P, = %(WW, (3.8.18)
and thus the curves shown in Figure 3.8.10 are produced.

Insight into the degradation for multihop noncoherent combining can be obtained
from study of the decision p.d.f.’s. Figures 3.8.11a and 3.8.i1b show decision p.d.f.’s
for two cases with £, /Ny = 10 dB, the first with H = 1, that is, standard noncoherent
detection of binary signals, and the second with # = 5. Obviously, the error probability
suffers in the latter case, despite the fact that the total energy is equivalent. This is
described as an inability to coherently integrate the available energy in a decision.

For M-ary orthogonal signaling with noncoherent detection, similar analysis per-
tains: one of the decision variables is noncentral chi squared with 2H degrees of free-
dom, while the remaining M — 1 variables are chi squared with 2H degrees of freedom.
Proakis {31] formulates the exact expression for error probability in this case. leaving
the result in integral form. A quick approximation uses the union bound for M-ary
signaling:

P < (M - 1) Py, (3.8.19)

where P, was expressed in (3.8.18) after correction for noncoherent combining loss.

10 |-
102 |-
Pb B
10—3 -
10—4 -
105 | ! [ 1 | Pl
0 2 4 6 B8 10 12 14 16

Ep/Ny, dB

Figure 3.8.10 Error probability for frequency-hopping, binary orthogonal sig-
nals, H hops per bit.
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Figure 3.8.11a Decision variable pd.f.’s for H = 1, E;/Ng = 10 dB.
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Figure 3.8.11b  Decision variable p.d.f.’s for H = 5, E3/Ng = 10 dB.
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Partial-band Interference in FH Systems

In the context of jamming environments, the question of worst-case jamming strat-
egy arises. Specifically, given a set of resources (energy, bandwidth, and interferer
power), we may ask about the worst-case jammer scenario and for the corresponding
error probability. In FH systems, a partial-band jammer, optimally configured, presents
a difficult situation.

Consider first the case of siow frequency hopping over a total bandwidth of W hertz.
Let us assume the jammer elects to broadcast a Gaussian noiselike signal having total
power N, at the intended receiver. The choice of a Gaussian jammer process is motivated
by information-theoretic considerations—under a power constraint, additive Gaussian
corruptions minimize channel capacity. If the noise were uniformly distributed in fre-
guency across the entire band, the equivalent noise power density would be N; /W W/Hz.
Instead, let the jammer allocate this noise over some fraction p, called the fill factor, of
the entire bandwidth.* Once this fraction is specified, we assume that the interference
spectrum is also hopped in frequency; otherwise, a smart transmitter could determine the
location of the noise-free region and communicate freely,

In a region where interference exists, the power spectral density is

Ny N
No, WD (3.8.20)

where Ny represents an average jammer noise density. In spectral regions where the
interference is absent, we assume for simplicity that the receiver noise level is zero, and
thereby perfect transmission is possible. On the other hand, in the case we hop onto
a jammed region, referred to as a noise hit, we assume the performance is that of an
AWGN channel with effective noise level Ny,. The probabilities of these two events are
1 - p and p, respectively. Hence the symbol error probability is

P,(p) = pPlerrorinoise level Ny, |. (3.8.21)

This error probability depends on p and the problem resources, as well as the modula-
tion and detection format. In principle, we may solve for the worst-case o that maxi-
mizes (3.8.21) and then the worst-case error probability. We will illustrate the process
for the case of binary DPSK modulation.

Example 3.21 Worst-case Partial-band Interferer for Binary DPSK
For binary DPSK with noncoherent detection, (3.8.21) becomes

Pup) = ge“ﬂfb/”«. (3.822)
Differentiating with respect 10 p and equating to zero yields the stationary point
l. %:—;- <1,
= (&)—l & iy (3.8.23)
NoJ No =

(Observe it makes no sense to have p > 1) Equation (3.8.23) reveals that, for small ratios
of signal energy to effective jammer noise level. the full-band strategy is most deleterious,

35We assume that the Jjammer knows all the parameters of our system, exceps the exact hopping partem.
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while as the jamming resources diminish, the best strategy is one that places noise in a
decreasingly small fraction of the band. Again this only holds if the noise spectrum is
continually reassigned in frequency so that a smart transmitter/receiver cannot dodge the
interference,

Of equal interest is the cormesponding error probability with o* in effect. Substituting
in (3.8.22) gives

L~ Eapho. E

Pt =17 gg (38.24)
L L
2EL/Ng No T

In the second condition, the high SNR case, we find the particularly discouraging result that

. for worst-case partial-band noise the improvement in error probability is only an inverse de-

pendence on Ey /Ny, , rather than negative exponential..(This result assumes pessimistically
that as £5/Ng, changes the optimal fill factor p is employed.) Figure 3.8.12 illustrates the
error performance given in (3.8.24), showing the two regions specified in (3.8.24).

102 |

102

10 -

e =Ep /N

Pb=;
p* =1

Py = 671/ (2E,/ Ny},
p* = (Ex/Np)?

Figure 38.12

105

Error probability

10 20 30 40 for worst-case partial-band noise;
binary DPSK signals, slow frequency
Ep/No,, dB hopping, noncoherent detection.

Equation (3.8.24) also reveals that for a fixed jammer power N, there is advantage
to be gained with large hopping range W, since the jammer's effective signal-to-noise ratio
Ep/Ny is lowered. Herein wo-see the bandwidth-spreading advantage seen earlier for DS
systems.

Similar results are obtained for all uncoded modulation formats, for example,

MFSK and coherently detected MPSK. That is, the slope of the P; curve plotted against
Ep/Ng is ~1 for large arguments. We remark that this situation is also the case on
the Rayleigh fading channel, where the resources are average signal energy and fixed
noise level. It shouid be realized that the partial-band model breaks down in the case of
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diminishing p*. Specifically, if W is fixed, we eventually reach the situation where the
optimal noise distribution is not a white noise process over the bandwidth of the received
signal. In such cases, the interference approaches the tone-jammer model.

As with the fading channel, we will find that partial-band noise interference can
be effectively mitigated by coding. Through channel coding, we may ensure that several
noise hits are required 10 cause a decoding error. This has the effect of forcing the
worst-case o to a larger value (to increase the hit probability) and changes the slope
of the curve to a larger value. A particularly simple form of coding®” that is effective
against partial-band interference is represented by fast hopping-—in essence, we encode
the same message bit on & consecutive hops and model the encounter with interference
as a Bernoulli trials experiment. If we assume that the receiver somehow can learn
whether a given hop is noisy due 1o interference, the proper decision maker will never
err unless all hops are jammed. This follows from the perfect trust in nonjammed hops,
embodied through (3.8.14) or (3.8.15) when a2 = 0. The probability that all H hops
encounter noise is p¥, and the probability of error becomes an extension of (3.8.21):

P.(p) = p" P(error with H hop combining|noise level N, ). (3.8.25)

This leads to the calculation of a worst-case p as before, and for H > 1, p* is forced
to a larger value (so that more hops will be hit on average), and the slope of the error
probability curve versus E, /Ny, for large arguments is —H . Exercises 3.8.5 and 3.8.6
develop this result, as well as a related result pertaining to decisions on individual
hops followed by majority voting. It is also worth noting that the fast-hopping strategy
suffered against additive white Gaussian noise, relative to slow hopping, but against other
impairment scenarios, fast hopping is perfectly sensible.

APPENDIX 3AT: ASYMPTOTIC PERFORMANCE OF M-ARY
ORTHOGONAL SIGNALS

In Section 3.3 we observed that as M becomes large the symbol error probability for
M -ary orthogonal signaling steadily decreased, at least for suitably large £,/Ng. In
Exercise 3.3.9 we show with a simple union bound that, provided £,/Ny > |.4 dB,
arbitrarily small error probability is obtained as M —> oco. This is precisely 3 dB shon
of the channel capacity limit for the AWGN channel, and we here use a finer bounding
technique to show that orthogonal signaling can, in fact, achieve the capacity limit. The
treatment follows that of Viterbi and Omura [51], and the general procedure will be
seen again in Chapter 4, where the performance of coded transmission on memoryless
channels is studied.

We first assume that message Sy is transmitted with no loss of generality due to

signal and noise symmetry. The decision etror r=gion is expressed in terms of likelihood
ratios;

e = |y . LTS

0 =4 F 150 > 1 for some m 9&0}. (3A1.1)

M This is known as repetition coding.
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For 5 > 0, we can just as well express the error region as

A G
6= 1T 0t. s > 0. (3A1.2)
Dy [r. [f(rfSo)] > | for some m # § >

The symbol error probability is
P; = P[r € DylSol. (3A1.3)

and we can upper-bound P; by including more of observation space in Df. Thus, we
define D¢ by

5 fx|Sn )]’
by = > | (3A1.4)
’ Z [f(rlso)
and claim that every r found in D lies also in D;. So
< | f(riSo)dr = f g(r) f(r|Sp) dr, (3A1.5)
reD; al r

where g(r) = tifre Dg, and zero otherwise. The indicator, or step, function g(r) is
either 0 or 1 and can be upper-bounded, for p > 0, by

R 4
glr) < Z: [ (rlS,,,}] ] p >0 (3A1.6)

f(riSe)

Substituting in (3A1.5), we obtain

M- 4
Py Sff(rISn)""’ I:Z[f(rlsm)]’:l dr. (3ALT)

We wish to minimize this bound over valid choices of s and p, but it is at least acceptable
to pick s = 1/(1 + p), for p > 0. This choice in (3A1.7) gives

M- P
P, < f f(rlSe)' !+ [Z[f(ns,,,)i“/”ﬂ']- dr. (3AL.8)

Now recall that, conditioned upon transmission of S,, the demodulator output variables
are all Gaussian, independent, with variance Ny/2. All means are zero except that of rq,
which is E; 2 After manipulating exponents, we can write

_ES 25,:/2,,, N M- ZN .
expl( +2E7rm)/Nol expl ): =0 'm/ “] (3A1.9)
(e Ny)M 72

Employing this in (3A1.8) and simplifying. we ablain
Y B | Pescadp
(nNo)'ﬂ Pl N +0)
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ME 2Es rnr pdl‘
=1 N(]“+p) ’

(3A1.10)



If we change variables using z, = r,,/(No/Z)"Z, then

M-1 d
P, <e E:/Nof f (2 )I/ZI(ZO) [Zf(zn)] dz, (ALLD

a=1

12
where r(z,,) = exp (Ea) |'+p We can now recognize (3A1.11) as an expectation

with respect to r.v.’s {Z;}, which are independent, zero-mean, unit-variance Gaussian
variables. Independence gives

M- ,
P, < e B/ME(t(z0)}E {(Z t(z,.)) } (3AL1.12)
n=|

The definition of expectation and completion of the square yield the first expectation:
5
— . (3A1.13)

No(1 + P)z]
For the second expectation in (3A! 12), we use Jensen's inequality (see Exercise 2.3.7).

