two signal hypotheses as concatenations in time of consecutive PSK signals:

12 2E 2
splt) (%Ei) cos{w.? +9),( Ts') cos{w.t + 6),

5 5

(3.5.12)

s T;

(We reemphasize that a new bit is transmitted every T; seconds, and the previous signai
becomes the new reference signal.)

We have just argued that the DPSK receiver is in effect a noncoherent detector over
two intervals. Since in the binary case the signal pairs in (3.5.12) are orthogonal, the bit
error probability for binary DPSK can be evaluated using binary noncoherent orthogonal
performance, except with the effective symbol energy £, = 2E,. Thus, using (3 4.26)
and this conversion, we find that

2E N\ P 12
si(t) «—— (_?“_5) cos(w.! + 8), ~ (—-——s) cos(w, t + 8).

! 1
Py = 5(25'»/2”0 = Ee_E”/‘N“, binary DPSK, AWGN (3.5.13)

When M = 2, DPSK has only slight loss in energy efficiency relative to coherent PSK.
At P, = 107, DPSK requires about 10.4 dB E,/Ny, whereas coherent PSK requires
about 9.6 dB. Differentially encoded, coherently detected PSK requires about 9.9 dB.

Some propensity exists for paired or back-to-back symbol errors with DPSK, but
it 1s not so strong as in differentially encoded coherent PSK, where an isolated error on
one bit produces a paired emror upon differential decoding. To see why the tendency
is less, consider again the case of M = 2. A common error event is of the following
form: the first phasor experiences a phase error of, say, 8,_; = —50°, while the second
phase error is B, = +45°. The phase difference 8, thus exceeds 90°, inducing a decision
error. However, if the next phase error is less than 45°, a subsequent symbol error is not
made. This pattem is far more likely than “error near 0°, error of 100°, error near 0°,”
which would induce paired symbot errors. Thus, back-to-back decision errors are not as
predominant as might be expected. Salz and Salzberg [28) and Oberst and Schilling [29}
give an analysis of this double-error effect. In any case, the marginal P, is correctly
expressed in (3.5.13).

Returning to the M-ary DPSK case, the caiculation of symbol error probability
would first calculate the p.d.f. for the modulo 2 phase difference of two phasors cor-
rupted by two-dimensional independent Gaussian noise. This p.d.f. is formulated in
Pawula et al. [30):

/2 E —_
f)= «2—1;[0 (sinx) {l + Ni(l +cos§sinx)] -exp[ ;Ej

{1 —cosd sin.r)] dx.
0

(3.5.14)

In Figure 3.5.4, we show the p.d.f. for the phase difference measurement when
E,/Ny = 10 dB, given that zero phase difference occurred at the transmitter.

This p.d.f. can be integrated numerically over the region |§] > n/M to produce
Py, and presentation of this analysis is found in Lindsey and Simon [12]. Figure 3.5.5
presents the results graphically, showing M-ary coherent detection for comparison. As
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Figure 3.5.4 Phase difference p.d.f.

expected, the demodulator’s lack of absolute phase knowledge always costs in energy
efficiency; the difference is small for binary DPSK, but for larger M, say 16-DPSK, the
penalty is nearly 3 dB. We might have anticipated this, because in DPSK detection two
noise vectors influence the phase diffcrence. At high signal-to-noise ratio, the phase error
for each symbol is nearly Gaussian, and thus the phase difference § is roughly Gaussian
(see Figure 3.5.4 for example), but with twice the variance due to independence of the
measurements. (This is pursued further in Exercise 3.5.2.)

An alternative method to calculating error probability uses the p.d.f.’s for the ran-
dom variables in (3.5.7), following the earlier analysis of the noncoherent detector. The
signals are not orthogonal, however, over 2T in the nonbinary case, and noncentral
chi-squared statistics are encountered [31].

Because the energy efficiency of M-DPSK is quite poor for M > 8, especially rel-
ative to the coherent counterpart, these designs are rarely found in modern practice when
energy efficiency is a primary concern. Binary DPSK, however, represents an effective
alternative to binary PSK, with or without additional coding, and 4-DPSK was selected
as a modulation technique for one of the first high-speed modems, the Bell model 201
2400-bps telephone channel modem, implemented in 1962. There, receiver simplicity
was of paramount concern, as well as bandwidth economy, and channel SNR was nom-
inally rather high. 4-ary DPSK, combined with channel coding, has been selected as the
modulation method for next-generation digital cellular telephony in the United States.

If bit error probability is to be minimized, the phase changes should be Gray-
coded, since the most likely phase difference error is to an adjacent region, and such
cases should produce minimal bit errors. Under such conditions,

Py

h X

, 3.5.
og, M (3.5.15)

as for coherent PSK.
Although the use of DPSK avoids needing to know absolute carrier phase, it is
important that the receiver be well synchronized in frequency. If it is not, the measured
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Figure 3.5.5 Symbol error probability for M-ary DPSK.

phase increments will be biased away from the middle of the decision zones, increasing
the symbol error probability. A good rule of thumb for binary DPSK reception is to
maintain AwT, < 0.1, where Aw is the radian frequency offset [32]. This ensures that
the carrier phase @ drifts by less than 0.1 radian during one bit interval. Generalizing
this to the M-ary case, we might then require that Awl, < 0.1/M, since the decision
regions shrink inversely with M. The frequency offset Af must then be held to less than
about R, /60M , where R, is the symbol rate.

Example 3,12 4-ary DPSK

Suppose in a 4-ary DPSK receiver that the following sequence of phase measurements (in
degrees) is observed over five consecutive symbol intervals: 39, 110, 50, 239, 21. The phase
difference sequence, modulo 2, is 71°, 300°, 189°, 142°, and these are mapped to symbols
1,3, 2,2 according to (3.5.1). If E,/Ng = 9 dB on this channel, then the probability of a
symbol error from Figure 3.5.5 is 3 - 1073,
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For Ry = 24 ksps, approximately the rate for the IS-54 digital time-division cellular
standard in North America, then by the above rule the required frequency accuracy musi be
less than about Af < 24,000/(60 - 4) =~ 100 Hz, This constitutes the allowable frequency
offset for osciltator instability arnd Doppler shift combined.

It is possible to improve the performance of M-DPSK by forming decisions based
on more than two consecutive symbols, which is called multisymbol detection of
M -DPSK. Specifically, we can employ a sliding (or block) window of length (N + DT,
to decide N consecutive data symbols, or perhaps just the oldest symbol of a sliding
biock. The qualitative notion is that a longer observation window allows effectively the
establishment of a higher-quality phase reference for detection than that obtained from
just the previous symbol. In some sense such detectors are acting as short-memory phase
estimating schemes, and in the ltmat of large observation interval, the performance ap-
‘proaches that of coherent detection with differential detection. For M > 2, the potential
gains in energy efficiency are significant, and it has been shown that use of N = 3
provides at least half the available gain. However, the receiver processing, if optimal
noncoherent detection is pursued, is considerably larger, for M" hypotheses need to be
examined for a window of length (N + 1)T; seconds. Furthermore, the constant phase as-
sumption about the channel becomes more questionable. The interested reader is referred
to [33] and [34] for a discussion of these possibilities.

3.6 PERFORMANCE ON THE SLOW, NONSELECTIVE RAYLEIGH
FADING CHANNEL

We now study the performance of the previous modulation and detection strategies on the
slow, flat-fading Rayleigh channel and will observe a fundamentaily different dependence
on signal-to-noise ratio than seen thus far for the nonfading, Gaussian noise channel.
‘Specifically, instead of a negative exponential dependence on E, /N, common to all cases
in Sections 3.3, 3.4, and 3.5, we shall find that the infrequent. very deep amplitude fading
events induce a much weaker (inverse) dependence of P, on average E,/N;. This will he
true for all uncoded transmission strategies, and the potential performance penalties due to
fading are enormous for high-reliability systems. However, various channel coding tech-
niques studied in later chapters will be able to substantially mitigate the effect of fading.

To recali the model assumptions made at the beginning of the chapier, we assume
the channel gain A(r) is a Rayleigh random process, but essentially fixed over the duration
of one symbol’s decision interval. In actuality, the amplitude is a slowly varying random
process, and our primary interest is in the average error probability computed over the
fading distribution. Assuming ergodicity holds for the process, the ensemble average
performance we w.ll compute would correspond to the time-averaged performance on an
actual link. We should be aware though, that for any given channel the “instantaneous”
error probability will fluctuate. _

A practical difficulty associated with fading channels is that the demodlator must
know the channel’s scale factor A for optimal detection in those cases where the signals
are not equal energy, for example, with on—off keying or 16-QAM. Because this is some-
times difficult to establish and because performance is sensitive to errors in this estimate,
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equal-energy schemes, notably M-PSK and M-FSK, are commonly utilized on fading
channels. Consequently, we shall focus on these cases, although the analysis we follow is
easily extendable to other situations. Also, normally coincident with time-varying ampli-
tude is a time-varying channel phase, whose rate of change is on the same order as that of
the amplitude. If the demodulation is to be coherent, this time-varying channel phase must
also be estimated, a procedure made more difficult by the occasional deep fades. Thus,
in practice we typically find noncoherent detection utilized on strongly fading channels.

Analysis of various cases is procedurally straightforward and identical for all tech-
niques we consider. The error probability conditioned on a fixed channel gain A =a is
determined, as performed earlier in this chapter, then we average this conditional error
probability with respect to the random variable A. That is,

P = [ P(ela) fala) da. (3.6.1)
J0

This procedure is quite general, making only a slow-fading assumption, and is applicable
to other slow fading models such as Rician and log-normal (see Exercise 3.6.2).

Let’s consider the Rayleigh channel in particular. Recail that the p.d.f. for 4, again
assuming a mean-square value of I for the random gain parameter, is

fala) =2ae™®, a0 (3.6.2)

[n keeping with the model of Figure 3.1.1, the average, or expected, signal energy
received per symbol will then be £,. We shall use E; and E, to denote, respectively,
the average symbol energy and average energy per bit communicated.

To establish the procedure and the general nature of the results, we first analyze
the cohcrent detection of binary antipodal signals and binary orthogonal signals, as well
as DPSK and noncoherent detection of binary orthogonal signals. Extension to other
M -ary signaling cases is then made for both coherent and noncoherent detection.

