The central limit theorem would hold that if X, X 2,.... Xp are independent, zero-mean,
unit-variance Gaussian variables, and if we form

10
Y =3 x2

i=1
that the p.df. for ¥ should appear roughly Gaussian in form. (We might think that ¥
is exactly Gaussian, but it is obtained as a sum of nonlinear transformations of Gaussian
variables.) We know in fact that the p-d.f. for Y is a chi-squared form given in (2.2.53).
Plot the shape of this p.d.f. forn = 10and ¢ = 1 and compare with a Gaussian p.d.f. having
a mean of 10E[X?) = 10 and variance 10E[(X*] = 10-30* = 30.
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2.51.

2,52

2.53.

2.54.

130

Show that if X(t) is a real, wide-sense stationary process, the following properties of the
autocorrelation function and power spectral density hold:

(a) Rx(r) = Rx(—1).

(b) The power spectrum Gx (f) is real and even.

The first propenty follows from definition and shift of time origin, and property (b) follows
from the result in parnt (a).

White Gaussian noise with spectral density ¥p/2 watts/hertz is an input to the low-pass
filter shown in Figure P2,5.2. For this circuit, the transfer function is

H = —————
() 1+ j2n fRC
(a) Show the power spectrum of the output random process Y (¢) is

Moy 1
orin = [1+(2foC)2]

and by integration of this power spectrum that the mean-square valuz of Y (1) is
¥Y2(1r) = No/4RC.
(b) By means of an inverse Fourier transform on Gy (f), show that

No ~It|/RC
R = —
| y (1) iRcS
(¢) Discuss the effect of changing the time constant RC on the power spectrum and auto-
correlation.
R
Xt C TI Yit)
o— : - Figure P2 " *

Formulate the bivariate p.d.f. for two samples of the random process ¥ (#) described in
Exercise 2.5.2. The bivariate Gaussian density function, a special case of (2.3.11), involves
two means, two variances, and the correlation coefficient. Let the time constant RC = 1073
second, and consider two cases:

(a) Samples taken 0.1 millisecond apant, producing highly correlated r.v.’s

(b} Samples taken 10 milliseconds apan, producing essentially uncorrelated samples

In both cases, the level contours of equal probability density will be elipses in the plane,
ventered at the origin.

The random binary wave was discussed in Example 2.18 and shown to have an avtocorre-
lation function given in Figure 2.5.3b.
(a) Show that the power spectral density for the random process is

sin’(w £T)

GxtfHr=T T

(b) Show that the power spectral density has a first null at f = 1/T.
A{c) By use of integrai tables, show that roughly 90% of the power of the signal is located

in the frequency range | f |< 1/T.
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2.5.5. Let X denote the expansion coefficient in the Karhunen—Loeve expansion for a zero-mean
stationary random process. Show that E[X,] = 0 and that Var{X,] = Ay, where Ay is
the eigenvalue attached to the mth expansion function. Show further that the power in the
signal X (f) may be expressed as E[X2(t)] = Y org Am-

2.5.6. Set up but do not solve the integral equation whose solutions are the e:genfuncuons for the
'K-L expansion of the random binary wave. Use an expansion interval of 10 bits and the
known autocorrelation function for this random process. Using the N = 28T +1 rule, along
with a bandwidth of the signal corresponding to twice its bit rate, determine the number of
significant eigenvalues. Would the expansion coefficients be Gaussian random variables in
this case?

2.5.7. Recall the definition of the alternate mark inversion technique depicted in Figure 1.1.2,
except that let’s define the pulses to be full-bit-width pulses of alternating polarity. Follow
the same arguments used to analyze the random binary wave o show that the autocorrelation
function is as shown in Figure P2,5.7 and that from this the power spectrum is of the

form
. 4
sin"(m fT)
G =K——.
x(f) T
Plot this spectrum, in particular showing that the spectral dcn51ty has a null at zero fre-
quency.
Rit)
1
i | I ]
-2 T\V 0 \Vzr T
1
2 77T Figure P2.5.7

2.5.8. Suppose a white Gaussian discrete-time sequence is the input to the two discrete-time
systems depicted in Figure P2.5.8. The first is a high-pass finite impulse response (FIR)
filter, and the second is a low-pass infinite impulse response (IIR) filter. The respective

z-transforms are
Hi(zy=1- Eat

Wi

- X,

X

FIR Filter
0.9

IR Filter

Figure P2.5.8
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2.5.10.

2.6.1.