Let’s define the r.v. ¥ = z 1 t(Z ), which can be seen to be nonnegative, We seek
then E[Y?), which by Jensen's ineguality is bounded by

E[Y?) < {E[Y}), O0<p<l (3A1.14)

Elt(zp)] = exp[

{Note that raising a number to a fractional power constitutes a convex N functional
transformation.) Thus,

M-1 d
E(r) < {E [}: r(z,,>“ = ((M - DEW(Z]*

=1 (3A1.15)
={M — 1)’ exp [—Ei—-]
No(1 + p)
By using M — | < M,

P: S Mpe_E!/NOeEJ”NU(i"‘ﬂ”

E (3AL.16)

<M"exp[——-§-( p )] 0<p<l.
i+p :

Now we recall that E; = £j,log, M and proceed to minimize the bound through choice
of p. Doing so by standard calculus reveals that the best p is

Eb 172
- —1, 3AL17
P [Nolog,z] ( )

which will lie in the intervai (0, 1) as required by the bounding procedure, provided that
log,2 < E}/Np < 4log, 2. (For larger £,/Ng values, we simply use p = 1 as the
maximizing o; in fact, for such cases this procedure is equivalent 1o that developed in
Exercise 3.3.9.) Back-substitution of p* into (3A1.16) yields

'y
Poce B jop 2o -gf < 4log, 2. (3ALI8)
0
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This demonstrates then that, provided Ey/Ng > log, 2 = 0.693 = —1.6 dB, use of
orthogonal signals with M — oo gives arbitrarily small error probability. We will not
develop the strong converse, that when £,/Ny < log,2 as M — oo, P, approaches 1.

APPENDIX 3A2: LATTICES

A lattice is a set of points in N -dimensional Euclidean space arranged in highly regular
manner. In the digital communication context, a lattice may serve as a constellation, by
truncating the lattice to a finite set of M smallest-energy points nearest the origin, or
the lattice may serve as a framework for coded transmission by partitioning the lattice
into smaller disjoint sublattices and then applying block or trellis coding constructions to
map information sequences onto a sequence of subsets. Moreover, the theory of lattices
can provide interesting generalizations of more traditional coding approaches involving
binary block codes, as described in Chapter 5.

Our discussion follows the presentation of Forney [52], and notauon is that of the
standard literature on lattices. The text by Conway and Sloane [53] is considered the
encyclopedia on this subject. We will begin with some familiar lattices that are easily
visualized.

Some Familiar Examples

The simplest lattice, and the only one-dimensional lattice, is designated Z, the set of
integers (see Figure 3A2.1). Each lattice point is adjacent to two others, and the closest
lattice point is one unit distant. In two dimensions, the set of points with integer-valued
coordinates is denoted as Z x Z = Z?, but a slightly better arrangement of lattice points,
for digital communication purposes, derives from the hexagonal lattice, A;, a portion
of which is shown in Figure 3A2.2. (The name hexagonal refers to the nearest-neighbor
decision zones surrounding each lattice point.) Here the number of adjacent lartice
points is 6, but the minimum Euclidean distance between points remains at 1, despite the
increase in the number of points per unit area. In three dimensions, the Jace-centered-
cubic (fec) lattice, shown in Figure 3A2.3, is known to provide the centers for the densest
packing of spheres, or balls, and this tattice is designated D3. Notice that all lattice points
have integer-valued coordinates whose sum is even; this lattice forms a subset o the
three-dimensional lattice Z3.

These examples have much common structure. First, the sets of points form a
group under ordinary addition of N-tuples. That is, the addition of any two points in

Unit
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Figure 3A2.1 Lattice Z, drin = 1.
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Figure 3A2.2 Lattice A2, doyin = 1.

Xy

{0,2,00

{0, 0,0 (2,0,0 Xo
Figure 3A2.3 D; lattice points (face-centered cubic lattice).

the lattice produces another. Eqivalently, each lattice point is expressible as a sum
of integer multiples of basis_vectors. Furthermore, we notice extreme regularity—the
lattice looks the same no matter on which point we stand. With some simple ideas
in mind, we now formalize the algebraic and geometric structure of lattices and then
proceed to describe higher-dimensional lattices. (The fact that we have difficulty vi-
sualizing higher-dimensional objects should not be a deterrent to their description or
use.)

Algebraic and Geometric Notions about Loltices

A real lattice A is a countably infinite collection of points, or vectors, or N-tuples, in
real Euclidean N-dimensional space that form an algebraic group under ordinary vector
addition. We denote the points by vectors of the form x = (xp, x|, ..., Xn.1), 5O X; are
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the Cartesian coordinates of a lattice point in N-space. Eventually, these points become
the signal-space coordinates of a signal set.

The group property requires that the vector sum or difference of any two elements
of the lattice be in the lattice and that the lattice include the point 0. To say that the
lattice is N-dimensional means that exactly N basis vectors, not necessarily orthogonal,
are required to span the countable set. Thus, points of a lattice are described in terms of
a N x N generator matrix M by

x =uM, (3A2.1)

but where the components of the “message™ u are integer valued. Thus, a lattice is the
set of all linear combinations of integer multiples of the rows of M. For example, A;
has obvious basis vectors (1, 0) and (3, 3'72); thus,

M = [ o ] . A (3A2.2)
P
In four-dimensional space, the most useful lattice is the Schlafli lattice Dy, defined by3®
2000
1 00 1|
M= 010 11l° D, (3A2.3)
¢ 01 1

If u=(-1.0,2,0), for example, the corresponding lattice point is x == (-2, 2, 0, 2).

Although the matrix formulation is a sufficient description, we often describe a
lattice by specifying the constraints placed on its constituent points; for example, “Dy is
the set of integer-valued 4-tuples whose sum of coordinates is even,” as may be seen by
study of M in (3A2.3). There is, of course, no unique matrix description for a lattice.

Certain operations on lattices leave the basic properties unchanged. Scaling of
a lattice corresponds 1o stretching the coordinate system equally in all dimensions by
multiplying M by a scalar a; the corresponding lattice will be designated a A. This will
change the distance between points proportionately, bul all other features of the lattice
remain unaltered. Translation, by adding an N -tuple ¢ to ail lattice points, produces the
lattice designated A + ¢. This is useful in minimizing the energy of a finite constellation
drawn from a lattice. Rotation of a lattice produces a new latice OA and is obtained
by multiplying M by an orthogonal matrix O, that is, one for which 007 = al. If a
lattice A; can be obtained from another lattice A by a series of scaling, translation, or
rotation operations, we say that the two lattices are similar, or conrgruent, and express
this as A; ~ A. Fimally, the Cartesian product lattice AM is the set of M N -tuples
(Ao, Ap. ..., Am-1), where each ), € A. Thus, ZV, for example, is just the set of
integer-valued N-tuples. (Note superscripts represent Cartesian products of lattices, while
subscripts denote dimensions of lattices.)

Now for some geometric concepts attached to lattices. Most important is the
minimum Euclidean distance between any pair of points in the lattice, dpin. Because
of the regularity of the lattice, d.,;, is invariant 1o choice of reference point. In ZV,
dmin = 1, and dmis in A is also 1. In Dy defined previously, the point (0,0, 0.0) has a
nearest lattice point with coordinates (I !, 0,0). and hence i = 2172,

3B 0ther equivalent definitions are common.
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Suppose we center N -dimensional spheres with radius dmi,/2 at each [attice point.
These spheres will touch or “kiss” a finite number of similar spheres. This number is
calied the kissing number of the lattice, often denoted by r. For ZV the kissing number
is 2N; A; has a kissing number 6. Dj, the face-centered-cubic lattice, and Dy have
kissing numbers 12 and 24, respectively. [In Dy, the points nearest the origin are the 24
points of the form (£12, 0%), denoting vectors with exactly two £1°s and two O's in four
positions. Spheres around these points having radius 2'/2 all kiss the sphere centered at
the origin.] :

Each lattice point has a region surrounding it, called the nearest-neighbor zone,
or more technically the Voronoi zone,* which contains the region in RV closer to
the given lattice point than to any other and which constitutes decision zones for the
Gaussian channel environment. The Voronoi region will be a polyhedron in N -space
having a number of faces equal to the kissing number, since the Voronoi zones are
bounded by planes bisecting lines connecting a point 1o its nearest neighbors. These
polyhedra circumscribe the spheres of radius dy,,/2 around each point.

For Z¥, the Voronoi region is an N-cube with unit edge length, while As’s unit
cell is a hexagon (hence the common name for this lattice). D3’s Voronoi cell is a
dodecahedron, and D4 has a 24-faceted polyhedron in 4-space as the Voronoi region.
Again because of the regularity of a lattice, the Voronoi regions surrounding each point
are identical and form a disjoint partition of R". N

It will be important in assessing communication efficiency to determine the volume
of the Voronoi cell for an arbitrary lattice A. It is known [53] that this volume is precisely

V(A) =da M (3A24)

and thus, if we know the generator matrix, finding the volume V(A ) is easy. In particular,
since Z¥ has M = I, the volurae of its unit cell is 1, consistent with knowledge that the
cell is the N-cube with unit edge length. An ahernative, and easier method to find V (A)
for general lattices wil follow shortly based on lattice decompositions.