3.6.1 Binary Signaling with Rayleigh Fading

The principal binary signal designs of interest are antipodal and orthogonal, represented
by PSK and FSK, respectively. Both can be detected coherently or noncoherently (PSK
in the form of DPSK), and receiver gain contro! is not crucial.

The error probability for binary PSK (antipodal signaling), given an available
energy per bit of E, joules, is P, = Q [(2E,/Np)'”?]. To generalize this for the case
at hand, assume the selection of a specific channel amplitude A = a. Then, from our

discussion of Section 3.3,
ZZE 12
P(ela) = Q [(“ ”) , (3.6.3)

No

where a?E, /N, is the instantaneous energy per bit-to-noise density ratio. The uncondi-
tional bit error probability is then obtained by averaging as in (3.6.1):

P, = f (2ae ") Ql(a*2E, /Ny)' ] da. (3.6.4)
0
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It is now convenient to introduce the random variable ¥ = A2E,/Ny. Whereas A is
Rayleigh distributed; ¥ has a one-sided exponential density given by (see Example 2.11)

e—»v\ ITERING) _V Z 0‘ (3.6.5)

( =
= o

where again E,/Nq is interpreted as the expected energy per bit-1o-noise power density
ratio. With this definition, (3.6.4) may be rewritten as

oo
1 e
Ph :f Q [(2))1/'2] e*,lf(EleU) dy (3'6‘6)

0 Ep/Ng
Integration by parts gives

o0

Pb — _Q [(2)‘)1;’2] e')’/[fh_"N{})

- ¥/ Eg/Nn =Y dy
- e - —'d
/u (4 y)'2 Y

i ce i i
LN L G iy.
7 j£ (4n,v)'f2°"p( "‘[ Eh/NaD”

This last integral may be found in a table of definite integrals, and, npon simplifying,
we obtain the (exact) result that

lo
(3.6.7)

PS 1 i E.‘;/NO ]UZ {coherent nfpodal Rayleigh fadin )
S N I . C ent anty v adi
T2 Y+ (Ey/Ng) ‘ e :

(3.6.8)
The approximation [x /(1 + x)}'? x| — _,1_‘ for x large allows us to estimate the error
probability for large E, /Ny as
]
4E, /Ny

h

(3.6.9

This approximation is accurate provided £,/N, > 20, or 13 dB.

The difference between this functional dependence and that found for the nonfading
channel is quite profound. Specifically, to achieve a P, = 107° on the nonfading channel
necessitates £,/Ny = 9.6 dB, while 1o do so on a Rayleigh fading channel requires
Ey/No = 44 dB, a roughly 2500-fold increase in signal-to-noise ratio! Furthermore.
another decrease by a factor of 10 in error probability comes only at the expense of
10 dB increase in SNR.

Before proceeding to other cases, we should try to understand the basic difficulty
with this channel and why brute-force methods, such as merely increasing the signal
power, are an inefficient attack on the problem. The problem is simply that the error
probability is heavily dominated by the infrequent, but deep, fading events. Under a
slow-fading assumption, we can visualize the receiver operating point moving up and
down the AWGN curve, such as in Figure 3.3.21 for PSK, as the channel amplitude
changes. This averaging is illustrated in Figure 3.6.1. To simply model this, we might
imagine a two-level approximation to the Q-function: we assume the error probability is
Q') = 0.079 when the received energy-to-noise density ratio drops below 1, or 0 dB,
and is zero if signal energy-to-noise density ratio exceeds 0 dB. Clearly, the resulting error
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Figure 3.6.1 Nomograph for fading channel performance as an averaged per-
formance obtained from nonfading analysis.

probability estimate, 0.079P (Y < 1), lower-bounds the true result. According to proba-
bility distribution for the random variable Y,

|
PY <l)y= f fr(dy = | — e HAE/N (3.6.10)
1]

We can truncate a Taylor series expansion for the exponential and obtain the lower bound
1
> - .
Ep/No  2(Ep/No)?
This in tum implies that the probability of emror, averaged over the fading random
variable, is lower-bounded by
0.079 1
1 . (3.6.11b)

Py > -
"= Eu/No 2E,/Ng

PY <1) (36.11a)
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Although a crude argument, this demonstrates that increasing the average SNR on the
channel only slowly diminishes the probability that the channel will be found in the
below-threshold region, and hence only slowly reduces F,.

We can also say something about the distribution of the (random) error probability
whose expected value was given previously. The Markov inequality, for example, will
hold that, with 0.9 probability, the instantaneous error probability is no worse than 10P,.

Proceeding as before for the case of coherent orthogonal signaling, say with FSK,
we obtain

= —1 1 — ( En/No )l ) {coh t orth al, Rayleigh fading)
P, = P E—— conerent orthogonal, Raylet g,
b 2 2+ E,/Nq £ yteig g

(3.6.12)

which.for large SNR behaves as

. 3.6.13
2E,/No ( :

P, =

This points to a 3-dB loss for orthogonal signaling relative to antipodal signaling, which
should not be surprising given our study of performance on nonfading channels and the
graphical interpretation of Figure 3.6.1. In fact the 3-dB difference is exact at all values
of £ b / No.

Next we analyze noncoherent detection of binary orthogonal signaling (say FSK),
as well as DPSK. For noncoherent detection of orthogonal signals, the conditional error
probability is

Pela) = 5€ e @ Eni2Ny (3.6.14)

Averaging this as in (3.6.1) with respect to the Rayleigh density function for the fading
amplitude, we have
o - 1 .
P, = (208‘”‘)597”'5“/2""' da,

0 (3.6.15)

o N '
= [ ae"ﬂ"(i'*Ethn)da‘
0

which integrates to

1

—_—, (orthogonal, noncoherent, Rayleigh fading). 6.
2+ (En/No) 2 yleig g) (3.6.16)

P, =

Notice again the inverse dependence on mean energy-to-noise density ratio for large SNR
and that the efficiency is a factor of 4, or 6 dB, poorer than that of coherent PSK for high
signal-to-noise ratios, This is a somewhat larger gap than experienced on the nonfading
channel.
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DPSK, at any fixed signal level, is exactly 3 dB more efficient than FSK with
noncoherent detection. Carrying out the same averaging as before for DPSK would thus
give '

1

. —
b 2 (2E,/No)

(DPSK, Rayleigh fading), (3.6.17)

which remains 3 dB superior to noncoherent orthogonal transmission in energy efficiency
under fading conditions. This relative superiority is not restricted to the Rayleigh case,
but would pertain to any slow-fading channel.

Figure 3.6.2 shows these four binary detection performances versus E,/Np. Notice
that all have the same slope, —1, on a logarithmic plot, for high SNR, equivalent to the
statement that P, depends inversely on E,/Ny. The comparison of these resuits with the

10+
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L DPSK, - FSK, Noncoherant
P, FSK, Coherent
103 PSK, Coherent
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Figure 3.6.2 Bit error probability for binary signaling, Rayleigh channel.
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corresponding resulis on the fixed-amplitude AWGN channel is striking. We must supply
much greater average E,/N on the fading channel to achieve a given error probability,
some 20 to 40 dB more, depending on the desired performance. This qualitative statement
pertains to all the binary transmission strategies. Also, for the AWGN channel we found
that PSK and DPSK were asymptotically equivalent in energy efficiency at high SNR,
and likewise coherent and noncoherent detection of orthogonal signals is asymptotically
equivalent, and at a typical erfor probability target of P, = 1073, the difference in
AWGN channel efficiencies is about 0.8 dB. For the Rayleigh channel, however, we
have established that the noncoherence penalty is 3 dB in each case, at least in the
high SNR regime. The reason has to do again with the dominance of the average error
probability by the deep fading events, that is, when A is small. Careful comparison
of error probability plots for the fixed-gain channel in the low SNR region, say for
E,/Ng < 3 dB, will reveal this inferiority of the noncoherent techniques.

3.6.2 M-ary Orthogonal Signaling with Noncoherent
Detection

Next we turn to M-ary orthogenal signaling on the Rayleigh fading channel. We shall
emphasize the noncoherent detection case for two reasons. First, it is difficult to maintain
phase coherence in the receiver in fading events, and, second, for large M, noncoherent
detection, performs comparably with coherent detection, as we have seen in Section 3.4.
The expression derivéd-earlier, (3.4.29), for the symbol error probability of noncoherent
detection of M-ary orthogonal signal sets gives the conditional error probability

M- Tyvi+t .2
. (=1t M- [ JU-E.\' ]
Plela) = - C" expl ————|. 3.6.18)
| ; j+r P (j+ DNy (

To determine the unconditional error probability, we simply average (3.6.18) term by
term with respect to the random variable A. The integrand involved in each term is a
simple exponential form, and the resulting expression for P, is

M- (_l)j+ch—|
p=)y ——!
=l 1 + 7 +(_,'E‘\-/Nn)

(M-ary orthogonal, noncoherent, Rayleigh fading),

(3.6.19)
where again £, = (log, M) E,,.
The symbol error probability is shown in Figure 3.6.3 versus E,/N, for M = 2,
8, and 32. All cas.s exhibit the same inverse depéndence\ on E,/Ny for large average
SNR, again showing that a simple energy-increasing attack to improve link performance
is quite expensive. Also, we see that increasing M is only marginally helpful on the
Rayleigh channei, in some contrast to the result for the AWGN channel. A qualitative
rationale for this is that performance is dominated by low-amplitude events, and large
M signaling is little better than M = 2 signaling for small instantaneous SNR, as may
be seen in Figure 34.5 for example.
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Figure 3.6.3 Symbol error probability for M -ary orthogonal signals, Rayleigh
channel, noncoherent detection.