132

and 1

1-09:-1

Using the fact that the input sequence has discrete-time power spectrum o2, that is, inde-
pendent of frequency, use (2.5.35) and (2.5.36) to determine the output power spectrum in
cach case and the cutput autocorrelation sequence. ,

Consider the discrete-time system depicted in Figure P2.5.9, to reappear in Chapter 6. This is
a finite-state Markov system, for which we define the state at time k 10 be oy = (by, be—1), s0
the system has fout states. For each state transition, two output bits are produced as shown.

H:(2) =

cl

@ Denotes
Modulo 2 Adder

b, e {0, 1}

Figure P25.9

{a) Argue that any state has probability of transitioning to two next states, and determine
the transition probability matrix A. Let the initial state be oo = (0, (), and show that
the steady-state distribution for states is equiprobable.

(b) Show further that all pairs of system outputs are equiprobzble in the steady state.

In the channel with memory found in Example 2.23, find the joint probability of two
conseculive errors, first by computing the steady-state probabilities of channel pair states
and then using the specified probabilities of channel action conditioned upon state. Note
that the probability of consecutive error is quite different than the square of the marginal
error probability, indicating that the channel is not memoryless.

[Proof of (2.6.3) for binary case.] Define decision boundaries as in (2.6.3} and express the
probability of error as the sum of integrals over two regions. Now meve a portion A of one
decision region into the other, as indicated in Figure P2.6.1. Express the resulting probability
of error as a sum of the previous two integrals, less an integral over the perturbation region.
Show by the likelihood ratio that this last integral is nonnegative; hence the new error
probability can be no smaller than before.

Figure P2.6.1
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{b) Generalize this argument 10 show that the same decision rule is optimal in the M-ary
case,

2.6.2. In Exercise 2.1.3, visuvalize the space of observations as the eight vertices of a cube and
label each. Formulate the ML decision rule, invoking a tie-breaking procedure to break ties.
Calculate the exact probability of error (by symmetry, each message will have the same
result); then use a union bound to upper bound the probability of error. Compare the results.

2.6.3. We are given that X € {1,—1}, that ¥ = X 4+ N, where N is uniformly distributed on
[-2.2). with N independent of X, and that the two possibilities for X are equiprobable.
Show that the following decision rules all have the same error probability, P(¢) = 0.25:
{a) Choose X = —1 ifY <0 else choose X = |,

{b) Choose X = -1 if Y < —1; else choose X = 1.
(c) Choose X = —1ifY < —1; choose X = 1if ¥ > 1; else decide with a toss of a fair
coirt,

2.6.4. Two tetrahedral-shaped dice, each labeled with 0, 1,2, and 3, are in a box. (For such a
die, we agree to observe the number on the bottorn face!) One die is fair, and the other
is loaded so that 0 is observed with probability é the remaining numbers being equally
likely. In N rolls of a die the probability of observing &; occurrences of symbol i, where
ko + k1 + k2 + k3 = N, is given by the multinomial distribution:

N! k k
Plko ky,.... )= ——— —— | P, .... P
(Okl .y [kO'kl k ] [ 3

where P; are the probabilities of observing face i, conditioned upon which die was selected.
The experiment consists of picking a die with equal probability, tossing it N = 10 times,
and observing the number of appearances of each number. The task is to decide which die
was chosen. Formulate the ML decision rule and show that it reduces to

3 fair
E aki 7t
i=0 loaded

where a; = log, (P, /P, ...)- Find . Given that 10 rolls produce observations of 5, 2,
1, and 2 of types 0, 1, 2, and 3, respectively, what would you conclude, and what is the a
posteriori probability that in fact the loaded die was selected?

2.6.5. Compute the error probability for Example 2.26. assuming the same parameters for A given
there. In particular, calculate the probability that all seven counts of the noise-only slots are
less than the count of the signal slot for a specific k; then weight these by the probability
of obtaining K| = k; and add. Thus, we have

-1 7
1 — P{error) = P(correct) = Z Piky | signal) I:Z P | no mgnal)jl
=0 k=0

(This is pessimistic with respect to ties.) Evaluate numerically.

2.6.6. A decision problem requires us to decide among two signal hypotheses. Under 5y, the
observation is normal with zero mean and unity variance, while under S;, the observation is
normal with zero mean and variance 10. Ten independent observations are made. Assuming
equiprobable selection of hypotheses, show the mirimum probability of error rule reduces 1o

N A

N e
y= "Il("‘

n=1 S
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2.6.7.

2.68.