Owing to the group structure, a lattice may be decomposed into a sublattice (a
subgroup) and its cosets. More specifically, a sublaftice A’ of a parent lattice A is
another lattice that is a subset of A. In algebraic terms, we would say A’ is a subgroup
of A, and it induces a partition or decomposition of A into equivalence classes, formed
by A’ and its cosets, or translates. A coser of a lattice A’ is simply the set of points
A'+¢, where ' € A'. The order of such a partition-is the number of equivalence classes
so formed. In set notation terms, we say

A=ANUN+e)U...U(A +cp) (3A2.5)
for a partition of order B.

Example 3A2.1 Partitioning the Z; Lattice

As earlier noted, the lattice Z2 = Z x Z is the set of integer-valued coordinate patrs, This
set may be divided inte two disjoint sets defined by the points whose coordinate sum is
0. mod 2, and the set whose sum is |, mod 2. Thus, the point (0, 0) is in the first set,
while (2, 3} is in the second set. This partitioning defines two closely related sublartices,

¥ Also called the unit cell.
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one being the set of points (xg, x1) for which
xo+x =0,  mod, (3A2.6)

and the second obtained by adding the coordinate pair (1, 0) to every paint of the first set.

The partitioning can be easily visualized by imagining a checkerboard of red and
black squares. The original lattice consists of points at the center of every square. The
two sublattices are merely the center points of the red and black squares, respectively. You
should observe that the two cosets so obtained are fundamentally identical in nature, having
the same number of nearest neighbors, same distance structure between points, and so on.
It is also important to observe that the minimum intraset distance between points of a set
increases by 2!/2 when we subdivide here, for poinis formerly nearest neighbors in the
original lattice are no longer members of the same set.

The points with zero sum, mod 2, form the sublattice called Dy, and so we can
write the decomposition simply as Z2 = D, U[D, + (1,0)]. However, notice from the
checkerboard representation that Dy ~ Z2, since these points can be seen to be a rotated
(by 45°) and scaled (by 2'/2) version of Z2.

The lattice partitioning can be continued indefinitely, assuming an arbitrarily big
initial set, each time producing sublattices again. For example, subdivision of D, pro-
duces two copies of 2Z? within which the minimum distance is now 2. A partition chain
is a sequence of lattices A, A’, A”, ..., for which each successive lattice is a sublattice
of the former. We express such chains as A/A’/A”, ... For the preceding example,
an indefinite partition chain of the form Z:/D,/2Z2/2D,/ ... results. We could skip
intermediate partitions in the sequence and observe that Z2/222 is a partition of order 4.

Most of the important lattices are integer latfices, ones for which all coordinates
are integers (note A, is not one), and it is usually the case that 2*Z will be a sublattice
of an N-dimensional lattice A for some m. If so, A is a binary lattice. If m = 1, A is a
mod-2 binary lattice; if m = 2, it is called a mod-4 binary lattice. D, is a mod-2 binary
fattice, as is the following example.

Example 3A2.2 Dy Partition Chain

D is an order-2 partition of Z*, since one definition is the set of all integer 4-tuples whose
sum is even. Dy may be further subdivided into RDy4 (and three cosets), where R is the
two-dimensional rotation operator

k=) _)] 3A2.7)
and we interpre. the lattice R A to mean the lattice to which the rotation operator is applied
to pairs of coordinates separately. In this notation, the lattice operator R? is equivalent to
multiplication by 21, or scaling the lattice by 2. To illustrate, RDy is the set of integer
4-tuples whose total sum is even and whose first and last coordinate pairs sum to an even
number. In this lattice, dmin = 2 still. It can be secen that Sfour translaies of RDy4 form
D4. Going one step further, we can subdivide RDy4 into two copies of 2Z*, within which
dmin = 2. Thus, ’4.’.““/])\4/.'1?D4/2Z4 represents a partition chain whose total order is 16 and
whose profile of d2. is 1/2/2/4.

If we adopt a single point in each coset of a partition A /A’ as a coset representative,
we obtain a system of coset representatives, designated by [A/A’], whose number is the

order of the partition. In the previous example, coset representatives for the two-way
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partition Z°/D, could be taken as (0, ¢) and (1. 0). In the four-way partition Dy /RD;,
the coset representatives could be (0,0,0,0), (0.1,0,1), (1,0, 1,0), and (1,0,0. 1),
since any of these vectors, when added to any point in RDq, is in Dy.

Such a progressive decomposition provides a means of defining any lattice point
in A as a point in A’, offset by a coset representative ¢ that labels the coset membership
of A. This can be expressed as

A=A +[A/N], (3A2.8)

meaning that for any A € A
A=A +c (3A2.9)

where ¢ is the coset representative for the coset of A’ containing A. For multistage
partition chains, the corresponding view of the decomposition is

A=A"+[A/A'] +[A /A7) (3A2.10)

Here a specific lattice point is addressable as A = A" +c-+d. This representation provides
a compact “formula” for describing complicated lattices.

Communication Efficiency

Before continuing with the description of other latiices in higher dimensions, we should
connect the lattice discussion with the signal design problem for the additive Gaussian
noise channel. In AWGN signaling, we know that ML decoding is equivalent to decoding
the received N-dimensional point in signal space to the nearest (in Euclidean sense)
signal point, here a lattice point. (Already this raises the question of whether finding
the nearest point is easy—more on this later.) The unit cell will, in general, be an
N-dimensional polyhedron having t planar faces, with these planes being perpendicular
bisectors of lines connecting a lattice peint to its nearest neighbors. Thus, the distance
from a lattice point to these planes is dy;/2. Within each such polyhedron, we can
inscribe an N-dimensional sphere of radius dpin /2. and these spheres will kiss a number
of other spheres equivalent to the kissing number. If we recall that the figure of merit for
a signal set is the minimum squared distance between constellation points, normalized by
_the average energy dﬁlin /Es, it becomes apparent that an efficient signal design is a dense
arrangement of unit-radius spheres in N-dimensional space, which is the classical sphere-
packing probiem [19]. Actually, it is not quite this simple in digital communications,
for the error probability depends not only on dy;,, but also on the number of nearest
neighbors, which in high-dimensionality space will be seen to be rather large.

The error performance can be upper-bounded by again treating the error region as
a union of half-spaces:

dmin
PeSTQ[W]. (3A2.11)

where 7t is the number of faces of the unit ceil, or Voronoi cell. On the other hand,
the error probability is lower bounded by the probability that noise carries a transmitted
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point to the wrong side of a single plane:

- dmin -
Lower bounds differ only by a (perhaps large) mulniplier. Nonetheless, the two bounds
are exponentially equivalent, so at high SNR the signal design problem reverts to packing
as many spheres as possible into a given N -dimensional volume,

We can clearly illustrate with a study of two-dimensional arrangements. Consider
a large region of the plane bounded by a circle, enforcing a peak energy constraint on
lattice points. By comparing the area of the unit cell for Z* and A,, we find that the
latter is about 15% smaller, while still maintaining the same d,,,, = I. Thus, in a large
circular region the hexagonal lattice is capable of placing 15% more points. (Essentially,
hexagons are more circular than are squares.) Egquivalently, if we fix the number of
lattice points desired, the circular region can be 15% smaller in area in the case of A,.
or about 7% smaller in radius. We have earlier seen that, for a given number of signal
space points M, the figure of merit for detection efficiency is drf,-m/Es, where £, is the
peak (or average) energies expended by the signal set. Since peak and average energies
are proportional to radius squared, and A, has the same dni, as Z°, we conclude that the
hexagonal lattice design is roughly 15%, or 0.7 dB, more energy efficient. Obviously,
there are edge effects 1o deal with in finite constellation constructions that alter this
slightly.

We now generalize this notion of communication efficiency for a lattice. Forney
[52] defines the fundamental coding gain y (A) of a lattice as

y(A) = il AT
V(A )Z/N

y(A) is dimensionless and is easily shown to be invariant to scaling, rotation, and
Cartesian product operations on lattices [52].

¥ (A) is the asymptotic coding gain obtained by adoption of constellations based on
A relative to the use of constellations from Z¥. To see why. consider constellations with
M points in N dimensions, with M large. We choose the M points from the lattice as
those points inside an N -dimensional sphere. (This minimizes peak and average energy
values.) The volume of the sphere including M points from ZV is about M, since the
unit cell has volume 1. (We are allowed to neglect edge effects by requiring M to be
large.) Similarly, the volume for a signal constellation based on A is MV(A). The ratio
of radii of the two spherical regions will then be

(3A2.13)

g _ ]
ra V(A)UN®

(3A2.14)

since the V-dimensional volume of a sphere varies as the N'th power of the radius. Since
peak energy is proportional to radius-squared,*
Eqn 1

Er V(AN (3A2.15)

“0The same ratio holds for average energy if we treat the signal points as 2 uniform continuum in N -space.
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The figure-of-merit for any constellation is 7, /E , implying that the improvement
afforded by constellations derived from A relative to those from Z¥ is

dsﬁn(A)/ E
df';i“(zﬁ)/Ezw
a2 (B)

- V(A)Z/N

y(A) =
(3A2.16)

since duin(Z") = 1. We caution that this is an argument based on large constellations.
Determination of the shape and thus the volume of the Voronoi cell can be some-

what tedious for high-dimensional lattices, but a lemma of Forney {52] is that, if A’ is

a sublattice of A of order p, then the volume of the Voronoi gell for A’, whatever its

shape, is
V(A) = pV(A) (3A2.17)

This is a direct result of the partitioning of the total volume into Voronoi cells for the
sublattice and its cosets. In panticular, if A is a sublattice of order p of Z¥, then
V(A) = p. This immediately reveals that the volume of the Voronoi cell for D, is
2, since the lattice is a partition of order 2 of Z'. It also tells us the volume of the
dodecahedra surrounding points in D; is 2, since D; is a two-way partition of Z3,

We can now find the efficacy of the Dy lattice by recalling that Z*/Dy is a partition
of order 2; that is, Z* = Dy U D4 + (1,0,0,0). Thus, by the volume property given
previously, V(D.) = 2V (Z*) = 2, and since d>, = 2 as already determined, we have

y(Dy) = 5?5 =242, (3A2.18)
which in decibel units is about 1.5 dB. We should exercise some caution here, for the
kissing number of Dy is 24, slightly larger than that of Z*, Still the asymptolic energy
efficiency gain of (large) D,-based constellations is predicted to be 1.5 dB.