3.6.3 M-ary PSK and DPSK

Analysis of M-PSK and M-DPSK is in principle straightforward, but analytically tedious,
and we shall omit the details. Proakis [31] devotes Appendix 7A to the exact treatment
and obtains remarkably similar expressions for the two cases. For large SNR, which is
the usual case of interest, the expressions simpiify to

M-
P, ~
" 2M(log, M)sin® (/M )E, [Ny

(M-PSK, Rayleigh fading) (3.6.20)

and
M—1

Px
M (log, M) sin®(m/M)Ey /Ny

(M-DPSK, Rayleigh fading) | (3.6.21)

The first result can quite easily be argued to be approximately correct. We use the upper
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bound for M-PSK detection on a fixed-gain channel

a®2E '
P(ela) <20 [( . ”longinzﬁ) ] (3.6.22)

0

and then average this conditional probability of error over the distribution for channel
amplitude, using integration by parts as earlier demonstraled for binary modulation.
The asymptotic results of (3.6.20) and (3.6.21) display a 3-dB difference in per-
formance?® on the Rayleigh channel, which is anticipated, given that the DPSK receiver
uses two noisy phase measurements fo form its decision, rather than one. Figure 3.6.4
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Figure 3.6.4 PSK and DPSK symbol error probability, Rayleigh channel.
Lower of each pair is PSK.

ZNotice that here a factor of 2 difference in error probability translates to 3 dB in energy cfficiency,
whereas on the AWGN nonfading channel, the energy penalty attached to a factor of 2 shift in probability is
small, due 10 exponential dependence on Ej /No.
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shows the performance for M =2, 4, and 8.

The overriding message of the section should be clear: on the slow, flat-fading
Rayleigh chanel, the error performance for all modulation formats is markedly changed
o a simple inverse dependence on SNR. Attempts to improve link quality by obvious
engineering methods are expensive, but various forms of coding (including various “di-
versity” methods) will be seen to yield enormous improvements in this rather dismal
situation. We shall resume this study in the next several chapters.

3.7 POWER SPECTRA OF DIGITALLY MODULATED SIGNALS

3.7.1 Overview on Power Spectrum and Some Cautions

In the previous sections of this chapter, our attention has been on the description of
modulator signal constellations and on the error probability of optimal demodulators
under various channel and receiver assumptions. We now shifi the focus to a more
transmission-oriented concern—the nature of the digital signal’s power spectral density,
or power spectrum for short. In many applications the power spectrum of the transmitted
signal is of just as much interest as the energy efficiency, and in some situations, for exam-
ple, high-density magnetic recording and close-packed frequency-division channelization
schemes, power spectrum issues may be foremost in selection of the signaling format.

There are several reasons why a detailed understanding of the power spectrum
is important. First, if we are designing a system to communicate through a certain
channel with special frequency response, either induced by electronic equipment or by
the physical medium, we must have some notion of the power spectrum to be able to
determine the channel’s effect on the signals that are used in transmission. Krnowiedge of
the channel response may strongly dictate our choices as to modulation; if a channel has
poor low-frequency response, then signals with spectra concentrated at low frequency, for
example, the baseband NRZ format introduced in Section 2.5, are poor candidates. (We
should caution that the power spectrum, which is an averaged, second-order property
of a signal, may obscure certain rare but important signal patterns that actually limit
performance, and judgment of a signal’s suitability shouid not be based on the spectrum
alone. Furthermore, we may pass a digital signal through an all-pass linear filter, which
does not alter the power spectrum but whose attendant phase distortion may produce
disastrous effects on performance—once again, power spectrum is not by any means a
total description.)

+ Often, regulatory constraints imposed by bodies such as the Federal Communica-
tions Commission in the United States and similar telecommunication authorities in other
countries force the power spectrum to meet certain constraints, and doing so requires ei-
ther theoretical or empirica) knowledge of the transmitted signal’s power spectrum. A
practical example might require that a microwave digital radic transmitter produce a
power spectral density, measured in a 1-kHz bandwidth at all frequencies more than
10 MHz from the center frequency, at least 60 dB below the total signal power. Such
restrictions are often expressed in the form of a spectral mask that the power spectrum
must satisfy.
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A final reason for our interest is the question of interference between different trans-
missions in a channelized multiuser system. An example could be the use of frequency-
division access in mobile radio systems, where adjacent channel crosstalk due to the
spectral overlap is a primary concern, especially given the varying proximity of users
and fading possibilities. Analysis of the power spectra can help assess the amount of
interference to be anticipated.

In communications parlance, we frequently encounter reterence to bandwidth, per-
taining 1o the spectral exient of signals. This has potential for misinierpretation; indeed
the very definition of bandwidth is elusive.®® In a formal sense, most of the signals
we encounter have infinite spectral extent, either as baseband or bandpass signals. Any
signal produced as a time superposition of time-limited signal shapes must possess a
Fourier transform that has infinite extent in frequency. a basic result of signal theory.
Nonetheless, typical signals can be characterized as having a range of frequencies in
which most of the power is located. More precisely, it is common to specify the fre-
quency range, or bandwidth, that includes 90%, 99%. 99.9%. and so on, of a signal’s
power. Equivalently, we can specily the fraction of power outside a given range, leading
to the power-out-of-band specification.

It is also possible for a certain modulation format to be handwidth efficient for
some applications, yet not so in other senses of the word. A signal may possess very
low spectral sidelobes at large frequency separation from the center frequency and thus
be a low source of interference to other channels, yet this may have been achieved at the
expense of widening the main lobe of the spectrum, making the signal more sensitive 1o
effects of channel filtering.

The power spectrum is a signal property derived from a probability model that we
would hope reflects the power distribution versus frequency for the modulator output
induced by any sequence of inputs, at least in the long-term sense. An ergodic property,
which we shall assume, would hold that the power spectrum computed by time-averaging
on a single sample function of the process converges to that obtained by probabilistic
methods. Of course, if our probabilistic model is not represeniative of the modulation
system, these two assessments of power spectrum may be quite different. For example,
it may be typical that from certain digital sources or source encoders a sequence of one
type of symbol persists for long periods, or certain pairs of symbols are highly likely,
whereas the statistical model assumes independence. This is merely the usual difficulty
with models—they are just that.

A related issue is that the power spectrum, by definition a long-term description,
describes observations over a long interval. Many measurements, whether obtained by
analog spectrum analysis or digital signal processing, are short-term statistics in some
sense, and we must be careful when interpreting such resulls. These are patticularly sen-
sitive to the actual versus modeled behavior of the modulator input sequence; scramblers
are commonly inserted in the transmission path, in fact, to counter the possibility of long
runs of one type of symbol, for example.

With these caveats, we now proceed to develop important power spectrum rela-
tionships.

b} . .
26 Amoroso 135) descusses several common notions of bandwidih.
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3.7.2 Power Spectrum for General Memoryless Modulation

Our basic premise about modulation stated at the beginning of the chapter is that mod-
wlation is @ memoryless process; that is, every T, seconds the modulator produces one
of M signal waveforms, according to the symbol x, presented to it, and time-superposes
this with the other modulator responses as in (3.1.1):

S0 =Y s, (0 = nTy). G.1.1)
n

Normally, the probabilities of the M signals are equal, and 2 common mode! is one for
which the input symbols are chosen in independent fashion.?” On the other hand, in many
situations the signals are not selected independently, specifically when the modulator
input sequence {x,} is coded. Such coding may be either for purposes of improving the
communication reliability in the presence of noise, or for shaping the spectrum of the
signal, or both. In any case, it is frequently possible to describe the coded input in a
finite-state Markov framework.

We provide the details of the derivation of the power spectrum for the general
case in Appendix 3A3, but summarize the method here and emphasize application of
the result. We view the signal as a sample function from a random process, induced
by the driving sequence {x,}. A general representation for the modulator output is
given in (3.7.1). However, this random process is not in general wide sense stationary,
but wide sense cyclostationary, meaning that the mean and autocorrelation function are
periodic with period 7, in this case. By computing the period-averages of these, we
obtain the usual mean and autocorrelation that would result from a time randomization
in the definition of the process. Fourier transformation then yields the desired power
spectrum.

In Appendix 3A3 the general result for M -ary modulation of the form (3.7.1), when
the digital input is Markovian, is, from (3A3.12),

$irs (3)] (5]

i=0
g M=lMe) . o m —j2n fmT,
+5 L BSOS Y (4 -n)e ’

S i=0 j=0 =-00

o0

i

S A=-00

(3.7.2)

where S;(f) is the Fourier transform of the ith signal, 5; (1), P; is the marginal probability
of the ith signal, and a,-(;-'" is the probability that index 5;{(r) is transmitted m time units
following transmission of s;(r). These m-step i.ansition probabilities are entry (i, j) in
the matrix A™ for a regular Markov sequence. Tausworthe and Welch apparently first
praduced this general result [36), although Bennett [37] earlier derived a special case..
The signals employed in this formulation are arbitrary; however, the representation
of (3.7.1) must be valid, and there is a bit of subtlety involved. If the modulation is
bandpass, and the carrier frequency is not synchronous with the symbol rate, then it
is necessary to first derive the power spectrum of the complex envelope signal §(t),

#TNote that the fact that 2 modulator is memoryiess does not imply that the input symbols are statisticaily
independent.
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detined in
s(1) = Re[§(1)e! ). {3.7.3)

and then apply the shifting principle for power spectra:
1 . 1 -
G\(f) = Zcx_(j - jc) + ZG\-(—f - .fl |3 (3.7.4)

Assuming that the baseband equivalent signal has spectrum confined to [— f.. [, |, the
resulting bandpass spectrum is basically a replica of the baseband power spectrum.

The first term in (3.7.2) represents possible spectrai line components arising from
periodicities in the autocorrelation function, while the second term represents a continuum
spectrum. Such spectral lines may contain useful timing information: for example, in
carrier transmission a spectral line at the carrier frequency can be used to extract signal
phase in the demodulator. Others may be employed to extract symbol timing. In any
case, these lines must be understood as otherwise wasteful of signal power, and the
spectral concentration of power may be a source of strong narrow-band interference 10
other users.

An important special case of this general expression is that for which the input
sequence is independent und equiprobable. Then, since

m) _ 5,, H = 0,
i = I P;. n#0, (3.7.5)
we obtain
| = n . H
G f)= —— i — Sl f——
(j) MzT\- n;\; XJ:S’ (T‘) (f T\)
(3.7.6)

S

: —’Z%&ml

which depends only on the Fourier transforms of the various signals.