SG{@&‘{E‘;}

where ¢ is a threshold, so that the sums of squares of the observaions forms a sufficient
statistic. If N = 10, find ¢ and the probability of error. Hint: The latter requires the fact
that the decision statistic y have a chi-square distribution, with 10 degrees of freedom, and

df. given b
p-df. given by . 7 y4e—y1/2a’
frie(yio)= aigio
For the signaling situation diagrammed in Figure P2.6.7, show that rp is not irrelevant
to the decision process, although ry is comprised totally of noise. Assume both noise
random variables are Gaussian with zero mean and unit variance and that the two noises
are independent,

y=0

SE{'\(E."’]E} f;\

n

m

2

ny Figure P2.6.7

(a) Explain in heuristic terms what the use of ry provides. An intuitive way 1o process the
data is to subtract r; from ry, which provides a statistic with n; removed. Is this a
sufficient statistic?

(b) Show that the optimal test statistic is of the form T = r| +-ar3, which is to be compared
with a threshold :.

(c) Express the probability of error in terms of the function Q(x).

In the communication system depicted in Figure P2.6.8, intuition would suggest that rp is
itrelevant, since this observation is merely a noisier version of ry. Verify that this is indeed
the case.

- I

2.6.9.

2.6.10,

134

+ Iz

m Ny Figure P2.6.8

A binary hypothesis test is posed as follows: under the first hypothesis, the observation vec-
tor ¢ is jointly Gaussian with mean vector mg and covariance matrix Kp. Under the second
hypothesis, the observations are jointly Gaussian with mean vector m; and covariance K;.
Determine the form of the optimal decision, in particular showing that the test statistic 7
is a linear function of the observations and is compared with a threshold 1. Interpret the
partitioning of observation space by a hyperplane.

Consider the situation of Example 2.24, a Gaussian decision problem involving two signals.
In this case we were able to exactly determine the error probability of the ML detector. As
an alternative, compute the bound on esror probability developed in (2.6.27) by substituting

Fundamentals of Probability and information Theory  Chap. 2



for the two p.d.f.’s and simplifying by combining exponential forms. By completing the
square and integrating, obtain an exponential bound involving the signal amplitude and
the noise variance. Compare numerically with the exact result. You could verify that the
proposed bound has the same exponential dependence as the exponential approximation to
the Q-function result for the exact probability of error.

2.6.11. (Afier Wozencraft and Jacobs [5].) Suppose two messages are signified by the vectors
(—1. —1) and (1, 1). The messages are equiprobable. To each coordinate is added indepen-
dent double-exponenial (or Laplacian) noise, with p.d.f. given by

1
fn(n) = ie"’”.

Formulate the two conditional p.d.f.’s for the observation r = (ry,r2), and show that the
decision regions are as shown in Figure P2.6.11. An equivalent test, if the messages are
equiprobable, is

ry+r z 0

or decide in favor of the nearest (in the Euclidean sense) signal,

7

Decide (1, 1)

:

n

Decide (-1, -1)

1,-1

/j .
////De'éide Either Figure P2.6.11

2.7.1. Prove (2.7.7) using the information theory inequality and the definition in (2.7.9).
2.7.2. Show that the maximum likelihood decoding rule has an altemative interpretation in rerms

of mutual information: Given reception of a specific r, pick the x that maximizes / (r;x),
the “event information.”

2.7.3. A binary symmetric erasure channel (BSEC) is diagrammed in Figure P2.7.3. Determine
the channel capacity C in terms of § and € and verify that the result reduces to the results
stated in Section 2.7 for the BEC and BSC.

1-e-3
G 0
e F
1e .
1-¢£-3 Figure P2.7.3
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2.1.5.

2.1.6.

2.7.7.

2.7.8.

136

Consider the Z-channel with crossover parameter §, having inputs 0 and 1 having proba-
bilities gg and 1 — gp. respectively (see Figure P2.7.4). Find the capacity C by expanding
the definition of mutual information and then maximizing with respect to go. Evaluate for
§ = 0.1. The optimal input distribution is mere uniform than we might expect; it is tempting
to say a good signaling strategy for this channel would send 0 often because it is unam-
biguously received. However, such a choice reduces the source entropy. You should also
observe that with the optimal input probability assignment J(x =0;Y)=1(x = 1: ¥) = C;
that is, each specific input selection has the same mutual information with the output en-
semble Y. This is a necessary and sufficient condition (for each input that has nonzero
probability) for attainment of capacity; see Theorem 4.5.1 of Gallager [12].

1.0
Q- *0
0.2
1e 9.8 * 1 Figure P2.7.4

A binary input, eight-level output channel is depicted in Figure 2.7.5d. Show that the
channel is symmetric, and determine the channel capacity C. Repeat if consecutive pairs
of output symbols are merged into new symbols with probabilities obtained by summing
the merged symbol probabilities, producing a 4-ary output channel. The capacity should be
less, illustrating the data-processing lemma.