A concrete example of a design that exploits this potential is provided by a 256-
point constellation selected from Dy. This design would have the same spectral efficiency,
or dimensionality per bit, as a [6-point QAM (Z?) construction. We begin by first
translating the lattice by (1,0,0,0) and then retain the five lowest-energy orbital shells
in the lattice. This can be shown to include exactly 256 points. The minimum squared
distance between lattice points is still 2, and by calculation the average energy expended
per symbol is 6.75 units. Using (3A2.11) and the fact that £, = 8E,, an upper bound
on symbol error probability for this design would be

Eh 1/2
P, <240 (1.19‘&—) :’ (3A2.19)

i}

since the decision zone for each lattice point, excepting points on the periphery, is a
24-sided polyhedron. (The bound remains valid even with these edge effects.) Recalling
the efficiency measure for 16-QAM derived in Section 3.3, we find the asymptotic energy
efficiency relative to 16-QAM is 1.7 dB, slightly greater than the projected 1.5 dB. To
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be fair, we should note that the multiplier coefficient for Z? constellations is 4, and
slightly better 16-point two-dimensional designs are available, especially if we switch to
the A; constellation.

Still Belter Lattices

The lattice Eg, known as the Gosset lattice, is a sublattice of Z8, known to be the densest
eight-dimensional lattice packing, and is defined as follows. We first divide Z® into Dy
and a coset of Dg. (As for all D, lattices, Dg is the set of integer-valued §-tuples whose
coordinate sum is 0, mod 2.) Then Eg is the lattice defined as

Ey =2D3 U2Dg+ (1, 1. 1,1, 1,1, 1, 1), (3A2.20)

A partition chain involving E is Z*'/Dy/2D/Eg/ RDg/RD} /228, with d2,_ profile
1/2/2/4/4/4/4 {52]. (The lattice D} is defined by

R T T R
- o izimm= = —.=)UD
O DSUD”(z’z‘z’zzzzzz) 8

rr1rrrir I
S me T s —= JUD, 0,0,0,0,0,0,0,1).

+(2’222222 2) 8+ ( )
Therefore, Z*/Eg has order 16, from which it follows that V(Eg) = I6. Also, the
minimum squared distance between points in Eg is 4, as defined above, and this implies
that the fundamental coding gain is

y(Ey) = =2, (3A2.21)

16278

or 3 dB, 1.5 dB better than the D, lattice. The kissing number for Eg is 240. Table 3A2.1
lists a generator matrix for Eg.

The reader should be suspicious by now that better things are possible in higher-
dimensionality lattices and predict that doubling the dimension again might bring another
1.5 dB in fundamental coding gain.. This prediction is correct, and the lattice is designated
Aye and is 2 member of a sequence of Barnes—Wall lattices of dimension N = 27 A
is a sublattice of Z'® of partition order 4096, with kissing number 4320, fundamental
volume 4096, minimum squared distance of 8, and fundamental coding gain of 272,
or 4.5 dB. To achieve the same spectral efficiency as a design with 16 points in two-
dimensions, the 16-dimensional constellation would require 232 points from the lattice
A6, which clearly points to potential decoding issues.

The story goes on, and the next especially interesting case is the 24-dimensional
Leech lattice, whose fundamental coding gain is 6.0 dB and upon which a modem has
been developed [54).

In Table 3A2.1 we summarize the important parameters for the lattices discussed
thus far, including dp,, generator matrices, and the lattice density, the ratio of sphere
volume to Voronoi cell volume, which curiousty decreases with increasing dimension,
even for best packings. In Figure 3A2.4, we summarize partition chains for the lattices
described here. Some data are taken from [52] and [53].
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TABLE 3A2.1 SUMMARY OF IMPORTANT LATTICES

N Designation Density, A Kissing number Fundamental Coding Gain, dB
1 Z 1.0 2 0.0
2 Z1~D; 0.785 4 0.0
2 A; {(hex) 0.907 6 0.5
3 D5 (fcc) 0.741 12 1.0
4 D4 (Schlafl) 0.617 24 1.5
3 Eg (Gosset) 0.254 240 3.0
16 Ajs (B-W) 0.0147 4,320 = 45
24 Aag (Leech) 0.00193 196,560 6.0
0 2 00
Ay M=[l 3.,3:|: Dy M=}t 0 I |;
I T g 1 1
2 0 0 0 0 0 0 07
0 20 0000C
2000 002 00000
1 0 0 1 O 0 ¢ 20000
D M=14 1 ¢ Be: M=1\ 5001 10 1
0 01 1 01001011
00100111
L0 0 ¢ 11 11 0]
4 00 000000000000 0]
220 00000000O0O0O0O0TO0
2020000000 00DO0O0O0OU0O
200200000000O0O0O0O0
20002 0000000O0OC0GQO0CTO0O
20000 20000O0O0O0O0O00O0
2000002000 00O0O0O00O0
Ae: Mg = 20000 00200000000
2000000O0C2D0O000000
2000000002 000000
20000000002 00000
I 1110107 1001 0000
01 1 1 101011 00T O0O0O0
001 11 10101100100
000 LT 1T P O1OI11 001 0
I S e S T (S A I S T T T T A | l |

Density is defined as the ratio of sphere volume to Voronoi region volume.

Finding the Closest Lattice Point

For lattices to have utility as large constellations, efficient demodulation schemes must
exist; specifically, given projection of the received signal into N-dimensional signal
space, finding the closest lattice point must be relatively easy. After Sloane and Conway,
we give algorithms for D, and E4 and then generalize.
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Figure 3A2.4 Partition chains for lattices. Number shown below lattice de-
notes dmin; number on branch denotes order of partition.

For D,, given r, the nearest lattice point is found by first rounding each coordinate
of r to an integer and checking whether the sum of the coordinates is 0, mod 2. If so,
we have found the closest lattice point; if not, we round the position of the coordinate of
r that rounded in the worst manner in the other direction. This will produce an integer
vector meeting the constraints. Thus, “fast” decoding is no more complicated than two
N -dimensional rounding operations.

Fast decoding in Eg proceeds as follows. We first find the nearest point in 2Dyg,
using a procedure similar to that described for Ds. We also find the closest point in the
translate 2Dg + (1,1, 1,1, 1, 1, 1, 1). The overall winner is obtained by computing the
two Euclidean distances to the observed r. Again, the structure of the lattice makes rapid
decoding possible.

What really underlies these procedures is based on the coset decomposition. That
is, if A can be decomposed into a sublattice and its cosets, finding the closest lattice
point in A can be accomplished hierarchically: determine the closest point in each coset
and then hold a run-off between the coset winners. Finding the closest point in a coset is
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done as follows. Let ®(r) be the function returning the closest point in a sublattice A’
Then the closest point to 1 in the coset A+ ¢ is $(r—c) + ¢ {22]. Thus, if it is easy to
find the closest point in the sublattices, and the number of such cosets is not too large,
finding the nearest lattice point is relatively easy. Forney [52. part II] and others have
also developed 1rellis-based algorithms that, particulasly for large-dimensional lattices,
can be more efficient than a coset description might suggest,

Reprise

Our view here is that lattices are merely a convenient means of implementing multi-
dimensional signal constellations of M points. We might alternatively view a lat-
tice design as a coding technique with aspects of redundancy and memory, however.
DeBuda {56] has shown that lattice codes (with high dimensionality) can approach the
channel capacity bound for the band-limited Gaussian channel. We might view the
lattice signal design as a restricted selection of points from a modulator capable of
synthesizing Z¥. usually through N /2 consecutive uses of a Z? constellation. Signal
waveforms are selected by grouping a sequence of message bits and choosing a point
from the sequence of modulator symbols. Thus, the construction exhibits the traditional
attributes of block codes—redundancy and memory. This connection to block codes
will be more striking later in the texi, where we see these lattice codes, or signal de-
signs, as obtained by having a short block coder operating on some of the message bits
form a coset label, with the remaining bits used to select a member of the specified
coset,

APPENDIX 3A3: DERIVATION OF POWER SPECTRUM

In this appendix we formulate a general expression for the power spectrum of the signal
produced by a digital modulator. The earliest general formulation along these tines was
apparently provided by Tausworthe and Welch [36], although a special case result was
given earlier by Bennett [37]. '
Our treatment again represents the modulator output as a random process formed
by the time superposition of modulator signals, as induced by the input sequence {x,}.

s(r) = Zs\h(! —nT,). (IA3.1)

The methodology can handle baseband or bandpass signals directly. There is, however, a
subtle issue in the carrier modulation case refating to whether the carrier is synchronous
in frequency with the symbo} rate*' so that the signal can indeed be represented as in
(3A3.1). Usually, this synchronism does not exist. and in this case we shall find the
power spectrum by analyzing the power spectrum of the baseband equivalent complex
envelope signal and then translating to the carrier frequency according to the Fourier
translation property. We will say more about this at the end.

n . L . . , .
If synchronism is absent. the actual signal trajectories that the modulator may select difter from nterval
1o interval.
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We shall analyze a case wherein the inputs to the modulator obey a Markov model
(Section 2.5), as would penain for some forms of coding prior to medulation, either for
error control or spectrum shaping. As an important special case, we have the independent
input symbol model.

We assume there are M signals available at each symbol time, and if the modulator
emits signal s;(¢), we say the modulator input is in state {. The Markov structure on the
mput is governed by transition probabilities a;;, denoting the conditional probability that
the input symbol is j, given that the previous symbol is /. The steady-state probability
vector P = (Fy. Py, ..., Py _y} for a regular Markov chain is the solution to (2.5.43):
P=PA Welet P,,i =0,1,.... M — 1 denote the marginal probability that symbol ;
is input to the modulator.

To determine the power spectrum, we follow the route of determining the autocor-

_relation function and then Fourier transforming. The signal in (3A3.1) is, however, not
wide sense stationary, lacking a randomization of the timing epoch. Such a signal is cy-
clostationary, meaning that the mean and autocorrelation function are periodic functions
in 1 with period T;. The mean and autocorrelation function for a “stationarized” version
of this process are obtained by averaging over T, seconds [57].