In any case, spectral lines muy exist only at multiples of the symbol rate, R,. as
indicated in (3.7.2), and will be present at f = n/T, = n R, unless the Fourier transforms
evaluated at that same frequency sum to zero. A sufficient (and necessary) condition for
all spectral lines to vanish is

] |

i

M-t
Z P.s(t) = 0. for all 1, (3.7.1)

i=0

which is a common symmetry condition. for example, equiprobable signals with antipo-
dal, biorthogonal, and M-PSK/QAM signal sets. Notice, however, that symmetric signal
sets with nonequiprobable selection may produce spectral lines.

The following example illustrates the general solution, and important special cases
follow.
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Exampie 3.13 Power Spectrum for 4-ary PPM

Suppose the modulation is baseband rectangular pulse PPM with M = 4 signals. Let the
amplitude of each pulse be A and the pulse duration be T, /4, where T, = 2T} is the symbol
interval. We define the basic signals on [0. 7;]. The Fourier transforms of the four signals
are given by Ar
AT, sin*(f 7,/4) o= i2TiT A~ n T8
4 (rfTe/42
and the magnitude-squared term in the line spectrum portion of (3.7.2) at frequency m/T;
has a scaling factor

Sicfr= i=0,1,273 (3.7.8)

]l Femimni2 | = jmm +e~jm37rf2g2‘ (3.7.9)

This factor is seen to be zero, however, for all m # 0, and we find therefore a single spectral
line at f = O with power A2/16, which is just the squared average value of the signal set,
or the d.c. value squared.

The continvum contribution is similarly determined and after a bit of manipulation
becomes

AT, sin®(xf T, /4) 2 AfTs 2 (ST
G f) = - - 1 —cos” | — s —1 1 RIS
(f) 16 (/T /Ay cos 3 cos 3 (3.7.10)

Thus, the power spectrum has a sinc®(v) shape with first null at [ =4/T, =2/T,, modulated
in frequency by the term in brackets. Figure 3.7.1 presents the resull for a signal with unit
average power. One-fourth of the total power resides in the spectral line and three-fourths
in the continuum component. For large frequency, the power spectrum is similar 1o that of

0.2 'l__H—r T T T T T T T T
0.15} —
E
O 0.1} .
0.05r ’ -
i ! T —eer o S B B S

o
—
N
[FV]
s
o
o
~
x©
[(e)

T,

Figure 3.7.1 Continuum power spectrum for 4-ary PPM, average power = |
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a binary NRZ signal with bit rate 2R}, showing bandwidth expansion for the 4-ary orthogonal
sel. In general. the bandwidth expansion is roughly M/ log, M.

3.7.3 Baseband Pulse-amplitude Signaling

Consider the simple, but widely applicable, case in which all signals are scalar muitiples
of some common wavetform, with possible inclusion of a common bias term, or offset.
in the multipliers. That is. we assume as in Section 3.3.5 that

sy = Al2v;, — (M — 1D = Bldo(r) = aigute ), IRIFNEY

where v, are signal coefticients in the set {0, 1. 2... (M — 1)} and ¢y(r) is a unir-energy
baseband waveform, not necessarily limited to the interval [0, 7,]. In the communication
literature, this is generally referred to as pulse-umplitude medulation (PAM). A is mercly
a scale factor related to energy normalization, and B is a possible bias. It 8 = 0, we
have symmetric M-ary amplitude modulation, and all spectral lines vanish in (3.7.6) by
symmetry, while if B #£ 0. the spectral line contribution 1o the total power spectrum is

B°A° & | no\ e n
Gilf) =~ B —)r(s I 3712
=T L “(7; (s 1) e
Notice that the spectral line contribution has an envelope that depends on the pulse shape

adopted.
The continuum spectrum coatribution is

BT 0 2 S B U= I B !
Gify=—21 1 Yo' -1=Y (3.7.13)
A bR 3L P3N

where a, i1s defined in (3.7.11). The term in purentheses clearly does not involve fre-
quency and is related only to the signal coefticients. In fact, this quantity is just the
variance of the signal coefficient set. Thus,

l‘bn(f)ll M>—1 , E,

G, = AT = — - l. A
A T 3 i T |Pal S ) (3.7.14)

and the spectral shape is (not surprisingly) purely determined by the pulse-shaping func-
tion ¢o(t). Remember that this result pertains to modulation with independent input
symbols.

Example 3.14 Polar NRZ (Nonreturn to Zero) Baseband Transmission

A binary signal is assumed to be either A or ~A volts for a duration of T, seconds and is
the signal model adopted in the binary random wave process of Example 2.18. Thus. the
power spectral density result will not be new, but the example provides a consistency check.
The pulse ¢y(i) can be expressed as

12
!
ol = (F) . U<t <T,. {3.7.15a3

and its Fourier transform is
7 sin(;rfT,)

—_— 3TAS
AT { i5bh)

@l f) = T, eI
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Furthermore, the modulation coefticients are g; = £A7;’“. By symmetry, all spectral lines

vanish, and from (3.7.14) the power spectrum is

sinz(Jrf 75
(rfTH? "

in agreement with the Fourier transform of (2.5.11). Figure 3.7.2 provides a logarithmic
plot of this spectrum, with frequency normalized to the symbol (or bit) rate, R;. We remark
that the first and second spectral sidelobes are approximately 13.5 and 17 dB below the
power spectral density at zero frequency and that the higher-order sidelobes decrease at a
rate of 6 dB per octave,”® a rather slow decay rate. Also, the main lobe can be shown, by
integration, to contain roughly 90% of the total signal power (see Exercise 2.5.4.).

Gs(f) = AT, (3.7.16)

0 T T T T T T T
-5 Manchester -
-10 - NRZ .
-15 -
-20 .
Q@
)
< -25 .
Q
-30 -
-35 |-
40}
-45 |
-50
0 1 2 3 4 5 6 7 8
IRy

Figure 3.7.2 Power specira for NRZ and Manchester signals.

if a bias were added to the signal so that the signal switched between 0 and 24 (pro-
ducing unipolar NRZ), we would find that the resuitant spectrum would have a continuum
component identical with the previous case and a single spectral line at zero frequency, cor-
responding to the d.c. component. The power in this component is B2 = AZ. Other spectral
lines are absent because the Fourier transform ®g( ) happens to have zero magnitude at the
possible spectral line frequencies, that is, at all multiples of the bit rate. Thus, the average
power is a factor of 2 larger, while the instantaneous power is increased fourfold. Recall
that this on—off modulation set was in fact a factor of 2 (or 4) less efficient than antipodal
transmission under an average (or peak) power constraint.

2 A freguency octave is a factor of 2 change in frequency.
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Example 3.15 Binary Transmission with Manchester, or Biphase, or Split-phase Format
Suppose the two signats avaitable in any interval are Ago(r) and — Ago(7). with ¢go(r) shown
in Figure 3.7.3. The Fourier iransform of the pulse is

12 -
LS inrns _ i3ty G747
2 (xfL/2)

It is then straightforward, using the Euler trigonometric identity for sin(x), to show that the
power spectrum for biphase signaling is

$olf) =

sin* (f T,/2)
T/

again absent of spectral lines by symmetry. The power spectrum is also shown in Fig-
ure 3.7.2, where we see that the spectral density at zero frequency is zero. and the first
null in the spectrum is at £ = 2R,. If we define bandwidth as the location of the first
null in the power spectrum, we would say the biphase signal’s bandwidth is twice that of
the NRZ signal; this is not at all surprising, given the fact that in a sequence of transmis-
sions from either format the minimal dwell time at either polarity with biphase signaling
is half that appearing in the NRZ stream. On the other hand, the spectral null at zero
frequency is predictable from the fact that in any string of symbols the average value is
zero, in contrast to the NRZ case, where arbitrarily long runs of A or —A4 vollage fevels
are possible. The power spectrum of Manchester signals is apparently suited to channels
with poor low-frequency response, for example, magnetic recording, where il has seen
widespread use. If a bias term is added to the signal to provide unipolar signaling, we
will see speciral lines at zero frequency (as with NRZ), as well as at odd multiples of the
symbol rate. These spectral lines represent periodicities containing timing information for
bit synchronizers, and unipolar biphase transmission is sometimes said to be self-clocking
as a result.

G,(f) = AT, (3.7.18)

dolt)

Figure 3.7.3  ¢y(s) for Manchester,
or biphase, signals.

Example 3.16 M-ary Raised-cosine Signaling

Instead of the time-limited pulses assumed previously, we may adopt the pulse shape ofien
referred 10 as the raised-cosine pulse, so known not for its time-domain shape but for its
Fourier transform. Given any 0 < # < 1, we define the Fourier transform of the pulse be

le/z‘ 1-8
0<Ifl < 5T,
. T 1-8 1-8 1+ 8
@ - i 2fx _
ol f) T,'" cos (2,8 1/ T, . T, <|fl< T (3.7.19)
1+ 8
0, '
T, <\fi
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which is illustrated in Figure 3.7.4. The name derives from the fact thal, in the transition
between passband and stopband of the frequency response, the characteristic is a raised-
cosine characteristic. The spectrum is zero outside the frequency range [0. (1 + B8)/27,].
I + B is known as the excess bandwidth factor. since Nyquist [38] showed that the smallest
bandwidth consistent with zero interpulse interference is the Nyquist bandwidth, {;T,.

IDo(F)
Tsuz
Tsuz
2
f,Hz Figure 374 Frequency response for
raised cosine Nyquist pulse; 1 + 8 is
excess bandwidth factor.

The time-domain expression for ¢g(r) is

1 singme/Ty) [ cos(Brt/T;) ]

1) =
Pol0 7,7 ATy |1 - 4T

(1.7.20)

which may be seen by recognizing that (3.7.19) is the frequency-domain convelution of
a rectangular spectrum and a half-cycle cosinusoidal spectrum and then multiplying the
respective inverse Fourier transforms. The time function is shown in Figure 3.7.5 for
representative values of 8. Because the Fourier transform is defined to be strictly band-
limited, the signal ¢o(¢) must have infinite time duration; in practice, some truncation could
be utilized to approximate the ideal case. Each pulse carries unit energy.

The power spectrum for symmetric M-ary PAM transmission with this puise is

E
G f) = }il%(f)lz. (3.7.21)

§

so the power spectrum is also strictly band-limited.