We have available a BSC with ¢ = 0.05 that can be used at most two times per source
symbol. We wish to communicate the output of a 4-ary, equiprobable, memoryless source,
Apply the converse to the coding theorem to calculate a lower bound on symbol error
probability that cannot be beaten by any source/channel coding scheme. Compare this
result with the simple approach of assigning 2-bit tags to source symbols and transmitting
these identifiers through the binary channel with no other coding.

Consider the three-input, three-output channel of Figure P2.7.7. This channel might seem
symmetric by normal notions. Is it? Determine its channel capacity by guessing an input
distribution and testing whether each input character supplies equal information with the
output variable Y,

2
0.8 Figure P2.7.7

The five-input, five-output channel shown in Figure P2.7.8 is symmetric. Determine its
channel capacity. We know this places an upper limit on the rate of transmission that
achieves arbitrarily good reliability. Show that a simple block code that sends informa-
tion in (wo-symbol blocks can achieve zero error probability while sending at a rate of
log; 5/2 bits/code symbol, -
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4 Figure P2.7.8

. Consider a binary message source that produces 0 and | independently with probability 0.2
and 0.8, respectively.

{a) In messages of length 10, which of (0000000000), (0111110111), and (1111111111)
would vou consider “typical™?

{b} Suppose we provide codewords for all source sequences with 0, 1, 2, or 3 zeros in
10-symbol blocks, plus a codeword that represents any other outcome. How many
codewords do we need, and what is the rate of this source code? What is the probability
that a nonunique encoding occurs?

(c) By finding the source entropy, compute the approximate size of the typical message set
for strings of length L, 2871Y), and express this as a fraction of the total number of
possible messages, 2L (The notion of typicality is rather subtle, for although the all
I’s sequence may be atypical by our notion of typicality it is more probable than the
specific sequence we casually regard as typical!)

Apply the Kraft inequality to test whether a binary (D = 2) variable-length prefix code
for K = B codewords is possible with lengths 1, 2, 3,4, 5,6, 7, and seven symbols. What
about lengths 2,2, 2, 3,4, 5,5, and 67 Draw code trees for each.

Zipf’s law?S states that words in a language, when ordered in decreasing relative frequency
of usage, have probability law approximated by

K
P{word n) ~ —, n=112273...,
n

where n is the rank order and K is a constant. If we adopt this mode! for a vocabulary with
12,366 words and set K = 0.1, then the probabilities formally sum to near 1. Show nu-
merically that the entropy of the word sequence, assuming independence, is 9.72 bitsfword.
If the average word length in English is 4.5 letters/word, then the entropy per letter is 2.16
bits/letter. This is more than 1 bit/letter less than an empirical result of Shannon based
on trigrams, indicating the importance of incorporating as much structure as possible into
source modeling.

2.8.4. A distant civilization has a four-letter alphabet |A, *,!, ¢].

{a) A cursory study of the language revecals marginal letter probabilities (0.5, 0.3, 0.15,
0.05), respectively. Design a Huffman code for this clan, and compare its efficiency
with that which sends 2 bits per source symbol.

(b) Closer study of the language indicates a first-order Markov source model is more appro-
priate, with state transition diagram shown in Figure P2.8.4. Solve for the steady-state
letter probabilities and the source entropy H{(X).

5G. K. Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley, Reading, MA, 1949,
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Figure P28.4

Design a Huffman code for the source described in Exercise 2.8.4 if we decide to encode
L = 2 symbols at a time. You will need to identify the possible pairs of symbols and their
probabilities prior to designing the code. Evaluate the efficiency of the code in average
number of code bits per source symbol, and compare against the entropy limit for the
Markov model. You should find that coding two symbols jointly is slightly more efficient
than coding symbols individually with 2 Huffman code. ’

Design a D = 4-ary Huffman code for the discrete source of Example 2.31, and evaluate its
performance relative to theoretical limits. (You should find ¥ = 1.41 code symbols/source
symbol.)

(Following [12].) Run-length coding is a popular source coding technique for memoryless

sources with highly skewed probabilities, or for sources with memory that exhibit long

runs of identical symbols. We shall consider encoding of a binary memoryless source with

P(0) = 0.95 and P(1) = 0.05. To encode, we begin counting consecutive occurrences

of the most probable symbot. Let the number of counts until the next observance of 1 be

designated C,C = 1,2,.... We pick some integer L, usually a power of 2. If the run

count terminates at or before L, that is, C € {1, 2, ..., L}, then we encode the count with 1

followed by the binary equivalent of C — 1, requiring 1 + log, L code bits. A new count is

then begun. If the run count reaches L, we send the code symbol 0"and begin the count anew.