We begin with the definition of the autocorrelation function for complex signals:

Ri(t,t + 1) = £ [s(0)s™(t + 1)]

= [st (r—“nT)ZsX (t —mT; +r)] (3A3.23)

-1 M-

t

H

ZZ PIX, =i Xp = jls;(t =~ nT)s7¢ = mT, + 7).

=0 j=0 =~

i

By the Markov property the required joint probability is P[X, =i. X,, = j| = P.a™™",

l' i}
18 the {7, j)th entry in the muitistep transition matrix A”~". Therefore,

)
where a‘"' !

Rt t+1)= ZZZZPW "sitt — nTy)st(t —mT, +1). (3A3.20)

The function R, (¢, + 1) W1|1 be periodic in ¢ with period 7, for any fixed 7. To obtain
the standard autocorrelation function, we integrate over one period:

Pk :
R‘(r)=Fg/() \‘(r t+1)di

_ZZZZP' f;" ”)[( Y —HT\-)S,'(I.—mT\-+r)dr
— ZZZZR g\ ,,)j’tl”n)T si(0s [+ (n — m)T, + t]du.

3A33
We rewrite (3A3.3) as ( )

] (l~m)7,
—_ X . (rr—n) 4 .
RJ(T)_FT_‘,ZJZP';f .\,(H)I:Z a;; s (u — (m—n)l}+r)J dt

—nT, m
(3A34)
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This can be finally reduced to

| k)Y »
Ry(1) = Fs Z':Z}:/: P,s,(u)[ Z a,'j ’sJ (e — kT, +I)] du, (3A3.5)

which is one expression of the desired autocorrelation function. Observe that knowledge
of the signal set and the Markov siructure of the input allows numerical computation of
the autocorrelation function.

The autocorrelation function derived here will have an aperiodic component,
R**'(1), decaying to zero as T — 00, and may have a periodic, or persistent, component,
RY'(1). These will produce continuum and discrete, or spectral line, contributions to
the power spectrum, respectively. The periodic portion may be found by observing the
limiting behavior of R;(7} as t becomes large. It is known that this can be determined
from the product of the process means at time ¢ and ¢ + 7. When averaged over a period,
we get

T,
RM(t) = TL[ E[s(DIE[s*(t + T)]dr. {(JA3.6)
5 J0

Now the mean function E[s(r)) is also periodic with period T, and may therefore be
expressed with a Fourier senes:

[s o}
E[s()] = E Cel¥hiT. (3A3.7)

k=-~oc

where the Fourier coefficients are

1 i - M-| .
C, = —[ E [s(t)] e~ P27kl gy = —]~ Z Pisi(t)| e 27/ gy
T“ 0 TJ {220

1 ¥ k
=Y PSi(=
TT ,~=0 (T\)

and where S;(f) is the Fourier transform of s;(1). Substituting this into (3A3.6) yields
the periodic portion of the autocorrelation function:

1 fh : 4 :
Rper(r) = ___] E :C‘_e;zmuﬁ\ E :Cse—ﬂm’(wn/T. dr
Ky Ts o - - !

l 2
— E : 2 ~i2rmo/T,
- lcml 14 ! .
T,

¥ m=-00

(3A3.8)

(3A39)

where we have employed orthogonality of the complex exponentials. This function will
have a Fourier transform comprised solely of spectral lines:

G, (f) = Z ZPS( )

‘ n=-0o0 =()

(f - —) (3A3.10)
Notice that spectral lines may appear only at muitiples of the symbol rate.
The aperiodic portion of the correlation function is the remainder of (3A3.5) after

removal of the periodic part, and upon taking the Fourier transform of this remainder,
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we find that the continuum portion of the spectrum is

G.(f)= Z Z PS(f)S'(f){ 3 @7 - P,-)e‘ﬂ"f‘"’?]. (3A3.11)

S i=0 j=0 m=—o

Putting together the discrete and continuum components, we obtain the complete expres-
sion

Gi(f)= ZZPS(f)s (f)[z(a(m, Pj)e_,-z,fmr‘]

Ees(D)[o(r-(2)

Notice that this expression is completely determined by the signal set and the Markov
chain transition probabilities. In evaluating this expression, we need to interpret A® = 1.

There are several important cases of this result. First, suppose that all signals
are scalar multiples, denoted A;, of some common pulse shape ¢o(¢), as in M-PAM of
M-QAM, Then (3A3.12 ) reduces to

l . .
G(f)= ‘]:—|¢o(f)1“zZPA A} Z (a(’"’ P,)e= ¥ .

(3A3.12)

Z

m——OO

R (3A3.13)
+ﬁ§|¢o(f)|2 Z 5(f——)

Bennett [37] first derived this expression in different form.
Another important case is that for which the input symbols are assumed indepen-
dent, but signals have arbitrary shape. Independence in the model implies

(m)={lpj. m#0,

if 1, m=0.

Simplification then gives

1 ) 2
Gi(f) == [Z P1S, () - ’Z P.-S,-(f)' ]

, (3A3.14)
- m
+ — Stf—-——1.
., (r-7)
Invoking both these assumptions gives
I , ) :
Gl f) = 7 %) (Zj P 1A,* - .Z P,A; )

(3A3.15)

E-9)

n=-5
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In all cases it is interesting to note that the spectral line contribution depends only
on the signal Fourier transforms and the marginal probabilities, but not the transition
probabilities directly.

As an application, and one that highlights the synchronism issue mentioned earlier,
consider binary on—off keying of a sinusoidal carrier. Let the pulse shape be rectangular
with bit duration T,. Suppose that the carrier frequency is exactly an integral multiple &
of the bit rate. Then the model of (3A3.1) pertains where

2wkt
solt) =0 and s5(t) = Acos T s Q<t<Tp,. (3A3.16)
b

If we assume that the input bits are equiprobable and independent, we may use (3A3.13)
to obtain the power spectrum:

47, | sin? [,r (r-%) T,,] +\2sin [:r(f - ;;)T,,] sin [Jr(f + %)]
16

(AR

Gs(f) -

[ﬂ"(f - %)Tb_

SiI]2 (:J’t (f + ;-,-k;) Th]- A2 k k
. A2l L)ws(r+4))
f & T, ] b
[N( +Th) h] (3A3.17)

Suppose, on the other hand, that there is lack of synchronism between carrier frequency
and bit rate: then in any given bit interval the amount of phase change experienced by
the carrier phase is not an integral multiple of 27 radians, and the superposition mode}
of (3A3.1) is not strictly valid because signals at later times are not mere translates of
the signal available at, say, time 0. To handle this case, we write the modulator output as

5(t) = Re {§(r)e/ PS4 D) (3A3.18)
where §(¢) is the complex envelope signal
§5t) = l?“ f_" i (1) . nly <t <+ DT, (3A3.19)

and © is a uniformly distributed phase angie. The power spectrum of the compiex
envelope signal is that of a real unipolar NRZ signal and has a speciral line at zero
frequency plus a continuum component:

A? A%T, sin® (= f Ty
Gi(f) = —5 . 3A3.
(f)=8() + — Ty (3A3.20)
The power spectrum for s(r) in this case is then given by
1
Gotf) = 7{G:f - £+ Gi(=f - 1], (3A3.21)

which is just two translated copies of the baseband power spectrum. The power spectrum
of (3A3.21) is slightly different than that obtained in {(3A3.17), although the differences
diminish when k >> 1. Both results give the same total power, however. In both cases
the rate of decay of the power spectrum for large separations from fe is of the form f~2,
resulting from signal discontinuity.
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A seemingly innocuous change to the original formulation, 5,(t) = A sin(2wkt/T}),

makes the signal continuous everywhere and changes the asymptotic spectral rate of decay
to f*. Lack of carrier synchronism alters this, however, back to the preceding situation,
due to possibie discontinuity. Clearly, many subtleties are involved.
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EXERCISES

3.L.1. Assume a channel can be described as having constant gain and linear phase over a range

of frequencies., {0. 81 hertz: that is,
H(fy=Ge ™M |fi<B.

Using transform calculus, show this implies that the response to any input signal s(/) having
Fourier transform band-limited 10 B hertz will be Gs(7 — o). which we define 10 be an
undistorted replica of the input.

3.1.2. The Rayleigh fading model presumes that the instantaneous amplitude measured at the chan-

286

nel output is Rayleigh distributed. The square of the random quantity would be instantaneous
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314,
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322

32.3.

normalized power. In Chapter 2, we found that the square of a Rayleigh random variable
had the one-sided exponential density function. The p.df. for P(f) = A%(1) at any time 7 is

1
frip) = Fe"’”’. ?=0,

~ where P is the average power.

(a) Find the probability that the received power is less than a level 3 dB below the average
power level P.

(b) Determine the probability that the power is less than a level 10 dB below the average
level.

{c¢) Determine the probability that the power is more than 3 dB above the average power
level.

Fading signals are often characterized by their Doppler bandwidth in the spectral domain

and decorrelation time in the time domain. These channel descriptors are, respectively, the

essential extent in frequency (or time) for which the power spectrum and correlation function
of the complex fading process A(1)e/#"") are essentially nonzero, and these descriptors are
appreximately reciprocally related.

(a) A mobile radio channel operating at 300-MHz center frequency with vehicle speeds of
100 km/h may exhibit Doppler bandwidths of 100 Hz. Find the decorrelation time, and
determine if the fading is “slow™ when the bit rate is 9600 bps.

(b) Repeat for a high-frequency (3 to 30 MHz) ionospheric channel, whose Doppler band-
widths are ordinarily less than 1 Hz. Here the fading process is due to turbulence in the
ionospheric reflecting medium.

A typical radio channel may have a net loss between transmiiter output and receiver input

of 143 dB. If the transmitter output power is 5 W, determine the received power level. The

noise power density No/2 is often characterized by an equivalent noise temperature, Tyys;
that is,

No _ KTy
2 27

where k = 1.38 - 10~%* is Boltzmann’s constant. If T4y = 200 K at this same point in the
system, and the bil rate is R = 1 MHz, determine E;/Ng at the receiver.