Actually, it is more common to utilize a modulator pulse whose Fourier magnitude
spectrum is the square root of (3.7.19), which occupies the same transmission bandwidth,
which when properly (matched) filiered produces zero intersymbol interference. This goes
under the name square-root raised-cosine filtering.

3.7.4 Spectra for M-PSK and M-QAM Modulation

Although more general pulse shaping can be applied, we assume that the modulated
signal is, in the case of M-PSK,

RE 172 2
;,-(r) = —'-i'_ cos | w t + —ﬁ}_ + 6. O0<t <T;. (3.7.22)

R

In the case of M-QAM
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Figure 3.7.5 Nyquist pulses.

2\ 2\'"7
5:(t) = a; ('_T_) cos{wt +8)+ b; (F) sin(w(.t_+ 0). Q <t < T:,

5 5
(3.7.23)
where the coefficients are selected from an M-ary QAM constellation. It is typically
the case that the carrier frequency is large relative to the symbol rate, but is not syn-
chronous, and the formulation of (3.7.1) is not strictly valid. In this case, both preceding
modulations may be represented in complex envelope notation as

5i(¢) = Relcigo(r)e!™ e/}, (3.7.24)
where ¢;do(t)e’? is the complex envelope of the ith waveform, and ¢q(r) is a rectangular
pulse. Here ¢; are complex numbers of the form a; + jb;.

In both cases we have enough signal set symmetry®® so that spectral lines vanish

in (3.7.2). Computing the Fourier transforms, S;(f), and noting that all are related to
each other by a complex number c;, yields the bandpass spectrum

Guf) = E; Isin*(@(f = foT) . sin’(n (f + f)T,)
’ 2| ((f - fIT)? o (f + fIT)?
Except for a scale factor related to average energy, the spectrum expression is identical

for all schemes having a common symbol rate R,. At this point it is important to re-
member that M -ary schemes convey log, M bits per symbol, so R; = R;/log, M, and

(3.7.29)

2 Al least for the consteliations presented in Section 3.3.5,
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the spectral widths scale down in frequency according to log, M for a given bir rate.
Likewise, the symbol energy scales in a similar manner with M, relative to the bit energy
E,. In Figure 3.7.6, we show the one-sided power spectrum, relative to f, for M-ary
PSK (or QAM) signaling, wherein we normalize frequency to the bit rate and normalize
so that the energy per bit is 1. We remark that the null-to-null definition of bandwidth
would yield B = 2R,, assuming a rectangular pulse shape.

o T T ; ; T T T

5| :
10 |- | =
-15 - .
20 | .
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fIR,

Figure 3.7.6 Power spectra for M-PSK/M-QAM.

Other pulse shapes may be chosen for spectrum control; biphase pulse (Manchester)
shaping would widen the total spectrum, but-would provide a region near the carrier
frequency with near-zero spectral density. This is occasionally useful for purposes of
adding a pilot carrier in transmission to assist with attaining a coherent phase reference
in the receiver. On the other hand, raised-cosine shaping is a possibility for carrier
transmission just as for baseband signaling.

Example 3.17 Satellite Transmission Using Pulse-shaped QPSK

Suppose it is required to transmit a 140-Mbps binary message stream through a satellite
transponder whose nominal bandwidth is 72 MHz. If we adopt 8-PSK modulation, the
symbol rate is R; = Rs/3 = 46.7 MHz. Use of rectangular NRZ pulses (the easiest
to implement) would produce a power spectral density having a null-to-null bandwidth of
93.3 MHz. Rather severe amplitude and phase distortion would occur in the transponder as
a resuit. If, however, we adopt square-root, raised-cosine shaping with § = 0.3, the signal’s
power spectrum can be completely confined to a bandwidth of 2(1.3)R;/2 ~ 60.7 MHz.
(The leading factor of 2 accounts for the two-sided nature of the bandpass spectrum centered
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at f..) Presumably, this signal is degraded less by the amplitude and delay distortion of the
satellite transponder and the resuiting imersymbol interference at the demodulator outpat.

We conclude with some rule-of-thumb relationships for power spectra that often
give a rough assessment of the power spectrum,

3.2.5 Asymptotic Behavior of Power Spectrum; Role of
Dimensionality

First, consider an arbitrary concatenation of signals selected from the modulator set,
which we again express as

()= 5,4t —nT,). (3.7.26)
n

We view this signal as a deterministic signal produced by some message sequence.
Suppose this signal extends over some large number of symbols, and let S(f) be the
Fourier transform of this waveform. (We assume that the transform exists.) The energy
spectrum of the signal is, by definition, {S(f){>. It may be that the signal set’ is a
baseband set or perhaps a set of carrier-modulated signals whose individual Fourier
spectra are centered previously some frequency f.. The fine structure of this energy
spectrum depends strongly on the exact properties of the signal set, as outlined previously
but the behavior of the spectrum for large frequency f (relative to the center frequency)
is govemed only by the smocthness properties of the signal set. Specifically, consider
the time derivatives of the signals 5;(r), and let N, be the smallest order of derivative
(or antiderivative) that is not continuous. Then it is known (see, for example, Bracewell
[391) that the envelope of the energy spectrum at large f behaves as

IS =0 (Vi) § (3.7.27)

(The “big O™ notation connotes the dominating functional dependence for large values
of the argument and is read “on the order of”"; it does not convey the absolute level,
but the functional behavior.) In other words, the asymptotic rate of decay of the en-
ergy spectrum in the high-frequency region (relative to the carrier frequency if any) is
2{N4 +2) - 6 dB/octave. Notice that we have claimed nothing about the absolute level
of power spectral density in these large-frequency sidelobes; in some sense this depends
on the size and richness of discontinuities of the (N,)th derivative.

Example 3.14 Revisited: Asymptotic Spectrum for NRZ Transmission

Suppose the modulation is the binary NRZ format. An arbitrary concatenation of the binary
signals will have discontinuity at the symbol boundaries. However, the integral, or the —1st-
derivative is everywhere continuous. Thus, Ny = 0 in the preceding terminology, and this
implies that the energy spectrum for an arbitrary concatenation of bits decays as f >, This
is consistent with our carlier determination that the power spectrum of the random binary
wave decays as f 72, since the power and criergy spectra differ only by a time normalization.

The same result pertains 1o any transmission scheme that has similar discontinuities,
such as the Manchester format. We have seen that for a given bit rate the Manchester
spectrum is in some sense twice as wide as the NRZ spectrum; nonetheless, they have the
same asymptotic rate of decay.
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A simple change in the signal description, letting the two pulses be half-cycle sinu-
soids, renders the asymptotic rate of decay to be as f~4, for now the first derivative is the
smallest order of derivative that is not everywhere continuous.

Example 3.18 Distinction between Carrier-synchronous Modulation and Asynchronous
Modulation

Let’s consider two on—off signaling techniques, as shown in Figure 3.7.7a. For bit 0, the
carrier is absent, and for bit 1, the carrier is turned on for a nominal I% cycles (this smalt
number is for illustrative purposes), and the signal begins each repetition at zero. In the
first case, we draw the transmitted signal for the pattern 1101. Notice that this signal can
be represented in the framework of (3.7.1); that is, the signal in interval n is a translation
of the set available in interval 0. An arbitrary concatenation of such signals is everywhere
continuous, and so the spectrum decays as O(f~%). The actual power spectrum would
be given by (3.7.2), needing only the Fourier transform of the one basic signal. A rather
simple change in the formulation, retaining synchronism, but defining the 1 signal to begin
and finish at a maximum, implies discontinuity and thus decay only as O(f~2). Thus, the
starting phase in such cases is crucial. A similar situation occurs with synchronism, but
with, say, l% cycles per bit.

0 V Ty V 27, 3T, V 4T,
{a}

A AN

Figure 3.7.7 Modulator output
0 V Te \Z’Tb 37, V 47, forg two cases of on—off signall)ing:
(a) f. = 3Rp/2, synchronous;
(b) (b) fo = 3R,/2 — €, no phase reset.

In contrast, suppose that the carrier frequency is nominally l;'_; times the bit rate,
but we do not reset the signal at the start of each bit. Instead, we merely amplitude-
modulate a carrier whose nominal frequency is about lé times the bit rate. The same bit
sequence might produce the signal pattern shown in Figure 3.7.7b. There are small but
important differences, and the power spectra are slightly different. In particular, the stgnal
is no longer continuous (in the practical sense it will be of course), and we would say the
asymptotic decay is O(f~%). The proper means of finding the exact power spectrum is to
find the power spectrum of the baseband complex envelope, which is just the random binary
wave in this case, and then use (3.7.4) to translate to the actual carrier frequency.

Still another variation on this would have exact synchronism, but such that discon-
tinuities exist. For example, let the carrier frequency be exactly I% cycles per bit. The
method outlined is applicable, but the results should decay only as £ 2. Further discussion
of these issues is found in Appendix 3A3.
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Dimensionality and Bandwidth

Consider the modulator output over p7, seconds, corresponding to p message
symbols. [f the signals available to the modulator extend longer than a symbol time, some
truncation is involved. but with p large. this is a negligible effect. Suppose the signal
over this interval is essentially band-limited to W herntz. The number of real orthonormal
functions that can occupy this time interval and also have frequency confined to W hertz

is [40]
N* < 2WpT,. (3.7.28)

This must be loosely interpreted, since signals cannot be simultaneously exactly time
limited and frequency limited; more precise statements can be found in [40]. Its validity
is more solid for when' the time-bandwidth product is large.

Now consider a moduiator set having & orthonormal dimensions per symbol. If
we wish p successive transmissions 1o not corrupt each other, then we would wish that
time translates of the orthonormal basis functions also be orthogona! with each other.
Thus, in p modulator intervals, lasting roughly p7, seconds, we are seeking to define
N p orthonormal functions having bandwidih confined to W hertz. By (3.7.28), we musi
have N* = Np < 2WpT,, or that the minimum bandwidth consistent with a signal set
having dimensionality N dimensions/symbol be

N AR,

W s — =
2T. 2

hertz (3.7.29a)

or
W N
— > —_—
since each M-ary symbol conveys log, M bits. We can define D = N/log, M as the
signal-space dimensionality per bit and then claim that

(3.7.29b)

D
W > 3 hertz. (3.7.29¢)

This signal theory result places a lower bound on the bandwidth occupancy of a digital
signal, which is only a function of signal-space dimensionality per bit. The expression
applies equally well to baseband and bandpass transmission.