(@) Convince yourself that the decoder can rebuild the original source string from the code
string.

(b} To analyze performance, compute the prebability that the run counts € = 1,2..... L
occur, and thereby calculate the expected number of source symbols per run count.
Likewise, caiculate the expected number of code symbols per run count. For a long
string of source outputs, appeal to the law of large numbers to argue that the average
number of code symbols per source symbol is

expected number of code symbols/tun count
expected number of source symbols/run count

N=

(c) Typically, the best choice for L is a power of 2 nearest 1/P (rare symbol), which in
this case would suggest that L = 16. Evaluate the performance in this case.
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The UNIX operating system utility “compress™ uses a variation of the Lempel-Ziv-Welch
algorithm for file compression. If such a system is available, experiment with some text
files and determine file size before and after compression.
The lexicographer G. H. McNight observed in 1923 that in the English language 43 words,
including “and, the, of, have, to, and you.” constitute 50% of the words in standard text.
Assume that the remainder of the dictionary of words is 8192 words, occurring equiprobably.
View words as the source entities, and devise a simple source coding scheme that operates
with 10.5 code bits per word.
For the additive Gaussian noise channel with input energy constraint, C = II log,
[l +(Efo? )] nats, achieved for any £ by an input selection that is Gaussian with variance
E. Show that if the SNR per use of the channel is small, that is, £ & 2. binary signaling
with £v/E inputs, equiprobably chosen, essentially achieves capacity.
(a) Formulate mutual information for the binary input, Gaussian noise channel model. Note,
by symmetry, that C is achieved with equiprobable inputs and hence may be evaluated
from

b . fiylx=£'7)
C = olx=E"Hlo [ dy nats
f_wfyi B sFylx=EM 4+ if(ylx=~ER)

Evaluate this numerically for £/02 =0.1,0.2, 0.5, 1.0, 2.0, 5.0, and10.0, and compare
with capacity without the binary input assumption. By expansions for the logarithm
function, we may determine analytically that C approaches E /262 nats for small SNR
in both cases.

Suppose the channel is as described in Exercise 2.9.1, but we place a binary quantizer (sign

detector) on the channel output. This converts the previous channel into a BSC.

(a) Show that the channel error probability is € = Q(E/2 /o).

(b) Use this € in the expression for capacity of a BSC, and evaluate for £/0? values
given previously. You should find that capacity is somewhat less with such channel
quantization,

In Example 2.34, we calculated the channel capacity for a Gaussian noise channel under
an energy constraint on the input. Since the resulting capacity for that problem was under
2 bits/channel use, let's see what happens if we use a four-level input to the channel, with
levels £4, £34,

{a) Let the p.m.f. for this discrete distribution be equiprobable and chosen to meet the
energy constraint; that is, %Az + % 9A4° = E. Suppose the output Y is quantized with a
uniform four-level quantizer having thresholds placed midway between the conditional
means of Y. Calculate the resulting channel transition probabilities and then the mutual
information achieved with this system.

{b) Can you think of a way 10 improve on the strategy still using four-level inputs?

A vector Gaussian channel is available for which the four component channels have noise
variances of 1, 2,4, and 8 units, respectively. Let the available energy allocation be 6 units.
Find the optimal energy allocation and the resulling capacity in bits per vector channel use,
Repeat for an energy allocation of 12 and 18 units.

Evaluate the channel capacity for the following waveform channels, assuming that the noise
is additive white Gaussian noise.

(a) The dial-up telephone channe! modeled as band-limited to {300, 3000] Hz, and the S/N

measured over this bandwidth is 1000, or 30 dB.

2 Exercises 139



(b) The deep-space communication channel with the Voyager spacecraft at Jupiter en-
counter: bandwidth is unconstrained, and P/Ng = 109,

(c) A satellite communication channel operating with a transponder bandwidth of B =
36 MHz and with P/Ng =5 - 10%.

29.6. In the text we derived a lower bound on Ej /Ny for reliable communication on the band-
limited Gaussian noise channel:
by B okt
No ™ Ry

for all systems having a bandwidth ratio of B/R;.

(a) Plot this lower bound as a function of bandwidth ratio, and note that as this ratio
increases without bound the minimum Eg/Ny approaches —1.6 dB. Also, find the
necessary bandwidth ratio for which the required SNR is only 1 dB larger than the
infinite bandwidth limiting value.

(b) A newly hired engineer offers a design for sending “error-free” data at 1 Mbps through a
100-kHz bandwidth Gaussian channel, doing so with E,/Ny = 25 dB. Can the engineer
be correct?

140 Fundamentals of Probability and Information Theory Chap. 2