Show that the squared L, distance, dl.z_ j° between waveforms s; (1) and s;{t); that is,

2
d,-z‘j :f [S,'(l) —Sj(l‘)] di,
T
is equal to the signal space distance between s; and s;; that is,

N-1 )

2
=3 [sim=sim] -

m=0
Hint: Substitute 5,(1) = Zs,-,,gb,,, {tr) in the integral expression for squared distance and
simplify, empioying orthogonality of the basis functions.
Show that the basis functions given in (3.2.112), the phase-quadrature pair, are exactly
orthonormal if w, is a multiple of 2 /T;. In practice, this is not usually the case; show,
however, that if w, is very large relative to 2xr /T then essential orthonormality is obtained.

A signal constellation with M = 4 points in two dimensions is shown in Figure P3.2.3a.
(a) Consider three choices of basis functions:

Case I: phase-quadrature sinusoids

Case II: two nonoverlapping pulses

Case III: the functions shown in Figure P3.2.3b
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dolt} d(t)
T

Figure P3.2.3b

Write expressions for or sketch the four signal waveforms in each case.

(b} Formulate upper and lower bounds on the symbol error probability for the AWGN
channel as a function of Ep/Ng. Note that this depends only on the consteliation and
not the exact nature of the signal set employed.

(¢} Evaluate both of these bounds when E,/Ng = 10 dB.

3.2.4. Use the Gram-Schmidt procedure to obtain a basis set for the signal pair of Figure P3.2.4.
Find the signal-space coordinates of each signal, and verify that the intrasignal distance is
the same in the L sense as it is in signal space. Also verify that the signal energy is the
square of the distance from the origin in signal space. '

] 4

A A
Solt) T, 5(1) T,
0 - 0 1 L -
t
_al AL

Figure P3.2.4
3.2.5, The following two signal sets have M = 16 points each: the MPSK set with

I
s,-(l)zAcos(w,.r+—A—I;i), i=0,1,...,15,

and the set with s;(t) specified by rows of the 16 x 16 Hadamard matrix, Hs. Sketch or
describe the signal constellation for each, and determine the dimensionality of the signal set
in units of dimensions per bit transmitied.

3.2.6. In binary frequency shift keying, suppose the two signals are represented as
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so(t) = Acos(wet + Awt + 8), O0<t=<T,,
and s51(t) = Acos(wt — Awt + 8),

where Af = Aw/2r is the carrier frequency deviation in hertz. 6 is a common phase angle

that is known to the demodulator.

(a) Choose the first signal, normalized, as the first basis function, and locate the other signal
in signal space as a function of Af. (Assume that the carrier frequency is “large.”) What
deviation provides the largest distance? Note that it does not correspond 1o a situation
where the signals are orthogonal; slight negative correlation is better.

(b) Show that Af = n/4T; yields orthogonal signals. (Note that this condition holds only if
both signals have the same starting phase; if the phases are different, as they would be
in selecting from two different oscillators, the orthogonality condition is Af = n/27; .}

3.3.1. Suppose a set of M low-pass signals is strictly band-limited to W hertz. One is sent and
received in the presence of white Gaussian noise. Show that prefiltering the received signal
r{z) to a bandwidth of W hertz with an ideal LFF does not compromise the detection
process. Equivalently, show that the noise signal outside this bandwidth is irrelevant. (Hint:
The received signal could be viewed as being low pass filtered and high pass filtered,
decomposing r (1) into lwo component processes; does the high-pass filter output contain a
signal-dependent portion, or is the noise correlated with the LPF output noise?)

3.3.2. Show that

N-1

Ty
rMsiinndt =Y rosim.
L O0d1= Y rmsin

m=0

where r,, and s;, are coefficients of the N-term expansion for the received waveform and
an N-dimensional signal, respectively. Argue that by padding the coefficients beyond sy
with zeros we can equivalently state that

Tr N-1
r()s;(t)ydr = FmSint.
./7; z maint

m=0

3.3.3. If a signal set constrained in time to [0, T;] is to be detected in the presence of AWGN,
the optimal receiver does not benefit by using the received signal r(r) either prior to or
after the signal. Why? Would the same be true if the noise was colored, that is, had a
spectrum that was not constant for all frequencies? (Hinr: The answers involve the principle
of irrelevance.)

3.3.4. Consider the binary communication system shown in Figure P3.3.4, wherein during each bit
interval 7 either a binary code waveform c(1) or its logical complement phase-shifi-keys
the carrier. (This is commonly known as direct sequence spread-spectrum signaling.) Argue
that the receiver must perform an antipodal decision, and sketch an implementation of the
optimal receiver. You may invoke a genie to inform the receiver of the code sequence ¢(t)
and its “phase.”

X, {-1, 1}

 BPSK |
S(t)

cit}, a £ 1 code pattern with chip rate R, = mR,
Figure P3.3.4
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3.3.7.

In any on-off keying situation, if the receiver knows ll!le received signal amplitude, the
proper threshold may be set, and P(¢) = Q[(Ep/2Np)?}], as discussed. If, however, the
signal level is estimated incorrectly, suboptimal performance results. Examine the case
where the receiver believes the signal level is half (in energy) the actual value, when the
actual Ep/Ng is 10 dB. Here one type of error event dominates the other,

In one-shot reception of a rectangular pulse in AWGN the optimal detector is an integrate-
and-dump detector. This detector can be viewed as a low-pass filter, with normalized mag-
nitude of the transfer function given by

| sin(afTs)|
(nfTs)

Consider instead the use of a more familiar first-order low-pass filter whose transfer func-
tion is

|Hom (/)] =

1
1+ (jf/fam)

Thus, the filter has 3-dB frequency figp and filter time constant ¥ = jn f3¢m. Its response
to a rectangular pulse is piecewise exponential in form. We agree to base our decision
on the output of this fiiter at the end of the bit. The problem is to optimize the trade-off
between achieving large signal response (obtained with wide bandwidth) and minimizing
noise power (with narrow bandwidth). Give an expression for the SNR at the sampling
instant, SNR = u2/62, and maximize with respect 1o fiyg. Also, caicuiate the resuiting
loss in SNR relative to the optimal detector. You should find the loss is on the order of
1 dB, which is not too disappointing, given the filter's simplicity. However, the performance
is further degraded when we consider synchronous transmission because the filter retains a
residual influence from previous symbols.

H{f)=

Three differem eight-point constellations are proposed as shown in Figure P3.3.7. Draw the
appropriate decision boundaries for each technique in two dimensions, and express P; in
terms of peak energy-to-nsise density ratio. Repeat for an average energy normalization.
Which of the demodulators would be easier to implement?

[ ] L ] [ ]
. . . d
L ]
L ]
. . .
[ [ ] 4 L J
8-PSK “7-around-1" “Box”

Figure P3.3.7

3.3.8. Construct the 3-ary simplex design as follows. Begin with a 3-ary orthogonal signal space,

and from each signal vector, subtract the center of mass of the original constellation. What
is the energy in each of the new signals? Show that the normalized inner product between
signals is —5 Finally, show that the three signals can be described by a two-dimensional
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3.3.10,

311

1302

3.3.13.

13.14,

basis and that the signal space may be recast as vertices of an equilateral triangle in two-
dimensional space, or as 3-PSK.

We will consider a simple argument regarding the asymptotic performance of orthogonal

signaling. Suppose that the communication channel can supply a received power level of

P, watts, with a noise level of No/2 W/Hz.

(a) First, argue that with orthogonal signaling the probability of confusing any transmitted
signal for any one of the alternatives is bounded by

1 _£.pn
Py = —e B/,
L)

{This is an upper bound for coherent detection, but exact for noncoherent detection, as
shown in Section 3.4.)

(b) Now apply a simple union bound to show that the probability of symbol error is
bounded by

P < (M — 1)Py < MPy = ¢'%8 Mp—E:/INo

{c) Now recall that E; = log> ME to obtain the result that

P log m (1 o}
< —_— e .
R et No 2log, 2

and hence the result that as M becomes large the symbol error probabnltty can be made
arbitrarily small provided £, /Ny = 2log, 2 = 1.4 dB.

Biorthogonal signaling with M = 32 was utilized as an efficient modulation scheme for

NASA’s Mariner 1969 space probe. The construction of the signal set was based on

Hadamard matrices, as described in Example 3.6. The baseband Hadamard puise sequence

phase-maodulated a microwave carrier near 2.3 GHz.

(a) Show how a coherent receiver can be implemented that uses only one radio-frequency
correlation, followed by baseband processing. In particular, show how we can integrate
over each chip interval, producing real variables, which can become inputs to a “digital
correlator.” The latter box is really a system for performing signed addition according to
the rows of the Hadamard matrix and amounts to performing the Hadamard transform
of the received 16-dimensional vector,

(b) Evaluate the symbol error probability when £, /Ny = 5 dB.

(¢} If the output of the Hadamard sequence generator is modeled as an independent binary
sequence, except that the rate is scaled accordingly, determine the width of the power
spectral density (main lobe) assuming an information rate of 10 kbps.

Show that, by subtracting from each signal point of an M -ary orthogonal construction a

vector corresponding to the center of. mass. the resulting constellation has energy E; =

EdM-1)/M.

Verify that the signal set formed by the seven cyclic shifts of 1, 1, 1, =1, —1, 1, —1,

a length 7 pseudorandom sequence, augmented with an eighth signal —1, —1, -1, -1,

=1, =1, —L, forms an 8-ary simplex. To do so requires showing that the normalized inner

product between signal-space vectors is — -:s Describe two different seven-dimensional bases
for this sel of signals. Find P; for the AWGN channel when Ep/Np = 8 dB.

Graph Py for the differential encoding/decoding of 4-PSK, with coherent detection, as a

function of E,/Ny. Delermine the increase in required £,/Np at P, = 1073 over regular

4-PSK.

Evaluate P; for 32- QAM as described in Section 3.3.5 and determine the E,/Ng needed

to achieve P, = 107>, Determine the ratio of peak signal-energy to average signal energy
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for this modulation scheme. Experiment with bit labeling schemes that minimize bit error
probability.