For example, if we adopt a 64-QAM carrier modulation, having dimensionality
per bit (=: (two real orthonormal functions define the signal set), then the minimum ratio
of bandwidth to bit rate is EI; by (3.7.29c). We know this is approachable by use of
pulse-shaped 64-QAM. wherein sin{s)/¢ pulse shaping is employed in each quadrature
arm. The symbol rate in each quadrature channel is R,/6, and the baseband signal
prior to modulation can have bandwidth as small as £, /12 hertz. while still maintaining
orthogonality between successive symbols, or zero intersymbol interference. Modulation
to a casrier frequency doubles the bandwidth to W = R),/6 hertz.

On the other hand, suppose we use baseband 16-ary orthogonat signaling with PPM.
Here, the signal-space dimensionality is 16 dimensions/4 bits, and the minimum band-
width consistent with this signal set is 2R, or the bandwidth expansion ratio is at least 2.
Of course, if we use rectangular pulses to construct the basis (and thus the signal), we will

find that the actual bandwidth is roughly twice as large and is hardly band-limited anyway.
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The dimensionality theory can be badly abused in measuring signal bandwidth,
for it neglects the spectral properties of the actual functions used to define the signal
set. A prime example surfaces in Section 3.8. We can use antipodal modulation, with
signals defined by binary-coded patterns with, say, 15 chips per bit. This pattern forms
the single basis function used to describe the signal set. Thus, the dimensionality/bit is
1, indicating the potential for small bandwidth. In actuality, the true signal bandwidth is
much wider, by design. In effect, the spectral properties of the basis functions used 10
construct the set are important, as well as the number of them.

3.7.6 Power Specirum for Markov-input Moduiation

We retum briefly to the general result presented in (3.7.2), derived in Appendix 3A3,
showing one application of how precoding the modulator input can significantly shape
the signal power spectrum. To apply the method, we need a valid state description for the
modulator input sequence and need to find the steady-state probabilities of the various
signals. Such Markovian dependencies may be introduced for error control coding pur-
poses (improving the energy efficiency of the channel) or can be introduced specifically
for spectral shaping. The case of alternative-mark-inversion transmission is an example
of a three-level signaling technique, discussed at the beginning of this chapter, for which
one of two possible waveforms is present in any interval, dependent on the previous
selections.

Specifically, let the levels be 0, A, —A, and the selection rules be described by the
modulation state transition matrix

2o e

A= (3.7.30)

= =
[STER W

0

L L

where A;; represents the probability of selecting signal 5;(¢t) immediately following trans-
mission of s; ().

By symmetry of the transition structure and the symmetry of the signal set, we
have from (3.7.2) that all spectral lines vanish. Furthermore, the marginal probabilities
for signals are given by Po= 3, Py = P, = }.

3.8 SPREAD-SPECTRUM MODULATION

The focus on power spectra in the previous section probably suggests that frequency
spectrum is a precious commodity and that designers generally seek to minimize the
bandwidth occupied by a digitally modulated signal. This is often the case, but there are
situations where the signal's bandwidth is intentionally made much larger, perhaps 1000
times larger, than the bandwidth implied by the basic message symbol rate I/T;. Such
a moduiation process is known generically by the apt name spread-spectrum modula-
tion.
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There are several reasons why exorbitant use of bandwidth may be tolerable or
useful. The principal benefits are the following:

1. Spreading a fixed amount of transmitter power over a wide bandwidth lowers the
power spectral density, inducing less interference to another narrowband signal
occupying the same frequency range and making the presence of the signal less
detectable by an eavesdropper.

2. By having various users employ proper modulation formats (spreading codes), we
are able to achieve near orthogonality of waveforms despite the fact that many
users share the same spectrum. This orthogonality, if strict, would allow multiple
users to coexist in a given frequency range without mutual interference, providing
multiple access through what is known as code-division multiple access (COMA).
The same principle makes spread-spectrum systems less vulnerable to intentional
or unintentional interference.

3. Wide-bandwidth signals can provide precise time-of-arrival measurements for range
determination and position location; this derives from the possibility of narrow
autocorrelation responses attached to wideband signals.

4. Spread-spectrum signals enjoy a resistance to multipath interference, again owing
to the narrow autocorrelation responses.

A vast literature on the topic of spread spectrum exists, including entire texts.
Dixon’s book [41] is a introductory treatment of the main themes, and the three volume set
of Simon et al. [42] is perhaps the current ultimate account. Holmes’s text [43] is another
good presentation, although restricted to coherent spread-spectrum techniques. Given this
situation, ts well as the practical interest in the applications of spread spectrum today, it
may seem odd that the presentation here does not even achieve chapter status. This is
by design—the basicd of spread-spectrum transmission and receplion are not essentially
different from the material we have already seen, and the material is best understood in
a unified presentation, rather than being perceived as exotic and fundamentally different.
Some mistakenly regard spread-spectrum transmission as a form of coding, but we shall
see it is actually a form of memoryless modulation of a carrier, albeit a rather nonstandard
carrier.,

Two principal forms of spread-spectrum modulation are encountered in practice;
direct sequence (DS) spread spectrum and frequency-hopping (FH) spread spectrum.
Hybrids of these exist, and other forms such as time hopping and chirp modulation have
been studied for similar purposes. However, these are not common and will not be
studied here.

3.8.1 Direct Sequence Spread Spectrum

DS spread-spectrum modulation is illustrated in Figure 3.8.1. A binary information
sequence at rate R, is modulo 2 added with a higher-speed binary pseudorandom code
sequence {c,), often called a chip sequence, producing a high-speed random sequence
{m.}, which in turn phase shift keys a carrier. The clock rate, or chip rate, R, of the code
sequence is B times faster than the information rate, and normally the respective clocks
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are synchronously related at the transmitter. The synchronism is only a convenience for
implementation (and analysis perhaps), but is not essential in principle.

A suitable chip sequence should have several attributes. It should appear, to a naive
observer, much like a random binary sequence, although it must be deterministic in any
practical setting so that cooperalive communication can ensue. Specifically, the sequence
shouid be balanced between O’s and 1’s and should exhibit favorable autocorrelation
properties, that is, low autocorrelation at all nonzero shifts of the sequence. Furthermore,
in the multiuser CDMA setting, the codes act as signatures for the various users sharing
the same channel, and reduction of mutual interference hinges on small cross-correlation
among different pairs of sequences. Production of good code sequences has been the
subject of much study in the past 30 years, much of it driven by military systems
requirements. It is not within the scope of this text to develop this material, but it
suffices to say that code generators are some form of shift-register network with output-
feedback capable of producing a sequence with long period and perhaps low susceptibility
to structural identification by an eavesdropper. The sequences are called pseudo-random
because the sequence is deterministic and completely predictable by an informed party,
while to a naive observer the sequences appear random.

The maximal-length sequences are generated by linear feedback shift register
mechanisms and suffice for our understanding here. Superb treatments of these sequences
are found in Golomb [44] and MacWilliams and Sloane {45]. It is known that, for any
binary register length L, feedback connections exist for producing a code sequence with
period 2¢ — 1, which is the maximal period for such a finite-state machine. The shift
register encoders have a strong connection with finite field theory, taken up in Chapter 5,
and in particular the proper feedback connections are provided by coefficients of primitive
polynomials. Figure 3.8.2 illustrates a shift register encoder for a length-63 sequence,
along with feedback connections for other length sequences. Maximal length codes have
interesting properties: a balance (within 1) of 0's and 1's, proper frequency of strings
of various types, and a (deterministic) autocorrelation function that has the desirable
“thumbtack™ shape shown in Figure 3.8.2c. ' There are relatively few maximal-length

R, Hz

IRRERE

—»{ ] ] ] | I+Binaw$hiﬁﬂmimer

Figure 3.8.2a Maximat length

G = Cn sequence generator, L = 63,
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Figure 3.8.2¢ Normalized autocerrelation function for maximal length pseudo-
random sequence, period is L.

sequences at any desired length, and to produce larger sets for CDMA applications, it is
common 1o modulo 2 add the outputs of two preferred sequences with some designated
phase shift, producing a Gold sequence [46], labeled by the adopted phase shift. These
sequences have been shown to have good autocorrelation and cross-correlation properties,
Exercise 3.8.2 examines ihese for length- 15 sequences. Recently, nonbinary, for example,
quadriphase, code sequences have been studied [47)] as a means of further lowering the
cross-correlation between signature sequences and have in fact achieved, asymptotically
in N, the Welch bound [48] on the minimal cross-correlation achievable for M signals
built from N-chip sequences.
In the binary DS case, the modulated signal is given by

s(t) = Asin [w,.r O+ %m(!)] = —Am(1)sin(a,s + 0). (3.8.1)

where m(t) is the 21 waveform related to m, by mapping logical 0 to —1 and logical
1 to 1, and @ is a random initial carrier phase. (It is sometimes helpful 1o regard the
variables x,, ¢,, and m, as having values £1, in which case the modulo 2 addition can
be exchanged for normal maultiplication.)

For modeling purposes it is convenient to assume that the code sequence is a (fair)
coin-flipping process so that m, is a i.i.d. binary sequence for any underlying message.
In this case the signal s(1) is stochastically equivalent to a PSK signal modulated at

¥The pulse waveform is usually the rectangular, or NRZ pulse. bul generalization is possible.
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rate R, = BR,. Correspondingly, the baseband equivalent spectrum of the modul
signal is
i .2
G(f) = AT, smz(”fj;t) _ AZT) sin (”fTblzB)
TP~ B (fTs/B)

This illustrates both the spectral expansion by a factor of B and a lowering of the power
spectral density, as shown in Figure 3.8.3.

(3.8.2)

AT,

ﬂ—r

' f.- R, f. Lt+R, f+R f f,+ 2R,

Figure 3.8.3 Power spectra for spread and non-spread modulation, positive
frequency portion shown.