3.3.15. In digital microwave radio, the quest for spectrum efficiency has spawned equipment that
now uses 256-point QAM transmission. Determine the £,/Ng necessary to achieve a bit
error probability of 1077, assuming a square constellation. Use upper bounds for the Q-
function from Chapter 2.

3.3.16. Show that 16-QAM can be synthesized by the use of two QPSK modulators in parallel,
as shown in Figure P3.3.16. with one of the medulator outputs atienuvated by 6 dB, or a
factor of onc-half in amplitude. This technique is referred w as superposed modulation and
allows high-power-level modulation to be performed without the need for linear amplitude
modulators/amplifiers. Generalize the approach 1o the synthesis of 64-QAM.

2
7—=1 QPSK Iz\
r Vi : 12~

Serial Ser-
e~ | to-
binary 1 alfes
L 2,
7 1 QPSK,

Figure P3.3.16

3.317. The 16-point constellation adopted in the V.29 standard for 9600-bps voice-band modems
is shown in Figure P3.3.17,

|
. o .
L S
1 o i L 4§ o
. 2 32 5a
L] - L}
-
Figure P3.3.17

(a) Draw decision zones for the AWGN channel. (They are not as simple as in the rectan-
gular 16-QAM design.)

th Caleulate the average energy of the sigaal set in terms of o, and determine upper and
lower bounds on P,. Note that each signal point does not have the same set of nearest
neighbors. You should determine that this consielfation is Tess energy efficient than the
standard 16-QAM design. ‘

(€) One advantage of this constellation is a smaller degradation under carrier phase error
in the demodulation, which causes a rotation of signal space relative to the decision
boundaries. Discuss qualitatively the effect for the V.29 and standard 16-point designs.
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3.3.21.

341,

Design a 64-point constellation formed from the Dy lattice as follows. Offset the Dy as
lattice by adding the vector (1/2, 0, 1/2, 0) 1o every lattice point, or equivalently shift the
origin by the same amount.

(a) Show that the innermost two shells plus a portion of the third shell includes exactly 64
points, and find the average energy per symbol, normalized to the minimum squared
distance between points.

(b) Show that E; = 3.375

(c) Evaluate an upper bound on P; by realizing that in the worst case a point in the
consteilation has 24 nearest neighbors.

(d) Compare this bound with that for 8-PSK, a choice that would have the same signal-
space dimensionality per bit transmitted, and determine the relative energy efficiency
afforded by four-dimensional signaling,

(e} Describe how such a signal set may be realized using two consecutive signal intervals
of two-dimensional QAM-type modulation.

Conway and Sloane discuss so-called Voronoi.codes in [22], and produce the 16-point design

drawn from A, shown in Figure P33.19,

. -
L J [ - & *
1 P N . i L t [l L 1
5 (1,0
. L ] i L]
AN
. S l , ___'\(E
- 2
Figure P3.3.19

(@) Calculate the ratio dmi,2 /—E_,.

(b) Calculate an upper bound on P;, and compare with the result for (square) 16-QAM,
Suppose we employ antipodal NRZ signals of duration 7 on a nonideal channel whose
impulse response is a rectangular pulse of duration a7, o < 1. Apply matched filter theory
to determine the optimal one-shot receiver structure and the resulting marched filter bound
for performance on this dispersive channel. This involves caiculating the energy in the
distorted difference signal,

Consider transmission of a single bit using bipolar rectangular pulses with duration T. Let
these be passed through a linear channel having impulse response given by

ht) = %[u(r) —u(t —1)],

which is a low-pass channel having unity gain at zero frequency. Suppose the signal is
received in the presence of white Gaussian noise. Determine the shape of the distorted
signals at the receiver, and thus describe the impulse response of the optimal single-symbol
detector. Find the energy in the filtered difference signal, £ ;, and evaluate the loss in
detection efficiency implied by the matched filter bound as a function of /T,

Consider baseband 8-ary orthogonal signaling using the Hadamard matrix of order 8.
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3.4.3.

3.4.4.

3.4.5.

3.4.6.

(a) Using a basis-function receiver with eight nonoverlapping rectangular pulses, show how
a single time-shared integrator followed by a digital correlator can implement the optimal
receiver. This correlator, if implemented using straightforward vector multiplications,
would require 8(8) = 64 addition/subtraction operations per modulator symbol. A fast
Walsh—-Hadamard transform, analogous to the fast Fourier transform, can compute ali
the correlations in 8 log, 8 = 24 addition/subtraction operations, however.

(b If the Hadamard “chips” PSK modulate a carrier, show how to optimally detect the
signals; in particular, note that we should not decide the sign of each chip and then do
some sort of logical operation on these.

(c) With modulation as in part (b), show how to perform noncoherent detection.

(d} Evaluate P; for both coherent and noncoherent detection when Eyz/Ng = 7 dB,

(e} If receiver phase coherence is possible, show how to design an 8-ary biorthogonal set
with half the dimensionality and slightly better error performance,

One realization of orthogonal signaling uses M-ary FSK., in which the modulaior produces
a sinusoid at frequency f; = fo+17Af,i =0,1,..., M ~ 1. Suppose that the frequency
spacing is equal to the symbol rate R,. An implementation of a noncoherent receiver is
a matched fifter bank followed by envelope detectors. The matched filters are centered at
the respective frequencies. Show that an alternative implementation is possible that samples
the received signaf at an appropriate rate, computes a disctete Fourier transform DFT at the
respective frequencies, and decides in favor of the channel having the largest DFT magnitude
(or magnitude squared).

Derive the result that for noncoherent detection of binary on—off keying (QOK) the bit ertor
probability may be approximated by, for high SNR,

1 .
Py r Lo Enfia
b3

Hint. The cutput of the noncoherent maiched filter is either Rayleigh distributed, in the case
of no signal. or Rician distributed. in the case of signal present. The optimal threshold should
be set at the intersection of the two conditional p.d.f.'s, but a reasonable approximation is to
assume that this point is u/2, where u is the detector output magnitude with signal present,
but without noise. By integrating the p.d.f."s over appropriate ervor regions and by making a
Gaussian approximation (mean u) to the Rician density, you shouid be able to demonstrale
the above for large SNR. Here one error type dominates the other at large SNR.

In pulse compression radar. a phase-coded RF pulse is transmitted at the target and is
received at a later time with total energy £, in the presence of white Gaussian noise. Let
the baseband pulse be defined by the seven-chip sequence with polarity pattern ~+ + + —
—+ —. with euch chip lasting T, /7 seconds. The receiver cannot determine the return signal
phase and so performs noncoherent detection. Diagram the structure of the optimal receiver,
and show the response of the envelope detector output when excited by the signal. The
output pulse has the same shape as the signal awtocorrelation function, which is narrow in
time. Jeading 10 accurate range measurement. (The radar problem differs from the dignal
communications framewaork in that the sampling time is not known a priori—radar receivers
merely place an amplitude threshold on the output of the detector to declure presence of
target.}

Demonstrate that 1o maintain orthogonality the frequency spacing between FSK signals that
arc phase coherent is Af" = mR, /4. while for noncoherent FSK signals (derived from
different oscillators perhaps), the spacing must be Af = mR, /2.

An optical communication system utilizes 256-ary pulse-position modulation of a laser to
send messages. This provides an orthogonal signal set. At the output of the photodetector
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3.5.5.

Chap.

in the receiver, we model the resulting photocurrent as the sum of the transmitted sig-
nal plus an additive white Gaussian noise (here called shot noise arising in the detection
process). If the mean detector oulput is A amperes during presence of a pulse, and the
additive noise has power spectral density No/2 A%/Hz, give an expression for bit error
probability.

In 4-ary DPSK, the receiver measures the following sequence of phases: 79°, 95°, 517,
235%, 219°, 38°. Decode the sequence using the first phase measurement as a reference.

In PSK or DPSK reception, the receiver first estimates the phase of the signal in the nth
interval as shown in Figures 3.3.20 and 3.5.1. [It may be shown that

r
Yp = tan’ ' (—;L)
Ten

is a maximum likelihood estimate of phase angle. given no -prior information about the
angle.] Without loss of generality, assume that the true phase angle is zero so that

n.
y=tan*‘( : )
A+n,

i1s the phase error, with n. and #; denoting the in-phase and quadrature components of the

noise.

(a) By invoking a large-SNR approximation and a small-angle approximation, show that
the phase error is zero-mean Gaussian with variance 02 = Ny/2 A2, as SNR becomes
large.

(b} Determine under these same approximations the distribution for the phase difference of
two consecutive measurements, as performed in DPSK.

Show that implementation of the 4-ary DPSK decision can be implemented by forming
both the vector inner product and vector cross product of successive phasor measurements
and then comparing each with zero thresholds. This will determine in what quadrant the
measured phase difference lies. Diagram a receiver.

A communication link can supply P = 10712 W of signal power, with the noise level at
the same point in the receiver measured to be Ny/2 = 1072 W/Hz. The desired bit error
probability is P, = 1077 What are the achievable bit rates with the following options?
(a) Coherent PSK

(b} 4-ary orthogeonal signals, coherent detection

(c) 8-PSK

(d) 8-DPSK

For implementation losses in the demodulator due to synchronization and the like, allow a
1-dB inefficiency relative to theoretical performance.

Computer simulation is a frequent means of evaluating digital system performance, espe-
cially in cases where nonlinearities, filtering. and/or non-Gaussian noise may be present.
This exercise introduces the an.

(a) Let’s consider simulation of 8-PSK modulation. We often do not need 1o simulate the
waveform aspecis of the problem, but produce instead random variables with appropri-
ale densities. The basis function receiver would, under assumption of the Sy message
being transmitted, produce for rp a Gaussian random variable with mean E.!/2 and
variance Ng/2. On the other hand, r1 would be zero-mean Gaussian with the same
variance,

(b) Generate pairs of independent Gaussian variables using the Box—-Muller method:
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3.6.1.

3.6.2.

3.6.3.

Zy = (~2log, U7 cos2rUa).
£ = (—2!og¢,U1)”2 sin(2ml/2).

where /. U/> are independent variables uniformly distributed on {0, 1) and commonly
available from random number generators. To Z, add a constant to provide the proper
mean.