Although Figure 3.8.1 illustrates the typical implementation, it is clear that Fig-
ure 3.8.4 is equivalent, which highlights the fact that we are really just impressing the
information sequence on a more exotic carrier, ¢(t) sin(w.t + 8), where ¢(?) is the %1
code sequence expressed as a function of time. In fact, the modulation of this nonstan-
dard carrier is antipodal in DS spread spectrum, since over the nth message bit interval
s(t) = xyc(t) sin{w,! + 6). This should suggest certain equivalences with nonspread
performarce.

Detection of DS spread-spectrum modulation usually follows correlation receiver
structures already developed. (The matched filter version of the receiver is less attractive
here unless the code sequence repeats every message bit, although matched filters are

xp€ {+1,-1) sit)
| Sttt indndashans ';
I 1
: cos {w.f + 0):
I 1
I Gn +1.-1} ! Carrier
]
| Generator
i | Code | Figure 384 Altemative
1 | Generator | realization of direct sequence
' " modulation; antipodal modulation of
b e e ——————— J code~modulated sinusoid.
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often found in the initial synchronization of the receiver code generator.) Figure 3.8.5
presents the coherent DS receiver, which in effect empioys a scaled version of c(r)
cos{w,¢ + 8) as a basis function. The correlator integrates over one bit interval (not
chip interval), and comparison with a zero threshold provides optimal data decisions.
It is required that, as for coherent detection of nonspread signals, the carrier reference
be properly phase aligned. Here, in addition, we require that the local code generator
be synchronized to the incoming code sequence to within a small fraction of a chip
duration, or else the correlator output will be small (see Figure 3.8.2c). Therein lies
the primary complexity of the DS receiver, especially when synchronization must be
established rapidly.

t= nTb

r{t) Ts Yo Bit Decision
| fo e 2
g S AL P i

cos {w.t+ 6)
Cn
C .
Genggaetor ~+— Code Timing

Figure 3.8.5 Direct sequence receiver in correlator form.

The error probability of the DS receiver in additive white Gaussian noise is easily
found by recalling that for all antipodal detection situations

2E, 12
P,=Q (7\’?) . (3.8.3)

This result is counter to two spread-spectrum misunderstandings. First, we might ex-
pect DS spread spectrum to be less energy efficient than nonspread antipodal signal-
ing because of the larger transmission bandwidth and hence larger noise power in
the receiver. While it is true that the predetection signal-to-noise ratios may be poor
in DS receivers,’! the correlation process produces a decision SNR yielding identi-
cal error probability, expressed in terms of bit energy-to-noise power density ratio,
to that of nonspread antipodal transmission. Conversely, we might expect that the
large bandwidth expansion and apparent coding produces better energy efficiency, as
happens in an analog FM receiver with wideband FM. This also is not true—again
the message modulation is antipodal, and the spreading code does not provide en-
ergy efficiency gains. The reader is invited to see [57] for other discussion of other
myths.

Where DS systems do shine is in providing high immunity to narrowband inter-
ferering signals or to other DS signals occupying the same frequency band. To illustrate

31t is not uncommon for this to be ~20 dB.
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this, consider the case of a sinusoidal interferer, located at the carrier frequency of the DS
signal. Such a signal might either be an unintended spurious emission from an authorized
transmitter or a lone jammer attempting to defeat communications of the DS users. We
represent the interfering signal as (2y Ep/T5) '/ cos(w, + 6). so that y is interpreted as
the interferer’s relative power level. (Notice that we give the interferer the best possible
conditions by giving it the frequency and phase angle of the intended carrier.)

Analysis of the receiver in Figure 3.8.5 proceeds easily, assuming that the interfer-
ing signal does not corrupt the synchronization status of the receiver (this is perhaps the
most vulnerable aspect of the receiver). By superposition, the output of the integrator
in Figure 3.8.5 is the sum of the desired signal contribution, & = :i:E,],/2 . a Zero-mean
Gaussian noise term with variance N/2, and the interference contribution, 7. By realiz-
ing that this interference term is the sum of B chip-duration integration results, we find
that

] 8
n = (Esp)'”? [E Ec,,]. (38.4)

i=!

By modeling the code chips as an i.i.d. binary process, we have that the variance of the
term in brackets is 1/B, and that n has variance
2 _ Epy

oy = —— (3.8.5)

Furthermore by a central-limit theorem approximation, we may assume that if the band-
spreading ratio B is large n is essentially Gaussian in distribution, and the error probability
will be a function of the ratio of the square of the thean to total variance of error terms.
After adding the variances of the additive noise and interference terms (by independence
assumptions) we find that the ratio of the squared-mean to total variance is

u? u? 2E, 1
—E — ‘-"—*"——"“"‘-—-—-—2 = ———— - (3.8-6)
o (No/2D)+02  No [ 1+ QEy/No)(y/B)
Notice that with negligible thermal noise the detection SNR is
2
ueo Y
a1 (38.7a)

rather than y obtained without spread-spectrum modulation. The effective power of
the interferer is reduced by a factor of B, the band-spreading ratio, and 10log, B is
commonly called the processing gain of a DS system. This processing gain effect holds
as well for nonsinusoidal interferering signals, provided these are narrowband relative to
the DS signal bandwidth.

In any case, provided the Gaussian approximation to interference holds, the error

probability is
' 28 12
Pb=Q[(‘“—2) ] (38.7b)
o

where the u*/o? is given in (3.8.6).
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Example 3.19 DS system with B = 1023

Suppose the task is 1o communicate binary data at a rate of 1000 bps. We select a length-
1023 maximal-length code clocked at R, = 1.023 MHz as a spreading code. Note that
the code and data clocks can be synchronously derived and that the code sequence repeats
exactly once per bit. This design provides bit timing once the code synchronization has
been achieved by the receiver. Suppose the ratio of energy per bit-to-noise density is
Eyp/Nog = 10 dB, and let a tone interferer have power 10 dB greater than the total power of
the desired signal; that is, y = 10. With a band-spreading ratio of 1023, the signal power
density would be some 20 dB below the additive noise level, and with a spectrum analyzer,
we would observe only a spectral line due to the interference above a background noise
floor. Even though the predetection signal-to-noise ratio is quite poor, the postdetection

SNR is, by (3.8.6),
2 1
=20] ———— | x 16, 388
[1+20(10/1023)] (33.8)

which is within 1 dB of the value obtained without interference. In other words, the roughly
30-dB processing gzin of the spread-spectrum system has virtually negated the effect of
an interfering signal 10 dB stronger than the desired signal. It should be obvious that the
error probability of a nonspread system in this case is intolerably poor, aithough we will
not analyze the' specific effects of sinusoidal interferers on demodulation performance.

The SNR calculated here should be understood as a worst-case SNR, obtained with
the interferer in phase with the desired carrier. If we average over a randomly chosen value
for 6. the average decision quality is a factor of 2 greater, since the effective interference
power is proportional to cos?(¢), and £ [cosz(ﬁ)] = {;

®

L&)

g

It is illuminating to interpret the processing gain in terms of spectral bandwidths
in the receiver. The interferer originates as a narrowband signal, but following muiti-
plication by the reference in the receiver, it is converted into a wideband signal, with
bandwidth proportional to R.. (Think of the tone interferer as modulating the DS carrier
in the receiver.) On the other hand, the desired DS signal at the input is “de-spread,”
its bandwidth shrinking to that proportional to the information rate R,. The ratio of the
postdetection bandwidths of these two signals is intuitively a measure of decision SNR,
and this is exactly the processing gain defined previously.

Similar benefits accrue in cases where the interference is wideband—the interferer
is left as a wideband signal, while the DS signal bandwidth collapses as before. To
analyze how this sharing of the spectrum can occur through code orthogonality, suppose
we have two users sending signals

s5i(t)y = x (1 Yo (tY cos{ew,t) (3.892a)
and 52(1) = xal)ex(t) cos(ew, 1), (3.8.9b)

where x;(7) is the 21 waveform equivalent of the message sequence {x; ). We assume
the received waveform is two signals plus noise:

2E,\'?
r{r) = (—7—.1) x1 (1) (1) cos{ew, 1)

(3.8.10)

2E,y 1/2
-+ T X0 = thealt = ) cos(w, t + 6) + nit).
5
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Thus, the second signal is received at relative power level y and delayed by some arbitrary
amount t due to propagation delay differences. Assume that we wish to recover the
message sequence {x; }. One standard approach is to employ a correlation receiver that
is optimal in the no-interference case, correlating r(¢) with ¢, (f) cos{(w.) (this requires
the usual carrier and code synchronization). At the output of the integrate-and-dump
detector, the decision statistic for the nth data bit is, assuming that x,;(¢) = 1,
LY
2, = E¥ 4 (E;p)'2 cos(6) ci(t)ea(t — T)x2(t = ) dt + ny, (3.8.11)
(n-1T,

where the second term is the result of user-2 interference and n, is the result of additive
Gaussian noise, known as before 1o have zero-mean and variance Ny /2.

Notice that the interference term is a result of several factors: the relative carrier -
phase angle €, the polarity of the message x3(t - t) over the integration interval, and most
importantly the cross-correlation properties of the two code waveforms (or sequences).
In the special case where the transmissions are synchronized so that 1 = 0 and where
ci(t) and c;(r) repeat every message bit and are strictly orthogonal, the interference term
in (3.8.11) is zero, irrespective of the message x»(t) or 8. Thus, in purely synchronous
CDMA using DS spreading, many multiple users can share the channel spectrum without
mutual interference, provided the sequences are mutually orthogonal. Finding large sets
of orthogonal binary code sequences is not difficult; for example, rows of Hadamard
matrices wifl suffice, although these are not so well modeled as random binary sequences
for spectral purposes.

The practical situation, however, is that such synchronization can usually not be
arranged, especially to chip-duration accuracy. (An interesting exception is in cellular
CDMA networks wherein outbound links from the cell sites to remote terminals carry
simultaneous messages to many users, and each user receives multiple synchronized
messages.)