(¢) Perform a decision by deciding whether the measurement is inside the pie-shaped sector
/8 radians on either side of zero. Count the number of errors in 1000 trials, when
EpiNg = 10 dB. Do you agree with the theoretical result? (In 1000 Bernoulli trials,
the standard deviation of the measured mean is [P (1 — P.)/1000]'/?.) Remember to
scale energy praperly. ’

What average F,/Ng is required to produce P, = 10~ for the following options on the

Rayleigh slow-fading channel?

(a) Coherent binary PSK

(b) Binary DPSK

{¢) 8-ary orthogonal (FSK) with noncoherent detection

(d) 8-ary DPSK

Repeat for P; = 1075

Other popular fading models are the Rician and log-normal models. In Rician fading, A(7)

has a p.d.f. given by

fA(a) = 11[0 (EEZ{) e'—(u-'+l,(:)/201' 4> 0
as a

In log-normal fading, so named because the logarithm of the amplitude is held to be normally
distributed,

fala) = Ketlog(.a—m!/za-‘.

(a) Plot p.d.f.’s for both when t =3 and o0 = 1.
(b) Fomulate integral expressions that could be integrated to compule symbol error prob-
ability for DPSK transmission over such a channel, assuming the fading is slow.

Generale a Rayleigh random process in discrete time using a computer random number
generator 1o produce two independent Gaussian variates as in Exercise 3.5,5; then compute
the root sum square of these. To make the process have a desired correlation time, or band-
width, the Gaussian sequences should be generated by filtering white Gaussian sequences
in each case with identical Jow-pass filters. If you wish to simulate a case where the ratio

" of symbol rate to fading bandwidth is 100, constituting a slow-fading case, the difference

364,
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equation
Yo =194Y,_, - O.95Y,,_2 + W, - 1-94WH—-| + W,-2

will suffice. This is a two-pole elliptic filter with rather sharp transition from passband to
stopband. It is instructive to view time-domain plots, amplitude histograms, and spectra of
the complex Gaussian random sequence using an FFT routine.

Sometimes the figure of merit for channels is not the average error probability, but the
outage probabifity, défined as the probability (percentage of time) that the link has an error
probability greater than some acceptable level, say 1074 Suppose we have a Rayleigh fading
channel and wish an outage probabitity less than 1%. Use the Markoy inequality to see where
to design the nominal link operating point if DPSK transmission is utilized. {(Answer: The
average SNR must be set 13 dB higher than that required to give 10~* performance. to
allow for the fading.)
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3.7.1. Consider binary baseband signaling with
so(t) = —Ago(1), 51(t) = AgplD),
and
dolt) = (2/T,)} 2 sin’ (’;—') :
as shown in Figure P3.7.1. Show that the power spectrum is
sin?(r £ 75)
ST = WP+ THF

Furthermore, show that the first nuli in the spectrum is at f = 2Ry, and nulls occur at every
multiple of the symbol rate thereafter. Notice aisc that for large frequency the rate of decay
of spectral sidelobes is Q(f ~9).

G;(f1 =K

dolt)
-------- (2/T )"

T Figure P3.7.1

3.7.2. RZ (return 1o zero) signaling uses the two signals shown in Figure P3.7 2. Determine the
baseband power spectrum for this transmission strategy. At what frequencies do spectral
lines exist?

s{t) & Solt)

Figure P3,7.2

3.7.3. Determine the power spectral density for 4-PSK and 8-PSK transmission options for a
satellite link when the bit rate is 140 Mbps. Assume that the carrier frequency is f. =
6.0 GHz and that a NRZ pulse shape is used. Repeat if square-root, raised-cosine shaping,
with excess bandwidth factor 0.25, is used. Which option makes the most sense if the
nominal transponder bandwidth is 72 MHz?

3.7.4. Data transmission over the dial-up voiceband network is accomplished in various formats
and data rates. One technigue utilizes 16-QAM signaling on a 1800-Hz carrier to achieve
9600 bps throughput. The symbol rate is therefore 2400 Hz. Instead of rectangular pulse
shaping, suppose we use a raised-cosine pulse shape having an excess bandwidth factor of
0.2. What is the resultant power spectrum? In particular, show that the spectrum is zero
outside of (360 Hz, 3240 Hz).

3.7.5. Adopt 8-ary PPM as a bascband transmission format, and use the generic expression for the
powet speciral density to determine G, (f). Simplify as much as possible. Are spectral lines
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present? Write a short computer program to evaluate the power spectrum, and give a rough
assessment of bandwidth. What happens when we shift to 16-ary PPM with the same bit rate?

3.7.6. Consider binary FSK wherein the transmitted signal switches between two oscillators ac-
cording to the message bit to be sent. Thus. the signals are detined by

sgdt) = Acos(2m for + Oy
and
si{r) = Acos(2m fi1r + O

for a duration T, seconds. Here the phase angles are defined to be independent random
variables, uniformly distributed on [0. 2:7). A representation for the aggregate signal over
time is

1 +d( . L —din)
s(t) = ——52 cos(2m for + ©y) + ——2-{-—- cos(2m fir + &),

where d(r) is the unit-amplitude random binary wave discussed in Chapter 2.
(a) Show that the autocorrelation function for this signal is
2

A .
Ri(r)y = ?[(l + Ry(r)yycos2m fur) + ( + Ry(r)ycos(2m f 13,

where Ry(1) is the (triangular) autocorrelation function of the unit-amplitude random
binary wave having bit rate /7,

{b) Show then that the power spectrum is comprised of (wo spectral lines at the respec-
tive oscillator frequencies, plus two sinc-squared lobes centered at each frequency. with
bandwidth corresponding to NRZ modulation of each carrier. This result holds for any
choice of fy. f. The spectrum is somewhat different, however, if the modulation is
achieved by frequency-modulating a single oscillator, which enforces a phase continu-
ity condition.

(¢) Plot the power spectrum for the cases fy = 1070 Hz and f; = 1270 Hz. with
Rp = 300 Hz (corresponding 1o a 300-bps FSK data modem).

3.7.7. Derive the same result for the power spectrum in Exercise 3.7.6 by defining the complex
envelope of each signal relative to the frequency midway between the two oscillator frequen-
cies and then finding the baseband power spectrum as discussed in the text; then, finaily,
apply frequency shifting to the carrier frequency.

3.7.8. The IEEE 802.4 token-passing local area network protocol uses an FSK system for binary
data transmission, with the two signals shown in Figure P3.7.8. Either one or two cycles
of a sinusoidal carrier is sent per bit interval. Determine the power spectral density of the
modulator output signal.

L\ /\ |
-V

BRI

Figure P3.7.8

Ty t

3.8.1. Diagram a maximal length sequence generator for a 15-bit sequence, using the feedback
connections supplied in Figure 3.8.2, and list one period of the sequence. By representing the
sequence in +1 format, compute the autocorrelation function of the sequence by integrating
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3s8.2.

3.8.3.

384,

385,

3.8.6.

3.8.7.

3.8.8.

3.8.9.

the product of the sequence and a delayed version over one period. Verify the result is as
shown in Figure 3.8.2c.

The family of Gold sequences is obtained by taking two preferred maximal-tength sequences
of equal period and modulo-2 adding their outputs to produce another binary sequence with
the same period. If we phase shift one sequence relative to the other, still another binary
sequence is obtained. Consider length-15 sequences, and let one constituent be the sequence
formed in Exercise 3.8.1. Let the other be the sequence formed by feeding back the modulo-
2 sum of bits 3 and 4 in a four-bit shift register. (This is another maximal-length sequence.)
Form the Gold code obtained by starting both generators in the all 1’s state. List its sequence
of bits, and determine the cyclic autocorrelation of this sequence with itself. If you wish to
pursue this further. form another Gold sequence by shifting either constituent sequence by
one chip, and perform a cross-correlation analysis of the two Gold sequences,

For a DS system with 255 code chips per information bit, calculate the processing gain in
decibels, and determine the error probability for PSK signaling with £5/Ng = 10 dB and a
tone interferer with 5-dB larger power at the receiver. Does additive noise or interference
dominate the error probability calculation?

Derive the optimal combining rule for combining the receiver outputs with hops per
bit, assuming noncoherent detection on each hop and independence of phases from hop to
hop. In particular justify (3.8.14). Hinr: Write the likelihood function for the two cases,
assuming independent channel action on each hop, with Rician or Rayleigh p.d.f.'s; then
take logarithms and eliminate common terms.

Consider a partial-band noise jammer with fili factor p and fast frequency hopping with H
hops per bit. Suppose that the modulation is binary FSK, with noncoherent detection, and
that the receiver has side information on whether a given hop is jammed by noise or not.
Show that

P, = pH P (error for H hop combiningquf)

Use the expression derived in Section 3.8 for the error probability with fast hopping, and
retain only the leading term of the expansion to substitute in this expression. Determine
from this the worst-case p, and show that for large £), /Np, the error probability expression
has slope —H.

Consider a fast-hopping system with binary FSK modulation. Instead of performing optimal
combining as in (3.8.14), we may elect 1o perform binary decisions on each hop and decide
finally based on majority vote. (This is particularly attractive if the receiver does not know
which hops have been jammed and thus cannot form optimal combining rules.) Formulate
the expression for final error probability, and show that with 2 worsi-case jammer the slope
of the error probability curve is —(H —~ 1)/2 for 4 odd.

Plot the conditional p.d.f.’s given in the text for the fast frequency-hopping case when
Ep/Ny =10dB and H = 5.

Repeat the calculations of Example 3.20 when the modulation is binary DPSK. Determine
the worst-case p and the resulting expression for error probability. Assume sufficiently slow
hopping that the DPSK overhead is negligible.

Suppose in a CDMA system employing DS spread spectrum that two users transmit simul-
tancously and that the codes possess 127 chips per bit. Due to delay differences, assume
that the worst-case cross-correlation occurs when 66 chips agree and 61 differ. Calculate the
normalized cross-correlation and the decision SNR if EpfNo = 10dB and y = |. Assume
that all sources of impairment can be modeled as Gaussian at the detector output and that
variances add.
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