As soon as asynchronism enters the picture, performance analysis becomes more
complicated, as does the code design probiem. For a specific pair of codes, (3.8.1 1)
gives the means to calculate performance of error probability, but there are many cases
to consider, such as various relative delays r, as well as whether x2(t — 1) switches
polarity in the middle of the integration interval. A code design problem appears then to
be to find large sets of codes for which the worst-case, pairwise interference is minimized.
There is no closed-form analytic solution of this probiem, and designers normally resort
to families of codes with good cross-corvelation properties under asynchronism. The
Gold sequences mentioned earlier are a prevalent choice, but quadriphase sequences
offer some advantages in minimizing worst-case interference.

‘The interference rejection properties of DS spread spectrum can be assessed in
the CDMA case by treating the integral in the second term of (3.8.11) as a Gaussian
random variable*? (this is more justifiable if we consider t as a variable), with zero mean
and variance C(t), where C (1) is the normalized cross-correlation at lag t of the two
sequences. (This cross-correlation should be near zero.) The interference then appears as
a noise like perturbation to the decision statistic, where the interference noise has variance

ol = E;yC(1). (38.12)

3References (49] and (50} studied the Gaussian approximation and observed that it is optimistic,
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Thus, 1/C{r} plays the role of processing gain and, in fact, under the random coin-
flipping model for sequences, would become B, the band-spreading ratio. Processing
gain is the amount of effective reduction of interference power by virtue of near orthog-
onality of codes. Notice that interferers 20 dB stronger than the desired signal can be
tolerated if the processing gain is, say 30 dB. Whenever nonperfect orthogonality exists,
however, the near—far problem eventually limits system performance. That is, even with
a high degree of mutual orthogonality for all situations, if y is large due to the nondesired
signal’s transmitter being much nearer than that of the desired signal, error probability
eventually becomnes unacceptably high. (Exercise 3.8.4 treats some numerical examples.)

Finally, we might ask about effects of interference from multiple simultaneous
users. Superposition applies in the receiver analysis, and by usual statistical methods,
the aggregate interference can be treated as Gaussian (the limit theorem becomes even
more germane in the multiuser case), with variance obtained by adding the contributions
of each user. Here, again. a sufficiently large number of weakly correlated interfering
signals can degrade system performance.

3.8.2 Frequency-hopping Spread Spectrum

In FH systems, the digital modulation is performed as described earlier in this chapter, but
the carrier frequency hops among frequency slots at a rate called the frequency-hopping
rate. The carrier frequency is established by a frequency synthesizer, in tumn driven by
a pseudorandom sequence generator, as shown in Figure 3.8.6. The carrier frequency is
selected from a set of N possible frequencies, equally spaced by some amount Af over
a total hopping range of W = N Af hertz. If the length of the pseudorandom sequence
is 2 — 1, then there are N = 2" ~ 1 unique input vectors to the synthesizer.>

Xn sit)
————{ Modulator —>-

4
cos {u;!f + 6;)

Frequency | N frequencies,
Synthesizer| Afspacing

YN WY

Clack Code
——ssa——r]
R.hops/s Generator Figure 386 Frequency-hopping
modulator.

e Although not indicated in Figure 3.8.6, the actual hopping of frequencies is often performed not ai the
modulater, but in some frequency up-conversion process.
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In FH spread spectrum, both the hopping rate and the hopping range are important
design parameters. (In DS spread spectrum on the other hand, the chip rate R. is
the only design parameter.) Slow hopping designates systems wherein the hop rate is
slow relative to the message rate, so in effect the carrier dwells at any given frequency
for many successive symbol durations. In such cases it is reasonable to contemplate
coherent detection, or at least differentially coherent detection if DPSK modulation is
selected. Fast hopping, in contrast, connotes operation for which the carrier frequency
is changed multiple times per modulator symbol. This may be desirable to prevent a
hostile interferer from listening to the hopping pattern and simply frequency following.
Also, if the channel were a frequency-selective fading channel, fast hopping can provide
a means of mitigating the harmful effects of fading on any one frequency, yielding a
frequency diversity benefit. Time/frequency signal occupancy patterns are illustrated for
both cases in Figure 3.8.7.

TEEET "1 YT 7717

s A

(a)

Figure 3.8.7 Carrier frequency
patterns for frequency hopping.

I 1 1 i t

T, 27T, 37T, 47, 5T, 6T, Modulation occurs relative to indicated
frequency. (a) Two hops per symbol;
(b) (b) two symbols per hop.
.
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For all but very slow hopping cases, detection is normally performed noncoher-
ently because of the difficulty in maintaining an accurate carrier phase reference under
changing frequency conditions. Thus, we typically encounter DPSK and M-ary orthog-
onal, for example, MFSK, modulation. If hopping is slow, then our previous theory
of Sections 3.4 and 3.5 provides the receiver structure and the receiver performance, at
least in the AWGN environment. We merely realize that the carrier will be hopping
at some prescribed rate, according to a known pattern, and, presuming a synchronized
code generator, the frequency in the receiver can be synthesized 1o properly compensate
for the transmitter frequency, restoring the problem 1o ore of nonspread communica-
tions. (If DPSK transmission is employed, an exira start-up symbol is necessary for each
hop.)

P For siow-hopping FH systems operating in a pure AWGN environment, the error
probabilities are exactly those-given earlier for the various modulation and detection
cases. Here, again, FH systems neither gain nor lose in energy efficiency, and in fact the
performance does not depend on hopping range or hopping rate, provided each symbol
is contained within one hop.

Exampie 3.20 DPSK with FH Spread Spectrum

Consider transmission of 'digilally encoded speech, producing a bit rate of 2400 bps.}*
Suppose that we elect binary DPSK modulation for its relatively good erergy efficiency and
adopt a hopping pattern of one hop every four information bits. We must actuaily signal at
a rate of 3000 bps to accommodate the overhead symbol in each hop. The hopping rate is
600 hops per second, rather leisurely with today’s frequency-synthesizer technology.

Suppose that P, Tp/No = Ep/Ny = 10 dB 4t the receiver. Realizing that a fifth
symbo! must be added at the beginning of each hop to act as a DPSK phase reference,
we find that the effective Ep/Np is about | dB less, or 9 dB. Evaluating the DPSK eror
probability expression, we find

Pp=—-e"™=18.10"% (3.8.13)

|-

This is considered quite acceptable for most digital speech encoders, due to natural redun-
dancy in speech and the ability of the auditory system 1o tolerate errors.

The hop interval and hopping range depend on other system considerations, particu-
larly other interference scenarios discussed later. We might wish to maintain orthogonality
between transmissions of other users who are randomly hopping in the same band. This
would require that the hop spacing Af be a multiple of 3000 Hz.%% Choice of the minimum
spacing and use of 255 siots would consume a bandwidth of about 0.75 MHz.

Whereas slow hopping does not induce any energy penalty (or gain) on the AWGN
channe! relative to nonspread modulation with the same basic signal set and detection
strategy, fast-hopping noncoherent systems do suffer an energy penalty because of in-
ability to coherently integrate, or combine, the data from the multiple hops involved in a
symbol decision. To analyze this effect, we consider the case of binary FSK modulation
with noncoherent detection when H > 1 hops per bit are used. The FH receiver is
shown in Figure 3.8.8, where over each hop interval we form statistics Yo, and yy, in
each of the two channels, exactly as for nonhopped communication. The optimal manner

HThis comresponds 10 U. S. military standard LPC-10,
¥Onhogonality may occur only if other users are hop synchrorous,
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Figure 38.8 Frequency-hopping demodulator, binary modulation.

of combining a sequence of H such measurements follows from likelihood calculations
and implies that we form the two statistics

Yo= ilog, Iy (%q—)
i=

Y, = 'Z::log, I (%‘—)

and decide in favor of the largest. In (3.8.14), 4 = (E,/H)'2, the energy per hop, and
o = No/2. Exercise 3.8.5 develops these results.

Partly for analytical convenience and partly for ease of implementation, we use the
approximation log, Io(x) = x2, which is most accurate at low values of the argument x,
or for small SNR. Assuming that 4 and o2 do not change from hop to hop, we take as
our decision variables

(33.14)

u 3.8.15)

2y = Z "

i=1

This receiver combining policy is often referred to as square-law combining. On the
other hand, with farge SNR, addition of the measurements directly without squaring
provides a better approximation to the optimal statistics in (3.8.14). It is naturally wiser
to have a good approximation for the smalli SNR regime; when SNR is high, the error

probability is small anyway despite suboptimality.
Following our earlier analysis, the hop random variables Y, and Y, are Rician
and Rayleigh distributed, respectively, assuming transmission of the 0 symbol, and inde-
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pendent. The square of a Rayleigh random variable has a chi-squared distribution with
two degrees of freedom, as earlier described in Chapter 2. Furthermore, the sum of
squares of H such Rayleigh variables has a chi-squared distribution with 2H degrees of
freedom:
1 H-t —2o?
Sz05,(2118) = SIAT () ) e i, 7y = 0, {3.8.16)
where I"(H) = (H — 1}! is the gamma function.

. The sum of squares of Rician variates is not so simple to express, but has a
noncentral chi-squared distribution. Proakis [31] provides a detailed derivation. The
p.d.f. for Zy, conditioned upon message O transmission, is

12
, I gzontH-b/2 Lo 5z
frminlSp = 5= (F) ey, ( > ) 2020, (38.17a)

20?

where

(3.8.170)

H

BE

=3
is the nomcentrality parameter, and Ip (x) is the modified Bessel function of the first
kind with order P.

The probability of error is then the probability that Z, exceeds Z,, which may
be put into integral form by invoking (3.8.16), (3.8.17), and the independence of the
two statistics. We shall not plot the resulting error probability, but instead display the
loss in performance, relative to the case when H = 1 (or, more generally, when there
are many symbols per hop). In Figure 3.8.9 we show the noncoherent combining
loss as a function of H for differing values of E;/Ng. The plot of Figure 3.8.9 al-
lows us to construct the error probability plot for fast-hopping binary FSK by applying
the indicated corrections to the curve for slow-hopping or standard nonhopped binary

il
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g
8 4l
L
§ Ep/Ng = 16 dB
[+
" 2
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Figure 3.8.9 Noncoherent combining loss for fast frequency hopping, AWGN
channel, binary orthogonal signals,

FSK with nencoherent detection. Recall that the latter has error probability given by
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